CN1836321A - 双极晶体管及其制造方法 - Google Patents

双极晶体管及其制造方法 Download PDF

Info

Publication number
CN1836321A
CN1836321A CNA200480023663XA CN200480023663A CN1836321A CN 1836321 A CN1836321 A CN 1836321A CN A200480023663X A CNA200480023663X A CN A200480023663XA CN 200480023663 A CN200480023663 A CN 200480023663A CN 1836321 A CN1836321 A CN 1836321A
Authority
CN
China
Prior art keywords
emitter
base layer
conductor
layer
base stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200480023663XA
Other languages
English (en)
Other versions
CN100424854C (zh
Inventor
A·J·约瑟夫
刘奇志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1836321A publication Critical patent/CN1836321A/zh
Application granted granted Critical
Publication of CN100424854C publication Critical patent/CN100424854C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66287Silicon vertical transistors with a single crystalline emitter, collector or base including extrinsic, link or graft base formed on the silicon substrate, e.g. by epitaxy, recrystallisation, after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种高fT和fmax的双极晶体管(100),包括发射极(104)、基极(120)和集电极(116)。发射极具有下部分(108)和延伸超过下部分的上部分(112)。基极包括内基极(140)和外基极(144)。内基极位于发射极的下部分和集电极之间。外基极从发射极的下部分延伸超过发射极的上部分,并包括从发射极的上部分下面和发射极的上部分下面以外延伸的连续导体(148)。连续导体提供了从基极接触(未示出)到内基极的低电阻通路。晶体管可以包括未在发射极的上部分下面延伸的第二导体(152),所述第二导体进一步减小通过外基极的电阻。

Description

双极晶体管及其制造方法
技术领域
本发明通常涉及微电子半导体器件领域。尤其,本发明针对高fT和fmax双极晶体管及其制造方法。
背景技术
随着每一代微电子半导体器件,例如,微处理器、存储器、专用集成电路和其它器件,这些器件工作的速度在逐渐增加。在相同的技术节点中,在CMOS技术中SiGe异质结双极晶体管(HBT)器件具有比场效应晶体管(FET)更高的速度。因为SiGe HBT的此更高速度的性能和其它相关原因,发现双极互补金属氧化物半导体(BiCMOS)制造在半导体器件的各种应用中更有用。
图1中示出了常规BiCMOS双极晶体管20。所示晶体管20为具有n型发射极24、p型基极28、和通常通过晶片36中形成的掺杂集电极基座32表示的n型集电极的n-p-n晶体管。除了集电极基座32,晶片36包括用于将晶体管20与周围的例如其它晶体管、电容器等的微电子元件(未示出)隔离的第一深沟槽绝缘体40和第二浅沟槽隔离(STI)44。集电极基座和STI44下面的重掺杂次集电极48提供了到集电极接触(未示出)的低电阻连接。发射极24通常具有T形垂直横截面,以提供相对小的紧接集电极基座32的下部分52(以获得小的横截面积来限制到集电极的电流),而提供相对大的与发射极接触58接触的上部分56。
基极28通常包括内基极60和外基极64,所述内基极包括位于发射极和集电极之间的薄的、通常高度p掺杂的层(未示出),所述外基极在基极接触(未示出)和内基极之间提供电通路。在制造晶体管20的工艺期间,通常通过在晶片36顶部淀积多晶硅层68形成外基极64。接着,蚀刻多晶硅层68,以提供用于发射极下部分52的沟槽72,由此形成发射极。在形成发射极24之后,用金属硅化多晶硅层68,以形成导体76,以增加外基极64的电导系数。然而,因为已经形成了发射极24,发射极24下面的外基极64的部分80由于上面的发射极的存在而未被硅化,所述发射极阻挡了金属原子到达外基极的该部分。
外基极64的部分80保持未被硅化的事实很重要,这是因为该部分内的多晶硅的电阻Rpoly远高于位于发射极24下面以外的它的硅化的其它部分的电阻Rsilicide。例如,对于1000的厚度的Rpoly为约100-200Ω/sq,而对于三分之一的此厚度的Rsilicide为约8Ω/sq。因为Rpoly相对较高,通过外基极64流动的电流的阻抗会相对较高。
当器件特征尺寸随技术发展按尺寸下降时,高速SiGe HBT具有更薄的基极,以减小电子从发射极到集电极的渡越时间,由此增加单位电流增益频率fT。然而,更薄的基极增加了限制最大可获得振荡频率fmax的基极电阻,此频率对于器件的高速应用也很重要。因此,革新减小基极电阻Rb的方法很重要。
发明内容
在一方面中,本发明针对双极器件,包括具有集电极的衬底和与所述集电极隔开的发射极。基极具有位于所述衬底和所述发射极之间的第一部分和包围所述第一部分的第二部分。所述基极包括位于所述第一和第二部分中的第一导体,并在所述第一部分中具有第一电导以及在所述第二部分中具有第二电导。所述第一电导和所述第二电导基本上相互相同。
在另一方面中,本发明针对在具有集电极的衬底上形成双极器件的方法,包括以下步骤:在所述衬底上形成内基极层。然后在所述内基极层上形成第一导体。所述第一导体全部具有基本上一致的电导。形成发射极,所述发射极的至少一部分在部分所述第一导体之上延伸。
附图说明
为了说明本发明,附图示出了目前优选的本发明的形式。然而,应该理解,本发明不限于附图中所示的精确安排和手段,其中:
图1为具有通常T形发射极的现有晶体管的横截面图,示出了位于发射极下面的外基极部分中的相对高的电阻;
图2为根据本发明制造的晶体管的横截面图,其中晶体管具有通常T形发射极,而且位于发射极下面的外基极部分具有相对低的电阻;
图3为制造期间图2的晶体管的横截面图,示出了内基极层、i-Si层、和外基极的第一部分的生长;
图4为制造期间图2的晶体管的横截面图,示出了外基极的第一部分上的介质岸面衬垫的形成;
图5为制造期间图2的晶体管的横截面图,示出了外基极的第一部分的硅化;
图6为制造期间图2的晶体管的横截面图,示出了外基极的第二部分和绝缘层的生长;
图7为制造期间图2的晶体管的横截面图,示出了用于发射极的沟槽的形成;
图8为制造期间图2的晶体管的横截面图,示出了氮化物隔离物的形成、岸面衬垫的蚀刻、以及发射极沟槽和有意未掺杂层之间的外基极的第一部分的一部分的氧化;
图9为制造期间图2的晶体管的横截面图,示出了外基极的第一部分的氧化部分的蚀刻;以及
图10为制造期间图2的晶体管的横截面图,示出了发射极的形成。
具体实施方式
现在参考附图,图2根据本发明示出了通常由数字100表示的BiCMOS晶体管。晶体管100包括发射极104例如具有下部分108和上部分112的T形发射极、集电极(通过集电极基座116和重掺杂次集电极示出)、和基极120。晶体管100在例如晶片的衬底124上形成,其中集电极基座116通常通过离子注入形成。衬底124也可以包括一个或多个浅和/或深沟槽隔离128、132、和在集电极基座116与集电极接触(未示出)之间提供电连接的次集电极136。基极120通常包括位于发射极104的下部分108和集电极基座116之间的内基极140。内基极140可以由多个外延硅层形成,至少其中一个可以用与发射极104和集电极基座116的掺杂类型相反的掺杂类型相对重掺杂。例如,如果晶体管100为n-p-n型,那么发射极104和集电极基座116应该具有n型掺杂,而内基极140应该包括p型掺杂。当然,如果晶体管100为p-n-p型,那么掺杂类型应该相反。
基极120还包括可以包括多层的外基极144,其中一层为形成连续导体148的导电层,所述连续导体148从紧接发射极的下部分108的发射极104的上部分112下面延伸到发射极下面以外的位置。导体148在发射极104的上部分112下面具有与发射极下面以外基本上相同的电导。导体148可以包括硅化物或其它例如当相对于多晶硅的电阻时具有相对低电阻的材料。重要地是,导体148在发射极104的上部分112下面延伸。这很重要,因为相对于图1中所示的示例性常规晶体管100的发射极24下面的多晶硅部分80的电阻,导体148具有相对低的电阻。如上面背景技术部分中所述,通过硅化物和多晶硅的典型电阻通常分别是,对于300的厚度为约8Ω/sq,对于1000的厚度为约100-200Ω/sq。
明显,对发射极104的上部分112下面的部分导体148中的电流的相对低的电阻,提供了晶体管100具有高单位电流增益截止频率fT,例如,200GHz或更高,以及高最大振荡频率fmax,例如,250GHz或更大。为了进一步提高外基极144的电导,外基极可以包括第二导体152,此导体也可以使用硅化工艺形成。
图3-10示出了一种制造晶体管100的方法的各个步骤,以使导体148(图2)存在于发射极104的上部分112的下面和下面以外,以形成具有高fT和fmax值的晶体管100。参考图3,同时参考图2,提供在其中使用公知技术形成有隔离128、132和集电极基座116的衬底124。衬底124可以为常规晶片,例如轻掺杂硅晶片。例如,可以使用本领域内公知的低温外延(LTE)技术在衬底124的表面上形成内基极层156,以提供内基极140。内基极层156可以包括Si和/或Ge的多层(未示出),此多层可以包括至少一个相对重掺杂的层,此层提供与发射极104(图2)和集电极基座116的掺杂互补的掺杂区。
形成内基极层156之后,在内基极层的表面上生长有意未掺杂层160,例如,本征硅(i-Si)。如下所述,未掺杂层160将在后面的步骤中用作氧化和蚀刻停止。在生长未掺杂层160之后,可以使用例如常规LTE技术在未掺杂层顶部生长第一外基极层164。第一外基极层164可以为,例如,就地重掺杂的Si或SiGe。
参考图4,并同时参考图2,图4示出了在晶体管100的本征部分的通用区域(即,n-p-n或p-n-p结区)处的第一外基极层164的表面上的岸面衬垫168的形成。岸面衬垫将在后面的步骤中用作形成导体148的步骤中的掩模和形成用于发射极104的沟槽172的工艺中的蚀刻停止。岸面衬垫168可以包括介质材料,例如单层或叠层SiO2和/或SiN或SiON。如果使用SiO2,可以使用化学氧化物除去(COR)蚀刻最小化侧面临界尺寸收缩。岸面衬垫168可以利用本领域内公知的各种技术,例如PECVD淀积和热氧化、光刻构图、和蚀刻技术形成。
参考图5,并同时参考图2,图5示出了导体148的形成。在所示实施例中,导体148包括通过硅化物形成工艺形成的硅化物区域,所述区域施加到第一外基极层164的至少一部分。该工艺可以包括溅射单元素金属,例如Co、Ti、Ni、或两种或多种金属与或不与核元素例如Nb的组合,接着退火,以形成MSi或MSi2(M=Co、Ti、Ni等)。该工艺形成了硅化物“环”,其中硅化物区176存在于第一外基极层164中,除了岸面衬垫168下面。然后,例如,使用湿化学剥离除去介质岸面衬垫168上存在的未反应金属。
如图6中所看到,在第一外基极层164被硅化以形成硅化物区176(导体148(图2))之后,在第一外基极层的顶部提供可选的第二外基极层180。第二外基极层180可以包括就地掺杂的多晶硅。虽然第二外基极层180是可选的,但是有益的是可以最小化Si从第一外基极层164的硅化物区176的损失。例如,使用TEOS或其它SiO2形成工艺在第二外基极层(或第一,如果第二没有提供的话)顶部提供基极隔离层184。另外,如果需要,可以在基极隔离层184顶部提供包括,例如,多晶硅或氮化硅的可选保护层(未示出)。
参考图7,同时参考图2,图7示出了发射极沟槽172的第一部分188的形成。为了形成发射极沟槽172的第一部分188,可以施加、曝光并处理光致抗蚀剂层192,以在其中形成对应于发射极沟槽的孔196。这可以使用本领域内公知的包括抗反射涂覆技术的任何技术实现。在形成孔196之后,例如使用在岸面衬垫上停止的选择性多晶硅蚀刻,蚀刻存在于岸面衬垫168上的一个或多个层,例如,第二外基极层180、基极隔离层184、和/或保护层(未示出),以形成发射极沟槽172的第一部分188。在形成发射极沟槽172的第一部分188之后,可以从最上层除去光致抗蚀剂192。
参考图8,在形成发射极沟槽172的上部分188之后,在沟槽的第一部分的侧壁上形成氮化物隔离物200。这可以这样实现,使用本领域内公知的,例如在发射极沟槽172的第一部分188中和周围淀积氮化物,并使用定向蚀刻除去多余的氮化物。在形成氮化物隔离物200之后,除去岸面衬垫168的中心部分,以,例如,通过COR蚀刻在岸面衬垫中形成孔204,并可选地接着进行缓冲氢氟酸(BHF)清洁。在形成孔204之后,例如,使用热氧化氧化孔下面的第一高掺杂外基极层164的部分208到未掺杂层160的深度。第一外基极层164的更高掺杂使该层比下面的未掺杂层160更快氧化。因此,可以适当控制氧化工艺的时间,以避免未掺杂层160的过或任何氧化。由于第一外基极层164被相对高度氧化,而未掺杂层160没有被氧化,所以可以例如使用COR蚀刻将第一外基极层的氧化部分208控制蚀刻下至未掺杂层,以形成发射极沟槽172的第二部分212。这在图9中示出。在蚀刻第一外基极层164之后,可以使用稀氢氟酸(DHF)清洁可选地清洁发射极沟槽172。
图10示出了发射极104的形成,它可以就地掺杂并使用常规淀积、光刻、和蚀刻技术形成。可以硅化或不硅化发射极104。在形成发射极104之后,可以提供可选的氮化物覆层(未示出)。参考图2,可以可选地除去第二外基极层180上的包围发射极104的层,例如,基极隔离层184(图6)和/或保护层(未示出),允许按与例如图1中的晶体管20的常规晶体管类似的方式硅化第二外基极层,其中硅化在发射极104的上部分下面的外部区域中发生,以形成第二导体152。此附加硅化可以进一步减小外基极144的电阻。可以根据常规实践进行晶体管100的进一步处理。
尽管结合优选实施例描述了本发明,但是应该理解,本发明并不限于此。相反,本发明旨在包括在如上述定义和在这里所附的权利要求中的本发明的精神和范围内包括的所有变化、修改和等同替换。

Claims (15)

1.一种双极器件,包括:
(a)衬底,具有集电极;
(b)发射极,与所述集电极隔开;
(c)基极,具有位于所述衬底和所述发射极之间的第一部分和包围所述第一部分的第二部分,所述基极包括位于所述第一和第二部分中的第一导体,并在所述第一部分中具有第一电导以及在所述第二部分中具有第二电导,其中所述第一电导和所述第二电导基本上相互相同。
2.根据权利要求1的双极器件,其中所述基极包括至少一个外延半导体层。
3.根据权利要求1的双极器件,其中所述发射极包括所述衬底远侧端的上部分和位于所述上部分与所述集电极之间的下部分,所述基极的所述第二部分位于所述发射极的所述上部分和所述衬底之间。
4.根据权利要求1的双极器件,其中所述第一导体包括硅化物。
5.根据权利要求1的双极器件,还包括只在所述基极的所述第二部分中包含的第二导体。
6.根据权利要求5的双极器件,其中所述第一和第二导体都包括硅化物。
7.一种在具有集电极的衬底上形成双极器件的方法,包括以下步骤:
(a)在所述衬底上形成内基极层;
(b)在所述内基极层上形成第一导体,其中所述第一导体全部具有基本上一致的电导;以及
(c)形成发射极,所述发射极的至少一部分在部分所述第一导体之上延伸。
8.根据权利要求7的方法,其中步骤a包括形成有意未掺杂层。
9.根据权利要求7的方法,其中步骤b包括形成第一外基极层和在步骤c之前硅化所述第一外基极层以形成所述第一导体。
10.根据权利要求9的方法,其中步骤b还包括在硅化所述第一外基极层之前在所述第一外基极层顶部形成岸面衬垫。
11.根据权利要求10的方法,其中步骤c包括除去一部分所述岸面衬垫以形成孔。
12.根据权利要求11的方法,其中步骤c还包括氧化所述孔下面的所述第一外基极层以形成氧化区域,以及除去至少一部分所述氧化区域到所述内基极层。
13.根据权利要求9的方法,还包括以下步骤:在所述第一外基极层上形成第二外基极层,并实施第一蚀刻穿过所述第二外基极层到所述第一外基极层,并且然后实施第二蚀刻穿过所述第一外基极层到所述内基极层。
14.根据权利要求7的方法,还包括形成未在所述发射极下面延伸的第二导体的步骤。
15.根据权利要求14的方法,其中所述第二导体通过硅化形成。
CNB200480023663XA 2003-06-24 2004-06-22 双极晶体管及其制造方法 Expired - Fee Related CN100424854C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/604,045 US7038298B2 (en) 2003-06-24 2003-06-24 High fT and fmax bipolar transistor and method of making same
US10/604,045 2003-06-24

Publications (2)

Publication Number Publication Date
CN1836321A true CN1836321A (zh) 2006-09-20
CN100424854C CN100424854C (zh) 2008-10-08

Family

ID=33539860

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480023663XA Expired - Fee Related CN100424854C (zh) 2003-06-24 2004-06-22 双极晶体管及其制造方法

Country Status (7)

Country Link
US (2) US7038298B2 (zh)
EP (1) EP1644973A4 (zh)
JP (1) JP4988339B2 (zh)
KR (1) KR100800354B1 (zh)
CN (1) CN100424854C (zh)
IL (1) IL172667A0 (zh)
WO (1) WO2005004201A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226639A (zh) * 2013-04-28 2013-07-31 上海宏力半导体制造有限公司 双极型晶体管模型及相应的参数提取方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015194A2 (en) * 2005-08-03 2007-02-08 Nxp B.V. Semiconductor device and method of manufacturing such a device
US20080121937A1 (en) * 2006-11-08 2008-05-29 International Business Machines Corporation Heterojunction bipolar transistor with monocrystalline base and related methods
US7709338B2 (en) * 2006-12-21 2010-05-04 International Business Machines Corporation BiCMOS devices with a self-aligned emitter and methods of fabricating such BiCMOS devices
US8603885B2 (en) 2011-01-04 2013-12-10 International Business Machines Corporation Flat response device structures for bipolar junction transistors
US8536012B2 (en) * 2011-07-06 2013-09-17 International Business Machines Corporation Bipolar junction transistors with a link region connecting the intrinsic and extrinsic bases
US9312370B2 (en) * 2014-06-10 2016-04-12 Globalfoundries Inc. Bipolar transistor with extrinsic base region and methods of fabrication

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752817A (en) * 1983-08-26 1988-06-21 International Business Machines Corporation High performance integrated circuit having modified extrinsic base
US5144403A (en) * 1989-02-07 1992-09-01 Hewlett-Packard Company Bipolar transistor with trench-isolated emitter
US5024957A (en) * 1989-02-13 1991-06-18 International Business Machines Corporation Method of fabricating a bipolar transistor with ultra-thin epitaxial base
US5008207A (en) * 1989-09-11 1991-04-16 International Business Machines Corporation Method of fabricating a narrow base transistor
JP3127455B2 (ja) * 1990-08-31 2001-01-22 ソニー株式会社 半導体装置の製法
JPH05166824A (ja) * 1991-12-16 1993-07-02 Fujitsu Ltd 半導体装置の製造方法
JP3117766B2 (ja) 1991-12-26 2000-12-18 松下電器産業株式会社 ヘテロ接合バイポーラトランジスタ
JPH05275437A (ja) * 1992-03-24 1993-10-22 Fujitsu Ltd 半導体装置及びその製造方法
KR100242861B1 (ko) * 1992-04-27 2000-02-01 이데이 노부유끼 반도체장치의 제조방법
US5436180A (en) * 1994-02-28 1995-07-25 Motorola, Inc. Method for reducing base resistance in epitaxial-based bipolar transistor
JP2679639B2 (ja) * 1994-09-12 1997-11-19 日本電気株式会社 半導体装置及びその製造方法
US5541121A (en) * 1995-01-30 1996-07-30 Texas Instruments Incorporated Reduced resistance base contact method for single polysilicon bipolar transistors using extrinsic base diffusion from a diffusion source dielectric layer
US5581112A (en) * 1995-10-23 1996-12-03 Northern Telecom Limited Lateral bipolar transistor having buried base contact
KR100205024B1 (ko) * 1995-12-20 1999-07-01 양승택 초 자기 정렬 바이폴러 트랜지스터의 제조방법
EP0818829A1 (en) * 1996-07-12 1998-01-14 Hitachi, Ltd. Bipolar transistor and method of fabricating it
JPH1041319A (ja) * 1996-07-18 1998-02-13 Sony Corp バイポーラトランジスタ及びその製造方法
JPH10135238A (ja) * 1996-11-05 1998-05-22 Sony Corp 半導体装置およびその製造方法
US6190984B1 (en) * 1996-11-27 2001-02-20 Electronics And Telecommunications Research Institute Method for fabricating of super self-aligned bipolar transistor
JPH10223649A (ja) 1997-02-05 1998-08-21 Oki Electric Ind Co Ltd バイポーラトランジスタのベース構造
US5764100A (en) 1997-02-13 1998-06-09 Motorola, Inc. Filter
JPH10256269A (ja) * 1997-03-17 1998-09-25 Sony Corp 半導体装置の製造方法
WO1999052138A1 (en) * 1998-04-08 1999-10-14 Aeroflex Utmc Microelectronic Systems Inc. A bipolar transistor having low extrinsic base resistance
FR2779573B1 (fr) * 1998-06-05 2001-10-26 St Microelectronics Sa Transistor bipolaire vertical comportant une base extrinseque de rugosite reduite, et procede de fabrication
FR2779571B1 (fr) * 1998-06-05 2003-01-24 St Microelectronics Sa Procede de dopage selectif du collecteur intrinseque d'un transistor bipolaire vertical a base epitaxiee
US6262472B1 (en) * 1999-05-17 2001-07-17 National Semiconductor Corporation Bipolar transistor compatible with CMOS utilizing tilted ion implanted base
JP2001007118A (ja) * 1999-06-22 2001-01-12 Nec Corp 半導体装置及びその製造方法
JP2001015523A (ja) * 1999-07-02 2001-01-19 Toshiba Corp 半導体装置及びその製造方法
KR100307183B1 (ko) * 1999-09-07 2001-11-05 염병렬 바이폴라 소자 및 그 제조 방법
FR2805923B1 (fr) * 2000-03-06 2002-05-24 St Microelectronics Sa Procede de fabrication d'un transistor bipolaire double- polysilicium auto-aligne
US6461925B1 (en) * 2000-03-30 2002-10-08 Motorola, Inc. Method of manufacturing a heterojunction BiCMOS integrated circuit
JP2001319936A (ja) 2000-05-12 2001-11-16 Matsushita Electric Ind Co Ltd バイポーラトランジスタ及びその製造方法
JP2001332563A (ja) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd バイポーラトランジスタ及びその製造方法
SE518710C2 (sv) 2000-06-26 2002-11-12 Ericsson Telefon Ab L M Förfarande för att förbättra transistorprestanda samt transistoranordning och integrerad krets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226639A (zh) * 2013-04-28 2013-07-31 上海宏力半导体制造有限公司 双极型晶体管模型及相应的参数提取方法
CN103226639B (zh) * 2013-04-28 2017-07-11 上海华虹宏力半导体制造有限公司 双极型晶体管模型及相应的参数提取方法

Also Published As

Publication number Publication date
KR20060017812A (ko) 2006-02-27
IL172667A0 (en) 2006-04-10
JP2007535799A (ja) 2007-12-06
WO2005004201A3 (en) 2005-05-12
WO2005004201A2 (en) 2005-01-13
US20040262713A1 (en) 2004-12-30
KR100800354B1 (ko) 2008-02-04
EP1644973A2 (en) 2006-04-12
US20060177986A1 (en) 2006-08-10
EP1644973A4 (en) 2009-03-04
JP4988339B2 (ja) 2012-08-01
US7038298B2 (en) 2006-05-02
CN100424854C (zh) 2008-10-08
US7521327B2 (en) 2009-04-21

Similar Documents

Publication Publication Date Title
US9761726B1 (en) Vertical field effect transistor with undercut buried insulating layer to improve contact resistance
US7425754B2 (en) Structure and method of self-aligned bipolar transistor having tapered collector
EP2062291B1 (en) Method of manufacturing a bipolar transistor
US8373236B2 (en) Semiconductor device and method of manufacturing such a device
US7087940B2 (en) Structure and method of forming bipolar transistor having a self-aligned raised extrinsic base using self-aligned etch stop layer
CN101432892B (zh) 双极型互补金属氧化物半导体技术中形成集电极的方法
JP2007536724A (ja) バイポーラ・デバイス、トランジスタ・デバイス、ならびにトランジスタおよびバイポーラ相補型金属酸化膜半導体(BiCMOS)デバイスを製造する方法
US7521327B2 (en) High fT and fmax bipolar transistor and method of making same
US20090206335A1 (en) Bipolar complementary semiconductor device
US6812533B2 (en) SOI based bipolar transistor having a majority carrier accumulation layer as subcollector
EP1842229B1 (en) Bipolar transistor and method of fabricating the same
CN100452426C (zh) 半导体器件及其制造方法
US5198375A (en) Method for forming a bipolar transistor structure
KR100434659B1 (ko) 콜렉터-업 rf 전력 트랜지스터
CN110310988A (zh) 半导体装置和制造半导体装置的方法
WO2009122346A1 (en) Method of making bipolar transistor
US6610143B2 (en) Method of manufacturing a semiconductor component
US6387768B1 (en) Method of manufacturing a semiconductor component and semiconductor component thereof
US6137147A (en) Bipolar transistor and semiconductor integrated circuit device
EP1489661A2 (en) Bipolar junction transistor and methods of manufacturing the same
JP2663632B2 (ja) 半導体装置及びその製造方法
US6258686B1 (en) Manufacturing method of semiconductor device and semiconductor device
JP2826405B2 (ja) 半導体装置
JP2002334889A (ja) 半導体装置およびその製造方法
JP2006202862A (ja) ヘテロ接合半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081008

Termination date: 20120622