CN1857836A - 耐磨的薄涂层 - Google Patents

耐磨的薄涂层 Download PDF

Info

Publication number
CN1857836A
CN1857836A CNA2006100794675A CN200610079467A CN1857836A CN 1857836 A CN1857836 A CN 1857836A CN A2006100794675 A CNA2006100794675 A CN A2006100794675A CN 200610079467 A CN200610079467 A CN 200610079467A CN 1857836 A CN1857836 A CN 1857836A
Authority
CN
China
Prior art keywords
coating
peak value
ratio
value
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100794675A
Other languages
English (en)
Other versions
CN100525968C (zh
Inventor
汤米·拉尔森
雷纳特·卡尔松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seco Tools AB
Original Assignee
Seco Tools AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seco Tools AB filed Critical Seco Tools AB
Publication of CN1857836A publication Critical patent/CN1857836A/zh
Application granted granted Critical
Publication of CN100525968C publication Critical patent/CN100525968C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0658Carbon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Glass Compositions (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明涉及一种切削工具刀片、立铣刀或者钻头,包括基底和涂层。所述涂层由一层或多层的难熔化合物层构成,其中至少一层包括h-Me1Me2X相,其中,Me1为元素V,Cr,Nb和Ta中的一种或多种,Me2为元素Ti,Zr,Hf,Al和Si中的一种或多种,并且X为元素N,C,O和B中的一种或多种。在Me1Me2X相中,比值R=(at-%X)/(at-%Me1+at-%Me2),其中,R在0.5和1.0之间,优选在0.8和1.0之间,并且X含有小于30at-%的O和B。本发明在切屑厚度小、工件材料硬的金属切削应用中特别实用,例如,设有立铣刀的仿型铣削,对硬质钢进行刀片铣削或钻孔。

Description

耐磨的薄涂层
技术领域
本发明涉及一种用于通过除屑进行机加工的切削工具,由硬质合金、金属陶瓷、陶瓷、立方氮化硼基材料或高速钢的基底以及硬的且耐磨的难熔材料涂层构成,其中至少一层涂层包括在沉积过程中或者作为单相沉积或者与第二相一起当场沉积的六方MeX相。这一发现可以有多种方式的应用,对于成品工具的性能修整提高了很大的可能性,例如,在其它类型的晶粒结构或者同样类型的晶粒结构的涂层基体中作为六方结构的颗粒,或者在多层超结构中作为单独的一层。例如,与立方结构相比,六方结构具有不同的机械和化学性能,因此不同类型的微晶组合能够提供比单一结构材料更创新的性能。
背景技术
在当今通过除屑进行机加工的金属切削中,使用的所有PVD涂层中的大部分由TiN、Ti(C,N)和(Ti,Al)N的微晶构成,其中具有立方NaCl类型的结构。但是,亚稳态的(Ti,Al)N层在升高的温度下,在热处理期间或者如果提供足够的能量时工作的情况下,会发生相变,分解成c-TiN和h-AlN。c-TiN和/或h-AlN的析出物会作为涂层中的硬化成分。已经证实,c-TiN和/或h-AlN析出物在立方c-(Ti,Al)N基体中的优化含量会提高涂层的性能,如EP-A-1400609和EP-A-1452621中所公布的。然而,在六方结构(纤维锌矿型)中占据的原子体积比立方结构(NaCl型)中的原子体积大25%。因此,对于施加的(Ti,Al)N涂层,如果结构转变程度过大,则会导致涂层的粘结性降低并且磨损加快。
发明内容
本发明的一个目的是提供一种涂层,包括含有h-MeX相的至少一层,将涂层施加到通过除屑进行机加工的切削工具上。
本发明的另一个目的是提供一种方法,通过使用PVD技术,沉积包括h-MeX相的涂层。
已经发现,通过平衡化学成分、生长期间的热能数量和离子感应表面激活的程度、生长速度和压力,能够获得含有h-MeX相的涂层,与现有技术相比,这种涂层在金属切削方面性能提高。这种涂层包括h-MeX晶体,这种晶体可以与氮化物和/或碳化物和/或氧化物的c-NaCl型结构同时存在或者单独存在。使用PVD技术,优选通过电弧气化法,沉积涂层。
附图说明
图1为使用CuKα放射和θ-2θ几何,从根据本发明的h-NbN涂层中获得的沉积状态下X射线衍射图案;
图2为使用CuKα放射和θ-2θ几何,从原子比Nb/Zr=29/71的(Nb,Zr)N涂层中获得的沉积状态下X射线衍射图案;
图3为使用CuK α放射和初始光束与样品表面间为1°的恒定入射掠角(constant gracing incident angle),并且通过仅扫描来自本发明的NbN涂层的检测器,获得的沉积状态下X射线衍射图案;
图4为使用CuKα放射和θ-2θ几何,从原子比Nb/Zr=86/14的(Nb,Zr)N涂层中获得的沉积状态下X射线衍射图案;
具体实施方式
根据本发明,提供一种用于通过切屑去除进行机加工的切削工具,包括硬质合金、金属陶瓷、陶瓷、立方氮化硼基材料或高速钢的硬合金基底,在基底上沉积有由一层或多层难熔化合物层构成的耐磨涂层,该涂层包括至少一层h-MeX相的晶体层。其它涂层可以由选自Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Si和Al中的元素的氮化物和/或碳化物和/或氧化物构成,采用的生长方法为物理气相沉积(PVD)或其它沉积技术,例如离子增强化学气相沉积(PACVD)和/或化学气相沉积(CVD)。根据本发明的工具特别适用于金属切削应用,其中,切屑厚度小,加工的材料硬,例如使用立铣刀(solid end mill)进行的仿型铣削,刃式铣刀铣削或者硬化钢的钻孔。
一层或多层h-MeX层包括h-MeX相的晶体。其成分可被描述为Me1aMe21-aXb,其中Me1为元素V,Cr,Nb和Ta中的一个或多个,Me2为元素Ti,Zr,Hf,Al和Si中的一个或多个,a>0.5,并且X为元素N,C,O和B中的一个或多个。这里,非金属与金属的原子比被定义为在h-(Me1,Me2)X相中,R=(at-%X)/(at-%Me1+at-%Me2),其中,R在0.5和1.0之间,优选在0.75和1.0之间。
h-MeX层包括h-(Me1,Me2)X相,其特征在于:
存在六方相微晶,h-(Me1,Me2)X,利用在θ-2θ和/或入射掠角几何中,X射线衍射图案(XRD)检测显示出下列特征中的一个或多个:
使用CuKα放射在2θ为大约35°的情况下,h-(Me1,Me2)X(100)出现峰值;
使用CuKα放射在2θ为大约39°的情况下,h-(Me1,Me2)X(101)出现峰值;
使用CuKα放射在2θ为大约48°的情况下,h-(Me1,Me2)X(102)出现峰值;
使用CuKα放射在2θ为大约62°的情况下,h-(Me1,Me2)X(110)出现峰值;
使用CuKα放射在2θ为大约62°的情况下,h-(Me1,Me2)X(103)出现峰值;
使用CuKα放射在2θ为大约72°的情况下,h-(Me1,Me2)X(112)出现峰值;
使用CuKα放射在2θ为大约75°的情况下,h-(Me1,Me2)X(201)出现峰值;
使用CuKα放射在2θ为大约83°的情况下,h-(Me1,Me2)X(202)出现峰值;和
当Me和X各不是Nb和N时,峰值位置会改变;
h-(Me1,Me2)X的结构优选为反-NiAs(anti-NiAs)型;
由比例K定义的织构,在θ-2θ几何内使用CuKα放射,K为h-(Me1,Me2)X(100)峰值的面积与h-(Me1,Me2)X(110)加(103)的峰值面积之间的比值,介于0和0.5之间,优选在0.0和0.25之间;
在θ-2θ几何内使用CuKα放射,由小晶粒和/或各向异性应力引起的FWHM(半最大值的全宽度)值:
对于h-(Me1,Me2)X(110)峰值加(103)峰值,在0.5-3.0°2θ之间,和/或
对于h-(Me1,Me2)X(100)峰值,在0.4-2.5°2θ之间;和
X由低于30at-%的O和/或B以及平衡量的N和/或C组成,at-%为原子百分比。
与NaCl型c-MeX结构的立方单相相比,包括h-(Me1,Me2)X的涂层的硬度显著提高,参见实施例1,在h-(Nb,Zr)N和c-(Nb,Zr)N的系统中已得到证明。
如果根据本发明的含h-(Me1,Me2)X的涂层与其它涂层结合,总的涂层厚度在0.1到15μm之间,优选在0.5和12μm之间,其中,不含h-(Me1,Me2)X的涂层的总厚度在0.5到10μm之间变化。
在其它可选实施例中,结合有或者不结合有上述其它涂层的根据本发明的含h-(Me1,Me2)X的涂层其厚度在0.5和12μm之间,在涂层的顶面可以沉积0.5到5μm之间厚度的外部硬质低摩擦材料层,该材料以MoS2、DLC(类似金刚石的涂层)或者MeC/C为基础,其中,Me为Cr,W,Ti,或Ta。
在另一个可选实施例中,含h-(Me1,Me2)X的涂层其厚度在0.1到2μm之间,该含h-(Me1,Me2)X的涂层为一种到五种不同材料中的一种,该材料是介于1.0到15μm厚的多层涂层,所述多层涂层由单独的2-500层构成,优选为5-200层构成。
在另一个可选实施例中,含h-(Me1,Me2)X的涂层为0.5到20μm厚,能够沉积在CVD涂层的顶面,该CVD涂层可包括一层或多层Al2O3微晶。
在另一个可选实施例中,使用至少一个厚度为0.1到1.0μm的含h-(Me1,Me2)X的涂层进行金属切削应用,其中,切屑的厚度非常小。
这里利用Nb-Zr-N系统示例出生长包括本发明的h-(Me1,Me2)X相的涂层的方法,该方法依据合金阴极或者复合阴极的电弧气化法,遵照下列条件进行:
Nb-Zr阴极的成分为>70at-%的Nb,,优选为大于80at-%的Nb,和平衡量的Zr;
根据阴极的尺寸和材料,气化电流在50A到200A之间,使用直径为63mm的阴极时,气化电流优选在70A到140A之间;
基底的偏压在-10V和-300V之间,优选在-40V和-120V之间;
沉积温度在400℃和700℃之间,优选在500℃和700℃之间。
如果使用纯的Nb和/和Zr的阴极,气化电流优选为,对于Nb是在80A和140A之间,对于Zr是在60A和100A之间。为了获得涂层的正确成分,使用纯的单一金属阴极,需要适当地优化电弧的电流和每种元素的阴极数目。通过使用数目为Zr阴极数目两倍的Nb阴极,和/和对Nb阴极采用较高的电弧电流,在Nb-Zr系统中能够获得正确的涂层成分和结构。
当生长含h-(Me1,Me2)X的涂层时,使用含有0-50vol-%(体积百分比)的Ar、优选为0-20vol-%的Ar的Ar+N2气氛,总压力为0.5Pa到9.0Pa,优选为1.5Pa到5.0Pa。
为生长h-(Me1,Me2)X涂层,其中X包括C和O,在N2和/或Ar+N2气氛中需要加入含碳和/或含氧的气体,例如C2H2,CH4,CO,CO2和O2。如果X也包括硼,也可以向该气氛中加入带有硼的合金靶或者加入含硼的气体。
为了获得根据本发明的其中一种优选结构,即,含h-(Me1,Me2)X涂层,这里以h-(Nb,Zr)N示例,已经发现,应当定义几个沉积参数。一个重要的因子是来自阴极的Nb通量与N2分压的比值,PN2。而本发明不局限于特别的理论。应该认识到,与Nb通量直接相关的沉积率在旋转角中的分量非常低,其中,在旋转角内发生大部分的沉积。沉积率不应该过高,在一折旋转(one fold rotation)中低于大约4μm/h,其中,两个Nb阴极分开180°,或者在三折旋转中为大约1.5μm/h。上述给出的沉积率实际为平均值而且不是关键参数,其可以看作是530℃沉积温度下的粗略参考。在采用更高的沉积率时,会需要更高的沉积温度。对于每一个沉积率,对于过程中的PN2具有较低的下限。过低的PN2会导致涂层中出现金属性的Nb(N)和/或c-NbN。在使用的系统中,在高于0.5Pa的压力下能够获得最佳结果。因为一个关键因素是保持最大沉积率较低,阴极表面与基底之间的最小距离是很重要的,优选为150mm或更大。这里,130mm以下的距离看起来过小。
由于类似于Nb,也可以使用V和/或Ta作为Me1,来沉积上述类型的含有h-(Me1,Me2)X相的涂层。使用Ti,Zr,和Hf作为Me2,当作合金元素也是可行的,根据表1中公开的Nb-Zr-N系统中硬度vs.成分值,使用的最大合金量在总的金属含量中优选小于20at-%,更优选小于15at-%。对此合金途径的实施例为h-(V,Nb,Ta)N,h-(V,Nb,Ta)1-x(Ti,Zr,Hf)xN,其中,x优选<0.2,最优选<0.15。
为了获得良好的抗高温氧化性,与碳氮化物和碳化物相比,最好采用氮化物。另外,通过将Ti,Al和Si作为Me2元素和Cr作为Me1元素,进行合金化,可以获得提高的抗氧化性。这些合金元素可以出现在h-(Me1,Me2)X相中,也可以出现在可以是c-NaCl类型的第二相中。
当生长含h-(Me1,Me2)X的涂层时存在着风险,即,压缩残余应力会很高,达到相应于(h-MeX相的)0.5%到1.5%应变的3-8Gpa的程度,当使用尖的切削刃和/或当对良好附着力的需求是最重要的时候,这会负面影响切削时的性能。一个减小压缩残余应力的可能方案是采取后期退火处理,或者当场进行退火,优选在Ar和/或N2的气氛下,温度在600-1100℃下进行20到600分钟。
已经参照采用电弧气化法沉积的含h-(Me1,Me2)X相的涂层描述了本发明。应当理解,含h-(Me1,Me2)X相的涂层也可以利用其它PVD技术生产,例如磁控管溅射、电子束气化、离子电镀或激光消融。
实施例1
使用抛光的硬质合金基底,其成分为93.5wt-%的WC-6wt-%的Co-0.5wt-%的(Ta,Nb)C,wt-%的为重量百分比。WC晶粒尺寸为大约1μm,硬度为1630HV10
沉积之前,使用碱性溶液和酒精在超声波浴池中进行基底清洗,然后基底被放在PVD系统中,使用一个完整循环的夹具固定。阴极到基底的最短距离是160mm。系统压力被减小到小于2.0×10-3Pa,然后,利用Ar离子对基体进行溅射清洗。使用Nb和Zr阴极(直径为63mm)的电弧气化法生长涂层,该阴极被这样安装,垂直的金属成分梯度从Nb0.97Zr0.03变化到Nb0.29Zr0.71(利用EDS测量)。含有h-AlN的样品中氮含量(利用EDS测量)在(Nb,Zr)N0.77-0.92之间。这意味着,比例R=(at-%X)/(at-%Me1+at-%Me2)在0.77和0.92之间,其中,X为N,Me1为Nb,Me2为Zr。
在99.995%的纯N2气氛下进行沉积,总压力为3.0Pa,基底偏压为-110V,进行60分钟。层厚大约3.5μm。沉积温度大约530℃。沉积后立即向腔室中通入干燥N2进行通气。
除了使用纯Nb元素的阴极,采用上述相同的参数,在单独的沉积试验中沉积NbN层。
图1和图2中分别示出沉积的NbN涂层和Nb0.29Zr0.71N涂层的X射线衍射图案(CuKα放射,θ-2θ几何)。除了对应于WC-Co基底的峰值外,在NbN和Nb0.29Zr0.71N涂层的图案之间几乎没有相似性。图2中,Nb0.29Zr0.71N涂层由NaCl型结构组成,例如(111),(200),(220)和(311)峰值的标示。但是,NbN的XRD图案完全不同。特别是,没有立方NaCl型结构,并且在2θ为62°时出现了大的峰值(FWHM=1.2°2θ),并且在2θ为38°时出现了峰值(FWHM=1.3°2θ),两个峰值在Nb0.29Zr0.71N中看不到。而且,从70到75°2θ,在NbN中强度稍微提高,而在Nb0.29Zr0.71N的同一区域中强度下降。并且,与NbN涂层在34.0°2θ的峰值位置相比,Nb0.29Zr0.71N中34.5°2θ的峰值位置明显不同。对于NbN样品,由h-(Me1,Me2)X(100)峰值的面积与h-(Me1,Me2)X(110)+(103)峰值面积之间的比值定义的织构(K)为0.12。h-NbN(110)+(103)峰值的FWHM为1.2°2θ,h-NbN(100)峰值的FWHM为0.7°2θ。
利用X射线衍射,使用在主要光束与样品表面之间为1°的恒定入射掠角,并且扫描检测器以便放大来自涂层的峰值,进行沉积状态下的NbN的相识别,请见图3。通过检测出反-NiAs型结构内的衍射图案,证实出现h-NbN。在Zr含量增加时,c-(Nb,Zr)N(NaCl型结构)的含量增加。图4示出来自沉积状态下的原子比为Nb/Zr=86/14(样品E)的涂层的X射线衍射图案。对于此样品比例L=0.25,其中,L为在大约62°2θ的h-(Me1,Me2)X(110)的峰值面积(=A(h-(Me1,Me2)X)110)与在大约41°2θ的c-(Me1,Me2)X(200)的峰值面积(=A(c-(Me1,Me2)X)200)的比值,即,L=A(h-(Nb,Zr)N)110/A(c-(Nb,Zr)N)200
对于表1中选定的样品,对于h-(Nb,Zr)N(110)+(103)峰值的峰值-背景比例分别为153(A),92(B),109(C),79(D)和4.5(E)。
利用纳米压痕(nanoindentation),使用纳米压痕仪(NanoIndenterTM II),在抛光的渐缩横截面上施加最大载荷25mN,导致出现深度约200nm的最大穿透深度,来测量Nb-Zr-N涂层的硬度和杨氏模量。在表1中给出硬度和杨氏模量数值。从表1中可以清楚看出,当涂层中具有h-(Nb,Zr)N时,硬度急遽提高。Nb/Zr=86/14、样品为E的涂层,其硬度在h-(Nb,Zr)N的等级之间,大约43-48Gpa,c-(Nb,Zr)N涂层的硬度大约33Gpa。
表1.
  样品   Nb/Zr(at-%)   硬度(GPa)  杨氏模量(GPa) 检出相   FWHMh-(100)°2θ   FWHMh-(110)加h-(103)°2θ   残余应变(%)   织构系数K
  A   100/0   h-NbN,a=2.98,c=5.49   0.7   1.2   0.12
  B   97/3   47   595   h-NbN,a=3.00,c=5.49c-(Nb,Zr)Na=4.44   0.8   1.5   -1.6   0.12
  C   95/5   43   578   h-NbN,a=2.98,c=5.53c-(Nb,Zr)Na=4.44   0.8   1.5   0.11
  D   93/7   48   597   h-NbN,a=3.00,c=5.49c-(Nb,Zr)Na=4.45   0.8   1.6   -1.7   0.19
  E   86/14   38   493   h-NbN,a=3.01,c=5.50c-(Nb,Zr)Na=4.443   0.8   2.2   0.52
  F   75/25   33   474   c-(Nb,Zr)Na=4.47
  G   57/43   33   473   c-(Nb,Zr)Na=4.50
  H   43/57   33   497   c-(Nb,Zr)Na=4.53   -0.9
  I   33/67   33   491   c-(Nb,Zr)Na=4.55
  J   29/71   33   515   c-(Nb,Zr)Na=4.55   -0.6
实施例2
MM12-12012-B90P-M05型硬质合金的可更换端铣刀,其成分为90wt-%的WC-10wt-%的Co(WC晶粒尺寸为0.8μm),使用类似实施例1的沉积条件对其进行施加涂层(实施例2中样品的名称指与实施例1中具有类似成分的样品名称)。使用具有三个完整循环的固定。端铣刀位于不同的高度,以便获得不同的成分。沉积时间从实施例1中的调整到140分钟,而在前刀面上获得3.0μm的厚度。作为参照,使用相同几何形状和基底的TiN涂层的端铣刀,这里称之为TiN。在该样品中前刀面的涂层厚度为1.4μm。
使用下述切削数据,进行半成品仿型铣削测试:
材料:DIN X100CrMoV51,硬度59HRC
n=4050rpm
ap=ae=0.9mm
vf=900mm/min
hm=0.015mm,
铣削30分钟后,测量两个不同部位(在顶面,和距顶面1mm的地方)的最大边缘磨损,Vb max,见表2。
表2
  样品   Vb max[mm]顶面   Vb max[mm]距顶面1mm
  C   0.20   0.12
  E   0.47   0.28
  I   0.68   0.24
  TiN   0.82   0.18
该仿型铣削试验表明,样品C(本发明)具有最低的磨损率,其次是混和有h-(Nb,Zr)N和c-(Nb,Zr)N结构的样品E。
实施例3
使用RDHW 10T3M0T-MD06刀片进行仿型铣削试验,刀片的涂层类似实施例1(样品A,C和E)中的涂层。当刀片出现如定义中的磨损,即,出现火花并且材料表面出现不平,测量工具的寿命。在表3中给出工具的寿命。
材料:DIN X155CrMoV121,硬度58HRC
干加工
Vc=250m/min
Fz=0.2mm/齿
ap=1mm,ae=2mm

Claims (7)

1.一种切削工具刀片、立铣刀或者钻头,包括基底和涂层,所述涂层由一层或多层的难熔化合物层构成,
其特征在于,至少一层包括六方相微晶,h-(Me1,Me2)X,其成分描述为Me1aMe21-aXb,其中,Me1为元素V,Cr,Nb和Ta中的一种或多种,Me2为元素Ti,Zr,Hf,Al和Si中的一种或多种,a>0.5,并且X为元素N,C,O和B中的一种或多种,在Me1aMe21-aXb相中,比值R=(at-%X)/(at-%Me1+at-%Me2),其中,R在0.5和1.0之间,优选在0.75和1.0之间,并且X含有小于30at-%的O+B,在六方相微晶h-(Me1,Me2)X的θ-2θ和/或入射掠角几何内,X射线衍射(XRD)图案显示出下列峰值中的一个或多个:
h-(Me1,Me2)X(100)峰值;
h-(Me1,Me2)X(101)峰值;
h-(Me1,Me2)X(102)峰值;
h-(Me1,Me2)X(110)峰值;
h-(Me1,Me2)X(103)峰值;
h-(Me1,Me2)X(112)峰值;
h-(Me1,Me2)X(201)峰值;
h-(Me1,Me2)X(202)峰值。
2.根据权利要求1所述的切削工具,其特征在于,比例L为所述涂层的X射线衍射图案中,θ-2θ几何内,h-(Me1,Me2)X(110)加(103)的峰值面积(=A(h-(Me1,Me2)X110+103)和c-(Me1,Me2)X(200)(=A(c-(Me1,Me2)X200)的峰值面积之间的比值,L=A(h-(Me1,Me2)X110+103)/A(c-MeX200,所述L值大于0.1,优选大于0.2,和/或对于h-(Me1,Me2)X(110)加(103)的峰值,峰值与背景的比值大于2,优选大于4。
3.根据权利要求1所述的切削工具,其特征在于,所述Me1为元素V,Cr或Nb中的一种或多种,Me2为元素Ti,Zr,Al或Si中的一种或多种。
4.根据权利要求1所述的切削工具,其特征在于,由比例K定义织构,在所述涂层的X射衍射图案中,在θ-2θ几何内,K为h-(Me1,Me2)X(100)峰值的面积与h-(Me1,Me2)X(110)加(103)的峰值面积之间的比值,K值介于0和0.5之间,优选在0.0和0.25之间。
5.根据权利要求1所述的切削工具,其特征在于,在所述涂层的X射衍射图案中,在θ-2θ几何内,对于h-(Me1,Me2)X(110)峰值,FWHM(半最大值的全宽度)值在0.5-3.0°2θ之间,并且
对于h-(Me1,Me2)X(100)峰值,FWHM(半最大值的全宽度)值在0.4-2.5°2θ之间。
6.根据权利要求1所述的切削工具,其特征在于,h-(Me1,Me2)X的结构为反-NiAs型。
7.一种制造具有涂层的切削工具刀片、立铣刀或钻头的方法,所述切削工具刀片、立铣刀或者钻头包括基底和涂层,其特征在于,所述涂层由一层或多层的难熔化合物层构成,其中至少一层包括h-(Me1,Me2)X相,其成分描述为Me1aMe21-aXb,其中,Me1为元素V,Cr,Nb和Ta中的一种或多种,Me2为元素Ti,Zr,Hf,Al和Si中的一种或多种,a>0.5,并且X为元素N,C,O和B中的一种或多种,在Me1aMe21-aXb中,比值R=(at-%X)/(at-%Me1+at-%Me2),其中,R在0.5和1.0之间,优选在0.75和1.0之间,并且X含有小于30at-%的O+B。
CNB2006100794675A 2005-05-06 2006-05-08 耐磨的薄涂层 Expired - Fee Related CN100525968C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE05010384 2005-05-06
SE0501038A SE529223C2 (sv) 2005-05-06 2005-05-06 Belagt skärverktyg innefattande hexagonal h-(Mel,Me2)Xfas

Publications (2)

Publication Number Publication Date
CN1857836A true CN1857836A (zh) 2006-11-08
CN100525968C CN100525968C (zh) 2009-08-12

Family

ID=36716909

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100794675A Expired - Fee Related CN100525968C (zh) 2005-05-06 2006-05-08 耐磨的薄涂层

Country Status (8)

Country Link
US (1) US8507108B2 (zh)
EP (1) EP1722009B1 (zh)
JP (1) JP2006312235A (zh)
KR (1) KR100858855B1 (zh)
CN (1) CN100525968C (zh)
AT (1) ATE409758T1 (zh)
DE (1) DE602006002920D1 (zh)
SE (1) SE529223C2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210310B (zh) * 2007-12-21 2010-12-08 广州有色金属研究院 微型钻头表面改性用多元多层硬质薄膜材料及其制备方法
CN102224273A (zh) * 2008-11-04 2011-10-19 欧瑞康贸易股份公司(特吕巴赫) 耐磨层及其制备方法
CN103586520A (zh) * 2013-10-17 2014-02-19 厦门金鹭特种合金有限公司 一种涂层切削刀具及其制作方法
CN104703734A (zh) * 2012-10-01 2015-06-10 日立工具股份有限公司 硬质皮膜被覆工具及其制造方法
CN105247099A (zh) * 2013-04-26 2016-01-13 瓦尔特公开股份有限公司 具有cvd涂层的工具

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774080B2 (ja) * 2007-08-02 2011-09-14 株式会社神戸製鋼所 硬質皮膜被覆材および冷間塑性加工用金型
SE0702046L (sv) * 2007-09-14 2009-03-15 Seco Tools Ab Belagt skär för bearbetning av titanbaserade legeringar
US8389115B2 (en) 2008-03-07 2013-03-05 Seco Tools Ab Thermally stabilized (Ti,Si)N layer for cutting tool insert
JP5234931B2 (ja) * 2008-06-23 2013-07-10 株式会社神戸製鋼所 硬質皮膜被覆部材および成形用冶工具
ES2663533T3 (es) * 2009-02-27 2018-04-13 Oerlikon Surface Solutions Ag, Pfäffikon Sistema de capas así como procedimiento de recubrimiento para la producción de un sistema de capas
DE102009001675A1 (de) * 2009-03-19 2010-09-23 Eberhard-Karls-Universität Tübingen Schneidwerkzeug
US8557405B2 (en) * 2009-08-04 2013-10-15 Tungaloy Corporation Coated member
CN102294854B (zh) * 2010-06-24 2014-07-09 鸿富锦精密工业(深圳)有限公司 硬质涂层及其制备方法及具有该涂层的被覆件
TWI547379B (zh) * 2010-12-21 2016-09-01 鴻海精密工業股份有限公司 黃銅與碳化矽陶瓷複合件及其製造方法
CN103813875B (zh) * 2011-08-29 2015-12-23 京瓷株式会社 切削工具
EP2679704B1 (en) 2012-06-29 2016-10-12 Seco Tools Ab Coated cutting insert
DE102012017731A1 (de) 2012-09-08 2014-03-13 Oerlikon Trading Ag, Trübbach Ti-Al-Ta-basierte Beschichtung mit einer verbesserten Temperaturbeständigkeit
RU2538057C1 (ru) * 2013-07-12 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ получения многослойного покрытия для режущего инструмента
RU2548862C2 (ru) * 2013-07-12 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ получения износостойкого покрытия для режущего инструмента
RU2548858C2 (ru) * 2013-07-23 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ получения износостойкого покрытия для режущего инструмента
RU2545941C2 (ru) * 2013-07-23 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ получения износостойкого покрытия для режущего инструмента
DE102013018007A1 (de) * 2013-11-29 2015-06-03 Oerlikon Trading Ag, Trübbach Verfahren zur Verbesserung des Gegenkörperverschleisses im tribologischen Kontakt
EP3173169B1 (en) * 2014-07-25 2019-12-18 Tungaloy Corporation Coated cutting tool
RU2622532C1 (ru) * 2015-12-15 2017-06-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ получения многослойного покрытия для режущего инструмента
RU2622530C1 (ru) * 2015-12-15 2017-06-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" (УлГТУ) Способ получения многослойного покрытия для режущего инструмента
RU2620530C1 (ru) * 2015-12-15 2017-05-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ получения многослойного покрытия для режущего инструмента
RU2715267C2 (ru) * 2015-12-22 2020-02-26 Сандвик Интеллекчуал Проперти Аб Режущий инструмент с покрытием и способ
CN105734505B (zh) * 2016-03-18 2017-12-29 东北大学 一种钛合金切削用复合功能刀具涂层及其制备方法
RU170600U1 (ru) * 2016-06-01 2017-05-02 Общество с ограниченной ответственностью "Сборные конструкции инструмента, фрезы Москвитина" Фреза концевая
RU2627317C1 (ru) * 2016-06-06 2017-08-07 Общество с ограниченной ответственностью "Сборные конструкции инструмента, фрезы Москвитина" Фреза концевая
WO2018215558A1 (en) 2017-05-23 2018-11-29 Oerlikon Surface Solutions Ag, Pfäffikon Thick TiAlTaN/AlCrN multilayer coating films on turbine components

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128363A (ja) * 1990-09-19 1992-04-28 Limes:Kk 複合材料
US5700551A (en) * 1994-09-16 1997-12-23 Sumitomo Electric Industries, Ltd. Layered film made of ultrafine particles and a hard composite material for tools possessing the film
JP3488526B2 (ja) * 1994-12-14 2004-01-19 三菱マテリアル神戸ツールズ株式会社 耐摩耗性に優れた硬質皮膜および硬質皮膜被覆部材
JP4171099B2 (ja) * 1998-04-24 2008-10-22 株式会社神戸製鋼所 耐摩耗性に優れる硬質皮膜
JP2000144376A (ja) * 1998-11-18 2000-05-26 Sumitomo Electric Ind Ltd 摺動特性の良好な皮膜
JP3404003B2 (ja) * 2000-05-23 2003-05-06 日立ツール株式会社 被覆切削工具
JP3417907B2 (ja) * 2000-07-13 2003-06-16 日立ツール株式会社 多層皮膜被覆工具
SE0004203D0 (sv) * 2000-11-16 2000-11-16 Haakan Hugosson A surface coating
PT1219723E (pt) * 2000-12-28 2007-01-31 Kobe Steel Ltd Película dura para ferramentas de corte
DE10233222B4 (de) * 2001-07-23 2007-03-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Harte verschleissfeste Schicht, Verfahren zum Bilden derselben und Verwendung
SE526336C2 (sv) * 2002-07-01 2005-08-23 Seco Tools Ab Skär med slitstark refraktär beläggning av MAX-fas
SE526338C2 (sv) * 2002-09-04 2005-08-23 Seco Tools Ab Skär med utskiljningshärdad slitstark refraktär beläggning
SE526339C2 (sv) * 2002-09-04 2005-08-23 Seco Tools Ab Skär med slitstark refraktär beläggning med kompositstruktur
DE10242421A1 (de) * 2002-09-06 2004-03-18 Fenker, Martin, Dr. Beschichtung zum Verschleiß- und Korrosionsschutz auf Basis von Niobnitrid oder Niobmetallnitrid sowie Verfahren zur Herstellung derselben
JP4240983B2 (ja) 2002-10-07 2009-03-18 沖電気工業株式会社 入力ピン容量の設定方法
JP2004314185A (ja) * 2003-04-11 2004-11-11 Hitachi Tool Engineering Ltd 被覆超硬ドリル
US7226670B2 (en) * 2003-04-28 2007-06-05 Oc Oerlikon Balzers Ag Work piece with a hard film of AlCr-containing material, and process for its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210310B (zh) * 2007-12-21 2010-12-08 广州有色金属研究院 微型钻头表面改性用多元多层硬质薄膜材料及其制备方法
CN102224273A (zh) * 2008-11-04 2011-10-19 欧瑞康贸易股份公司(特吕巴赫) 耐磨层及其制备方法
CN102224273B (zh) * 2008-11-04 2014-09-24 欧瑞康贸易股份公司(特吕巴赫) 耐磨层及其制备方法
CN104703734A (zh) * 2012-10-01 2015-06-10 日立工具股份有限公司 硬质皮膜被覆工具及其制造方法
CN104703734B (zh) * 2012-10-01 2016-08-24 日立工具股份有限公司 硬质皮膜被覆工具及其制造方法
CN105247099A (zh) * 2013-04-26 2016-01-13 瓦尔特公开股份有限公司 具有cvd涂层的工具
US9976213B2 (en) 2013-04-26 2018-05-22 Walter Ag Tool having CVD coating
CN103586520A (zh) * 2013-10-17 2014-02-19 厦门金鹭特种合金有限公司 一种涂层切削刀具及其制作方法

Also Published As

Publication number Publication date
ATE409758T1 (de) 2008-10-15
KR20060115662A (ko) 2006-11-09
SE529223C2 (sv) 2007-06-05
EP1722009A1 (en) 2006-11-15
KR100858855B1 (ko) 2008-09-17
CN100525968C (zh) 2009-08-12
SE0501038L (sv) 2006-11-07
US20070178330A1 (en) 2007-08-02
US8507108B2 (en) 2013-08-13
JP2006312235A (ja) 2006-11-16
DE602006002920D1 (de) 2008-11-13
EP1722009B1 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
CN1857836A (zh) 耐磨的薄涂层
EP2643498B1 (en) Coated cutting tool insert for metal machining that generates high temperatures
EP1867754B1 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
EP2636764B1 (en) Nanolaminated coated cutting tool
EP1736565A1 (en) Composite coatings for finishing of hardened steels
JP5909273B2 (ja) 硬質皮膜および硬質皮膜の製造方法
JP4939032B2 (ja) 硬質皮膜、および硬質皮膜の製造方法
US10023952B2 (en) Coated cutting tool and a method for coating the cutting tool
KR20060051931A (ko) 내마모성과 내산화성이 우수한 경질 피막과 상기 경질 피막형성용 타겟, 및 고온윤활성과 내마모성이 우수한 경질피막과 상기 경질 피막 형성용 타겟
US8932707B2 (en) Hard film and hard film coated tool
CN1933932A (zh) 表面涂覆的切削工具
JP7061603B2 (ja) 多層硬質皮膜被覆切削工具
JP5231859B2 (ja) 表面被覆切削工具
JP2008240079A (ja) 被覆部材
WO2018070195A1 (ja) 表面被覆切削工具
EP3456867B1 (en) Coated drill
JP2009197268A (ja) 被覆部材
JP5979438B2 (ja) 表面被覆切削工具
EP2201152B1 (en) Coated cutting insert for machining of titanium based alloys
KR20200136991A (ko) 피복 절삭 공구 및 그 제조 방법
JP7355293B2 (ja) 切削工具
JP5975342B2 (ja) 表面被覆切削工具
JP5975343B2 (ja) 表面被覆切削工具
CN115226395A (zh) 切削工具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090812

Termination date: 20180508

CF01 Termination of patent right due to non-payment of annual fee