CN1886449A - 使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法 - Google Patents

使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法 Download PDF

Info

Publication number
CN1886449A
CN1886449A CNA200480035089XA CN200480035089A CN1886449A CN 1886449 A CN1886449 A CN 1886449A CN A200480035089X A CNA200480035089X A CN A200480035089XA CN 200480035089 A CN200480035089 A CN 200480035089A CN 1886449 A CN1886449 A CN 1886449A
Authority
CN
China
Prior art keywords
rigid foam
polymer
alkenyl aromatic
polymer melt
porous plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200480035089XA
Other languages
English (en)
Other versions
CN1886449B (zh
Inventor
J·P·林德
R·R·罗赫
R·M·布里恩德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning Intellectual Capital LLC
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Publication of CN1886449A publication Critical patent/CN1886449A/zh
Application granted granted Critical
Publication of CN1886449B publication Critical patent/CN1886449B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • Y10T428/249977Specified thickness of void-containing component [absolute or relative], numerical cell dimension or density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种使用纳米颗粒成核剂制备闭孔的链烯基芳族聚合物泡沫塑料以控制所得泡沫塑料的泡孔形态的方法,其包括:在高于聚合物玻璃化转变温度(对于结晶聚合物而言)或聚合物熔点(对于无定形聚合物而言)的温度下形成聚合物熔体;将所选的纳米颗粒掺入聚合物熔体;在升高的压力下将发泡剂掺入聚合物熔体;任选地将其它添加剂(例如,阻燃剂)掺入聚合物熔体;和在足以制得具有所希望的泡孔形态的泡沫塑料产品的条件下将聚合物熔体挤出,该所希望的泡孔形态由一些参数(例如,减小的平均泡孔尺寸范围和/或增加的泡孔不对称度)而表征。

Description

使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法
发明背景
本发明涉及一种通过使用纳米颗粒作为成核剂而制备具有广泛范围的泡孔形态的链烯基芳族聚合物硬质泡沫塑料的方法。这类硬质泡沫塑料可用于形成适合于许多常规绝热应用的硬质绝缘泡沫塑料板。
硬质聚合物泡沫塑料板的物理性能(例如,它们的压缩强度、导热率、尺寸稳定性、吸水率)在很大程度上取决于形成该板材的材料的微观结构,即,泡沫塑料的泡孔形态。然而,将聚合物发泡控制在用于一致地制造所希望的将使泡沫塑料的整体性能优化、或者改进某一特定性能(例如,泡沫塑料的绝热值)的泡孔形态所需的程度是困难的。
现有技术对制备具有所希望的泡孔形态的泡沫塑料微观结构的尝试包括使用成核剂,例如,由无机氧化物、各种有机材料和金属形成的粉末。在这些成核剂当中,最通常使用的是无机氧化物,例如,滑石、二氧化钛和高岭土。用于形成泡沫塑料的成核剂(一种或多种)的尺寸、形状、颗粒分布和表面处理全部都将会影响成核效率,并且因此影响所得泡沫塑料中的泡孔尺寸形态和分布。
然而,用于控制泡孔形态的常规方法会受到在整个聚合物中将成核剂颗粒均匀分布和/或抑制分散的颗粒聚集方面的一些困难的限制。所得泡沫塑料中的一些结构缺陷通常归因于,至少部分归因于成核剂颗粒(其可以处于数微米的范围内,特别是在产生了一定程度的聚集的情况下)与对于低密度的商业绝缘泡沫塑料而言的所希望的泡孔微观结构(其可以具有1微米或更小的目标泡孔壁厚度)之间的尺寸差异。
成核剂颗粒与泡孔壁厚度之间的该尺寸差异还可能导致在成核剂与纳米尺度的聚合物之间相对弱的相互作用,由此弱化了泡沫塑料的整体结构。类似地,这些泡孔缺陷还可能归因于,至少部分归因于大多数常规无机成核剂的亲水性表面,该亲水性表面使得它们难以均匀地分散在聚合物中。当成核剂以大于约2wt%的含量加入或者所得泡沫塑料的中值泡孔尺寸小于约120微米时,这些缺陷会导致加工困难,例如,所得的泡沫塑料板起皱。
现有技术对避免泡沫塑料结构起皱缺陷的尝试使用了泡孔尺寸增大剂,例如,披露于美国专利No.4,229,396中的蜡质组合物和披露于美国专利No.5,489,407中的非蜡质组合物。
对具有双峰泡孔形态的泡沫塑料结构的另一种尝试(KaneliteSuper EIII,Kaneka,日本)包括使用不混溶的发泡剂,例如,水和烃。然而,由于水在聚合物中低的溶解度和水与在挤出过程期间升高的温度下通常采用的阻燃剂(例如,六溴环十二烷(HBCD))反应,这种结合会导致加工困难。
发明概述
本发明提供了一种用于制备闭孔的链烯基芳族聚合物泡沫塑料的方法,在该方法中使用纳米颗粒成核剂以控制泡孔形态。该示例性的方法包括:1)将链烯基芳族聚合物加热至高于聚合物的玻璃化转变温度(对于结晶聚合物而言)或聚合物的熔点(对于无定形聚合物而言)的温度下以形成聚合物熔体;2)将合适量的所选择的纳米颗粒掺入聚合物熔体以改变聚合物的性质和加工性能,例如,流变性、熔体强度;3)在升高的压力下将发泡剂掺入聚合物熔体;4)将其它添加剂(例如,阻燃剂)掺入聚合物熔体;和5)在大气压或低于1个大气压(部分真空)的压力下挤出并成形为泡沫塑料板以生成所希望的泡孔形态,所述泡孔形态由比如泡孔尺寸范围和分布、泡孔取向度和泡孔壁厚度的参数表征。
进一步根据本发明,该纳米颗粒通常是至少一个维度的尺寸小于100nm的颗粒,并且其可以作为表面改性的纳米颗粒、与芯微米尺寸的颗粒机械化学性(mechnochemical)键接的纳米颗粒、与聚合物(例如,母料组合物)和/或液体发泡剂结合的纳米颗粒化合物而掺入聚合物。另外,该纳米颗粒聚合物复合物可以为插层型(intercalated)纳米层,例如简单地通过将纳米-蒙脱土(MMT)或膨胀型石墨与聚合物混合而形成的复合物,或者是剥离型(eXfoliated)纳米层,例如通过在纳米-MMT或者其它表面改性的无机颗粒或石墨颗粒的存在下将聚合物前体原位聚合而形成的复合物。
本发明的第一个示例性实施方案提供了一种通过使用表面改性的憎水性纳米-MMT颗粒制备具有相对小的约60微米的中值泡孔尺寸的硬质聚合物泡沫塑料的方法。相比较而言,通过使用常规无机成核剂(例如,亲水性滑石)制备的常规泡沫塑料往往具有大于150微米的中值泡孔尺寸。根据本发明的该实施方案制备的硬质泡沫塑料没有表现出可检测的起皱并且压缩强度提高约30%。
本发明的第二个示例性实施方案提供了一种通过除了常规成核剂(例如,滑石)之外还加入针状纳米颗粒(例如,碳酸钙的纳米颗粒)而制备硬质泡沫塑料的方法,我们观察到与约1.0的常规泡孔取向度相比,该硬质泡沫塑料具有至少约1.4的提高的泡孔取向度。
本发明的第三个示例性实施方案提供了一种通过结合使用二氧化碳发泡剂和纳米尺度的成核剂(例如,纳米-MMT)而形成改进的泡沫塑料结构的方法,以制得具有减小的中值泡孔尺寸和较薄的泡孔壁的硬质泡沫塑料,而减小的中值泡孔尺寸和较薄的泡孔壁提高了所得泡沫塑料的机械强度并且降低了导热率(从而提高了绝热值)。
附图简述
图1表示典型的XPS泡沫塑料的泡孔壁结构的SEM图像。
图2表示典型的挤出聚苯乙烯(“XPS”)泡沫塑料的泡孔支架结构的SEM图像。
图3表示采用约0.5%的纳米-粘土成核剂制得的平均泡孔尺寸约81微米的XPS泡沫塑料的SEM图像。
图4表示采用2%的纳米-碳酸钙的XPS泡沫塑料的泡孔尺寸、泡孔尺寸分布和泡孔取向度(x/z)的光学显微镜图像。
图5表示采用3.3%的纳米-膨胀型石墨成核剂的XPS泡沫塑料的泡孔尺寸、泡孔尺寸分布和泡孔取向度(x/z)的光学显微镜图像。
图6表示采用5%的纳米-MMT作为成核剂和6%的CO2作为发泡剂制得的XPS泡沫塑料样品的SEM泡孔形态图像。
示例性实施方案的详细描述
泡孔形态包括:一些参数,例如,泡孔平均尺寸、泡孔各向异性比或泡孔取向度、泡孔密度、泡孔尺寸分布、泡孔壁厚度、泡孔支架有效直径、开孔/闭孔比;泡孔形状,例如,五角十二面体、菱形十二面体、四角十二面体(具有曲面)、和其它的泡孔模式,例如,双孔模式和孔内有孔的模式。在这些泡孔形态参数中,泡孔平均尺寸、泡孔壁厚度、泡孔支架有效直径和泡孔取向度是用于确定闭孔泡沫塑料的泡沫塑料物理性能的关键参数。图1和2表示典型的XPS泡沫塑料的泡孔壁和支架结构的SEM图像。如果将聚合物泡沫塑料理想地描绘成均匀尺寸的五角十二面体泡孔的闭合壁,则泡孔壁厚度和支架有效直径主要取决于泡沫塑料的密度和泡孔尺寸。
本发明使用纳米颗粒和相关挤出工艺来将泡孔尺寸、泡孔壁厚度、支架有效直径以及泡孔取向度控制在相对宽的范围内。尽管常规的聚合物泡沫塑料往往显示出约120-280微米的泡孔平均尺寸。但通过采用根据本发明的纳米颗粒技术,可以制造出泡孔平均尺寸为几十微米至几百微米的聚合物泡沫塑料结构。用于制造根据本发明的聚合物泡沫塑料的纳米颗粒优选以链烯基芳族聚合物材料的约0.01-约10wt%,或者更优选约0.05-约2.5wt%的比率包含在聚合物熔体中。
本发明的纳米颗粒泡孔尺寸控制剂的粒度通常在至少一个维度的尺寸上不大于100埃,并且其可以是进行表面改性或没有进行表面改性的有机材料或无机材料。该泡沫塑料结构的主要组分是链烯基芳族聚合物材料。合适的链烯基芳族聚合物材料包括链烯基芳族均聚物和链烯基芳族化合物与可共聚的烯属不饱和共聚单体的共聚物。
该链烯基芳族聚合物材料可以进一步包括小部分的非链烯基芳族聚合物。该链烯基芳族聚合物材料可以单独由一种或多种链烯基芳族均聚物、每一种链烯基芳族均聚物和共聚物的一种或多种、或者前述的任一种与非链烯基芳族聚合物的共混物所构成。合适的链烯基芳族聚合物包括得自于链烯基芳族化合物,例如,苯乙烯、α-甲基苯乙烯、氯苯乙烯、溴苯乙烯、乙基苯乙烯、乙烯基苯和乙烯基甲苯的那些。优选的链烯基芳族聚合物含至少95%的聚苯乙烯,并且可以全部由聚苯乙烯构成。
本发明的泡沫塑料结构还将通常包括一种或多种选自以下的发泡剂:1)有机发泡剂,例如,含有1-9个碳原子的脂族烃(包括例如,甲烷、乙醇、乙烷、丙烷、正丁烷和异戊烷)和含有1-4个碳原子的全部或部分卤化的脂族烃(含氟烃、含氯烃和含氯氟烃);2)无机发泡剂,例如,二氧化碳、氮气和水;和3)化学发泡剂,例如,偶氮二酰胺、对-甲苯磺酰。有用的发泡剂包括:1-氯-1,1-二氟乙烷(HCFC-142b)、HCFC-134a、二氧化碳、HCFC-142b与二氧化碳的共混物、HCFC-134a与二氧化碳的共混物、二氧化碳与乙醇的共混物、或者二氧化碳与水的共混物。该泡沫塑料组合物还可以掺入各种添加剂,例如,阻燃剂、脱模助剂、颜料和填料,它们旨在改进泡沫塑料的加工性或者对所得泡沫塑料的一种或多种性能进行改性。
根据本发明制造的聚合物泡沫塑料的示例性实施方案,当根据ASTM D-1622测量时,本发明的聚合物泡沫塑料能够显示出约10-约500kg/m3的密度,但将更优选地具有约20-约60kg/m3的密度。尽管根据本发明制造的聚合物泡沫塑料具有的结构可以表现出闭孔和开孔两者,但优选该泡沫塑料组合物将具有如根据ASTM D 2856-A测量的至少90%的闭孔。
以下是本发明的实施例,并且它们不被认为是限制本发明。除非另外说明,所有的百分比、份数或比例都基于全部组合物的重量。
实施例
制备一系列的示例性和对比性的泡沫塑料结构,并且对它们进行评价以确定泡孔形态,即,泡孔尺寸、泡孔壁厚度(图1)、泡孔支架的有效直径(图2)、泡孔各向异性比、和与泡沫塑料的泡孔形态相关的一些其它性能。
测试的物理性能包括密度、压缩强度、导热率、老化绝热值、热尺寸稳定性的一种或多种。与这些实施例相关的是:泡孔尺寸根据ASTMD3576测量;密度根据ASTM D1622测量;导热率根据ASTM C518测量;压缩强度根据ASTM D1621测量;和热尺寸稳定性根据ASTM D2126测量。
根据下面在表1中列出的操作条件,采用包括一对挤出机螺杆、加热区混合器、发泡剂注射器、冷却器、模头和成形器的共旋转式双螺杆挤出机制造泡沫塑料结构。除非另外说明,用于制备实施例的泡沫塑料组合物的聚合物是重均分子量(Mw)为约250,000和熔体指数为约3.1g/10分钟的AtoFina粒状聚苯乙烯。
                                    表1
 带有静态冷却器的LMP共旋转式双螺杆挤出机   Leistritz MIC 27 GL/400共旋转式双螺杆挤出机
  模头/成形器   平面模头/成形板   20×2mm平缝口模头
  成形气压   大气压/真空   大气压
  产量-kg/小时   100-200   6-10
  HCFC-142b的wt%   10.5-11.5
  HCFC-142b/22的wt%
  CO2的wt%
  混合温度-℃   210-230   200-220
  挤出机压力-kPa(ps i)   13000-17000(1950-2400)   6900-8300(1000-1200)
  模头熔体温度-℃   117-123   130-160
  模头压力-kPa(psi)   5400-6600(790-950)   5500-8000(800-1150)
  线速度-m/小时(ft/分钟)   108-168(5.9-9.2)   90-80(5-10)
  模口间隙-mm   0.6-0.8   2
  真空-kPa(英寸Hg)   0-3.4(0-16)   大气压
                       实施例1
使用LMP挤出机在采用(7347)和不采用(7346)2.5%的纳米颗粒填充量的情况下制备聚苯乙烯泡沫塑料。用于制备该实施例的纳米颗粒是得自于Southern Clay Products Inc.的一种特定等级为纳米-MMT20A的有机粘土,其与得自于At oFi na的特定等级为CX5197的聚苯乙烯聚合物熔融混合以形成熔融聚合物。当采用X-射线衍射检验时,该纳米颗粒表现出插层型纳米-MMT层结构。对比样品不包含任何纳米颗粒,但掺入了0.8%的滑石填充量作为成核剂。该对比样品表现出约186微米的平均泡孔尺寸,而使用纳米颗粒的示例性实施例泡沫塑料表现出显著降低的约60微米的平均泡孔尺寸。该示例性实施例还表现出约0.5微米的泡孔壁厚度和约5微米的支架有效直径。如下面在表2中所反映出的那样,该示例性泡沫塑料组合物没有表现出起皱、其在没有不适当的加工难度的情况下加工,并且提供了约30%的压缩强度的改进。
                                            表2
  样品   纳米颗粒(wt%)   平均泡孔尺寸(微米)   泡孔各向异性比*   密度(kg/m3)  强度(kPa)   厚度(mm)
  7346   0   186   0.949   29.28   286   37
  7347   2.5   62   0.968   32   372   26
*泡孔各向异性比:K=z/(x.y.z)1/3,其中x是纵向(挤出方向)上的平均泡孔尺寸,y是横向上的泡孔尺寸,和z是板的厚度方向上的泡孔尺寸。
                       实施例2
根据概括于实施例1中的方法制备样品泡沫塑料(7349),但是在聚苯乙烯组合物中使用0.5%的插层型纳米-MMT以制得密度为约26.5kg/m3、厚度为约38mm和宽度为约600mm的示例性泡沫塑料。掺入组合物的纳米-MMT的量的降低导致了与实施例1相比略有增加的泡孔尺寸,约83微米(图3),同时保持了优于对比泡沫塑料组合物的改进的强度,329kPa。
                       实施例3
使用纳米颗粒填充量为2%的得自于Ampacet的纳米-碳酸钙、以及1%的滑石作为额外的成核剂和1%的稳定的六溴环十二烷作为阻燃剂在LMP挤出机中制备泡沫塑料(7790)。该纳米-碳酸钙颗粒通常是伸长的—平均尺寸为80nm×2μm,并且以结合有烯属共聚物载体树脂的50%母料组合物提供。剩余的配方是聚苯乙烯:80%Nova 1220(熔体指数=1.45)和16%Nova 3900(熔体指数=34.5)。所制得的该示例性泡沫塑料为28mm厚、400mm宽并且平均泡孔尺寸为230微米,和泡孔取向度(挤出方向上的泡孔尺寸与厚度方向上的泡孔尺寸的比例(x/z))高至1.54(参见图4)。
                       实施例4
如实施例3中那样制备泡沫塑料(7789),但使用3.3%的得自于Superior Graphite Company的插层膨胀型纳米-石墨作为纳米颗粒。该纳米-膨胀型石墨包括厚度为约10-约100nm和宽度为约3μm的纳米石墨片。该示例性泡沫塑料表现出基本上与实施例3相同的厚度、宽度和密度(49kg/m3),但具有更小的为166微米的平均泡孔尺寸和1.21的泡孔取向度值(参见图5)。对于老化20天之后的样品而言,该泡沫塑料的导热率低至0.14K.m2/W。
                       实施例5
使用Leistritz挤出机制备泡沫塑料(7289,7291),制得了厚度约10mm、宽度约50mm和密度约46kg/m3的样品。两种样品都含有0.5%的滑石作为成核剂和10%的HCFC 142b/22作为发泡剂。泡孔形态的一些特征如表3所概述:
                                               表3
  样品   纳米颗粒*(wt%)   平均泡孔尺寸(微米)   泡孔取向度(x/z)             泡孔尺寸   泡孔壁厚度(微米)   支架有效直径(微米)
  x   y   z
  7289   0   341   0.99   355   359   339   1.8   4.2
  7291   5   174   0.95   165   183   173   0.8   5.1
                       实施例6
如实施例5中那样制备泡沫塑料(7293,7294),但使用6wt%的二氧化碳作为发泡剂和0.2wt%的滑石作为常规成核剂。所得的泡孔形态(图6)的一些特征在下面概述于表4中:
                                              表4
  样品   纳米颗粒*(wt%)   平均泡孔尺寸(微米)   泡孔取向度(x/z)             泡孔尺寸   泡孔壁厚度(微米)   支架有效直径(微米)
  x   y   z
  7293   0   380   0.92   355   396   388   1.4   3
  7294   5   146   0.76   146   121   158   0.3   5.4
尽管已经参照特定的细节和参数描述了本发明方法的示例性实施方案,但本领域那些普通技术人员将理解的是所披露的方法包括多个组成部分和操作条件,在不偏离如下面的权利要求书中所限定的本发明的精神和范围的情况下可以使这些组成部分和操作条件适应于产生一定范围的制造方法和泡沫塑料组合物,这些制造方法和泡沫塑料组合物可以被调整以实现所希望的泡沫塑料组合物性能或者适合于特定的生产者的装置。

Claims (20)

1.一种制造硬质泡沫塑料的方法,其包括:
制备聚合物熔体;
将纳米颗粒掺入聚合物熔体;
在第一压力和第一温度下将发泡剂掺入聚合物熔体;
在第二压力和第二温度下将聚合物熔体挤出,该第二压力和第二温度足以使得聚合物熔体膨胀并且形成泡沫塑料;和
将泡沫塑料冷却以形成泡沫塑料产品,该产品具有平均泡孔尺寸、泡孔尺寸分布、平均泡孔壁厚度、平均泡孔支架直径、泡孔取向度、导热率、泡沫塑料密度和泡沫塑料强度。
2.根据权利要求1的制造硬质泡沫塑料的方法,其中该聚合物包括主要部分的至少一种链烯基芳族聚合物,该链烯基芳族聚合物选自链烯基芳族均聚物、链烯基芳族化合物和可共聚的烯属不饱和共聚单体的共聚物。
3.根据权利要求2的制造硬质泡沫塑料的方法,其中该聚合物包括主要部分的至少一种链烯基芳族聚合物,该链烯基芳族聚合物选自苯乙烯、α-甲基苯乙烯、氯苯乙烯、溴苯乙烯、乙基苯乙烯、乙烯基苯和乙烯基甲苯的聚合产物;和
小部分的非链烯基芳族聚合物。
4.根据权利要求3的制造硬质泡沫塑料的方法,其中该聚合物包括至少80wt%的聚苯乙烯。
5.根据权利要求2的制造硬质泡沫塑料的方法,其中该发泡剂包括至少一种选自以下的组分:含有1-9个碳原子的脂族烃、含有1-4个碳原子的卤化脂族烃、二氧化碳、氮气、水、偶氮二酰胺和对-甲苯磺酰。
6.根据权利要求5的制造硬质泡沫塑料的方法,其中该发泡剂包括至少一种选自以下的组分:甲烷、甲醇、乙烷、乙醇、丙烷、丙醇、正丁烷和异戊烷、二氧化碳、氮气、水、偶氮二酰胺、对-甲苯磺酰、HCFC-142b和HCFC-134a。
7.根据权利要求2的制造硬质泡沫塑料的方法,其进一步包括在形成泡沫塑料之前将添加剂掺入聚合物熔体。
8.根据权利要求7的制造硬质泡沫塑料的方法,其中该添加剂包括至少一种选自阻燃剂、脱模剂、颜料和填料的组分。
9.根据权利要求2的制造硬质泡沫塑料的方法,其中该纳米颗粒具有小于约100nm的最小尺寸,并且该纳米颗粒选自:碳酸钙、插层型粘土、插层型石墨、剥离型粘土和膨胀型石墨。
10.根据权利要求9的制造硬质泡沫塑料的方法,其中以基于聚合物重量为0.01-10wt%的比率将纳米颗粒掺入聚合物熔体。
11.根据权利要求9的制造硬质泡沫塑料的方法,其中以基于聚合物重量为0.5-5wt%的比率将纳米颗粒掺入聚合物熔体。
12.根据权利要求11的制造硬质泡沫塑料的方法,其中该纳米颗粒包括主要部分的纳米-蒙脱土(MMT);和该聚合物包括主要部分的聚苯乙烯(PS)、聚乙烯(PE)或聚甲基丙烯酸甲酯(PMMA)。
13.根据权利要求10的制造硬质泡沫塑料的方法,其中通过选自以下的技术形成该纳米颗粒:采用聚苯乙烯插层,采用表面改性的纳米-蒙脱土(MMT)的聚苯乙烯(PS)或聚甲基丙烯酸甲酯(PMMA)的原位聚合,和可膨胀的石墨颗粒在聚苯乙烯或聚甲基丙烯酸甲酯基质中剥离。
14.根据权利要求2的制造硬质泡沫塑料的方法,其中:
该平均泡孔尺寸为小于约500μm;
该平均泡孔壁厚度为小于约10μm;
该平均支架直径为小于约20μm;
该泡孔取向度为约0.5-2.0;和
该泡沫塑料密度为小于约100kg/m3
15.根据权利要求14的制造硬质泡沫塑料的方法,其中:
该平均泡孔尺寸为约60-约120μm;
该平均泡孔壁厚度为约0.2-约1.0μm;
该平均支架直径为约4-约8μm;
该泡孔取向度为约1.0-约1.5;和
该泡沫塑料密度为约20-约50kg/m3
16.根据权利要求2的制造硬质泡沫塑料的方法,其进一步包括以基于聚合物重量小于约2wt%的比率将常规成核剂掺入聚合物熔体。
17.根据权利要求16的制造硬质泡沫塑料的方法,其中该泡孔尺寸分布为双峰,其中第一个峰集中在约50μm-120μm,和第二个峰集中在200μm以上。
18.一种硬质泡沫塑料,其包含:
至少约80wt%的包括主要部分的至少一种链烯基芳族聚合物的聚合物基质,该链烯基芳族聚合物选自链烯基芳族均聚物、链烯基芳族化合物和可共聚的烯属不饱和共聚单体的共聚物;和
小于约10wt%的最小尺寸小于约100nm的纳米颗粒;
该聚合物基质进一步的特征在于:
平均泡孔尺寸为约60-约120μm;
平均泡孔壁厚度为约0.2-约1.0μm;
平均支架直径为约4-约8μm;
泡孔取向度为约1.0-约1.5;和
泡沫塑料密度为约20-约50kg/m3
19.根据权利要求18的硬质泡沫塑料,其中该聚合物基质进一步的特征在于:根据ASTM D1621的泡沫塑料的压缩强度为至少300kPa。
20.根据权利要求18的硬质聚合物泡沫塑料,其中该泡孔取向度为至少1.2;并且进一步其中至少90%的泡孔是闭孔。
CN200480035089XA 2003-11-26 2004-11-22 使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法 Expired - Fee Related CN1886449B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/722,929 US8568632B2 (en) 2003-11-26 2003-11-26 Method of forming thermoplastic foams using nano-particles to control cell morphology
US10/722,929 2003-11-26
PCT/US2004/039336 WO2005054349A1 (en) 2003-11-26 2004-11-22 Method of forming thermoplastic foams using nano-particles to control cell morphology

Publications (2)

Publication Number Publication Date
CN1886449A true CN1886449A (zh) 2006-12-27
CN1886449B CN1886449B (zh) 2010-05-12

Family

ID=34592111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480035089XA Expired - Fee Related CN1886449B (zh) 2003-11-26 2004-11-22 使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法

Country Status (9)

Country Link
US (1) US8568632B2 (zh)
EP (1) EP1687364A1 (zh)
JP (1) JP4879024B2 (zh)
KR (1) KR101129203B1 (zh)
CN (1) CN1886449B (zh)
AU (1) AU2004295331B2 (zh)
CA (1) CA2545007C (zh)
NZ (1) NZ547067A (zh)
WO (1) WO2005054349A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339154A (zh) * 2011-02-04 2013-10-02 积水化学工业株式会社 薄片化石墨-聚合物复合材料的制造方法
CN104327373A (zh) * 2014-10-08 2015-02-04 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN104736617A (zh) * 2012-09-25 2015-06-24 陶氏环球技术有限公司 纳孔热塑性泡沫和其制造方法
CN105801888A (zh) * 2016-04-09 2016-07-27 泰山体育产业集团有限公司 一种化学交联聚乙烯泡沫材料邵氏硬度与发泡倍数指数关联表征的方法
CN108137846A (zh) * 2015-10-21 2018-06-08 欧文斯科宁知识产权资产有限公司 制造含纳米泡孔微区的泡沫体的方法
CN108752734A (zh) * 2018-05-04 2018-11-06 广德祥源新材科技有限公司 一种可降解的抗菌型塑料发泡卷材及制造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605188B2 (en) * 2004-12-31 2009-10-20 Owens Corning Intellectual Capital, Llc Polymer foams containing multi-functional layered nano-graphite
US8568632B2 (en) 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology
US9359481B2 (en) 2003-11-26 2016-06-07 Owens Corning Intellectual Capital, Llc Thermoplastic foams and method of forming them using nano-graphite
US20080287560A1 (en) * 2004-12-31 2008-11-20 Loh Roland R Polymer foams containing multi-functional layered nano-graphite
MX2007003151A (es) * 2004-09-17 2007-06-05 Pactiv Corp Espumas polimericas con materiales de relleno tratados, metodo de fabricacion y productos utilizando los mismos.
KR100659450B1 (ko) * 2005-01-25 2006-12-19 주식회사 엘지화학 고강도 착색성 발포 스티렌 수지, 그의 제조방법, 및 이를이용한 발포 성형품
US9187608B2 (en) * 2005-09-08 2015-11-17 Owens Corning Intellectual Capital, Llc Polystyrene foam containing a modifier-free nanoclay and having improved fire protection performance
WO2007040609A1 (en) * 2005-09-16 2007-04-12 Pactiv Corporation Polymer films with treated fillers and products and methods of using same
US8119701B2 (en) 2005-10-24 2012-02-21 Owens Corning Intellectual Capital, Llc Method of manufacturing polystyrene foam with polymer processing additives
US7624910B2 (en) 2006-04-17 2009-12-01 Lockheed Martin Corporation Perforated composites for joining of metallic and composite materials
US20070173554A1 (en) 2005-10-27 2007-07-26 Yadollah Delaviz Method of manufacturing polystyrene foam with polymer processing additives
US7604049B2 (en) * 2005-12-16 2009-10-20 Schlumberger Technology Corporation Polymeric composites, oilfield elements comprising same, and methods of using same in oilfield applications
US9752004B2 (en) * 2006-06-22 2017-09-05 Owens Corning Intellectual Capital, Llc Cell size enlargers for polystyrene foams
CN101479330A (zh) * 2006-07-05 2009-07-08 欧文斯科宁知识产权资产有限公司 含多官能层状纳米石墨的聚合物泡沫
KR100770028B1 (ko) * 2006-12-28 2007-10-25 주식회사 에스에이치케미칼 소음 저감 및 단열 특성이 우수한 고발포성 폴리스티렌입자 및 이의 제조방법
US20080242752A1 (en) * 2007-03-28 2008-10-02 Yadollah Delaviz Polystyrene foams incorporating nanographite and HFC-134
US9381723B2 (en) * 2007-09-12 2016-07-05 University Of Washington Microcellular thermoplastic thin films formed by a solid-state foaming process
JP4999096B2 (ja) * 2007-11-14 2012-08-15 古河電気工業株式会社 熱可塑性樹脂発泡体
KR100902786B1 (ko) * 2007-11-21 2009-06-12 제일모직주식회사 재생 스티렌계 수지를 이용한 발포성 폴리스티렌 및 이의제조방법
US9376648B2 (en) * 2008-04-07 2016-06-28 The Procter & Gamble Company Foam manipulation compositions containing fine particles
US20110144221A1 (en) * 2008-06-04 2011-06-16 Owens Corning Intellectual Capital, Llc Extruded Polystyrene Foam Containing Propylene Carbonate, Ethylene Carbonate or Butylene Carbonate as a Process Aids
NL2004588C2 (nl) * 2010-04-21 2011-10-24 Synbra Tech Bv Deeltjesvormig, expandeerbaar polymeer, werkwijze ter vervaardiging hiervan, alsmede de toepassing.
EP2601253A4 (en) 2010-08-03 2014-12-10 Ferro Corp POLYMERIC COMPOSITE FOAMS
JP5755016B2 (ja) * 2011-04-28 2015-07-29 株式会社林技術研究所 発泡樹脂成形体
JP2013119619A (ja) * 2011-12-08 2013-06-17 Kaneka Corp スチレン系樹脂押出発泡体
EP2931796A4 (en) 2012-12-17 2016-08-17 Schulman A Inc POLYMERIC FOAMS
US9452550B2 (en) * 2012-12-28 2016-09-27 Total Research & Technology Feluy Expandable vinyl aromatic polymers comprising platelet needle coke particles
BR112015014103A2 (pt) * 2012-12-28 2017-07-11 Total Res & Technology Feluy polímeros aromáticos de vinila expansíveis aprimorados
CN103205065A (zh) * 2013-04-26 2013-07-17 中塑联新材料科技湖北有限公司 改性聚苯乙烯密度调节剂
CN107454909B (zh) 2015-04-15 2021-01-29 陶氏环球技术有限责任公司 具有垂直伸长孔的绝热泡沫
EP3298070B1 (en) 2015-08-19 2019-04-10 NIKE Innovate C.V. Process for preparing thermoplastic elastomer foam
US11814566B2 (en) 2020-07-13 2023-11-14 L&P Property Management Company Thermally conductive nanomaterials in flexible foam
US11597862B2 (en) 2021-03-10 2023-03-07 L&P Property Management Company Thermally conductive nanomaterial coatings on flexible foam or fabrics
CN117242123A (zh) * 2021-05-17 2023-12-15 捷普有限公司 用于激光烧结的聚酮粉末
CN117624705A (zh) * 2023-12-15 2024-03-01 石家庄启宏新材料制品有限公司 聚乙烯发泡材料的制备方法

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2365086A (en) 1943-09-21 1944-12-12 Joseph T Kamowski Thermal insulating jacket
US3574644A (en) 1965-03-22 1971-04-13 Dow Chemical Co Method of rendering normally flamable materials flame resistant
GB1281685A (en) * 1968-08-15 1972-07-12 Ici Ltd Precipitated calcium carbonate
BE759479A (fr) 1969-11-26 1971-05-26 Dow Chemical Co Procede de fabrication d'argile expansee et produit ainsi obtenu
US4301040A (en) 1978-06-23 1981-11-17 Charleswater Products, Inc. Electrically conductive foam and method of preparation and use
US4229396A (en) 1979-03-21 1980-10-21 The Dow Chemical Company Method of extruding thermoplastic resin foams having enlarged cell-sizes
US4394460A (en) * 1980-12-08 1983-07-19 Allied Corporation Ethylene-chlorotrifluoroethylene copolymer foam
US4385156A (en) 1982-04-01 1983-05-24 Atlantic Richfield Company Process for producing coated styrenic polymer beads for heat resistant foams
EP0121437A3 (en) 1983-03-31 1985-01-23 Monarflex Limited Control system for a boiler or furnace
US4692381A (en) 1984-07-16 1987-09-08 Pennwalt Corporation Foamable polyvinylidene fluoride and methods
JPS63183941A (ja) 1987-01-27 1988-07-29 Asahi Chem Ind Co Ltd 断熱用熱可塑性樹脂発泡体
US4857390A (en) 1987-06-26 1989-08-15 General Electric Company Low density extruded foam having high compressive strength
IS1537B (is) 1988-08-02 1994-01-28 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Útþanið tilbúið viðarkvoðufrauð (gerviresínfroða)og aðferð við framleiðslu þess
DE3826469A1 (de) 1988-08-04 1990-02-08 Roehm Gmbh Hartschaum als kernmaterial fuer schichtwerkstoffe
US5130342A (en) 1988-10-14 1992-07-14 Mcallister Jerome W Particle-filled microporous materials
US5186919A (en) 1988-11-21 1993-02-16 Battelle Memorial Institute Method for producing thin graphite flakes with large aspect ratios
US5010112A (en) * 1989-12-01 1991-04-23 Massachusetts Institute Of Technology Method and apparatus for improving the insulating properties of closed cell foam
US5585112A (en) 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5912279A (en) 1990-03-23 1999-06-15 E. I. Du Pont De Nemours And Company Polymer foams containing blocking agents
US5082608A (en) 1990-06-14 1992-01-21 Owens-Illinois Plastic Products Inc. Polystyrene foam sheet manufacture
JPH04264143A (ja) * 1991-02-18 1992-09-18 Sanyo Electric Co Ltd 硬質ウレタンフォームおよびその製造方法
US5147896A (en) 1991-05-20 1992-09-15 E. I. Du Pont De Nemours And Company Foam blowing agent composition and process for producing foams
US5369135A (en) 1992-05-13 1994-11-29 Mobil Oil Corporation Controlled microcellular foams of crystalline amorphous polymers
US5269987A (en) 1992-12-22 1993-12-14 Reedy Michael E Process for producing alkenyl aromatic foams using a combination of atmospheric and organic gases and foams produced thereby
KR100312358B1 (ko) 1993-01-26 2002-11-01 더 다우 케미칼 캄파니 평균기포크기가증대된,독립기포로이루어진알케닐방향족중합체발포구조체및이의제조방법
DE9305431U1 (de) 1993-04-13 1994-08-11 AlgoStat GmbH & Co. KG, 29227 Celle Formkörper aus Polystyrol-Hartschaum
DE4332724A1 (de) 1993-09-25 1995-03-30 Huels Chemische Werke Ag Verfahren zur Herstellung von Schaumperlen
US5366675A (en) 1994-03-02 1994-11-22 Needham Donald G Foamable polyethylene-based composition for rotational molding
US6699454B1 (en) * 1994-05-12 2004-03-02 Hyperion Catalysis International, Inc. Catalysts for the manufacture of carbon fibrils and methods of use thereof
US5760115A (en) 1995-03-03 1998-06-02 Tosoh Corporation Fire-retardant polymer composition
GB9506836D0 (en) 1995-04-03 1995-05-24 Metzeler Kay Ltd Flame retardant flexible foam
US5679718A (en) 1995-04-27 1997-10-21 The Dow Chemical Company Microcellular foams containing an infrared attenuating agent and a method of using
US5674916A (en) * 1995-04-27 1997-10-07 The Dow Chemical Company Extruded, open-cell microcellular alkenylaromatic polymer foams and process for making
JPH0971623A (ja) 1995-09-07 1997-03-18 Nisshinbo Ind Inc 硬質ポリウレタンフォーム製造用原液組成物
US5977197A (en) 1996-02-02 1999-11-02 The Dow Chemical Company Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
ATE209666T1 (de) 1996-02-23 2001-12-15 Dow Chemical Co Dispersionen aus schichtgespaltenen partikeln in kunststoffschäumen
US5997781A (en) 1996-04-04 1999-12-07 Mitsui Chemicals, Inc. Injection-expansion molded, thermoplastic resin product and production process thereof
US5710186A (en) 1996-05-31 1998-01-20 The Dow Chemical Company Foams containing treated titanium dioxide and processes for making
US5776389A (en) * 1996-06-20 1998-07-07 The Dow Chemical Company Process for making an alkenyl aromatic polymer foam having enlarged cell size
US6242540B1 (en) 1996-07-04 2001-06-05 Nova Chemicals (International) S.A. Process for the preparation of polymer particles
US5753161A (en) 1996-08-14 1998-05-19 Owens-Corning Fiberglas Technology, Inc. Vacuum extrusion system and method
GB9701291D0 (en) 1997-01-22 1997-03-12 Ici Plc Closed cell polymer foam
DE19709119A1 (de) 1997-03-06 1998-09-10 Basf Ag Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
US5869544A (en) * 1997-03-17 1999-02-09 The Dow Chemical Company Extruded, open-cell microcellular alkenyl aromatic polymer forms, process for making, and articles made therefrom
EP0981574B1 (de) 1997-05-14 2000-09-06 Basf Aktiengesellschaft Graphitpartikel enthaltende expandierbare styrolpolymerisate
ATE196490T1 (de) 1997-05-14 2000-10-15 Basf Ag Verfahren zur herstellung graphitpartikel enthaltender expandierbarer styrolpolymerisate
AR016093A1 (es) 1997-06-27 2001-06-20 Dow Chemical Co Metodo para absorber la energia de impacto, articulos absorbentes de la energia de impactos de aplicacion en dicho metodo y automoviles que incluyendichos articulos absorbentes de impactos
DE19742910A1 (de) 1997-09-29 1999-04-01 Basf Ag Verfahren zur Herstellung von expandierbaren Styrolpolymerisaten
DE69723086T2 (de) 1997-12-08 2003-12-24 Dow Deutschland Inc. Mehrschichtiger Schaum, Verfahren zu seiner Herstellung und Verwendung
EP0921148A1 (en) 1997-12-08 1999-06-09 Dow Deutschland Inc. Low density strand foams
PL342932A1 (en) 1998-03-16 2001-07-16 Dow Chemical Co Open-cell foam and method of making
DE19812856A1 (de) 1998-03-24 1999-09-30 Basf Ag Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate
CA2295070C (en) * 1998-04-23 2005-08-16 Kaneka Corporation Extruded styrene resin foams, and methods for producing the same
ATE215582T1 (de) 1998-07-27 2002-04-15 Basf Ag Verfahren zur herstellung blähgraphitpartikel enthaltender expandierbarer styrolpolymerisate
US6417240B1 (en) 1998-08-28 2002-07-09 Dow Global Technologies Inc. Foams prepared from blends of syndiotactic polypropylenes and thermoplastic polymers
US6123881A (en) * 1998-09-16 2000-09-26 Owens Corning Fiberglas Technology, Inc. Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent
US5993707A (en) 1998-12-04 1999-11-30 The Dow Chemical Company Enlarged cell size foams made from blends of alkenyl aromatic polymers and alpha-olefin/vinyl or vinylidene aromatic and/or sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers
US6048909A (en) 1998-12-04 2000-04-11 The Dow Chemical Company Foams having increased heat distortion temperature made from blends of alkenyl aromatic polymers and alpha-olefin/vinyl or vinylidene aromatic and/or sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers
US6187232B1 (en) 1998-12-04 2001-02-13 The Dow Chemical Company Acoustical insulation foams
US6231795B1 (en) 1998-12-04 2001-05-15 The Dow Chemical Company Soft and flexible foams made from blends of alkenyl aromatic polymers and alpha-olefin/vinyl or vinylidene aromatic and/or sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers
DE19856759A1 (de) 1998-12-09 2000-06-15 Basf Ag Flammgeschützte Polystyrolschaumstoffe
US6258864B1 (en) 1999-01-20 2001-07-10 Cabot Corporation Polymer foam containing chemically modified carbonaceous filler
US6818163B1 (en) * 1999-02-12 2004-11-16 Dow Global Technologies Inc. Nanocomposite articles and process for making
DE19907663A1 (de) 1999-02-23 2000-08-24 Basf Ag Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
TW411591B (en) 1999-03-05 2000-11-11 Mosel Vitelic Inc Method of manufacturing silicon oxide/silicon nitride composite alternate structure in integrated circuits
DE19910257A1 (de) 1999-03-08 2000-09-21 Schwenk Daemmtechnik Gmbh & Co Flammhemmend ausgerüstete Schaumstoffe auf Basis von Styrolpolymerisaten
US6174471B1 (en) 1999-03-15 2001-01-16 The Dow Chemical Company Open-cell foam and method of making
DE19920916A1 (de) * 1999-05-06 2000-11-16 Basf Ag Verbundschichtplatte oder Folie für Kühlschränke
DE19921386A1 (de) 1999-05-10 2000-11-16 Basf Ag Offenzellig Partikelschaumstoffe
JP3074170B1 (ja) 1999-05-27 2000-08-07 大澤 映二 ナノサイズ真球状黒鉛製造方法
MXPA01013143A (es) * 1999-07-16 2002-06-21 Wavin Bv Metodo para la formacion de un articulo que comprende microespuma de celdas cerradas a partir de termoplastico.
JP2003515646A (ja) * 1999-11-30 2003-05-07 オウェンス コーニング 押出しフォーム製品
US6844055B1 (en) * 1999-12-02 2005-01-18 Dow Global Technologies Inc. Hollow strandfoam and preparation thereof
JP2003515473A (ja) * 1999-12-02 2003-05-07 ダウ グローバル テクノロジーズ インコーポレイティド 中空ストランド発泡体およびその製造
EP1268155B1 (en) 2000-03-17 2005-04-06 Dow Global Technologies Inc. Acoustic absorption polymer foam having improved thermal insulating performance
CN100432127C (zh) 2000-03-17 2008-11-12 陶氏环球技术公司 大孔声学泡沫及其用途
US6353037B1 (en) 2000-07-12 2002-03-05 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
US6274640B1 (en) 2000-08-17 2001-08-14 Owens Corning Fiberglas Technology, Inc. Extruded foam product with 134a and alcohol blowing agent
CN1317328C (zh) 2000-09-21 2007-05-23 罗姆和哈斯公司 纳米复合材料水分散体:方法、组合物及其用途
US7166351B2 (en) 2000-09-29 2007-01-23 Takiron, Co., Ltd. Fire-retardant antistatic vinyl chloride resin moldings
US6395795B1 (en) 2000-09-29 2002-05-28 Ausimont Usa, Inc. Titanium dioxide nucleating agent systems for foamable polymer compositions
US6518324B1 (en) 2000-11-28 2003-02-11 Atofina Chemicals, Inc. Polymer foam containing nanoclay
US6815491B2 (en) * 2000-12-28 2004-11-09 General Electric Reinforced thermoplastic composition and articles derived therefrom
DE10105618A1 (de) * 2001-02-08 2002-08-22 Basf Ag Expandierbare Polyolefinpartikel
US7658989B2 (en) 2001-03-28 2010-02-09 North Carolina State University Nano-and micro-cellular foamed thin-walled material, and processes and apparatuses for making the same
US6617295B2 (en) * 2001-04-27 2003-09-09 Polyone Corporation Composition and method for foaming resin
WO2002096982A1 (en) * 2001-05-31 2002-12-05 Nelson Gordon L Organic/inorganic nanocomposites obtained by extrusion
US7169467B2 (en) 2001-06-21 2007-01-30 Magna International Of America, Inc. Structural foam composite having nano-particle reinforcement and method of making the same
US6908950B2 (en) * 2001-10-25 2005-06-21 Owens Corning Fiberglas Technology, Inc. Asphalt filled polymer foam
EP1441889A1 (en) 2001-11-01 2004-08-04 Dow Global Technologies Inc. Bendable polymeric foam with a reinforced slit
AU2002359958A1 (en) * 2001-12-31 2003-07-15 Beijing University Of Chemical Technology Calcium carbonate of different shapes and the preparing process thereof
US20030175497A1 (en) 2002-02-04 2003-09-18 3M Innovative Properties Company Flame retardant foams, articles including same and methods for the manufacture thereof
US7160929B1 (en) * 2002-02-13 2007-01-09 Wrigt Materials Research Co Nanocomposite and molecular-composite polymer foams and method for their production
JP4024071B2 (ja) 2002-04-08 2007-12-19 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡板
US6759446B2 (en) 2002-05-02 2004-07-06 The Ohio State University Research Foundation Polymer nanocomposite foams
US7144925B2 (en) 2002-05-09 2006-12-05 Dow Global Technologies Inc. Fire resistance acoustic foam
US7348298B2 (en) 2002-05-30 2008-03-25 Ashland Licensing And Intellectual Property, Llc Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
DE10229983A1 (de) 2002-07-03 2004-01-15 Fagerdala Deutschland Gmbh Thermoplastische Schaumstoffe mit nanostrukturierten Füllstoffen und Verfahren zu deren Herstellung
US7105108B2 (en) * 2002-08-15 2006-09-12 Advanced Energy Technology Inc. Graphite intercalation and exfoliation process
US20040127621A1 (en) 2002-09-12 2004-07-01 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
DE10243240A1 (de) 2002-09-17 2004-03-25 Basf Ag Vorwiegend aus Kohlenstoff zusammengesetzte Schaumstoffe hoher innerer Oberfläche und Verfahren zu deren Herstellung
US7071258B1 (en) * 2002-10-21 2006-07-04 Nanotek Instruments, Inc. Nano-scaled graphene plates
JP4111437B2 (ja) 2002-12-17 2008-07-02 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡板の製造方法及びポリスチレン系樹脂押出発泡板
JP4316305B2 (ja) 2003-06-13 2009-08-19 株式会社ジェイエスピー 黒鉛粉を含有するスチレン系樹脂発泡体の製造方法
US9359481B2 (en) 2003-11-26 2016-06-07 Owens Corning Intellectual Capital, Llc Thermoplastic foams and method of forming them using nano-graphite
US7605188B2 (en) 2004-12-31 2009-10-20 Owens Corning Intellectual Capital, Llc Polymer foams containing multi-functional layered nano-graphite
US8568632B2 (en) 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology
US20080287560A1 (en) 2004-12-31 2008-11-20 Loh Roland R Polymer foams containing multi-functional layered nano-graphite
DE102004019708A1 (de) 2004-04-20 2005-11-17 Basf Ag Offenzellige Schaumstoffe und Verfahren zu ihrer Herstellung
CN1285856C (zh) * 2005-01-11 2006-11-22 程好军 一种利用导热油锅炉焚烧造纸黑液的工艺

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339154A (zh) * 2011-02-04 2013-10-02 积水化学工业株式会社 薄片化石墨-聚合物复合材料的制造方法
CN103339154B (zh) * 2011-02-04 2015-07-01 积水化学工业株式会社 薄片化石墨-聚合物复合材料的制造方法
US9884934B2 (en) 2011-02-04 2018-02-06 Sekisui Chemical Co., Ltd. Method for producing exfoliated graphite-polymer composite material
CN104736617A (zh) * 2012-09-25 2015-06-24 陶氏环球技术有限公司 纳孔热塑性泡沫和其制造方法
CN104736617B (zh) * 2012-09-25 2017-05-10 陶氏环球技术有限责任公司 纳孔热塑性泡沫和其制造方法
CN104327373A (zh) * 2014-10-08 2015-02-04 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN104327373B (zh) * 2014-10-08 2017-08-01 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN108137846A (zh) * 2015-10-21 2018-06-08 欧文斯科宁知识产权资产有限公司 制造含纳米泡孔微区的泡沫体的方法
CN108137846B (zh) * 2015-10-21 2021-07-16 欧文斯科宁知识产权资产有限公司 制造含纳米泡孔微区的泡沫体的方法
CN105801888A (zh) * 2016-04-09 2016-07-27 泰山体育产业集团有限公司 一种化学交联聚乙烯泡沫材料邵氏硬度与发泡倍数指数关联表征的方法
CN105801888B (zh) * 2016-04-09 2019-04-12 泰山体育产业集团有限公司 一种化学交联聚乙烯泡沫材料邵氏硬度与发泡倍数指数关联表征的方法
CN108752734A (zh) * 2018-05-04 2018-11-06 广德祥源新材科技有限公司 一种可降解的抗菌型塑料发泡卷材及制造方法

Also Published As

Publication number Publication date
WO2005054349A1 (en) 2005-06-16
US20050112356A1 (en) 2005-05-26
EP1687364A1 (en) 2006-08-09
CA2545007A1 (en) 2005-06-16
JP2007512425A (ja) 2007-05-17
CA2545007C (en) 2014-07-08
KR101129203B1 (ko) 2012-03-26
KR20060098387A (ko) 2006-09-18
US8568632B2 (en) 2013-10-29
NZ547067A (en) 2009-01-31
JP4879024B2 (ja) 2012-02-15
CN1886449B (zh) 2010-05-12
AU2004295331A1 (en) 2005-06-16
AU2004295331B2 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
CN1886449B (zh) 使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法
AU2005323239B2 (en) Polymer foams containing multi-functional layered nano-graphite
JP2007512425A5 (zh)
EP1465941B1 (en) Multimodal polymeric foam containing an absorbent clay
US10184037B2 (en) Thermoplastic foams and method of forming them using nano-graphite
US8507568B2 (en) Suspension polymerization and foaming of water containing activated carbon-nano/microparticulate polymer composites
AU2006345744A1 (en) Polymer foams containing multi-functional layered nano-graphite
KR101379434B1 (ko) 발포성 폴리스티렌 비드의 제조방법
US11104775B2 (en) Controlled polymer foaming using a hybrid nucleating agent formed from a mineral and an organic nucleating agent
WO1998018854A1 (en) Expandable composition
WO2012062682A1 (de) Verfahren zur herstellung von expandierbaren thermoplastischen partikeln mit verbesserter expandierbarkeit
US6872757B2 (en) Expandable composition, blowing agent, and process for extruded thermoplastic foams
JP2003327737A (ja) 生分解性ポリヒドロキシアルカノエート押出発泡体およびその製造方法
KR20020093820A (ko) 표면 결함이 감소된 압출 폼 제품
Urbanczyk et al. Extrusion Foaming of Poly (styrene‐co‐acrylonitrile)/Clay Nanocomposites Using Supercritical CO2
JP2018100380A (ja) ポリスチレン系樹脂発泡性粒子及びその製法、ポリスチレン系樹脂発泡粒子及びその製法、並びに、ポリスチレン系樹脂発泡成形体及びその製法
TW201302802A (zh) 改進的能膨脹的乙烯基芳族聚合物
Guo et al. Comparison of carbon nanofibers and activated carbon on carbon dioxide foaming of polystyrene
CN112341724A (zh) 一种用于制备微孔发泡材料的组合物、微孔发泡材料及其制备方法
RU2167061C2 (ru) Способ получения вспененных плит с высоким сопротивлением сжатию
JP4816853B2 (ja) ポリ乳酸系発泡性樹脂粒子
MXPA06005995A (es) Metodos para formar espumas termoplasticas utilizando nano-particulas para controlar la morfologia de las celdas
JP4101379B2 (ja) ゴム変性スチレン系樹脂発泡成形体
JPH10175248A (ja) 熱可塑性樹脂発泡体およびその製造方法
EP4130144A1 (en) Foamable chlorinated vinyl chloride-based resin particles, foamed particles thereof, chlorinated vinyl chloride-based resin foam molded article, and method for producing foamable chlorinated vinyl chloride resin particles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: OWENS CORNING INTELLECTUAL CAP

Free format text: FORMER OWNER: OWENS CORNING CORP.

Effective date: 20080229

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080229

Address after: American Ohio

Applicant after: OWENS CORNING INTELLECTUAL CAPITAL, LLC

Address before: American Ohio

Applicant before: OWENS CORNING

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

CF01 Termination of patent right due to non-payment of annual fee