WO2009122458A1 - 量子ドットの製造方法 - Google Patents

量子ドットの製造方法 Download PDF

Info

Publication number
WO2009122458A1
WO2009122458A1 PCT/JP2008/000819 JP2008000819W WO2009122458A1 WO 2009122458 A1 WO2009122458 A1 WO 2009122458A1 JP 2008000819 W JP2008000819 W JP 2008000819W WO 2009122458 A1 WO2009122458 A1 WO 2009122458A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
film
gas
substrate
type silicon
Prior art date
Application number
PCT/JP2008/000819
Other languages
English (en)
French (fr)
Inventor
横山新
雨宮嘉照
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to PCT/JP2008/000819 priority Critical patent/WO2009122458A1/ja
Priority to JP2009525826A priority patent/JPWO2009122458A1/ja
Priority to US12/665,242 priority patent/US8470693B2/en
Publication of WO2009122458A1 publication Critical patent/WO2009122458A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region

Definitions

  • the present invention relates to a method for manufacturing quantum dots, and more particularly to a method for manufacturing quantum dots capable of controlling the size and density of quantum dots.
  • quantum dots made of silicon have been formed using LPCVD (Low Pressure Chemical Vapor Deposition) method (Japanese Patent Laid-Open No. 2006-3254).
  • the quantum dots are formed by performing a reaction for 50 to 70 seconds at a reaction pressure of 0.5 Torr and a substrate temperature of 560 to 600 ° C. using silane (SiH 4 ) gas as a material gas. .
  • quantum dots are produced using conventional quantum dot manufacturing methods, the size and density of the quantum dots can be controlled.
  • the production time proportional to the number of layers is required. There is a problem that it is necessary.
  • an object of the present invention is to provide a method for producing multilayer quantum dots capable of controlling size and density.
  • the quantum dot manufacturing method sets the amount ratio of the second material containing the second element to the first material containing the first element to be equal to or higher than the reference value, and the thin film is formed on the substrate.
  • the reference value is the amount ratio of the second material to the first material when forming the insulating film containing the first and second elements.
  • a thin film made of an amorphous phase is deposited on the substrate.
  • the quantum dot manufacturing method further includes a fourth step of cooling the thin film at a temperature lowering rate equal to or higher than a reference temperature lowering rate after the third step.
  • the quantum dot manufacturing method further includes a fourth step of cooling the thin film at a temperature lowering rate lower than the reference temperature lowering rate after the third step.
  • the first element is made of any of oxygen, nitrogen, and carbon
  • the second element is made of any of Si, Ge, C, and Sn.
  • the second element is made of either silicon or germanium.
  • the first reference value is an amount ratio of the second material to the first material when forming the insulating film including the first and second elements
  • the second reference value is the third reference value.
  • the amount ratio of the second material to the third material containing the third element when the insulating film containing the element and the second element is formed.
  • the amount ratio of the second material to the first material is set to be equal to or higher than the first reference value
  • the amount ratio of the second material to the third material is set to the second reference value.
  • a thin film is deposited on the substrate with the value set above.
  • the first element is made of oxygen
  • the second element is made of either silicon or germanium
  • the third element is made of nitrogen.
  • the rate of temperature rise is in the range of 0.2 ° C./s to 500 ° C./s.
  • the rate of temperature decrease is in the range of 5 ° C./s to 50 ° C./s.
  • a thin film containing a second element more than a reference value when forming an insulating film containing the first and second elements is formed, and the formed thin film is converted into a reference film.
  • a quantum dot is manufactured by heating at a temperature rising rate equal to or higher than the temperature rate. In this case, the size and density of the quantum dots change depending on the temperature rising rate and the heat treatment time length.
  • the size and density of the quantum dots can be controlled.
  • FIG. 5 is a conceptual diagram in steps (b) to (d) shown in FIG.
  • FIG. 6 is a conceptual diagram in steps (b) to (d) shown in FIG. It is sectional drawing of the light emitting element produced using the manufacturing method by embodiment of this invention.
  • FIG. 9 is an enlarged cross-sectional view of the n-type silicon oxide film, i-type silicon nitride film, and p-type silicon oxynitride film shown in FIG. 8. It is an energy band figure at the time of the zero bias of the light emitting element shown in FIG. It is an energy band figure at the time of the current supply of the light emitting element shown in FIG.
  • FIG. 10 is a first process diagram for explaining a method of manufacturing the light emitting element shown in FIG. 8.
  • FIG. 10 is a second process diagram for explaining the manufacturing method of the light emitting element shown in FIG. 8.
  • FIG. 1 is a schematic view of a plasma CVD (Chemical Vapor Deposition) apparatus.
  • a plasma CVD apparatus 100 includes a reaction chamber 101, an electrode plate 102, a sample holder 103, a heater 104, an RF (Radio Frequency) power source 105, pipes 106 to 108, and a gas cylinder 109 to 111.
  • RF Radio Frequency
  • the reaction chamber 101 is a hollow container and has an exhaust port 101A.
  • the electrode plate 102 and the sample holder 103 have a flat plate shape, and are disposed in the reaction chamber 101 substantially in parallel at an interval of 50 mm.
  • Each of the electrode plate 102 and the sample holder 103 has a diameter of 200 mm ⁇ .
  • the heater 104 is disposed in the sample holder 103.
  • the RF power source 105 is connected to the electrode plate 102 and the sample holder 103.
  • the pipe 106 has one end connected to the reaction chamber 101 and the other end connected to a gas cylinder 109.
  • the pipe 107 has one end connected to the reaction chamber 101 and the other end connected to the gas cylinder 110.
  • the pipe 108 has one end connected to the reaction chamber 101 and the other end connected to the gas cylinder 111.
  • the sample holder 103 holds the substrate 1.
  • the heater 104 heats the substrate 1 to a predetermined temperature.
  • the RF power source 105 applies 13.56 MHz RF power between the electrode plate 102 and the sample holder 103.
  • the gas cylinder 109 holds N 2 O (100%) gas, the gas cylinder 110 holds 10% SiH 4 gas diluted with hydrogen (H 2 ) gas, and the gas cylinder 111 contains NH 3 (100%). Hold the gas.
  • the pipe 106 supplies N 2 O gas into the reaction chamber 101.
  • the pipe 107 supplies SiH 4 gas into the reaction chamber 101.
  • the pipe 108 supplies NH 3 gas into the reaction chamber 101.
  • N 2 O gas, SiH 4 gas, and NH 3 gas supplied into the reaction chamber 101 are exhausted from the exhaust port 101A by an exhaust device (not shown) such as a rotary pump. As a result, the inside of the reaction chamber 101 is set to a predetermined pressure.
  • the plasma CVD apparatus 100 applies a silicon oxide film by applying RF power between the electrode plate 102 and the sample holder 103 by the RF power source 105 in a state where N 2 O gas and SiH 4 gas are supplied into the reaction chamber 101. Deposit on the substrate 1.
  • the plasma CVD apparatus 100 applies RF power between the electrode plate 102 and the sample holder 103 by the RF power source 105 in a state where NH 3 gas and SiH 4 gas are supplied into the reaction chamber 101, and a silicon nitride film Is deposited on the substrate 1.
  • the plasma CVD apparatus 100 applies RF power between the electrode plate 102 and the sample holder 103 by the RF power source 105 in a state where N 2 O gas, NH 3 gas, and SiH 4 gas are supplied into the reaction chamber 101. Then, a silicon oxynitride film is deposited on the substrate 1.
  • FIG. 2 is a schematic diagram of an RTA (Rapid Thermal Annealing) apparatus.
  • an RTA apparatus 200 includes a container 210, a holder 220, a quartz window 230, a lamp house 240, a lamp 250, a pipe 260, a cooler 270, a thermocouple 280, and a control device. 290.
  • the container 210 has a gas inlet 211 and a gas outlet 212.
  • the holder 220 is installed on the bottom surface 210 ⁇ / b> A of the container 210.
  • the quartz window 230 is installed on the upper surface 210 ⁇ / b> B of the container 210 so as to face the holder 220.
  • the lamp house 240 is installed on the upper side of the quartz window 230.
  • the lamp 250 is housed in the lamp house 230.
  • the pipe 260 partially penetrates the holder 220 and both ends are connected to the cooler 270.
  • the thermocouple 280 has one end embedded in the holder 220 and the other end connected to the control device 290.
  • the gas inlet 211 allows, for example, nitrogen (N 2 ) gas to flow into the container 210 from the outside.
  • the gas discharge port 212 discharges the N 2 gas in the container 210 to the outside.
  • the holder 220 supports the sample 300.
  • the quartz window 230 transmits the light from the lamp 250.
  • the lamp 250 heats the sample 300 through the quartz window 230.
  • the pipe 260 circulates cooling water between the holder 220 and the cooler 270.
  • the cooler 270 causes cooling water to flow through the pipe 260 in accordance with control from the control device 290.
  • the thermocouple 280 detects the temperature Ts of the sample 300 and outputs the detected temperature Ts to the control device 290.
  • Control device 290 receives temperature Ts from thermocouple 280. When the sample 300 is heated, the control device 290 supplies the lamp 250 with power PW1 for increasing the temperature Ts from room temperature to 1000 ° C. in 2 seconds.
  • control device 290 supplies power PW2 for maintaining the temperature Ts at 1000 ° C. to the lamp 250.
  • control device 290 controls the cooler 270 to flow cooling water when the temperature Ts is rapidly cooled.
  • the sample 300 When heat treatment by RTA is performed on the sample 300 using the RTA apparatus 200, the sample 300 is set on the holder 220. Thereafter, flow from the gas inlet port 211 and N 2 gas into the container 210 to replace the inside of the container 210 by N 2 gas.
  • control device 290 supplies the power PW1 to the lamp 250.
  • the lamp 250 receives the power PW1 from the control device 290, heats the sample 300, and raises the temperature Ts of the sample 300 from room temperature to 1000 ° C. in 2 seconds.
  • thermocouple 280 detects the temperature Ts of the sample 300 and outputs the detected temperature Ts to the control device 290.
  • the control device 290 receives the temperature Ts from the thermocouple 280, and supplies power PW2 for maintaining the temperature Ts to 1000 ° C. to the lamp 250 based on the received temperature Ts.
  • the lamp 250 receives the power PW2 from the control device 290 and holds the temperature Ts of the sample 300 at 1000 ° C.
  • the control device 290 outputs a signal OFF for turning off the lamp 250 to the lamp 250, and the lamp 250 stops heating the sample 300 in response to the signal OFF. Thereby, the sample 300 is naturally cooled.
  • control device 290 when a predetermined time has elapsed and the sample 300 is rapidly cooled, the control device 290 generates a signal WON for flowing cooling water and outputs the signal WON to the cooler 270. Cooler 270 causes cooling water to flow through pipe 260 in response to signal WON from control device 290. Thereby, the sample 300 is rapidly cooled.
  • FIG. 3 is a timing chart of heat treatment by RTA using the RTA apparatus 200 shown in FIG.
  • the vertical axis represents temperature
  • the horizontal axis represents time
  • Straight lines k1, k2, and k3 indicate the first heat treatment method using RTA
  • straight lines k1, k2, and k4 indicate the second heat treatment method using RTA.
  • the sample 300 is heated from room temperature RT to 1000 ° C. in 5 seconds from timing t0 to timing t1 (see straight line k1). And the sample 300 is hold
  • the lamp 250 is turned off at timing t2, and the cooling water is caused to flow through the pipe 260. Then, the sample 300 is cooled from 1000 ° C. to room temperature RT in 30 seconds from timing t2 to timing t3 (see the straight line k3).
  • the sample 300 is heated from room temperature RT to 1000 ° C. and held at 1000 ° C. by the same method as the first heat treatment method. Then, the lamp 250 is turned off at timing t2, and the sample 300 is cooled from 1000 ° C. to room temperature RT in 30 minutes from timing t2 to timing t4 (see the straight line k4).
  • the sample 300 is heat-treated by rapid heating and rapid cooling, and the sample 300 is heat-treated by rapid heating and natural cooling.
  • FIG. 4 is a process diagram for manufacturing quantum dots.
  • a substrate 1 made of silicon (Si) is prepared (see step (a) in FIG. 4), and after the substrate 1 is RCA cleaned, the plasma CVD apparatus 100 shown in FIG. The substrate 1 is placed on the sample holder 103.
  • N 2 O gas is supplied from the gas cylinder 109 to the reaction chamber 101
  • SiH 4 gas is supplied from the gas cylinder 110 to the reaction chamber 101
  • the silicon oxide film 2 is deposited on the substrate 1 using the reaction conditions shown in Table 1. (See step (b) in FIG. 4).
  • the silicon oxide film 2 is made of an amorphous phase that does not contain a crystal flow.
  • FIG. 5 is another process diagram for manufacturing quantum dots.
  • the silicon oxide film 2 is deposited on the substrate 1 according to the same steps (a) and (b) in FIG. 4 (steps (a) and (b in FIG. 5). )reference).
  • the quantum dots 22 have a larger diameter than the quantum dots 21.
  • FIG. 6 is a conceptual diagram in steps (b) to (d) shown in FIG.
  • silicon oxide film 2 deposited in step (b) shown in FIG. 4 is made of an amorphous phase (see FIG. 6 (a)).
  • FIG. 7 is a conceptual diagram in steps (b) to (d) shown in FIG.
  • the silicon oxide film 2 is made of an amorphous phase as in the case shown in FIG. 6 (see FIG. 7A).
  • crystal grains 20 are generated as in the case shown in FIG. 6 (see FIG. 7B).
  • the quantum dots 22 are larger in size than the quantum dots 21 and higher in density than the quantum dots 21.
  • the size and density of the quantum dots can be controlled by controlling the cooling rate in the heat treatment by RTA.
  • the flow rate ratio of SiH 4 gas to the N 2 O gas in the condition (Table 1) forming a silicon nitride film 2, the flow rate of SiH 4 gas to the N 2 O gas when forming an SiO 2 film as the insulating film Is greater than the ratio ( reference flow rate ratio). That is, in the present invention, the silicon oxide film 2 is formed with a flow rate of SiH 4 gas larger than the reference, and is called a so-called silicon-rich oxide film.
  • the silicon-rich oxide film 2 is deposited on the substrate 1 using the plasma CVD apparatus 100, and the deposited silicon-rich oxide film 2 is subjected to heat treatment by RTA, so that the desired size and It is characterized by manufacturing quantum dots having a desired density.
  • the quantum dots are manufactured by performing heat treatment by RTA on the silicon oxide film.
  • the present invention is not limited to this, and heat treatment by RTA is performed on the silicon nitride film.
  • the quantum dots may be manufactured, or the silicon oxynitride film may be heat-treated by RTA to manufacture the quantum dots.
  • a silicon nitride film is deposited on the substrate 1 using the reaction conditions shown in Table 2, and an RTA apparatus is applied to the deposited silicon nitride film. 200 is used for heat treatment by RTA.
  • a silicon-rich nitride film is deposited on the substrate 1 using the plasma CVD apparatus 100, and the deposited silicon-rich nitride film is subjected to heat treatment by RTA, so that a desired size and a desired size are obtained. Quantum dots having a density are manufactured.
  • a quantum dot is manufactured by subjecting a silicon oxynitride film to heat treatment by RTA
  • a silicon oxynitride film is deposited on the substrate 1 using the reaction conditions shown in Table 3, and the deposited silicon oxynitride film
  • heat treatment by RTA is performed using the RTA apparatus 200.
  • a silicon-rich oxynitride film is deposited on the substrate 1 using the plasma CVD apparatus 100, and the deposited silicon-rich oxynitride film is subjected to a heat treatment by RTA to obtain a desired size and It is characterized by manufacturing quantum dots having a desired density.
  • the film after heat-treating the silicon oxide film is composed of Si dots (semiconductor quantum dots) and SiO 2 (insulating film), and the film after heat-treating the silicon nitride film is Si dots (semiconductor quantum dots). And Si 3 N 4 (insulating film), and after the silicon oxynitride film is heat-treated, the film is composed of Si dots (semiconductor quantum dots) and SiO x N 4 / 3-2x / 3 (0 ⁇ x ⁇ 2) (insulating film).
  • the semiconductor quantum dots are not limited to those composed of Si dots, but the semiconductor quantum dots are composed of any one of Ge, C, and Sn, and the surroundings are SiO 2 , SiO x N 4 / 3-2x / 3 (0 ⁇ x ⁇ 2), Si 3 N 4 , GeO 2 , GeO x N 4 / 3-2x / 3 (0 ⁇ x ⁇ 2), or Ge 3 N 4 That's fine.
  • the thin film before the heat treatment by RTA is not limited to the above-described plasma CVD apparatus 100, but various types such as a MOCVD (Metal Organic Chemical Deposition) apparatus, an MBE (Molecular Beam Epitaxy) apparatus, an LPCVD apparatus, and a sputtering apparatus. It is produced using an apparatus.
  • MOCVD Metal Organic Chemical Deposition
  • MBE Molecular Beam Epitaxy
  • LPCVD Molecular Beam Epitaxy
  • sputtering apparatus It is produced using an apparatus.
  • the temperature rising rate in the heat treatment by RTA is described as 200 ° C./s.
  • FIG. 8 is a cross-sectional view of a light emitting device manufactured using the manufacturing method according to the embodiment of the present invention.
  • a light emitting device 400 includes a substrate 401, an n-type silicon oxide film 402, an i-type silicon nitride film 403, a p-type silicon oxynitride film 404, and p + -type polysilicon (poly-Si). )
  • a film 405 and electrodes 406 and 407 are provided.
  • the substrate 401 is made of n + type silicon (n + -Si) having a specific resistance of about 0.1 ⁇ ⁇ cm.
  • the n-type silicon oxide film 402 includes a plurality of quantum dots made of n-type Si and is formed on one main surface of the substrate 1.
  • the n-type silicon oxide film 402 has a thickness of about 150 nm.
  • the i-type silicon nitride film 403 includes a plurality of i-type Si quantum dots, and is formed on the n-type silicon oxide film 402 in contact with the n-type silicon oxide film 402.
  • the i-type silicon nitride film 403 has a thickness of about 10 nm.
  • the p-type silicon oxynitride film 404 is formed on the i-type silicon nitride film 403 in contact with the i-type silicon nitride film 403.
  • the p-type silicon oxynitride film 404 includes a plurality of quantum dots made of p-type Si and has a composition of SiO 1 N 0.33 .
  • the p-type silicon oxynitride film 404 has a thickness of about 100 nm.
  • the p + -type poly-Si film 405 includes p + -type poly-Si films 4051 to 4054 and is formed on the p-type silicon oxynitride film 404 in contact with the p-type silicon oxynitride film 404.
  • the p + -type poly-Si film 405 includes a boron concentration of about 10 20 cm ⁇ 3 and a film thickness of about 50 nm.
  • the electrode 406 includes electrodes 4061 to 4064.
  • the electrodes 4061 to 4064 are formed on the p + type poly-Si films 4051 to 4054 in contact with the p + type poly-Si films 4051 to 4054, respectively.
  • Each of the electrodes 4061 to 4064 is made of aluminum (Al).
  • the electrode 407 is made of Al, and is formed on the back surface of the substrate 401 (the surface opposite to the surface on which the n-type silicon oxide film 402 and the like are formed).
  • FIG. 9 is an enlarged cross-sectional view of n-type silicon oxide film 402, i-type silicon nitride film 403, and p-type silicon oxynitride film 404 shown in FIG.
  • n-type silicon oxide film 402 includes a plurality of quantum dots 4021.
  • Each of the plurality of quantum dots 4021 is made of n-type Si dots and includes a phosphorus (P) concentration of about 10 19 cm ⁇ 3 .
  • the plurality of quantum dots 4021 are irregularly arranged in the n-type silicon oxide film 402.
  • the i-type silicon nitride film 403 includes a plurality of quantum dots 4031.
  • Each of the plurality of quantum dots 4031 is made of i-type Si dots.
  • the plurality of quantum dots 4031 are irregularly arranged in the i-type silicon nitride film 403.
  • the p-type silicon oxynitride film 404 includes a plurality of quantum dots 4041.
  • Each of the plurality of quantum dots 4041 is made of p-type Si dots and includes a B concentration of about 10 19 cm ⁇ 3 .
  • the plurality of quantum dots 4041 are irregularly arranged in the p-type silicon oxynitride film 404.
  • n-type silicon oxide film 402 includes quantum dots 4021 made of n-type Si dots, and i-type silicon nitride film 403 and p-type silicon oxynitride film 404 are quantum dots made of i-type Si dots, respectively. 4031 and quantum dots 4041 made of p-type Si dots. Therefore, n-type silicon oxide film 402, i-type silicon nitride film 403, and p-type silicon oxynitride film 404 form a pin junction.
  • FIG. 10 is an energy band diagram of the light-emitting element 400 illustrated in FIG. 8 at the time of zero bias.
  • conduction band Ec1 and valence band Ev1 exist in n + Si constituting substrate 401, and n + Si has an energy band gap Eg1 of 1.12 eV.
  • p + poly-Si film 405 there is conduction band Ec2 and the valence band Ev2, p + poly-Si film 405 has an energy band gap Eg1 of 1.12 eV.
  • n + Si constituting the substrate 401 is doped with P at a high concentration
  • the p + poly-Si film 405 is doped with B at a high concentration
  • the end of the conduction band Ec1 of n + Si is p
  • the energy is close to the end of the valence band Ev2 of the + poly-Si film 404.
  • the n-type silicon oxide film 402 includes the plurality of quantum dots 4021 as described above, the n-type silicon oxide film 402 has a stacked structure of the quantum dots 4021 and the silicon dioxide (SiO 2 ) layer 4022 that does not include the quantum dots 4021. As a result, the quantum dots 4021 are sandwiched between the SiO 2 layers 4022.
  • the SiO 2 layer 4022 has an energy band gap of about 9 eV. Further, the quantum dot 4021, because it is sandwiched by two SiO 2 layer 4022, by the quantum size effect, has a sub-level L sub 1 in the conduction band Ec1 side of n + Si, the n + Si valence The sub-level L sub 2 is provided on the band Ev1 side.
  • the sub-level L sub 1 is higher in energy than the conduction band Ec1 of n + Si, and the sub-level L sub 2 is higher in energy than the end of the valence band Ev1 of n + Si.
  • the energy difference between the sub-level L sub 1 and the sub-level L sub 2 is larger than the energy gap Eg1 of n + Si.
  • the i-type silicon nitride film 403 includes a plurality of quantum dots 4031 as described above, the i-type silicon nitride film 403 has a stacked structure of the quantum dots 4031 and the silicon nitride film (Si 3 N 4 ) layer 4032 not including the quantum dots 4031. . As a result, the quantum dots 4031 are sandwiched between the Si 3 N 4 layers 4032.
  • the Si 3 N 4 layer 4032 has an energy band gap of about 5.2 eV. Further, since the quantum dot 4031 is sandwiched between the two Si 3 N 4 layers 4032, the quantum dot effect has a sub-level L sub 3 on the conduction band Ec 2 side of the p + poly-Si film 405 due to the quantum size effect. The p + poly-Si film 405 has a sub-level L sub 4 on the valence band Ev4 side.
  • the sub-level L sub 3 is energetically higher than the end of the conduction band Ec2 of the p + poly-Si film 405, and the sub-level L sub 4 is the end of the valence band Ev2 of the p + poly-Si film 405. Higher in energy. As a result, the energy difference between the sub-level L sub 3 and the sub-level L sub 4 is larger than the energy gap Eg1 of the p + poly-Si film 405.
  • the p-type silicon oxynitride film 404 includes the plurality of quantum dots 4041 as described above, the p-type silicon oxynitride film 404 has a stacked structure of the quantum dots 4041 and the silicon oxynitride film layer 4042 that does not include the quantum dots 4041. As a result, the quantum dots 4041 are sandwiched between the silicon oxynitride film layers 4042.
  • the silicon oxynitride film layer 4042 has an energy band gap of 7.1 eV. Further, the quantum dot 4041, because it is sandwiched by two silicon oxynitride film layer 4042, by the quantum size effect, it has a sub-level L sub 5 in the conduction band Ec2 side of p + Si, the p + Si It has a sub-level L sub 6 on the valence band Ev2 side.
  • the sub-level L sub 5 is energetically higher than the conduction band Ec2 of p + Si, and the sub-level L sub 6 is energetically higher than the end of the valence band Ev2 of p + Si.
  • the energy difference between the sub-level L sub 5 and the sub-level L sub 6 is larger than the energy gap Eg1 of p + Si.
  • the energy difference ⁇ E5 the end of the conduction band edge and a silicon oxynitride film layer 4042 of the conduction band Ec2 of p + Si is 4.2 eV
  • the energy difference ⁇ E6 from the end of the valence band of the film layer 4042 is about 1.78 eV.
  • FIG. 11 is an energy band diagram of the light emitting element 400 illustrated in FIG.
  • a voltage is applied between the electrodes 406 and 407 with the electrode 406 side being positive and the electrode 407 side being negative, as shown in FIG. 11, the energy band of n + Si constituting the substrate 401 is raised, and electrons in the n + Si are raised.
  • 11 conducts through the n-type silicon oxide film 402 through the plurality of quantum dots 4021 in the n-type silicon oxide film 402 and is injected into the i-type silicon nitride film 403.
  • the p-type silicon oxynitride film 404 has a larger barrier to electrons than the i-type silicon nitride film 403, the electrons injected into the i-type silicon nitride film 403 are converted into the p-type silicon oxynitride film 404. And accumulated in the quantum dots 4031 of the i-type silicon nitride film 403.
  • the holes 12 in the p + poly-Si film 405 are conducted in the p-type silicon oxynitride film 404 through the quantum dots 4041 in the p-type silicon oxynitride film 404, and in the i-type silicon nitride film 403. Injected into. Since the n-type silicon oxide film 402 has a larger barrier against holes than the i-type silicon nitride film 403, the holes injected into the i-type silicon nitride film 403 are converted into the n-type silicon oxide film 402. And accumulated in the quantum dots 4031 of the i-type silicon nitride film 403.
  • the electrons 13 accumulated in the quantum dots 4031 recombine with the holes 14 accumulated in the quantum dots 4031 to emit light.
  • the light emitting element 400 confines electrons injected from the n + Si 401 into the i-type silicon nitride film 403 in the i-type silicon nitride film 403 by the p-type silicon oxynitride film 404, and the p + poly-Si film 405.
  • the holes injected into the i-type silicon nitride film 403 are confined in the i-type silicon nitride film 403 by the n-type silicon oxide film 402. That is, the light emitting element 400 is characterized in that both holes and electrons are confined in the i-type silicon nitride film 403. As a result, the light emission efficiency of the light emitting element 400 can be increased.
  • the n-type silicon oxide film 402 includes a plurality of quantum dots 4021 irregularly
  • the i-type silicon nitride film 403 includes a plurality of quantum dots 4031 irregularly
  • the p-type silicon oxynitride film 404 includes a plurality of p-type silicon oxynitride films 404. Since the quantum dots 4041 are irregularly included, the efficiency of injecting electrons and holes is improved by the electric field enhancement effect of the randomly arranged quantum dots 4021, 4031, and 4041.
  • the luminous efficiency can be increased.
  • FIG. 12 and 13 are first and second process diagrams for explaining a method of manufacturing the light-emitting element 400 shown in FIG. 8, respectively.
  • substrate 401 made of n + Si is prepared (see step (a)), and after cleaning substrate 401, sample holder of plasma CVD apparatus 100 is prepared.
  • a substrate 1 is set on 103.
  • a silicon oxide film 4011 is deposited on one main surface of the substrate 1 under the reaction conditions shown in Table 1.
  • a silicon nitride film 4012 is deposited on the silicon oxide film 4011 under the reaction conditions shown in Table 2.
  • a silicon oxynitride film 4013 is deposited on the silicon nitride film 4012 under the reaction conditions shown in Table 3.
  • an amorphous silicon (a-Si) film 4014 is deposited on the silicon oxynitride film 4013 under the reaction conditions in which N 2 O gas and NH 3 gas are stopped under the reaction conditions shown in Table 3 (step of FIG. 12). (See (b)).
  • phosphorus ions (P + ) are implanted into the silicon oxide film 4011 by ion implantation (see step (c) in FIG. 12).
  • the acceleration voltage for ion implantation is set so that P + ions are implanted only into the silicon oxide film 4011.
  • boron ions (B + ) are implanted into the silicon nitride film 4012, the silicon oxynitride film 4013, and the a-Si film 4014 by ion implantation (see step (d) in FIG. 12).
  • the acceleration voltage for ion implantation is set so that B + ions are implanted into the silicon nitride film 4012, the silicon oxynitride film 4013, and the a-Si film 4014.
  • the substrate 1 / n-type silicon oxide film 4011 / p-type silicon nitride film 4012 / p-type silicon oxynitride film 4013 / p-type a-Si film 4014 is subjected to RTA by the method described above. (See step (e) in FIG. 13).
  • an n-type silicon oxide film 402 an i-type silicon nitride film 403, a p-type silicon oxynitride film 404, and a p + poly-Si film 405 are formed (see step (f) in FIG. 13).
  • the p + poly-Si film 405 is patterned into p + poly-Si films 4051 to 4054 using a photolithography technique (see step (g) in FIG. 13).
  • electrodes 406 (4061 to 4064) are formed on the p + poly-Si films 4051 to 4054 by sputtering of Al, respectively, and an electrode 407 is formed on the back surface of the substrate 401 (see step (h) in FIG. 13). ). Thereby, the light emitting element 400 is completed.
  • the present invention is applied to a method for producing multilayer quantum dots capable of controlling size and density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

SiHガスおよびNOガスを用いたプラズマCVD法によって非晶質相からなるシリコン酸化膜(2)を基板(1)上に堆積する(工程(b)参照)。その後、シリコン酸化膜(2)/基板(1)からなる試料をRTA装置にセットし、試料(=シリコン酸化膜(2)/基板(1)に対してRTAによる熱処理(急速加熱および急速冷却)を施す(工程(c)参照)。この場合、昇温レートは、200°C/sであり、熱処理温度は、1000°Cである。

Description

量子ドットの製造方法
 この発明は、量子ドットの製造方法に関し、特に、量子ドットのサイズおよび密度を制御可能な量子ドットの製造方法に関するものである。
 従来、シリコンからなる量子ドットは、LPCVD(Low Pressure Chemical Vapor Deposition)法を用いて形成されていた(特開2006-32564号公報)。
 すなわち、量子ドットは、シラン(SiH)ガスを材料ガスに用いて、0.5Torrの反応圧力、560℃~600℃の基板温度で50~70秒の間、反応を行なうことによって形成される。
 しかし、従来の量子ドットの製造方法を用いて量子ドットを作製した場合、量子ドットのサイズおよび密度を制御することができるが、多層の量子ドットを作製する場合、層数に比例した作製時間が必要であるという問題がある。
 そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、サイズおよび密度を制御可能な多層の量子ドットの製造方法を提供することである。
 この発明によれば、量子ドットの製造方法は、第1の元素を含む第1の材料に対する、第2の元素を含む第2の材料の量比を基準値以上に設定して薄膜を基板上に堆積する第1の工程と、第1の工程において堆積された薄膜を基準昇温レート以上の昇温レートで設定温度に昇温する第2の工程と、薄膜を設定温度で熱処理する第3の工程とを備える。そして、基準値は、第1および第2の元素を含む絶縁膜を形成するときの第1の材料に対する第2の材料の量比である。
 好ましくは、第1の工程において、非晶質相からなる薄膜が基板上に堆積される。
 好ましくは、量子ドットの製造方法は、第3の工程の後、薄膜を基準降温レート以上の降温レートで冷却する第4の工程をさらに備える。
 好ましくは、量子ドットの製造方法は、第3の工程の後、薄膜を基準降温レートよりも低い降温レートで冷却する第4の工程をさらに備える。
 好ましくは、第1の元素は、酸素、窒素、およびカーボンのいずれかからなり、第2の元素は、Si,Ge,C,Snのいずれかからなる。
 好ましくは、第2の元素は、シリコンおよびゲルマニウムのいずれかからなる。
 好ましくは、第1の基準値は、第1および第2の元素を含む絶縁膜を形成するときの第1の材料に対する第2の材料の量比であり、第2の基準値は、第3の元素および第2の元素を含む絶縁膜を形成するときの第3の元素を含む第3の材料に対する第2の材料の量比である。そして、第1の工程において、第1の材料に対する第2の材料の量比を第1の基準値以上に設定し、かつ、第3の材料に対する第2の材料の量比を第2の基準値以上に設定して薄膜を基板上に堆積する。
 好ましくは、第1の元素は、酸素からなり、第2の元素は、シリコンおよびゲルマニウムのいずれかからなり、第3の元素は、窒素からなる。
 好ましくは、昇温レートは、0.2℃/s~500℃/sの範囲である。
 好ましくは、降温レートは、5℃/s~50℃/sの範囲である。
 この発明による量子ドットの製造方法においては、第1および第2の元素を含む絶縁膜を形成するときの基準値以上に第2の元素を多く含む薄膜を形成し、その形成した薄膜を基準昇温レート以上の昇温レートで加熱して量子ドットを製造する。この場合、昇温レートおよび熱処理の時間長によって量子ドットのサイズおよび密度が変化する。
 したがって、この発明によれば、量子ドットのサイズおよび密度を制御できる。
プラズマCVD(Chemical Vapor Deposition)装置の概略図である。 RTA(Rapid Thermal Annealing)装置の概略図である。 図2に示すRTA装置を用いたRTAによる熱処理のタイミングチャートである。 量子ドットを製造する工程図である。 量子ドットを製造する他の工程図である。 図4に示す工程(b)~工程(d)における概念図である。 図5に示す工程(b)~工程(d)における概念図である。 この発明の実施の形態による製造方法を用いて作製した発光素子の断面図である。 図8に示すn型シリコン酸化膜、i型シリコン窒化膜およびp型シリコン酸窒化膜の拡大断面図である。 図8に示す発光素子のゼロバイアス時のエネルギーバンド図である。 図8に示す発光素子の電流通電時のエネルギーバンド図である。 図8に示す発光素子の製造方法を説明するための第1の工程図である。 図8に示す発光素子の製造方法を説明するための第2の工程図である。
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、プラズマCVD(Chemical Vapor Deposition)装置の概略図である。図1を参照して、プラズマCVD装置100は、反応室101と、電極板102と、サンプルホルダー103と、ヒーター104と、RF(Radio Frequency)電源105と、配管106~108と、ガスボンベ109~111とを備える。
 反応室101は、中空の容器からなり、排気口101Aを有する。電極板102およびサンプルホルダー103は、平板形状からなり、反応室101内に50mmの間隔で略平行に配置される。そして、電極板102およびサンプルホルダー103の各々は、200mmφの直径を有する。ヒーター104は、サンプルホルダー103内に配置される。
 RF電源105は、電極板102とサンプルホルダー103とに接続される。配管106は、一方端が反応室101に接続され、他方端がガスボンベ109に接続される。また、配管107は、一方端が反応室101に接続され、他方端がガスボンベ110に接続される。さらに、配管108は、一方端が反応室101に接続され、他方端がガスボンベ111に接続される。
 サンプルホルダー103は、基板1を保持する。ヒーター104は、基板1を所定の温度に加熱する。RF電源105は、電極板102とサンプルホルダー103との間に、13.56MHzのRF電力を印加する。
 ガスボンベ109は、NO(100%)ガスを保持し、ガスボンベ110は、水素(H)ガスによって希釈された10%のSiHガスを保持し、ガスボンベ111は、NH(100%)ガスを保持する。
 配管106は、NOガスを反応室101内に供給する。配管107は、SiHガスを反応室101内に供給する。配管108は、NHガスを反応室101内に供給する。反応室101内に供給されたNOガス、SiHガスおよびNHガスは、ロータリーポンプ等の排気装置(図示せず)によって排気口101Aから排気される。その結果、反応室101内は、所定の圧力に設定される。
 プラズマCVD装置100は、NOガスおよびSiHガスが反応室101内に供給された状態でRF電源105によってRF電力を電極板102とサンプルホルダー103との間に印加してシリコン酸化膜を基板1上に堆積する。また、プラズマCVD装置100は、NHガスおよびSiHガスが反応室101内に供給された状態でRF電源105によってRF電力を電極板102とサンプルホルダー103との間に印加してシリコン窒化膜を基板1上に堆積する。さらに、プラズマCVD装置100は、NOガス、NHガスおよびSiHガスが反応室101内に供給された状態でRF電源105によってRF電力を電極板102とサンプルホルダー103との間に印加してシリコン酸窒化膜を基板1上に堆積する。
 図2は、RTA(Rapid Thermal Annealing)装置の概略図である。
 図2を参照して、RTA装置200は、容器210と、ホルダー220と、石英窓230と、ランプハウス240と、ランプ250と、配管260と、冷却器270と、熱電対280と、制御装置290とを備える。
 容器210は、ガス流入口211と、ガス排出口212とを有する。ホルダー220は、容器210の底面210Aに設置される。石英窓230は、ホルダー220に対向して容器210の上面210Bに設置される。
 ランプハウス240は、石英窓230の上側に設置される。ランプ250は、ランプハウス230内に収納される。
 配管260は、一部がホルダー220を貫通し、両端が冷却器270に接続される。熱電対280は、一方端がホルダー220内に埋め込まれており、他方端が制御装置290に接続される。
 ガス流入口211は、たとえば、窒素(N)ガスを外部から容器210内へ流す。ガス排出口212は、容器210内のNガスを外部へ排出する。
 ホルダー220は、試料300を支持する。石英窓230は、ランプ250からの光を透過させる。ランプ250は、石英窓230を介して試料300を加熱する。配管260は、冷却水をホルダー220と冷却器270との間で循環させる。
 冷却器270は、制御装置290からの制御に応じて、冷却水を配管260に流す。熱電対280は、試料300の温度Tsを検出し、その検出した温度Tsを制御装置290へ出力する。
 制御装置290は、熱電対280から温度Tsを受ける。そして、制御装置290は、試料300を加熱する場合、温度Tsを2秒間で室温から1000℃まで上昇させるためのパワーPW1をランプ250に供給する。
 また、制御装置290は、温度Tsを1000℃に保持するためのパワーPW2をランプ250に供給する。
 さらに、制御装置290は、温度Tsを急冷する場合、冷却水を流すように冷却器270を制御する。
 RTA装置200を用いて試料300に対してRTAによる熱処理を行なう場合、試料300をホルダー220上にセットする。その後、ガス流入口211からNガスを容器210内へ流し、容器210内をNガスによって置換する。
 その後、制御装置290は、パワーPW1をランプ250に供給する。そして、ランプ250は、制御装置290からのパワーPW1を受けて、試料300を加熱し、試料300の温度Tsを2秒間で室温から1000℃まで上昇させる。
 そうすると、熱電対280は、試料300の温度Tsを検出し、その検出した温度Tsを制御装置290へ出力する。
 制御装置290は、温度Tsを熱電対280から受け、その受けた温度Tsに基づいて、温度Tsを1000℃に保持するためのパワーPW2をランプ250に供給する。ランプ250は、制御装置290からのパワーPW2を受けて、試料300の温度Tsを1000℃に保持する。
 そして、一定時間が経過すると、制御装置290は、ランプ250をオフするための信号OFFをランプ250へ出力し、ランプ250は、信号OFFに応じて試料300の加熱を停止する。これによって、試料300は、自然冷却される。
 一方、制御装置290は、一定時間が経過し、かつ、試料300を急冷する場合、冷却水を流すための信号WONを生成して冷却器270へ出力する。そして、冷却器270は、制御装置290からの信号WONに応じて、配管260に冷却水を流す。これによって、試料300は、急冷される。
 図3は、図2に示すRTA装置200を用いたRTAによる熱処理のタイミングチャートである。
 図3において、縦軸は、温度を表し、横軸は、時間を表す。また、直線k1,k2,k3は、RTAによる第1の熱処理方法を示し、直線k1,k2,k4は、RTAによる第2の熱処理方法を示す。
 図3を参照して、第1の熱処理方法が実行される場合、試料300は、タイミングt0からタイミングt1までの5秒間で室温RTから1000℃まで加熱される(直線k1参照)。そして、試料300は、タイミングt1からタイミングt2までの1分間、1000℃に保持される(直線k2参照)。
 その後、タイミングt2でランプ250がオフされ、冷却水が配管260に流される。そして、試料300は、タイミングt2からタイミングt3までの30秒で1000℃から室温RTまで冷却される(直線k3参照)。
 一方、第2の熱処理方法が実行される場合、試料300は、第1の熱処理方法と同じ方法によって、室温RTから1000℃に加熱され、かつ、1000℃に保持される。そして、タイミングt2でランプ250がオフされ、試料300は、タイミングt2からタイミングt4までの30分で1000℃から室温RTまで冷却される(直線k4参照)。
 このように、この発明においては、急速加熱および急速冷却によって試料300を熱処理するとともに、急速加熱および自然冷却によって試料300を熱処理する。
 図4は、量子ドットを製造する工程図である。量子ドットを製造する動作が開始されると、シリコン(Si)からなる基板1が準備され(図4の工程(a)参照)、基板1をRCA洗浄した後、図1に示すプラズマCVD装置100のサンプルホルダー103に基板1を設置する。
 そして、ガスボンベ109からNOガスを反応室101へ供給し、ガスボンベ110からSiHガスを反応室101へ供給し、表1に示す反応条件を用いてシリコン酸化膜2を基板1上に堆積する(図4の工程(b)参照)。この段階で、シリコン酸化膜2は、結晶流を含まない非晶質相からなる。
Figure JPOXMLDOC01-appb-T000001
 その後、シリコン酸化膜2/基板1からなる試料300をRTA装置200のホルダー220上に設置し、上述した方法によって試料300(=シリコン酸化膜2/基板1に対してRTAによる熱処理(急速加熱および急速冷却)を施す(図4の工程(c)参照)。その結果、量子ドット21がシリコン酸化膜2中に生成される。
 図5は、量子ドットを製造する他の工程図である。量子ドットを製造する動作が開始されると、図4の工程(a),(b)と同じ工程に従って、 シリコン酸化膜2を基板1上に堆積する(図5の工程(a),(b)参照)。
 その後、シリコン酸化膜2/基板1からなる試料300をRTA装置200のホルダー220上に設置し、上述した方法によって試料300(=シリコン酸化膜2/基板1に対してRTAによる熱処理(急速加熱および自然冷却)を施す(図5の工程(c)参照)。その結果、量子ドット22がシリコン酸化膜2中に生成される。量子ドット22は、量子ドット21よりも直径が大きい。
 図6は、図4に示す工程(b)~工程(d)における概念図である。図6を参照して、図4に示す工程(b)において堆積されたシリコン酸化膜2は、非晶質相からなる(図6の(a)参照)。そして、RTAによる熱処理において、試料300(=シリコン酸化膜2/基板1)が2秒間で室温RTから1000℃に加熱された段階で結晶粒20が生成される(図6の(b)参照)。
 その後、試料300(=シリコン酸化膜2/基板1)が1000℃に保持され、かつ、急速冷却されると、結晶粒20が成長して量子ドット21が生成される(図6の(c)参照)。
 図7は、図5に示す工程(b)~工程(d)における概念図である。図5に示す工程(b)においてシリコン酸化膜2が堆積された段階では、図6に示す場合と同様に、シリコン酸化膜2は、非晶質相からなり(図7の(a)参照)、5秒間で室温RTから1000℃まで加熱された段階では、図6に示す場合と同様に、結晶粒20が生成される(図7の(b)参照)。
 その後、試料300(=シリコン酸化膜2/基板1)が1000℃に保持され、かつ、自然冷却されると、結晶粒20が成長して量子ドット22が生成される(図7の(c)参照)。
 量子ドット22は、量子ドット21よりもサイズが大きく、量子ドット21よりも密度が大きい。
 上述したように、RTAによる熱処理における冷却速度を制御することによって、量子ドットのサイズおよび密度を制御できる。
 なお、シリコン窒化膜2を形成する条件(表1)におけるNOガスに対するSiHガスの流量比は、絶縁膜としてのSiO膜を形成するときのNOガスに対するSiHガスの流量比(=基準流量比)よりも大きい。すなわち、この発明においては、シリコン酸化膜2は、SiHガスの流量を基準よりも多くして形成され、所謂、シリコンリッチ酸化膜と呼ばれる。
 したがって、この発明においては、シリコンリッチ酸化膜2をプラズマCVD装置100を用いて基板1上に堆積し、その堆積したシリコンリッチ酸化膜2に対してRTAによる熱処理を施すことによって、所望のサイズおよび所望の密度を有する量子ドットを製造することを特徴とする。
 なお、上記においては、シリコン酸化膜に対してRTAによる熱処理を施して量子ドットを製造する場合について説明したが、この発明においては、これに限らず、シリコン窒化膜に対してRTAによる熱処理を施して量子ドットを製造してもよく、シリコン酸窒化膜に対してRTAによる熱処理を施して量子ドットを製造してもよい。
 シリコン窒化膜に対してRTAによる熱処理を施して量子ドットを製造する場合、表2に示す反応条件を用いてシリコン窒化膜を基板1上に堆積し、その堆積したシリコン窒化膜に対してRTA装置200を用いてRTAによる熱処理を行なう。
Figure JPOXMLDOC01-appb-T000002
 この場合、シリコン窒化膜を形成する条件(表2)におけるNHガスに対するSiHガスの流量比は、絶縁膜としてのSi膜を形成するときのNHガスに対するSiHガスの流量比(=基準流量比)よりも大きい。すなわち、この発明においては、シリコン窒化膜は、SiHガスの流量を基準よりも多くして形成され、所謂、シリコンリッチ窒化膜と呼ばれる。
 したがって、この発明においては、シリコンリッチ窒化膜をプラズマCVD装置100を用いて基板1上に堆積し、その堆積したシリコンリッチ窒化膜に対してRTAによる熱処理を施すことによって、所望のサイズおよび所望の密度を有する量子ドットを製造することを特徴とする。
 さらに、シリコン酸窒化膜に対してRTAによる熱処理を施して量子ドットを製造する場合、表3に示す反応条件を用いてシリコン酸窒化膜を基板1上に堆積し、その堆積したシリコン酸窒化膜に対してRTA装置200を用いてRTAによる熱処理を行なう。
Figure JPOXMLDOC01-appb-T000003
 この場合、シリコン酸窒化膜を形成する条件(表3)におけるNHガスに対するSiHガスの流量比は、絶縁膜としてのSi膜を形成するときのNHガスに対するSiHガスの流量比(=基準流量比)よりも大きく、かつ、NOガスに対するSiHガスの流量比は、絶縁膜としてのSiO膜を形成するときのNOガスに対するSiHガスの流量比(=基準流量比)よりも大きい。すなわち、この発明においては、シリコン酸窒化膜は、SiHガスの流量を基準よりも多くして形成され、所謂、シリコンリッチ酸窒化膜と呼ばれる。
 したがって、この発明においては、シリコンリッチ酸窒化膜をプラズマCVD装置100を用いて基板1上に堆積し、その堆積したシリコンリッチ酸窒化膜に対してRTAによる熱処理を施すことによって、所望のサイズおよび所望の密度を有する量子ドットを製造することを特徴とする。
 上述したシリコン酸化膜を熱処理した後の膜は、Siドット(半導体量子ドット)と、SiO(絶縁膜)とからなり、シリコン窒化膜を熱処理した後の膜は、Siドット(半導体量子ドット)と、Si(絶縁膜)とからなり、シリコン酸窒化膜を熱処理した後の膜は、Siドット(半導体量子ドット)と、SiO4/3-2x/3(0<x<2)(絶縁膜)とからなる。
 そして、この発明においては、半導体量子ドットがSiドットからなるものに限らず、半導体量子ドットがGe,C,Snのいずれかからなり、その周囲が絶縁膜であるSiO,SiO4/3-2x/3(0<x<2),Si,GeO,GeO4/3-2x/3(0<x<2),Geのいずれかからなっていればよい。
 そして、RTAによる熱処理を施す前の薄膜は、半導体量子ドットを構成する元素を含む材料(固体または気体)に対する、絶縁膜を構成する元素を含む材料(固体または気体)の量比を絶縁膜を形成するときの量比(=基準値)以上に設定して作製される。
 この場合、RTAによる熱処理を施す前の薄膜は、上述したプラズマCVD装置100に限らず、MOCVD(Metal Organic Chemical Vapor Deposition)装置、MBE(Molecular Beam Epitaxy)装置、LPCVD装置およびスパッタリング装置等の各種の装置を用いて作製される。
 また、上記においては、RTAによる熱処理における昇温レートは、200℃/sであると説明したが、この発明においては、これに限らず、RTAによる熱処理における昇温レートは、0.2℃/s~500℃/sの範囲であればよく、一般的には、0.2℃/s(=基準昇温レート)以上であればよい。
 さらに、RTAによる熱処理における降温レートは、急速冷却する場合、5℃/s~50℃/sの範囲であればよく、一般的には、5℃/s(=基準降温レート)以上であればよい。
 以下、上述した量子ドットの製造方法を用いて製造した量子ドットの発光素子への応用例について説明する。
 図8は、この発明の実施の形態による製造方法を用いて作製した発光素子の断面図である。図8を参照して、発光素子400は、基板401と、n型シリコン酸化膜402と、i型シリコン窒化膜403と、p型シリコン酸窒化膜404と、p型ポリシリコン(poly-Si)膜405と、電極406,407とを備える。
 基板401は、約0.1Ω・cmの比抵抗を有するn型シリコン(n-Si)からなる。n型シリコン酸化膜402は、後述するように、n型Siからなる複数の量子ドットを含み、基板1の一主面に形成される。そして、n型シリコン酸化膜402は、約150nmの膜厚を有する。
 i型シリコン窒化膜403は、後述するように、i型Siからなる複数の量子ドットを含み、n型シリコン酸化膜402に接してn型シリコン酸化膜402上に形成される。そして、i型シリコン窒化膜403は、約10nmの膜厚を有する。
 p型シリコン酸窒化膜404は、i型シリコン窒化膜403に接して、i型シリコン窒化膜403上に形成される。そして、p型シリコン酸窒化膜404は、後述するように、p型Siからなる複数の量子ドットを含み、SiO0.33の組成を有する。また、p型シリコン酸窒化膜404は、約100nmの膜厚を有する。
 p型poly-Si膜405は、p型poly-Si膜4051~4054からなり、p型シリコン酸窒化膜404に接してp型シリコン酸窒化膜404上に形成される。そして、p型poly-Si膜405は、約1020cm-3のボロン濃度を含み、約50nmの膜厚を有する。
 電極406は、電極4061~4064からなる。そして、電極4061~4064は、それぞれ、p型poly-Si膜4051~4054に接してp型poly-Si膜4051~4054上に形成される。電極4061~4064の各々は、アルミニウム(Al)からなる。
 電極407は、Alからなり、基板401の裏面(n型シリコン酸化膜402等が形成された面と反対面)に形成される。
 図9は、図8に示すn型シリコン酸化膜402、i型シリコン窒化膜403およびp型シリコン酸窒化膜404の拡大断面図である。図9を参照して、n型シリコン酸化膜402は、複数の量子ドット4021を含む。複数の量子ドット4021の各々は、n型Siドットからなり、約1019cm-3のリン(P)濃度を含む。そして、複数の量子ドット4021は、n型シリコン酸化膜402中に不規則に配置される。
 i型シリコン窒化膜403は、複数の量子ドット4031を含む。複数の量子ドット4031の各々は、i型Siドットからなる。そして、複数の量子ドット4031は、i型シリコン窒化膜403中に不規則に配置される。
 p型シリコン酸窒化膜404は、複数の量子ドット4041を含む。複数の量子ドット4041の各々は、p型Siドットからなり、約1019cm-3のB濃度を含む。そして、複数の量子ドット4041は、p型シリコン酸窒化膜404中に不規則に配置される。
 このように、n型シリコン酸化膜402は、n型Siドットからなる量子ドット4021を含み、i型シリコン窒化膜403およびp型シリコン酸窒化膜404は、それぞれ、i型Siドットからなる量子ドット4031およびp型Siドットからなる量子ドット4041を含む。したがって、n型シリコン酸化膜402、i型シリコン窒化膜403およびp型シリコン酸窒化膜404は、pin接合を形成する。
 図10は、図8に示す発光素子400のゼロバイアス時のエネルギーバンド図である。図10を参照して、基板401を構成するnSi中には、伝導帯Ec1および価電子帯Ev1が存在し、nSiは、1.12eVのエネルギーバンドギャップEg1を有する。
 また、ppoly-Si膜405中には、伝導帯Ec2および価電子帯Ev2が存在し、ppoly-Si膜405は、1.12eVのエネルギーバンドギャップEg1を有する。
 基板401を構成するnSiは、Pが高濃度にドーピングされ、ppoly-Si膜405は、Bが高濃度にドーピングされているため、nSiの伝導帯Ec1の端は、ppoly-Si膜404の価電子帯Ev2の端にエネルギー的に近い。
 n型シリコン酸化膜402は、上述したように、複数の量子ドット4021を含むため、量子ドット4021と、量子ドット4021を含まないシリコンダイオキサイド(SiO)層4022との積層構造からなる。その結果、量子ドット4021は、SiO層4022によって挟み込まれる。
 SiO層4022は、約9eVのエネルギーバンドギャップを有する。また、量子ドット4021は、2つのSiO層4022によって挟み込まれているので、量子サイズ効果によって、nSiの伝導帯Ec1側にサブ準位Lsub1を有し、nSiの価電子帯Ev1側にサブ準位Lsub2を有する。
 サブ準位Lsub1は、nSiの伝導帯Ec1よりもエネルギー的に高く、サブ準位Lsub2は、nSiの価電子帯Ev1の端よりもエネルギー的に高い。その結果、サブ準位Lsub1とサブ準位Lsub2とのエネルギー差は、nSiのエネルギーギャップEg1よりも大きい。
 また、nSiの伝導帯Ec1の端とSiO層4022の伝導帯の端とのエネルギー差ΔE1は、約3.23eVであり、nSiの価電子帯Ev1の端とSiO層4022の価電子帯の端とのエネルギー差ΔE2は、約4.65eVである。したがって、n型シリコン酸化膜402は、nSi中の正孔に対する障壁エネルギー(=ΔE2)よりも小さい障壁エネルギー(=ΔE1)をnSi中の電子に対して有する。
 i型シリコン窒化膜403は、上述したように、複数の量子ドット4031を含むため、量子ドット4031と、量子ドット4031を含まないシリコン窒化膜(Si)層4032との積層構造からなる。その結果、量子ドット4031は、Si層4032によって挟み込まれる。
 Si層4032は、約5.2eVのエネルギーバンドギャップを有する。また、量子ドット4031は、2つのSi層4032によって挟み込まれているので、量子サイズ効果によって、ppoly-Si膜405の伝導帯Ec2側にサブ準位Lsub3を有し、ppoly-Si膜405の価電子帯Ev4側にサブ準位Lsub4を有する。
 サブ準位Lsub3は、ppoly-Si膜405の伝導帯Ec2の端よりもエネルギー的に高く、サブ準位Lsub4は、ppoly-Si膜405の価電子帯Ev2の端よりもエネルギー的に高い。その結果、サブ準位Lsub3とサブ準位Lsub4とのエネルギー差は、ppoly-Si膜405のエネルギーギャップEg1よりも大きい。
 p型シリコン酸窒化膜404は、上述したように、複数の量子ドット4041を含むため、量子ドット4041と、量子ドット4041を含まないシリコン酸窒化膜層4042との積層構造からなる。その結果、量子ドット4041は、シリコン酸窒化膜層4042によって挟み込まれる。
 シリコン酸窒化膜層4042は、7.1eVのエネルギーバンドギャップを有する。また、量子ドット4041は、2つのシリコン酸窒化膜層4042によって挟み込まれているので、量子サイズ効果によって、pSiの伝導帯Ec2側にサブ準位Lsub5を有し、pSiの価電子帯Ev2側にサブ準位Lsub6を有する。
 サブ準位Lsub5は、pSiの伝導帯Ec2よりもエネルギー的に高く、サブ準位Lsub6は、pSiの価電子帯Ev2の端よりもエネルギー的に高い。その結果、サブ準位Lsub5とサブ準位Lsub6とのエネルギー差は、pSiのエネルギーギャップEg1よりも大きい。
 また、pSiの伝導帯Ec2の端とシリコン酸窒化膜層4042の伝導帯の端とのエネルギー差ΔE5は、4.2eVであり、pSiの価電子帯Ev2の端とシリコン酸窒化膜層4042の価電子帯の端とのエネルギー差ΔE6は、約1.78eVである。したがって、p型シリコン酸窒化膜404は、pSi中の電子に対する障壁エネルギー(=ΔE5)よりも小さい障壁エネルギー(=ΔE6)をpSi中の正孔に対して有する。
 図11は、図8に示す発光素子400の電流通電時のエネルギーバンド図である。電極406側をプラス、電極407側をマイナスとして電極406,407間に電圧を印加すると、図11に示すように、基板401を構成するnSiのエネルギーバンドが持ち上がり、nSi中の電子11は、n型シリコン酸化膜402中の複数の量子ドット4021を介してn型シリコン酸化膜402中を伝導し、i型シリコン窒化膜403中に注入される。
 そして、p型シリコン酸窒化膜404は、電子に対してi型シリコン窒化膜403よりも大きい障壁を有するので、i型シリコン窒化膜403中に注入された電子は、p型シリコン酸窒化膜404によってブロックされ、i型シリコン窒化膜403の量子ドット4031中に蓄積される。
 一方、ppoly-Si膜405中の正孔12は、p型シリコン酸窒化膜404中の量子ドット4041を介してp型シリコン酸窒化膜404中を伝導し、i型シリコン窒化膜403中に注入される。そして、n型シリコン酸化膜402は、正孔に対してi型シリコン窒化膜403よりも大きい障壁を有するので、i型シリコン窒化膜403中に注入された正孔は、n型シリコン酸化膜402によってブロックされ、i型シリコン窒化膜403の量子ドット4031中に蓄積される。
 そうすると、量子ドット4031に蓄積された電子13は、量子ドット4031に蓄積された正孔14と再結合して発光する。
 このように、発光素子400は、nSi401からi型シリコン窒化膜403へ注入された電子をp型シリコン酸窒化膜404によってi型シリコン窒化膜403中に閉じ込め、ppoly-Si膜405からi型シリコン窒化膜403へ注入された正孔をn型シリコン酸化膜402によってi型シリコン窒化膜403中に閉じ込めることを特徴とする。つまり、発光素子400は、正孔および電子の両方をi型シリコン窒化膜403中に閉じ込めることを特徴とする。その結果、発光素子400の発光効率を高くできる。
 また、n型シリコン酸化膜402は、複数の量子ドット4021を不規則に含み、i型シリコン窒化膜403は、複数の量子ドット4031を不規則に含み、p型シリコン酸窒化膜404は、複数の量子ドット4041を不規則に含むので、不規則に配置された量子ドット4021,4031,4041の電界増強効果によって電子および正孔の注入効率が向上する。
 したがって、この発明によれば、発光効率を高くできる。
 図12および図13は、それぞれ、図8に示す発光素子400の製造方法を説明するための第1および第2の工程図である。図12を参照して、発光素子400の製造が開始されると、nSiからなる基板401が準備され(工程(a)参照)、基板401を洗浄した後、プラズマCVD装置100のサンプルホルダー103上に基板1をセットする。
 そして、表1に示す反応条件によってシリコン酸化膜4011を基板1の一主面に堆積する。その後、表2に示す反応条件によってシリコン窒化膜4012をシリコン酸化膜4011上に堆積する。さらに、その後、表3に示す反応条件によってシリコン酸窒化膜4013をシリコン窒化膜4012上に堆積する。
 引き続いて、表3に示す反応条件においてNOガスおよびNHガスを停止させた反応条件によって、アモルファスシリコン(a-Si)膜4014をシリコン酸窒化膜4013上に堆積する(図12の工程(b)参照)。
 その後、リンイオン(P)をイオン注入によってシリコン酸化膜4011中へ注入する(図12の工程(c)参照)。この場合、Pイオンがシリコン酸化膜4011中にのみ注入されるように、イオン注入の加速電圧が設定される。
 そして、ボロンイオン(B)をイオン注入によってシリコン窒化膜4012、シリコン酸窒化膜4013およびa-Si膜4014中へ注入する(図12の工程(d)参照)。この場合、Bイオンがシリコン窒化膜4012、シリコン酸窒化膜4013およびa-Si膜4014中に注入されるように、イオン注入の加速電圧が設定される。
 そして、工程(d)の後、基板1/n型シリコン酸化膜4011/p型シリコン窒化膜4012/p型シリコン酸窒化膜4013/p型a-Si膜4014に対して、上述した方法によってRTAによる熱処理を行なう(図13の工程(e)参照)。
 これによって、n型シリコン酸化膜402、i型シリコン窒化膜403、p型シリコン酸窒化膜404、およびppoly-Si膜405が形成される(図13の工程(f)参照)。
 その後、フォトリソグラフィー技術を用いてppoly-Si膜405をppoly-Si膜4051~4054にパターンニングする(図13の工程(g)参照)。
 そして、Alのスパッタリングによって、電極406(4061~4064)をそれぞれppoly-Si膜4051~4054上に形成するとともに、電極407を基板401の裏面に形成する(図13の工程(h)参照)。これによって、発光素子400が完成する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、サイズおよび密度を制御可能な多層の量子ドットの製造方法に適用される。

Claims (10)

  1.  第1の元素を含む第1の材料に対する、第2の元素を含む第2の材料の量比を基準値以上に設定して薄膜を基板上に堆積する第1の工程と、
     前記第1の工程において堆積された前記薄膜を基準昇温レート以上の昇温レートで設定温度に昇温する第2の工程と、
     前記薄膜を前記設定温度で熱処理する第3の工程とを備え、
     前記基準値は、前記第1および第2の元素を含む絶縁膜を形成するときの前記第1の材料に対する前記第2の材料の量比である、量子ドットの製造方法。
  2.  前記第1の工程において、非晶質相からなる前記薄膜が前記基板上に堆積される、請求の範囲第1項に記載の量子ドットの製造方法。
  3.  前記第3の工程の後、前記薄膜を基準降温レート以上の降温レートで冷却する第4の工程をさらに備える、請求の範囲第1項に記載の量子ドットの製造方法。
  4.  前記第3の工程の後、前記薄膜を基準降温レートよりも低い降温レートで冷却する第4の工程をさらに備える、請求の範囲第1項に記載の量子ドットの製造方法。
  5.  前記第1の元素は、酸素、窒素およびカーボンのいずれかからなり、
     前記第2の元素は、Si,Ge,CおよびSnのいずれかからなる、請求の範囲第1項に記載の量子ドットの製造方法。
  6.  前記第2の元素は、SiおよびGeのいずれかからなる、請求の範囲第5項に記載の量子ドットの製造方法。
  7.  第1の基準値は、前記第1および第2の元素を含む絶縁膜を形成するときの前記第1の材料に対する前記第2の材料の量比であり、
     第2の基準値は、第3の元素および前記第2の元素を含む絶縁膜を形成するときの前記第3の元素を含む第3の材料に対する前記第2の材料の量比であり、
     前記第1の工程において、前記第1の材料に対する前記第2の材料の量比を前記第1の基準値以上に設定し、かつ、前記第3の材料に対する前記第2の材料の量比を前記第2の基準値以上に設定して前記薄膜を前記基板上に堆積する、請求の範囲第1項に記載の量子ドットの製造方法。
  8.  前記第1の元素は、酸素からなり、
     前記第2の元素は、シリコンおよびゲルマニウムのいずれかからなり、
     前記第3の元素は、窒素からなる、請求の範囲第7項に記載の量子ドットの製造方法。
  9.  前記昇温レートは、0.2℃/s~500℃/sの範囲である、請求の範囲第1項に記載の量子ドットの製造方法。
  10.  前記降温レートは、5℃/s~50℃/sの範囲である、請求の範囲第1項に記載の量子ドットの製造方法。
PCT/JP2008/000819 2008-03-31 2008-03-31 量子ドットの製造方法 WO2009122458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/000819 WO2009122458A1 (ja) 2008-03-31 2008-03-31 量子ドットの製造方法
JP2009525826A JPWO2009122458A1 (ja) 2008-03-31 2008-03-31 量子ドットの製造方法
US12/665,242 US8470693B2 (en) 2008-03-31 2008-03-31 Method for manufacturing quantum dot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000819 WO2009122458A1 (ja) 2008-03-31 2008-03-31 量子ドットの製造方法

Publications (1)

Publication Number Publication Date
WO2009122458A1 true WO2009122458A1 (ja) 2009-10-08

Family

ID=41134880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000819 WO2009122458A1 (ja) 2008-03-31 2008-03-31 量子ドットの製造方法

Country Status (3)

Country Link
US (1) US8470693B2 (ja)
JP (1) JPWO2009122458A1 (ja)
WO (1) WO2009122458A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064470A (zh) * 2010-12-17 2011-05-18 贵州大学 全硅量子点纳米激光器及其制备方法
JP2015220249A (ja) * 2014-05-14 2015-12-07 富士通株式会社 量子ドットアレイの製造装置及び製造方法
JP2020500416A (ja) * 2016-10-08 2020-01-09 中国科学院蘇州納米技術与納米倣生研究所Suzhou Institute Of Nano−Tech And Nano−Bionics(Sinano),Chinese Academy Of Sciences 量子ドット構造の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019858B1 (ko) * 2013-07-18 2019-09-09 엘지이노텍 주식회사 발광소자 및 조명시스템
CN113359347B (zh) * 2021-05-28 2022-12-23 深圳市华星光电半导体显示技术有限公司 一种量子点沉积装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102596A (ja) * 1995-10-04 1997-04-15 Fujitsu Ltd 量子ドットの製造方法及び量子ドット装置
JPH11266055A (ja) * 1998-03-18 1999-09-28 Ion Kogaku Kenkyusho:Kk 半導体発光素子およびその製造方法
JP2001085545A (ja) * 1999-09-16 2001-03-30 Sony Corp メモリ素子の製造方法
JP2004014711A (ja) * 2002-06-05 2004-01-15 Sony Corp 半導体素子およびその製造方法
JP2004260044A (ja) * 2003-02-27 2004-09-16 Innotech Corp トランジスタとそれを用いた半導体メモリ
JP2005347465A (ja) * 2004-06-02 2005-12-15 Sony Corp 半導体発光デバイスおよび半導体発光デバイス製造方法
JP2006225258A (ja) * 2005-02-16 2006-08-31 Samsung Electronics Co Ltd シリコンナノワイヤおよびその製造方法
JP2006228916A (ja) * 2005-02-17 2006-08-31 Sony Corp 発光素子
JP2007088436A (ja) * 2005-09-23 2007-04-05 Samsung Electronics Co Ltd Sro及びそれを適用した半導体素子の製造方法
JP2007088311A (ja) * 2005-09-26 2007-04-05 Nissin Electric Co Ltd シリコンドット形成方法及びシリコンドット形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758849B2 (ja) * 1994-03-24 1998-05-28 ユニバーシティ オブ サリー ルミネッセンスシリコン材料及びその形成方法及びルミネッセンス基材の処理方法及びエレクトロルミネッセンスデバイス
US6060743A (en) * 1997-05-21 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor memory device having multilayer group IV nanocrystal quantum dot floating gate and method of manufacturing the same
KR100450749B1 (ko) * 2001-12-28 2004-10-01 한국전자통신연구원 어븀이 도핑된 실리콘 나노 점 어레이 제조 방법 및 이에이용되는 레이저 기화 증착 장비
JP4517144B2 (ja) 2004-07-14 2010-08-04 国立大学法人広島大学 Mos電界効果トランジスタ型量子ドット発光素子の製造方法
US20060180816A1 (en) * 2005-02-14 2006-08-17 Sharp Laboratories Of America, Inc. Wide wavelength range silicon electroluminescence device
JP2007043147A (ja) * 2005-07-29 2007-02-15 Samsung Electronics Co Ltd 原子層蒸着工程を用いたシリコンリッチナノクリスタル構造物の形成方法及びこれを用いた不揮発性半導体装置の製造方法
KR100754396B1 (ko) * 2006-02-16 2007-08-31 삼성전자주식회사 양자점 발광소자 및 그 제조방법
KR100971210B1 (ko) * 2007-12-26 2010-07-20 주식회사 동부하이텍 양자점 형성 및 그를 이용한 게이트 형성 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102596A (ja) * 1995-10-04 1997-04-15 Fujitsu Ltd 量子ドットの製造方法及び量子ドット装置
JPH11266055A (ja) * 1998-03-18 1999-09-28 Ion Kogaku Kenkyusho:Kk 半導体発光素子およびその製造方法
JP2001085545A (ja) * 1999-09-16 2001-03-30 Sony Corp メモリ素子の製造方法
JP2004014711A (ja) * 2002-06-05 2004-01-15 Sony Corp 半導体素子およびその製造方法
JP2004260044A (ja) * 2003-02-27 2004-09-16 Innotech Corp トランジスタとそれを用いた半導体メモリ
JP2005347465A (ja) * 2004-06-02 2005-12-15 Sony Corp 半導体発光デバイスおよび半導体発光デバイス製造方法
JP2006225258A (ja) * 2005-02-16 2006-08-31 Samsung Electronics Co Ltd シリコンナノワイヤおよびその製造方法
JP2006228916A (ja) * 2005-02-17 2006-08-31 Sony Corp 発光素子
JP2007088436A (ja) * 2005-09-23 2007-04-05 Samsung Electronics Co Ltd Sro及びそれを適用した半導体素子の製造方法
JP2007088311A (ja) * 2005-09-26 2007-04-05 Nissin Electric Co Ltd シリコンドット形成方法及びシリコンドット形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064470A (zh) * 2010-12-17 2011-05-18 贵州大学 全硅量子点纳米激光器及其制备方法
JP2015220249A (ja) * 2014-05-14 2015-12-07 富士通株式会社 量子ドットアレイの製造装置及び製造方法
JP2020500416A (ja) * 2016-10-08 2020-01-09 中国科学院蘇州納米技術与納米倣生研究所Suzhou Institute Of Nano−Tech And Nano−Bionics(Sinano),Chinese Academy Of Sciences 量子ドット構造の製造方法

Also Published As

Publication number Publication date
US20100304553A1 (en) 2010-12-02
US8470693B2 (en) 2013-06-25
JPWO2009122458A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
JP4392052B2 (ja) 発光素子およびその製造方法
CN107492481B (zh) 用于对暴露的硅表面进行选择性氧化的设备和方法
TWI291235B (en) Low temperature process for TFT fabrication
JP2006261217A (ja) 薄膜形成方法
TW201027783A (en) Methods of making an emitter having a desired dopant profile
WO2013071811A1 (zh) 低温多晶硅薄膜的形成方法
JPH1187341A (ja) 成膜方法及び成膜装置
JP2006165531A5 (ja)
JP2011023655A (ja) 窒化シリコン薄膜成膜方法および窒化シリコン薄膜成膜装置
WO2009122458A1 (ja) 量子ドットの製造方法
US9818606B2 (en) Amorphous silicon thickness uniformity improved by process diluted with hydrogen and argon gas mixture
WO2007100233A1 (en) Method for crystallization of amorphous silicon by joule heating
JP2000269139A (ja) 多結晶シリコン膜の形成方法
JP2009064955A (ja) 炭化珪素半導体装置の製造方法
JP4445556B2 (ja) 発光素子およびその製造方法
JP4214250B2 (ja) シリコンナノ結晶構造体の作製方法及び作製装置
JP4392051B2 (ja) 発光素子およびその製造方法
TWI719768B (zh) 成長摻雜iv族材料的方法
JP2012089556A (ja) 半導体素子およびその製造方法
TW200938649A (en) Annealing method of zinc oxide thin film
CN103184438B (zh) 薄膜的热处理方法及热处理装置、化学气相沉积装置
JP2005244037A (ja) シリコン膜の製造方法及び太陽電池の製造方法
JPH0461335A (ja) シリコン酸化膜成長方法
JP2000277438A (ja) 多結晶半導体膜の形成方法
JP2622373B2 (ja) 薄膜トランジスタおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009525826

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12665242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720685

Country of ref document: EP

Kind code of ref document: A1