CN104327373A - 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法 - Google Patents

纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法 Download PDF

Info

Publication number
CN104327373A
CN104327373A CN201410523527.2A CN201410523527A CN104327373A CN 104327373 A CN104327373 A CN 104327373A CN 201410523527 A CN201410523527 A CN 201410523527A CN 104327373 A CN104327373 A CN 104327373A
Authority
CN
China
Prior art keywords
nanoparticle
polymer
preparation
polymeric matrix
nanocomposites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410523527.2A
Other languages
English (en)
Other versions
CN104327373B (zh
Inventor
杨晋涛
何志才
陈枫
范萍
钟明强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201410523527.2A priority Critical patent/CN104327373B/zh
Publication of CN104327373A publication Critical patent/CN104327373A/zh
Application granted granted Critical
Publication of CN104327373B publication Critical patent/CN104327373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,属于高分子材料技术领域。该制备方法为在聚合物与纳米粒子通过熔融共混得到的聚合物纳米复合材料进行发泡过程中通过施加外力使该材料中泡孔沿单轴方向取向生长,在外力和泡孔生长双重诱导聚合物流动实现纳米粒子的高度取向,得到纳米粒子在聚合物基体中高度取向的聚合物纳米复合材料。本方法具有操作简便,条件温和,所制备的聚合物纳米复合材料中纳米粒子取向度高等优点。

Description

纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法。 
背景技术
多年来,聚合物/无机纳米复合材料一直受到工业界和学术界的广泛关注。这类有纳米粒子和聚合物基体组成的复合材料与纯聚合物和传统复合材料相比具有更高的机械物理性能,同时具有功能性,在许多领域存在广泛的用途。在聚合物/无机纳米复合材料中,纳米粒子的分散与分布对材料的性能起到了决定性作用,许多研究表明,纳米粒子的取向排列能够使聚合物纳米复合材料具有更佳的物理机械性能。例如,Padsiadlo等采用层层自组装的方法制备了粘土片层有序“堆砌”的聚乙烯醇(PVA)/粘土纳米复合薄膜材料,具有高强度、高韧性及高透明度等优点,虽然该复合材料薄膜的模量仍低于理论计算值,但远远高于常规方法制备的粘土无规分散的纳米复合材料的模量,充分证明了无机纳米粒子的有序排列对材料性能的影响,这一研究成果发表在科学(Science)杂志上。除机械性能外,当功能性纳米粒子如碳纳米管、石墨烯等在聚合物基体中按特定取向排列时,纳米复合材料的光、电、磁等功能性呈现高度的各项异性,能够充分发挥纳米粒子的功能性。例如,当碳纳米管在聚合物基体中实现有序排列时,复合材料的沿碳管取向方向的渗透阈值大大降低。由此可见,实现纳米粒子在聚合物基体中有序取向排列是制备高性能纳米复合材料的关键。 
目前,实现纳米粒子有序排列的方法主要包括:1)层层自主装法,即利用纳米粒子和聚合物之间的相互作用(如静电吸附)实现纳米粒子堆砌取向;2)压力诱导流动,即在一定的温度下,对复合材料施加高压,复合材料在高压下沿轴向的流动导致纳米粒子沿流动方向取向,例如,余木火等采用压力诱导流动法制备了蒙脱土片层高度取向聚丙烯/蒙脱土纳米复合材料(Yu, Muhuo. et al. The Thermal and Mechanical Properties of Ultra-High Molecular Weight Polyethylene/Montmorillonite (UHMWPE/MMT) Nanocomposites Hybrid Gel Using Pressure-Induced Flow (PIF) Processing. 东华大学学报(英文版), 2011, ;3)拉伸诱导粒子取向,该方法主要用于制备薄膜或纤维材料,通过高速拉伸实现纳米粒子沿拉伸方向的高度取向;3)外加电场或磁场, 该法主要针对具有电荷或磁性的纳米粒子,如碳纳米管、石墨烯、Fe3O4纳米粒子等,通过电场或磁场实现纳米粒子的取向;上述方法均能有效地实现纳米粒子在聚合物基体中的取向排列,但也存在着各自的缺点,如层层自组装的方法操作复杂,周期长,同时只能制备厚度很小的薄膜材料;压力诱导流动要施加很大的压力(几十到几百兆帕)才能实现纳米粒子的取向排列;拉伸诱导仅限于制备薄膜和纤维材料,材料种类有局限性;外加磁场或电场要实现纳米粒子在聚合物熔体中的排列,需要达到很高的场强度。 
发明内容
针对现有技术存在的问题,本发明的目的在于设计提供纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法的技术方案,该方法克服了现有技术中压力诱导流动法的缺点,能够在更加温和条件下实现纳米粒子的高度有序取向排列,有效提高了纳米复合材料力学、阻隔、导电、介电等性能。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于聚合物与纳米粒子通过熔融共混得到的聚合物纳米复合材料进行发泡过程中通过施加外力使该材料中泡孔沿单轴方向取向生长,在外力和泡孔生长双重诱导聚合物流动实现纳米粒子的高度取向,得到纳米粒子在聚合物基体中高度取向的聚合物纳米复合材料。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述聚合物为聚丙烯、聚乙烯、聚碳酸酯、聚苯乙烯、聚乳酸、聚己内酯或聚甲基丙烯酸甲酯,优选为聚苯乙烯、聚乳酸、聚甲基丙烯酸甲酯或聚丙烯;所述的纳米粒子为蒙脱土、碳纳米管、水滑石、石墨烯或纳米碳粉,优选为碳纳米管、石墨烯、蒙脱土或水滑石。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述发泡过程在具有上模和下模的模腔中进行,通过模腔压力的控制给予聚合物纳米复合材料外力。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于具体包括以下工艺步骤: 
1)将聚合物与纳米粒子在180~220oC下熔融共混制备得到聚合物纳米复合材料,所述聚合物为聚丙烯、聚乙烯、聚碳酸酯、聚苯乙烯、聚乳酸、聚己内酯或聚甲基丙烯酸甲酯,优选为聚苯乙烯、聚乳酸、聚甲基丙烯酸甲酯或聚丙烯;所述的纳米粒子为蒙脱土、碳纳米管、水滑石、石墨烯或纳米碳粉,优选为碳纳米管、石墨烯、蒙脱土或水滑石;
2)聚合物纳米复合材料经压制、注塑或挤出得到样片材料;
3)将样片材料放入高压釜中,通过发泡剂气体吹扫后在高压釜中注入具有压力的发泡剂,控制压力在8~30Mpa,在常温下密封饱和2~24小时,迅速泄压至大气压;
4)将样品迅速取出放置到80~180 oC的模腔中,样品放入模腔后,在10~120s内将模腔压力上升到3~50MPa,保持压力稳定1~5min,最后脱模得到纳米粒子在聚合物基体中高度取向的聚合物纳米复合材料。
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤1)中纳米粒子含量为0~60%,其中0代表无限接近于0但不为0,优选为1~20%。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤3)中发泡剂为二氧化碳、氮气、丁烷、氟利昂或含氢氯氟利昂。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤3)中样片在高压釜中进行发泡剂溶胀过程是在压力15~25Mpa下饱和5~15小时。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤4)中模腔具有上模和下模。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤4)中模腔温度为100~150oC。 
所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤4)中样品放入模腔后,在50~80s内将模腔压力上升到15~30MPa,保持压力稳定2~3min。 
本发明的优点在于: 
1)本发明所实施的方法是在聚合物发泡过程中施加外力,使泡孔按轴向方向生长,在生长过程中实现流动导致纳米粒子排列取向,同时所施加的外力也能促使纳米粒子沿流动方向取向,该双重诱导流动过程能让纳米粒子获得更高的取向度。
2)本发明中所采用的发泡剂在聚合物中起到塑化剂作用,能够降低聚合物流动粘度,同时,发泡剂造成的泡孔生长过程也促进了聚合物的流动,因此,相比传统的压力诱导流动法,本发明方法能够在比较温和的条件(如温度和压力)下和较短的时间即实现纳米粒子的高度取向过程。 
3)通过调控发泡温度、外部施加的压力等及能够制备密实的本体聚合物/无机纳米复合材料,同时能够制备具有微孔聚合物纳米复合材料,拓展纳米复合材料的应用范围。 
4)本发明所制备的纳米粒子高度取向的聚合物纳米复合材料具有高度各项异性,在纳米粒子取向方向具有高机械性能,此外,在气体阻隔、电磁屏蔽和导电导热等方面具有应用潜力,为功能聚合物材料的制备提供了新思路。 
附图说明
图1为纳米粒子高度取向的聚合物基微孔纳米复合材料的制备示意图; 
图2为本发明的模腔结构示意图。
具体实施方式
下面实施例是对本发明的进一步说明,而不是限制本发明的范围。 
比较例1: 
将聚苯乙烯(PS)与石墨烯(质量比95:5)用挤出机在200℃熔融共混挤出,然后经压制得到纳米复合材料样片,样片不经发泡剂溶胀直接放入150℃模腔中,将模具加压至20MPa,保压5min后冷却至室温开模得到纳米复合材料。
实施例1: 
将聚苯乙烯(PS)与石墨烯(质量比95:5)用挤出机在200℃熔融共混挤出,然后经压制得到纳米复合材料样片,样片装入高压釜内密封;用少量的CO2吹洗高压釜2分钟后注入超临界CO2,控制压力为15MPa,在常温下密封浸泡12小时;迅速泄压并将样片从高压釜内取出样品放入温度为150℃由上模和下模构成的模腔中(模腔结构如图2所示),30s将模具加压至20MPa,保压5min,然后冷却至室温开模得到纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料。上述的纳米粒子高度取向的聚合物基微孔纳米复合材料的制备示意图如图1所示。
实施例2: 
将聚甲基丙烯酸甲酯(PMMA)与有机改性蒙脱土(质量比60:40)用密炼机中在220℃熔融共混,然后经压片得到纳米复合材料样片,样片装入高压釜内密封;用少量的氟里昂吹扫高压釜2分钟后注入氟利昂,控制压力为5MPa,在常温下密封浸泡18小时;迅速泄压并将样片从高压釜内取出样品放入具温度为180℃的模腔中,15s将模具加压至30MPa,保压3min,然后冷却至室温开模得到纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料。
实施例3: 
将聚丙烯(PP)与碳纳米管(质量比90:10)用挤出机在200℃熔融共混挤出,然后经压片得到纳米复合材料样片,样片装入高压釜内密封;用少量的丁烷吹洗高压釜2分钟后注入丁烷,控制压力为8MPa,在常温下密封浸泡18小时;迅速泄压并将样片从高压釜内取出样品放入具温度为180℃的模腔中,30s将模具加压至3MPa,保压3min,然后冷却至室温开模得到纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料。
实施例4: 
将聚甲基丙烯酸甲酯(PMMA)与水滑石(质量比90:10)用挤出机在200℃熔融共混挤出,然后经注塑得到纳米复合材料样片,样片装入高压釜内密封;用少量的N2吹洗高压釜2分钟后注入N2,控制压力为30MPa,在常温下密封浸泡24小时;迅速泄压并将样片从高压釜内取出样品放入具温度为80℃的模腔中,2min将模具加压至30MPa,保压5min,然后冷却至室温开模得到纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料。
实施例5: 
将聚乳酸(PLA)与石墨烯(质量比90:10)用挤出机在180℃熔融共混挤出,然后经注塑得到纳米复合材料样片,样片装入高压釜内密封;用少量的二氧化碳吹洗高压釜2分钟后注入二氧化碳,控制压力为20MPa,在常温下密封浸泡2小时;迅速泄压并将样片从高压釜内取出样品放入具温度为120℃的模腔中,20s将模具加压至30MPa,保压5min,然后冷却至室温开模得到纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料。
实施例6: 
将聚苯乙烯(PS)与富勒烯(质量比90:1)用挤出机在180℃熔融共混挤出片材得到纳米复合材料样片,样片装入高压釜内密封;用少量的二氧化碳吹洗高压釜2分钟后注入二氧化碳,控制压力为20MPa,在常温下密封浸泡18小时;迅速泄压并将样片从高压釜内取出样品放入具温度为120℃的模腔中,30s将模具加压至50MPa,保压5min,然后冷却至室温开模得到纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料。
表1实施例1和对比例1制备纳米复合材料性能 
注:纳米粒子取向度指纳米粒子轴向与流动方向夹角的平均值。 

Claims (10)

1.纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于聚合物与纳米粒子通过熔融共混得到的聚合物纳米复合材料进行发泡过程中通过施加外力使该材料中泡孔沿单轴方向取向生长,在外力和泡孔生长双重诱导聚合物流动实现纳米粒子的高度取向,得到纳米粒子在聚合物基体中高度取向的聚合物纳米复合材料。
2.如权利要求1所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述聚合物为聚丙烯、聚乙烯、聚碳酸酯、聚苯乙烯、聚乳酸、聚己内酯或聚甲基丙烯酸甲酯,优选为聚苯乙烯、聚乳酸、聚甲基丙烯酸甲酯或聚丙烯;所述的纳米粒子为蒙脱土、碳纳米管、水滑石、石墨烯或纳米碳粉,优选为碳纳米管、石墨烯、蒙脱土或水滑石。
3.如权利要求1所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述发泡过程在具有上模和下模的模腔中进行,通过模腔压力的控制给予聚合物纳米复合材料外力。
4.如权利要求1所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于具体包括以下工艺步骤:
1)将聚合物与纳米粒子在180~220oC下熔融共混制备得到聚合物纳米复合材料,所述聚合物为聚丙烯、聚乙烯、聚碳酸酯、聚苯乙烯、聚乳酸、聚己内酯或聚甲基丙烯酸甲酯,优选为聚苯乙烯、聚乳酸、聚甲基丙烯酸甲酯或聚丙烯;所述的纳米粒子为蒙脱土、碳纳米管、水滑石、石墨烯或纳米碳粉,优选为碳纳米管、石墨烯、蒙脱土或水滑石;
2)聚合物纳米复合材料经压制、注塑或挤出得到样片材料;
3)将样片材料放入高压釜中,通过发泡剂气体吹扫后在高压釜中注入具有压力的发泡剂,控制压力在8~30Mpa,在常温下密封饱和2~24小时,迅速泄压至大气压;
4)将样品迅速取出放置到80~180 oC的模腔中,样品放入模腔后,在10~120s内将模腔压力上升到3~50MPa,保持压力稳定1~5min,最后脱模得到纳米粒子在聚合物基体中高度取向的聚合物纳米复合材料。
5.如权利要求4所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤1)中纳米粒子含量为0~60%,其中0代表无限接近于0但不为0,优选为1~20%。
6.如权利要求4所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤3)中发泡剂为二氧化碳、氮气、丁烷、氟利昂或含氢氯氟利昂。
7.如权利要求4所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤3)中样片在高压釜中进行发泡剂溶胀过程是在压力15~25Mpa下饱和5~15小时。
8.如权利要求4所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤4)中模腔具有上模和下模。
9.如权利要求4所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤4)中模腔温度为100~150oC。
10.如权利要求4所述的纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法,其特征在于所述步骤4)中样品放入模腔后,在50~80s内将模腔压力上升到15~30MPa,保持压力稳定2~3min。
CN201410523527.2A 2014-10-08 2014-10-08 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法 Active CN104327373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410523527.2A CN104327373B (zh) 2014-10-08 2014-10-08 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410523527.2A CN104327373B (zh) 2014-10-08 2014-10-08 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104327373A true CN104327373A (zh) 2015-02-04
CN104327373B CN104327373B (zh) 2017-08-01

Family

ID=52402183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410523527.2A Active CN104327373B (zh) 2014-10-08 2014-10-08 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104327373B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877149A (zh) * 2015-03-25 2015-09-02 青岛科技大学 一种定向碳纳米管天然橡胶基复合材料的制备方法
CN106393539A (zh) * 2015-07-28 2017-02-15 李长荣化学工业股份有限公司 聚合物发泡体及其制备方法
CN108623928A (zh) * 2017-03-21 2018-10-09 洛阳尖端技术研究院 一种吸波泡沫及其制备方法
CN108841158A (zh) * 2018-06-30 2018-11-20 杭州高烯科技有限公司 一种石墨烯-发泡聚碳酸酯复合材料及其制备方法
CN109265825A (zh) * 2018-09-06 2019-01-25 江苏科技大学 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
CN109306070A (zh) * 2018-08-13 2019-02-05 浙江工业大学 一种具有纳米粒子取向聚合物纤维发泡材料的制备方法
CN109337169A (zh) * 2018-09-30 2019-02-15 三斯达(江苏)环保科技有限公司 一种高弹性耐磨型复合发泡材料及其制备方法
CN110372942A (zh) * 2019-07-25 2019-10-25 江苏瑞文新材料科技有限公司 一种石墨烯改性的直流耐高压绝缘电缆料
CN111592745A (zh) * 2020-06-29 2020-08-28 江西伟普科技有限公司 一种碳/聚合物基电磁屏蔽材料及其制备方法
CN112175268A (zh) * 2020-10-11 2021-01-05 金华环亚包装有限公司 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺
CN113185823A (zh) * 2021-05-27 2021-07-30 中国科学院长春应用化学研究所 一种聚己内酯复合材料及其制备方法
CN114213698A (zh) * 2021-12-31 2022-03-22 安徽工业大学 一种具有取向填料结构的电磁屏蔽复合泡沫及其制备方法
CN116144063A (zh) * 2022-10-29 2023-05-23 江苏集萃先进高分子材料研究所有限公司 利用二维填料促进一维填料在发泡材料孔壁中取向的方法
CN116144063B (zh) * 2022-10-29 2024-06-04 江苏集萃先进高分子材料研究所有限公司 利用二维填料促进一维填料在发泡材料孔壁中取向的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886449A (zh) * 2003-11-26 2006-12-27 欧文斯科尔宁格公司 使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法
CN101838414A (zh) * 2010-03-26 2010-09-22 中山大学 一种取向纳米无机粒子/热塑性聚合物复合材料的制备方法
CN102718983A (zh) * 2012-06-28 2012-10-10 四川大学 聚合物基导电微孔泡沫复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886449A (zh) * 2003-11-26 2006-12-27 欧文斯科尔宁格公司 使用纳米颗粒形成热塑性泡沫塑料以控制泡孔形态的方法
CN101838414A (zh) * 2010-03-26 2010-09-22 中山大学 一种取向纳米无机粒子/热塑性聚合物复合材料的制备方法
CN102718983A (zh) * 2012-06-28 2012-10-10 四川大学 聚合物基导电微孔泡沫复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. AMELI ET. AL.: ""Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold"", 《CARBON》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877149A (zh) * 2015-03-25 2015-09-02 青岛科技大学 一种定向碳纳米管天然橡胶基复合材料的制备方法
US10538640B2 (en) 2015-07-28 2020-01-21 LCY Chemical Corp. Polymer foam and method for preparing the same
CN106393539A (zh) * 2015-07-28 2017-02-15 李长荣化学工业股份有限公司 聚合物发泡体及其制备方法
CN106393539B (zh) * 2015-07-28 2020-05-12 李长荣化学工业股份有限公司 聚合物发泡体及其制备方法
CN108623928A (zh) * 2017-03-21 2018-10-09 洛阳尖端技术研究院 一种吸波泡沫及其制备方法
CN108841158A (zh) * 2018-06-30 2018-11-20 杭州高烯科技有限公司 一种石墨烯-发泡聚碳酸酯复合材料及其制备方法
CN109306070A (zh) * 2018-08-13 2019-02-05 浙江工业大学 一种具有纳米粒子取向聚合物纤维发泡材料的制备方法
CN109265825A (zh) * 2018-09-06 2019-01-25 江苏科技大学 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
CN109265825B (zh) * 2018-09-06 2021-01-05 江苏科技大学 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
CN109337169A (zh) * 2018-09-30 2019-02-15 三斯达(江苏)环保科技有限公司 一种高弹性耐磨型复合发泡材料及其制备方法
CN109337169B (zh) * 2018-09-30 2021-03-26 三斯达(江苏)环保科技有限公司 一种高弹性耐磨型复合发泡材料及其制备方法
CN110372942A (zh) * 2019-07-25 2019-10-25 江苏瑞文新材料科技有限公司 一种石墨烯改性的直流耐高压绝缘电缆料
CN111592745A (zh) * 2020-06-29 2020-08-28 江西伟普科技有限公司 一种碳/聚合物基电磁屏蔽材料及其制备方法
CN112175268A (zh) * 2020-10-11 2021-01-05 金华环亚包装有限公司 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺
CN113185823A (zh) * 2021-05-27 2021-07-30 中国科学院长春应用化学研究所 一种聚己内酯复合材料及其制备方法
CN114213698A (zh) * 2021-12-31 2022-03-22 安徽工业大学 一种具有取向填料结构的电磁屏蔽复合泡沫及其制备方法
CN116144063A (zh) * 2022-10-29 2023-05-23 江苏集萃先进高分子材料研究所有限公司 利用二维填料促进一维填料在发泡材料孔壁中取向的方法
CN116144063B (zh) * 2022-10-29 2024-06-04 江苏集萃先进高分子材料研究所有限公司 利用二维填料促进一维填料在发泡材料孔壁中取向的方法

Also Published As

Publication number Publication date
CN104327373B (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN104327373A (zh) 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
Zhang et al. A facile method to prepare flexible boron nitride/poly (vinyl alcohol) composites with enhanced thermal conductivity
Mahfuz et al. Carbon nanoparticles/whiskers reinforced composites and their tensile response
Liang et al. Tensile properties of graphene nano-platelets reinforced polypropylene composites
Meng et al. Effect of nanoparticles on the mechanical properties of acrylonitrile–butadiene–styrene specimens fabricated by fused deposition modeling
CN102115558B (zh) 高导电聚合物碳纳米管复合材料及其微型加工方法
Wu et al. Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing
Bindhu et al. Boron Nitride reinforced polylactic acid composites film for packaging: Preparation and properties
Chieng et al. Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites
Tian et al. High strain rate compression of epoxy based nanocomposites
CN107619496B (zh) 双峰闭孔结构的发泡聚合物复合材料及其制备方法
CN101148541A (zh) 一种无机纳米粒子增强尼龙选择性激光烧结成形件的方法
US20150073088A1 (en) Composite of filler and polymer resin and method for preparing the same
Wu et al. Physical properties and crystallization behavior of silica particulates reinforced poly (lactic acid) composites
CN102718983A (zh) 聚合物基导电微孔泡沫复合材料的制备方法
Li et al. Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance
Hasan et al. Thermal and tensile properties of aligned carbon nanofiber reinforced polypropylene
CN108972937B (zh) 基于系列爆炸效应的石墨烯填充体系共混加工方法
Luo et al. Investigation of properties of nano-silica modified epoxy resin films and composites using RFI technology
Hsiao et al. Effect of graphite sizes and carbon nanotubes content on flowability of bulk-molding compound and formability of the composite bipolar plate for fuel cell
CN108192352A (zh) 一种具有取向交错排列碳纳米管的导热片及其制备方法
Huang et al. Synergistic enhancement of modified sericite on rheological and foaming properties of poly (lactic acid)
CN203680815U (zh) 水辅助混炼挤出和注塑聚合物纳米复合材料的设备
CN113150360B (zh) 利用聚合物发泡材料孔壁拉伸作用促进纳米填料分散的方法
Zhu et al. Formation of novel “coral reef-like” structures for polycarbonate microcellular foam via asphalt-based microporous organic polymers and supercritical CO2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150204

Assignee: Zhejiang Kule New Material Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2023980035736

Denomination of invention: Preparation of polymer based nanocomposites with highly oriented nanoparticles in polymer matrix

Granted publication date: 20170801

License type: Common License

Record date: 20230520

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150204

Assignee: Zhejiang dewide Environmental Protection Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2023980037449

Denomination of invention: Preparation method of polymer based nanocomposites with highly oriented nanoparticles in polymer matrix

Granted publication date: 20170801

License type: Common License

Record date: 20230704