CN112175268A - 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺 - Google Patents

基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺 Download PDF

Info

Publication number
CN112175268A
CN112175268A CN202011080867.4A CN202011080867A CN112175268A CN 112175268 A CN112175268 A CN 112175268A CN 202011080867 A CN202011080867 A CN 202011080867A CN 112175268 A CN112175268 A CN 112175268A
Authority
CN
China
Prior art keywords
electromagnetic shielding
graphene
shielding material
polyethylene
ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011080867.4A
Other languages
English (en)
Other versions
CN112175268B (zh
Inventor
高明
孟立群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Huanya Packaging Co ltd
Original Assignee
Jinhua Huanya Packaging Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Huanya Packaging Co ltd filed Critical Jinhua Huanya Packaging Co ltd
Priority to CN202011080867.4A priority Critical patent/CN112175268B/zh
Publication of CN112175268A publication Critical patent/CN112175268A/zh
Application granted granted Critical
Publication of CN112175268B publication Critical patent/CN112175268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种电磁屏蔽材料,公开了一种基于有序纳米结构增强聚乙烯的电磁屏蔽材料及其制备工艺,其具体包括以下步骤:步骤(1)、磁性颗粒在碳纳米管与石墨烯表面的组装;步骤(2)、组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑。本发明充分利用了碳纳米管与石墨烯的导电性以及磁性材料的磁性,碳纳米管与石墨烯构筑的有序纳米结构,形成了导电、导磁回路,最终达到提高材料电磁屏蔽效能的目的。

Description

基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺
技术领域
本发明涉及一种电磁屏蔽材料,尤其涉及了一种基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺。
背景技术
纳米材料有序结构构筑是通过物理、化学以及外加场能或自组装技术手段,改变纳米材料的物理、化学性质以及形貌特征等特性,使纳米材料在某个方向上进行有序的结构转变或构筑,在特定方向上形成有序结构,从而改变材料原有属性或实现材料某种特定功能的纳米材料加工技术。
随着大功率信息装备的广泛运用,特别是高功率微波、超宽带电磁脉冲等武器的应用,战场电磁环境越来越复杂、恶劣,这导致武器装备高效电磁防护需求也越来越迫切。另外,随着现代高新技术的发展,电磁波引起的电磁干扰与电磁兼容问题也日益严重,电磁波污染是继噪音污染、空气污染、水污染之后的人类健康第四大公害。探索高效的电磁屏蔽材料,防止电磁波辐射污染以保护环境和人体健康,防止电磁波泄漏以保障信息安全,已经成为当前国际上迫切需要解决的问题。
现有技术中碳纳米管(CNT)分为单层和多层碳纳米管,该类材料具有良好的导电性。周坤豪等综述了CNT填充聚合物的电磁屏蔽效能,指出碳纳米管填充量、其长径比及管径、屏蔽体厚度、复合材料加工方式等都对复合材料的电磁屏蔽效能产生影响。随着碳材料的发展,高性能的石墨烯(GP)材料也越来越得到人们的关注。GP块体和泡沫复合材料的加工主要依赖于聚合物基体成形,其材料性能改善的重点是通过控制GP的还原程度及其在复合物中的分布和取向,从而优化复合材料的电磁屏蔽性能。另外,GP纸、GP-CNT纤维网络、GP气凝胶体系等新型材料具有更加优异的导电性、耐高温和耐腐蚀性,全碳电磁屏蔽材料将会成为未来轻质电磁屏蔽材料发展的重要方向之一。基于CNT和GP的理论计算和相关测试,人们有理由相信CNT和GP在电磁屏蔽应用领域具有良好的前景。
发明内容
本发明针对现有技术中电磁屏蔽材料存在的问题,提供了一种基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺。
为了解决上述技术问题,本发明通过下述技术方案得以解决:
基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其具体包括以下步骤:
步骤(1)、磁性颗粒在碳纳米管与石墨烯表面的组装;
步骤(2)、组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑。
作为优选,步骤一中,具体包括以下步骤:
步骤(11)、将碳纳米管在酸性弱氧化性溶液中进行超声处理,然后将处理后的碳纳米管清洗,得到处理后的碳纳米管;
步骤(12)、将铁离子置于硼氢化钠溶液或者水合肼溶液中进行还原,然后加入石墨烯以及步骤(11)中处理后的碳纳米管;
步骤(13)、采用油酸或者油酰胺作为表面活性剂,使得步骤(12)中还原所形成的金属铁颗粒组装在碳纳米管与石墨烯的表面;
作为优选,步骤(2)中,具体为:将步骤(1)中组装磁性颗粒的碳纳米管与石墨烯采用偶联剂处理后间隔有序的分批次加入聚乙烯中,混合均匀后在造粒挤出机中进行加工,在造粒挤出机的模口处设置交变磁场,在磁场的作用下组装磁性纳米颗粒的碳纳米管与石墨烯将沿磁力线方向进行有序转动,形成首尾相接的连续结构,实现组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑。
作为优选,步骤一中的超声处理具体为在50-70℃温度下处理30-60min。
作为优选,步骤(1)中酸性弱氧化性溶液为醋酸/双氧水溶液。
作为优选,步骤(1)中铁离子、石墨烯以及碳纳米管的重量比为1:10:10。
作为优选,步骤(1)中具体采用电化学沉积的方法将金属铁颗粒组装在CNT与GP的表面。
作为优选,步骤(2)中聚乙烯由低密度聚乙烯作为基体材料,单酐酯作为柔顺剂和增塑剂改性得到。
作为优选,步骤(2)中偶联剂选择硅氧基KH-550、KH560、KH-151以及钛酸酯偶联剂KR-TTS中的一种或多种的组合。
基于有序纳米结构增强聚乙烯的电磁屏蔽材料,其采用上述基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺制备得到。
本发明由于采用了以上技术方案,具有显著的技术效果:
本发明充分利用了碳纳米管与石墨烯的导电性以及磁性材料的磁性,碳纳米管与石墨烯构筑的有序纳米结构,形成了导电、导磁回路,最终达到提高材料电磁屏蔽效能的目的。
附图说明
图1是碳纳米管与石墨烯在聚乙烯中无磁场条件下的无序结构示意图。
图2是碳纳米管与石墨烯在聚乙烯中外磁场诱导下构筑有序结构示意图。
图3是碳纳米管组装铁的扫描电镜测试。
图4是石墨烯表面组装铁的透射电镜测试。
图5是聚乙烯中纳米有序结构构筑示意图。
具体实施方式
下面结合附图与实施例对本发明作进一步详细描述。
实施例1
基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其具体包括以下步骤:
步骤(1)、磁性颗粒在碳纳米管与石墨烯表面的组装,如图1、图2所示,其中图1、图2中管状结构代表碳纳米管、不规则片状结构代表石墨烯。
具体包括以下步骤:
步骤(11)、将碳纳米管在醋酸或双氧水溶液中进行超声处理,超声处理的温度50-70℃,时间为30-60min,然后将处理后的碳纳米管清洗,得到处理后的碳纳米管,由于CNT表面比较光滑,难于与金属粒子直接结合在一起,通过对碳纳米管进行预处理,使其表面形成一定数量的羟基和羧基等功能性基团,能够有效改善磁性颗粒与碳纳米管的结合性能;
步骤(12)、将铁离子置于硼氢化钠溶液或者水合肼溶液中进行还原,然后加入石墨烯以及步骤(11)中处理后的碳纳米管,铁离子、石墨烯以及碳纳米管的重量比为1:10:10;
步骤(13)、采用油酸或者油酰胺作为表面活性剂,使得步骤(12)中还原所形成的金属铁颗粒采用电化学沉积的方法组装在碳纳米管与石墨烯的表面。
电化学沉积方法具体为将金属铁颗粒、碳纳米管与石墨烯置入金属有机化学沉积仪内,在按照5-8°每分钟升温至150℃,保温30min后再继续升温至250-300℃,保温30min后冷却至室温后既能够将金属铁颗粒组装在碳纳米管与石墨烯的表面,金属颗粒在CNT与GP表面的成功组装,是后续的有序化结构构筑的基础。经过电化学沉积方法处理后的材料扫描电镜如图3、图4所示,其中图4中插图为局部放大的图像。
步骤(2)、组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑,具体包括以下步骤:
将步骤(1)中组装磁性颗粒的碳纳米管与石墨烯采用偶联剂处理后间隔有序的分批次加入聚乙烯中,本实施例中偶联剂选择硅氧基KH-550、KH560、KH-151以及钛酸酯偶联剂KR-TTS中的一种或多种的组合,偶联剂修饰在碳纳米管与石墨烯的表面,提高碳纳米管、石墨烯与聚乙烯的结合性能。
混合均匀后在造粒挤出机中进行加工,在造粒挤出机的模口处设置交变磁场,在磁场的作用下组装磁性纳米颗粒的碳纳米管与石墨烯将沿磁力线方向进行有序转动,形成首尾相接的连续结构,实现组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑。
聚乙烯由低密度聚乙烯作为基体材料,单酐酯作为柔顺剂和增塑剂改性得到,具体为在聚乙烯中加入单酐酯,搅拌均匀,并加入橡胶类增韧体或者有机硅对聚乙烯进行增韧,通过优化增韧体的使用量,改善聚乙烯基体的韧性,从而提高材料的断裂延伸率。
由于聚乙烯的粘度较大,抑制了负载磁性颗粒材料的碳纳米管与石墨烯在聚乙烯中的定向移动和团聚,但是其在聚乙烯中的转动可以得到充分保障,因此经过一定时间的交变磁场处理,负载磁性颗粒的碳纳米管沿磁力线方向有序排列,构筑出纳米有序结构,而石墨烯也沿磁力线方向发生拉伸,与碳纳米管之间形成连续的搭接结构,所构筑的纳米有序结构示意图如图5所示。
碳纳米管与石墨烯之间相互搭接,同时石墨烯也可以与碳纳米管形成连续的网络结构,这保证了材料的导电性,同时多层分布的石墨烯也增加了信号的反射屏蔽效能。
实施例2
基于有序纳米结构增强聚乙烯的电磁屏蔽材料,其采用实施例1中基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺制备得到。
基于材料的有序结构设计,分析电磁波与CNT和GP粒子的相互作用过程,并利用变分原理,建立包含有填料大小、形状和空间取向因子的多相复合材料的电磁屏蔽效能和反射损耗计算模型,如图4所示,在此基础上利用多目标函数优化计算方法,研究填料的浓度、大小和形状以及空间取向对屏蔽效能的影响规律,为研制高性能材料提供依据。
屏蔽与反射损耗模型如下:
Figure BDA0002718606960000061
屏蔽效能SE=20log10|T|
Figure BDA0002718606960000062
Figure BDA0002718606960000063
反射损耗RL--20log10|R|
基于电磁波与微纳米填料结构阵列的相互作用分析,得到相关函数和变分原理如下:
Figure BDA0002718606960000064
Figure BDA0002718606960000065
计算得到介电常数与磁导率的电磁参数模型:
Figure BDA0002718606960000071
Figure BDA0002718606960000072
其中,εcff为复合材料等效介电常数,ε(1)为基体介电常数,ε(2)为填料的本征介电常数,f(2)为填料的体积填充比例,S(2)为填料的形状因子,S(v)为填料的分布因子,T(2)为计算张量,对于等效磁导率计算,ε替代为μ,介电常数替换为磁导率,得到材料的有效磁导率μcff
聚乙烯/碳纳米管/石墨烯复合材料的结构特征采用光学显微镜、扫描电镜等进行测试,测定碳纳米管与石墨烯在聚乙烯中的分布均匀性和有序性。碳纳米管与石墨烯结合特征采用透射电镜进行测试。
材料的机械性能测试采用微力实验机INSTRON 5848Micro Tester万能测试仪在室温条件下进行拉伸、剪切、弯曲和压缩性能测试,测试所需试样需根据测试标准预先加工到相应的标准尺寸。
材料的电磁屏蔽效能测试采用E8257D信号发生器,E7405A频谱分析仪在标准实验室中进行测试。
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。

Claims (10)

1.基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于其具体包括以下步骤:
步骤(1)、磁性颗粒在碳纳米管与石墨烯表面的组装;
步骤(2)、组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑。
2.根据权利要求1所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤一中,具体包括以下步骤:
步骤(11)、将碳纳米管在酸性弱氧化性溶液中进行超声处理,然后将处理后的碳纳米管清洗,得到处理后的碳纳米管;
步骤(12)、将铁离子置于硼氢化钠溶液或者水合肼溶液中进行还原,然后加入石墨烯以及步骤(11)中处理后的碳纳米管;
步骤(13)、采用油酸或者油酰胺作为表面活性剂,使得步骤(12)中还原所形成的金属铁颗粒组装在碳纳米管与石墨烯的表面。
3.根据权利要求1所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤(2)中,具体为:将步骤(1)中组装磁性颗粒的碳纳米管与石墨烯采用偶联剂处理后间隔有序的分批次加入聚乙烯中,混合均匀后在造粒挤出机中进行加工,在造粒挤出机的模口处设置交变磁场,在磁场的作用下组装磁性纳米颗粒的碳纳米管与石墨烯将沿磁力线方向进行有序转动,形成首尾相接的连续结构,实现组装磁性颗粒的碳纳米管与石墨烯在聚乙烯中的有序化结构构筑。
4.根据权利要求2所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤一中的超声处理具体为在50-70℃温度下处理30-60min。
5.根据权利要求4所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤(1)中酸性弱氧化性溶液为醋酸/双氧水溶液。
6.根据权利要求2所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤(1)中铁离子、石墨烯以及碳纳米管的重量比为1:10:10。
7.根据权利要2所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤(1)中具体采用电化学沉积的方法将金属铁颗粒组装在CNT与GP的表面。
8.根据权利要3所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤(2)中聚乙烯由低密度聚乙烯作为基体材料,单酐酯作为柔顺剂和增塑剂改性得到。
9.根据权利要3所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺,其特征在于:步骤(2)中偶联剂选择硅氧基KH-550、KH560、KH-151以及钛酸酯偶联剂KR-TTS中的一种或多种的组合。
10.基于有序纳米结构增强聚乙烯的电磁屏蔽材料,其特征在于,其采用权利要求1-9任意一项所述的基于有序纳米结构增强聚乙烯的电磁屏蔽材料的制备工艺制备得到。
CN202011080867.4A 2020-10-11 2020-10-11 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺 Active CN112175268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011080867.4A CN112175268B (zh) 2020-10-11 2020-10-11 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011080867.4A CN112175268B (zh) 2020-10-11 2020-10-11 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺

Publications (2)

Publication Number Publication Date
CN112175268A true CN112175268A (zh) 2021-01-05
CN112175268B CN112175268B (zh) 2022-11-04

Family

ID=73947466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011080867.4A Active CN112175268B (zh) 2020-10-11 2020-10-11 基于有序纳米结构增强聚乙烯的电磁屏蔽材料及制备工艺

Country Status (1)

Country Link
CN (1) CN112175268B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327373A (zh) * 2014-10-08 2015-02-04 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN105315963A (zh) * 2014-07-29 2016-02-10 北京市射线应用研究中心 电磁屏蔽材料与其纳米复合材料及它们的制备方法
CN107200361A (zh) * 2017-06-29 2017-09-26 济南大学 一种rGO/Fe2O3纳米复合材料的制备方法
CN108794874A (zh) * 2018-05-31 2018-11-13 哈尔滨金纳科技有限公司 一种螺旋碳纳米管杂化石墨烯复合塑料及其制备方法
CN109054185A (zh) * 2018-08-23 2018-12-21 成都新柯力化工科技有限公司 一种吸波复合塑料用石墨烯母料及制备方法
CN111467563A (zh) * 2020-03-06 2020-07-31 西南交通大学 一种RGO/CNT/HA/Fe3O4复合材料的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105315963A (zh) * 2014-07-29 2016-02-10 北京市射线应用研究中心 电磁屏蔽材料与其纳米复合材料及它们的制备方法
CN104327373A (zh) * 2014-10-08 2015-02-04 浙江工业大学 纳米粒子在聚合物基体中高度取向的聚合物基纳米复合材料的制备方法
CN107200361A (zh) * 2017-06-29 2017-09-26 济南大学 一种rGO/Fe2O3纳米复合材料的制备方法
CN108794874A (zh) * 2018-05-31 2018-11-13 哈尔滨金纳科技有限公司 一种螺旋碳纳米管杂化石墨烯复合塑料及其制备方法
CN109054185A (zh) * 2018-08-23 2018-12-21 成都新柯力化工科技有限公司 一种吸波复合塑料用石墨烯母料及制备方法
CN111467563A (zh) * 2020-03-06 2020-07-31 西南交通大学 一种RGO/CNT/HA/Fe3O4复合材料的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUHAMMAD NISAR ET AL.: "《Synthesis of high‐density polyethylene rGO‐CNT‐Fe nanocomposites with outstanding magnetic and electrical properties》", 《JOURNAL OF APPLIED POLYMER SCIENCE》, vol. 134, no. 40, 19 June 2017 (2017-06-19), pages 1 - 7 *

Also Published As

Publication number Publication date
CN112175268B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
Zhao et al. Advances in electromagnetic shielding properties of composite foams
Guo et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption
Guo et al. Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers
Sun et al. Electromagnetic absorption of copper fiber oriented composite using 3D printing
Chen et al. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption
Tian et al. Synergistic enhancement of microwave absorption using hybridized polyaniline@ helical CNTs with dual chirality
Gao et al. CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing
Li et al. Enhanced microwave absorption property of Fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses
Ma et al. Electromagnetic wave absorption performance of magnesium phosphate cement functionalized by nano-Fe3O4 magnetic fluid and hollow glass microspheres
Liu et al. Absorption and reflection contributions to the high performance of electromagnetic waves shielding materials fabricated by compositing leather matrix with metal nanoparticles
Wu et al. Application of graphene in fiber-reinforced cementitious composites: A review
Cui et al. Developments and applications of carbon nanotube reinforced cement-based composites as functional building materials
Wu et al. Hierarchical porous carbon fibers for broadband and tunable high-performance microwave absorption
Hu et al. Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding
Luo et al. Effects of graphite on electrically conductive cementitious composite properties: a review
Majcher et al. Methods of protecting buildings against HPM radiation—A review of materials absorbing the energy of electromagnetic waves
CN114150496B (zh) 一种具有电磁屏蔽和压阻传感性能的柔性纳米纤维膜及其制备方法
Hao et al. Recent advances in properties and applications of carbon fiber-reinforced smart cement-based composites
Li et al. Lightweight and hydrophobic Ni/GO/PVA composite aerogels for ultrahigh performance electromagnetic interference shielding
Lu et al. Review of dielectric carbide, oxide, and sulfide nanostructures for electromagnetic wave absorption
Forushani et al. Effect of multi-wall carbon nanotubes/strontium ferrite nanoparticles on the microstructure, phase, magnetic and electromagnetic behavior of carbon aerogel composites
Rao et al. Electrostatically self-assembled hierarchical magnetic Co7Fe3@ C/Ti3C2Tx nanocomposite for high-efficient microwave absorption
Guo et al. Preparation and study of novel modified [(1-x) MnO2-xMWCNTs]/waterborne polyurethane composites with microwave absorption properties
Liu et al. Synergistically-enhanced flexible electromagnetic interference shielding nanocomposites
Li et al. In situ growth of Fe3O4 nanoparticles in poly (arylene ether nitrile)/graphene/carbon nanotube foams for electromagnetic interference shielding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Electromagnetic shielding material and preparation process based on ordered nanostructures reinforced polyethylene

Granted publication date: 20221104

Pledgee: Zhejiang Jinhua Chengtai Rural Commercial Bank Co.,Ltd.

Pledgor: JINHUA HUANYA PACKAGING Co.,Ltd.

Registration number: Y2024980012699