CN1829668B - 碳化硼元件及其制备方法 - Google Patents

碳化硼元件及其制备方法 Download PDF

Info

Publication number
CN1829668B
CN1829668B CN200480016202XA CN200480016202A CN1829668B CN 1829668 B CN1829668 B CN 1829668B CN 200480016202X A CN200480016202X A CN 200480016202XA CN 200480016202 A CN200480016202 A CN 200480016202A CN 1829668 B CN1829668 B CN 1829668B
Authority
CN
China
Prior art keywords
hardness
vickers
stove
boron carbide
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200480016202XA
Other languages
English (en)
Other versions
CN1829668A (zh
Inventor
罗伯特·F.·斯派尔
李赫才
鲍知浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georgia Tech Research Institute
Original Assignee
Georgia Tech Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georgia Tech Research Institute filed Critical Georgia Tech Research Institute
Publication of CN1829668A publication Critical patent/CN1829668A/zh
Application granted granted Critical
Publication of CN1829668B publication Critical patent/CN1829668B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了高密度元件和产品以及用于制备高密度元件和产品的方法。其中的一种示例性元件包括由均一的碳化硼粉末构成的碳化硼元件。该元件具有至少93%的相对密度(RD)和至少2000kg/mm2的维氏硬度。

Description

碳化硼元件及其制备方法
相关申请的交叉引用 
本申请要求于2003年6月12日提交的标题为“PressurelessSintering of Boron Carbide”(“碳化硼的无压烧结”)、序列号为60/478,045的美国临时申请的优先权,其全部内容合并于此作为参考。 
技术领域
本公开主要涉及碳化硼,更具体而言,本公开涉及制备高密度产品和制备由碳化硼制成的产品的方法。 
背景技术
碳化硼(B4C)是一种共价键固体,具有高熔点(2427℃)、极高硬度(维氏硬度:2400kg/mm2)、低密度(2.52g/cm3)和高中子吸收截面。它是具有碳含量为8.8-20.0mol%的固溶体。碳化硼已经用于轻质陶瓷装甲、耐磨元件(比如喷嘴和砂轮)和核反应堆中的控制棒。 
已经证明将纯的碳化硼烧结到高密度是困难的。已经应用特殊的添加剂(烧结助剂,比如碳、Al2O3和TiB2)或者热压来获得接近理论密度。一般在30-40MPa单向压力下、在大约2100℃热压B4C粉末以获得致密零件。 
发明内容
本发明公开了高密度元件和产品以及制备高密度元件和产品的方法。其中的一种示例性方法包括:提供具有至少60%相对生坯密度(RD)且不含有烧结添加剂的碳化硼粉末;将该碳化硼粉末成型为一元件;加热炉子至大约1100~1400℃,保温大约30~120分钟,其中该炉子包括所述成型元件以及H2/He混合气体;在大约1100~1400℃的温度下用大约120~480分钟对炉子进行真空净化;通过以大约50~150℃/分钟的速度将该炉子加热到大约2300~2400℃,在没有烧结添加剂的情况下,利用无压烧结来充分烧结该元件;和形成具有至少93%的相对密度和大约至少2000kg/mm2的维氏硬度的烧结元件。 
其中的一种示例性的元件包括由均一的碳化硼粉末构成的碳化硼元件。该元件具有至少93%的相对生坯密度(RD)和至少2000kg/mm2 的维氏硬度。 
在研究下面的附图和详细说明的基础上,对本领域的技术人员来说,本公开的其它工艺、元件、产品、方法、特征和优点会变得或变得显而易见。旨在所有这些附加的方法、特征和优点都包括在本说明中,处于本公开的范围内,且受到附加的权利要求的保护。 
附图说明
参照下面的附图可以更好地理解本公开的各个方面。 
图1是说明一种用于制备由碳化硼粉末制成的元件的方法的实施方式的功能流程图。 
图2是说明一种应用热等静压系统来处理碳化硼粉末烧结元件的方法的实施方式的功能流程图。 
图3是说明一种应用热等静压系统来处理烧结元件的方法的具体实施方式的功能流程图。 
图4是一曲线图,示出了在流动氦气下,在以50℃/分钟的速度加热到1800℃并且之后以5℃/分钟的速度加热B4C压制坯件时,在各个温度其重量的变化。在各零件关闭的情况下,样品在流动氦气下在炉中冷却。在从炉中取出样品后立即进行测试,并且在室内空气下暴露一天后再次进行测试。 
图5是一曲线图,示出了在以5℃/分钟的速度将B4C样品加热到特定的最高温度并且在未保温冷却之后,B4C样品在收缩、热膨胀系数(CTE)、颗粒/晶粒大小和重量变化各方面的趋势。 
图6是示出了压制的B4C坯件的烧结密度逐步增加的示意图。 
具体实施方式
此处描述了制备碳化硼组分(粉末)以及制备由碳化硼粉末制成的元件的工艺和方法。总体上描述了在不添加烧结添加剂的情况下,无压烧结均一的碳化硼粉末以制备相对生坯密度(RD)大于93%且维氏硬度大于2000kg/mm2的元件的方法。此外,可以通过热等静压压制无压烧结元件(此后称为“烧结元件”)来进一步加工烧结元件,以制备相对生坯密度(RD)大于93%且维氏硬度大于2000kg/mm2的热等静压元件(此后称为“HIP”元件)。在一些实施方式中,HIP元件具有大于99%的相对生坯密度(RD)和大于2500kg/mm2的维氏硬度。成型的元件(例如烧结元件和HIP元件)涵盖的范围从简单的、基本上平的板(例如,用于军事和公安部门的地面、空中和海上交通工具的弹道装甲板)到复杂的轮廓结构(例如,使其轮廓为人体外形的整体结构,比如使其轮廓为人的头部形状的头盔)。 
利用无压烧结系统来加工碳化硼粉末(B4C固溶体)(H.Lee和R.F.Speyer,“无压烧结B4C的硬度和断裂韧度”(“Hardness andFracture Toughness of Pressureless-sintered B4C”),J.Am.Ceram.Soc.,85[5]1291-93(2002);H.Lee,W.S.Hackenberger和R.F.Speyer,“用氢气热处理碳化硼的烧结”(“Sintering of BoronCarbide Heat-treated with Hydrogen”),J.Am.Ceram.Soc.,85[8]2131-33(2002);H.Lee和R.F.Speyer,“碳化硼的无压烧结”(“Pressureless Sintering of Boron Carbide”),J.Am.Ceram.Soc.,86[9]1468-73(2003),这些都合并于此作为参考)。碳化硼粉 末是单一的粉末(例如,没有烧结添加剂)。将碳化硼粉末压制或浇铸成紧密的高生坯密度压坯元件。将该紧密的高生坯密度压坯元件放置(布置)在无压烧结系统的一个加热炉中,并且使该加热炉在H2/He混合气体下升温至1100~1400℃,保温约30~120分钟。然后,在真空中或者He气氛中用大约120~240分钟净化该加热炉,从而充分除去残留的H2。接着,以100℃/分钟的加热速度,在没有烧结添加剂的情况下,在大约2300~2400℃下无压烧结碳化硼粉末。尽管理论上并无限制,但是仍将加热速度设置为避免在大约2000~2150℃的温度范围内同时发生颗粒长大,否则会降低烧结驱动力。烧结元件具有至少93%的相对生坯密度和大于2000kg/mm2的维氏硬度。 
可以利用热等静压来进一步处理该烧结元件(例如,在310MPa氩气、2150℃下处理125分钟),以制备具有大于93%的相对生坯密度和大于2000kg/mm2的维氏硬度的热等静压结构,特别是制备具有大于99%的相对生坯密度和大于2500kg/mm2的维氏硬度的热等静压结构。在下面的文献中已经讨论了热等静压:H.V.Atkinson和B.A.Rickinson,Hot Isostatic Processing,A.Hilger,B,布里斯托尔(Bristol),英国,1991;R.J.Schaefer和M.Linzer,HotIsotatic Pressing:Theory and Applications,ASMInternational,Materials Park,PA,1991,它们都合并于此作为参考。应该注意,热等静压在提高具有闭孔的元件(例如,具有至少大约93%相对密度的烧结元件)的相对生坯密度方面是有效的。 
一般地,可以应用传统的陶瓷成型技术来形成该元件(例如烧结元件和/或热等静压产品)。在这一点上,所形成的元件和/或产品仅仅受到陶瓷成型技术的限制。因此,可以应用陶瓷成型技术来形成的其它元件和/或产品包括在本公开的范围内。 
该元件可以为单块的,或者可以为形成一复合产品的多块元件,此处多个不同的元件形成一个复合产品。该元件可以与其它多个元件 组合使用或者可以涂覆其它化合物或者材料,从而增加或者增强最终的单块或者复合产品的一个或者多个特性。 
该元件可以是具有恒定或者变化尺寸(例如,长度、宽度和厚度)的简单形状(例如,多边形、圆形和不对称形状)。此外,本公开的各实施方式提供了形成具有复杂形状的元件和/或具有恒定或者变化尺寸的二维和三维结构(例如复杂单块元件或者复合产品)的元件的工艺和方法。 
例如,该元件可以包括(但并不限制于此)基本上平的元件、基本上弯曲的元件、具有多个弯曲的元件、凹入的元件、凸出的元件、多孔元件、其中具有一个或者多个空隙的元件以及它们的组合。这些类型的元件可以用作地面、空中和海上交通工具的装甲(例如单块元件和/或复合产品),尤其是用于军事或者公安交通工具的装甲。此外,这些元件可以用作身体盔甲或者用在盾牌中(例如,单块和/或复合结构)。在一些实施方式中,有利的是覆盖身体大部分(例如头和胸)的盔甲,该盔甲是单块的,以将弱点限制在盔甲中。 
在另一个实施例中,该元件可以是具有多种弯曲、尺寸、轮廓、结构特征(例如,法兰盘、锥形孔、固定结构等)等的复杂结构。例如,可以使该元件的轮廓成型为人身体各个部分(例如,头、躯体、背、腹股沟、臂、腿、肩、臀等)的外形,该元件还可以用作整块盔甲(例如,头盔、躯干、肩等)或者用在复合盔甲(例如防护衣)中。特别地,该元件可以成型为人的头、肩、躯干等的形状。而且,该元件可以成型为一个具体的人的轮廓(例如,男性/女性,小巧/大的体形等)。 
此外,该元件可以包括(但并不限制于此)需要高密度、高硬度、高抗冲击、高磨损、高耐磨、核吸收、轻质性能以及这些性能组合的元件。该元件可以包括(但并不限制于此)轴承、齿轮、喷嘴、喷水喷嘴、核零件(例如棒)、叶片等。此外,该元件可以用作陆地、空 中和海上运载工具的结构和/或功能元件,而不是加装在交通工具上的简单装甲。 
图1是说明用于制备烧结元件的方法10的一种实施方式的功能流程图。如图1所示,该方法可以构成为从模块12开始,此时提供一种均一的碳化硼粉末。该均一的碳化硼粉末不包括烧结添加剂,烧结添加剂可能对所要形成的烧结组织的一个或多个性能产生不利影响。将该碳化硼粉末压制成具有至少大约60%相对密度的碳化硼压制生坯。在模块14中,可以将该碳化硼压坯放置(布置)在加热炉中。在将碳化硼粉末放在加热炉之前或者放在加热炉中时,可以应用传统的陶瓷技术(J.S.Reed,Principles of Ceramic Processing,第2版,John Wiley and Sons Inc.,纽约,1995;G.Y.Onoda,Jr.,和L.L.Hench,Ceramic Processing Before Firing,John Wileyand Sons,纽约,1978;T.A.Ring,Fundamentals of CeramicProcessing,Academic Press,圣地亚哥,加利福尼亚,1996,它们都合并于此作为参考)使其形成合适的元件。该加热炉是无压烧结系统的一部分。该加热炉加热到大约1100~1400℃,1150~1300℃或者大约1200℃。使碳化硼粉末在这个温度保温大约30~400分钟,30~120分钟或者大约30分钟。此外,该加热炉含有压力大约为760托压力的H2/He混合气体(流动的混合物)。H2/He混合气体的比例大约为10~90或者40~60。 
在模块16中,包含该元件的加热炉用大约120~480分钟,120~240分钟或者120分钟的时间排除氢气。该净化过程在大约1100~1400℃,1150~1300℃或者大约1200℃的温度下进行。在一种实施方式中,该加热炉在大约0.01~20KPa,0.01~10KPa和10KPa的真空中净化。在另一种实施方式中,该加热炉在压力大约为760托的He流动气氛中进行净化。应该注意,该净化过程应该除去残留的H2,因此可以调节一个或者多个参数(例如,时间)来彻底地除去氢气。 在这一点上,只要该净化过程设计成除去足量的H2,从而可以获得合适的相对密度和维氏硬度,就可以在模块14描述的加热步骤中应用各种H2/He混合气体的比例。 
在模块18中,在不加入烧结添加剂的情况下,利用无压烧结来充分烧结该元件。以大约50~150℃/分钟,75~125℃/分钟和大约100℃/分钟的速度将该加热炉加热到约2300~2400℃(利用红外高温计来测量该温度)。在该加热炉中的压力是大约1ATM(760托)的流动氦气。该元件在加热炉中高温保温一段时间,直到收缩率小于0.05%/分钟(H.Lee和R.F.Speyer,“Pressureless Sintering ofBoron Carbide”,J.Am.Ceram.Soc.,86[9]1468-73(2003))。在模块20中,形成具有至少93%、94%、94.7%、95%、96%、96.6%、97%的相对密度的烧结组织结构。此外,该烧结组织具有大约至少2000Kg/mm2、2200Kg/mm2、2250Kg/mm2、2300Kg/mm2、2400Kg/mm2的维氏硬度,该维氏硬度通过在H.Lee和R.F.Speyer,“Hardness and FractureToughness of Pressureless-sintered B4C”,J.Am.Ceram.Soc.,85[5]1291-93(2002)中描述的技术来测量。 
图2是说明应用热等静压系统来处理烧结碳化硼组织的方法30的一种实施方式的功能流程图。要利用热等静压来进行处理,该烧结组织结构需要具有至少93%、94%、95%、96%和97%的相对密度。应该注意,可以应用上述实施方式来制造的元件并不受热压系统中形状的限制。因此,在热等静压系统中可以处理具有复杂形状的元件。如图2所示,该方法可以设计成从模块32开始,此时应用热等静压来热处理该烧结组织。在模块34中,形成具有至少99%、99.1%、99.5%、99.6%、99.7%、99.8%相对密度的热等静压组织。该热等静压组织具有至少大约2500Kg/mm2的维氏硬度以及至少大约3MPa·m1/2、3.7MPa·m1/2、3.9MPa·m1/2的断裂韧性(基于450MPa的文献弹性模量)。 
图3是说明利用热等静压系统来处理烧结组织的方法40的一种 具体实施方式的功能流程图。如图3所示,该方法可以设计成从模块42开始,此时,在压力大约为200~500MPa、大约300~400MPa和大约310MPa的惰性气体(例如氩气和/或氦气)中,将热等静压炉加热到大约2000~2300℃、大约2100~2200℃和大约2150℃。加热该热等静压炉的速率大约为10~100℃/分钟、15~50℃/分钟和大约20℃/分钟。在模块44中,该烧结组织在热等静压炉中高温保温大约60~400分钟、60~240分钟和大约125分钟。在模块46中,该热等静压炉以大约10~50℃/分钟、大约15~30℃/分钟和大约20℃/分钟的速度冷却到大约室温的温度。应该注意,该冷却速度受到所制造元件具体形状的耐热震性能的限制(例如,用于较大HIP产品的冷却速率会比较低)。 
实施例 
颗粒长大机制 
利用一种特殊的高温差示热膨胀仪,来观察与烧结相竞争的颗粒长大过程(H.Lee,W.S.Hackenberger和R.F.Speyer,“Sinteringof Boron Carbide Heat-treated with Hydrogen”,J.Am.Ceram.Soc.,85[8]2131-33(2002);H.Lee和R.F.Speyer,“PressurelessSintering of Boron Carbide”,J.Am.Ceram.Soc.,86[9]1468-73(2003))。颗粒长大降低了用于烧结的以表面能为基础的驱动力,导致较低的可获得最终密度。 
市售的B4C粉末(HS级,H.C.Starck,柏林,德国)以其所得到的状态应用。表1示出了以制造商的数据为基础的粉末特性。粉末在钢模中在大约200MPa的压力下单向压制成压坯(高为大约5mm,直径大约为6.4mm)。 
表1B4C粉末特性 
 表面积:18.8m2/g颗粒大小:90%的颗粒≤2.99μm  50%的颗粒≤0.84μm  10%的颗粒≤0.24μm  总的硼含量:75.39wt%  总的碳含量:22.26wt%  B/C摩尔比:3.76 杂质含量:1.500wt%O  0.410wt%N  0.022wt%Fe  0.055wt%Si  0.003wt%Al  0.230wt%其它
图4表示在B4C颗粒上存在B2O3涂层。加热到大约1200℃的压坯开始重量损失,但是在氧化物涂层被室内空气水合后(例如,形成原硼酸,H3BO3),随着时间过去会再获得更重的重量。在加热到大约1200~1600℃之间后,B2O3的蒸气压力变得非常大,因此重量损失是相当大的而且是持续的。在温度超过2010℃之后,相应于B4C或者它的分子亚组的挥发,重量又开始损失。 
图5说明了加热到具体的温度并且之后炉冷却的未掺杂样品在致密化、颗粒/晶粒大小和重量损失方面的变化。在B4C颗粒上的B2O3 涂层的蒸发允许B4C-B4C的直接接触和在1870~2010℃之间致密化的骤然增加。在这个温度范围的早期阶段(即1870~1950℃),同时发生的颗粒长大有利于迅速放出的氧化物气体(例如,BO和CO[S.L.Dole,S.Prochazka和R.H.Doremus,“Microstructural CoarseningDuring Sintering of Boron Carbide”,J.Am.Ceram.Soc.,72[6]958-66(1989)])的蒸发和凝聚(从小颗粒变成大颗粒)。重量损失和颗粒/晶粒长大在大约1960~2010℃停止,之后又重新开始。颗粒长大和重量损失随着变慢的致密化一起发生,直到大约2140℃。这与B4C的蒸发和凝聚,尤其是这种共价键固体的粗化机制相对应[R.M德国,Sintering Theory and Practice,John Wiley and Sons, 纽约,(1996)]。蒸发的气体类型是否是分子B4C或者该分子的片断还不清楚。 
在大约2140℃之上,致密化显著加速。在这个温度或者以上可能已形成杂质引起的晶界液体。更加可能的是,B4C的非化学计量的挥发将C留下(由X-射线衍射结果显示),通过增强的硼的晶界扩散和碳活化的烧结(R.M德国,Sintering Theory and Practice,JohnWiley and Sons,纽约,(1996))来促进烧结,抑制晶粒成长,保持相对短的扩散距离。 
用于减弱粗化过程而研究的方法 
在快速加热下经过1870-1950℃的范围,B2O3的析出速度加速,为发生有利于氧化物的颗粒长大留下更少的时间,并在快速加热下经过2010-2140℃的范围,使通过B4C的蒸发和凝聚而发生粗化的这段时间最短。快速加热使相对较小、高表面能的颗粒到达一个高温范围,在这个温度范围,液相烧结或者活化烧结比晶粒长大速度更快。 
在流动的He-H2中在大约1350℃下高温保温(随后加热到约2230℃并保温)的样品,由于通过反应H2(g)+B2O3(l)=H2O(g)+B2O2(g)而析出B2O3涂层,而显示出在密度上的显著增加。在继续加热之前需要将氢气从炉室中充分排除掉,否则氢气进入B4C颗粒的间隙位置会有利于增加B4C的蒸发/凝聚粗化,因此会相应降低最终密度。在大约1350℃用真空替代氢气的热处理允许在最终的密度中保留更多的晶粒,因此不用氢填充晶格间隙,真空在充分析出B2O3方面是有效的。 
图6概括了这些增加,应用市售等级粉末获得的无压烧结B4C的密度高到理论密度的至少97.1%。 
表2提供了本公开的各具体实施方式的说明性实施例。 
表2 
序号 生坯直径(mm) 单向压制压力(MPa) 冷等静压压力(MPa) 烧结温度(℃) 烧结时间(分钟) 浸水密度(%) HIP后浸水密度(%) 维氏硬度(kg/mm2)
1 6.41 300 W/T 2350 60 96.2 99.4 2560
2 6.41 300 W/T 2350 45 96.3 99.0 N/A
3 15.01 300 W/T 2350 60 96.0 99.7 N/A
4 44.45 250 W/T 2320 45 95.7 99.5 N/A
5 44.45 10 200 2320 60 93.2 99.7 N/A
6 44.45 10 200 2320 60 93.1 99.7 N/A
7 44.45 10 200 2350 60 93.0 99.8 N/A
8 44.45 10 413 2320 60 92.9 99.6 N/A
应该注意,本发明公开的上述实施方式只是为了清楚地理解本发明的原则而列出的可以实现的实施例。在未实际背离本发明的精神和原则的情况下,可以对上述各实施方式作许多改变和改进。所有这些改进和改变都旨在包括在本公开的范围内且受到下面权利要求的保护。 

Claims (19)

1.一种用于制备高密度元件的方法,包括:
提供具有至少60%相对密度且不含有烧结添加剂的碳化硼粉末;
将该碳化硼粉末成型为一元件;
加热炉子至1100~1400℃,保温30~120分钟,其中所述的成型元件以及H2/He混合气体位于该炉子内;
在1100~1400℃的温度下用120~480分钟对炉子进行真空净化;
以50~150℃/分钟的速度将该炉子加热到2300~2400℃,在没有烧结添加剂的情况下,利用无压烧结来充分烧结该元件;和
形成具有至少93%的相对密度和至少2000kg/mm2的维氏硬度的烧结元件。
2.如权利要求1所述的方法,还包括:
应用热等静压处理所述烧结元件;和
形成具有至少99%的相对密度和至少2500kg/mm2的维氏硬度的热等静压产品。
3.如权利要求2所述的方法,其中所述热等静压产品具有至少99.8%的相对密度。
4.如权利要求2所述的方法,其中应用热等静压对所述烧结元件的处理包括:
在200~500MPa的惰性气体中,以10~100℃/分钟的速度将热等静压炉加热到2000~2300℃,其中所述烧结元件放置在该热等静压炉中;
在该热等静压炉中高温保温所述烧结元件60~400分钟;和
以10~50℃/分钟的速度使所述热等静压炉冷却到室温的温度。
5.如权利要求1所述的方法,其中存在于加热炉子中的H2/He混合气体具有(10~90)∶1的H2/He比例。
6.如权利要求1所述的方法,其中净化还包括:
在0.01~20KPa压力的He气氛中净化所述炉子。
7.如权利要求1所述的方法,其中充分烧结包括:
通过以100℃/分钟的速度加热所述炉子,在没有烧结添加剂的情况下,通过无压烧结来充分烧结所述碳化硼粉末。
8.如权利要求1所述的方法,其中所述元件具有至少94.7%的相对密度和至少2300kg/mm2的维氏硬度。
9.如权利要求1所述的方法,其中所述元件具有至少96.6%的相对密度和至少2110kg/mm2的维氏硬度。
10.如权利要求1所述的方法,其中所述元件具有至少97.1%的相对密度和至少2300kg/mm2的维氏硬度。
11.利用权利要求3的方法形成的产品。
12.一种无压烧结并热等静压处理的碳化硼元件,
其通过无压烧结并随后热等静压处理一生坯而形成,所述生坯由不含有烧结添加剂的碳化硼粉末制成,并且所述元件具有至少99%的相对密度和至少2000kg/mm2的维氏硬度。
13.如权利要求12所述的元件,其中该元件具有至少99.8%的相对密度。
14.如权利要求12所述的元件,其中该元件具有至少2200kg/mm2的维氏硬度。
15.如权利要求12所述的元件,其中该元件具有至少2300kg/mm2的维氏硬度。
16.如权利要求12所述的元件,其中该元件具有至少2400kg/mm2的维氏硬度。
17.如权利要求12所述的元件,其中该元件具有至少2500kg/mm2的维氏硬度。
18.如权利要求12所述的元件,其中该元件选自基本上平的元件、基本上弯曲的元件、凹入的元件、凸出的元件和人体轮廓元件。
19.如权利要求12的元件,其中该元件应用于选自陆上交通工具、飞行器和海上交通工具的交通工具上。
CN200480016202XA 2003-06-12 2004-06-14 碳化硼元件及其制备方法 Expired - Fee Related CN1829668B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US47804503P 2003-06-12 2003-06-12
US60/478,045 2003-06-12
PCT/US2004/018821 WO2004110685A2 (en) 2003-06-12 2004-06-14 Processes and methods of making boron carbide and boron carbide components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100094893A Division CN101260002A (zh) 2003-06-12 2004-06-14 制备碳化硼和碳化硼元件的工艺和方法

Publications (2)

Publication Number Publication Date
CN1829668A CN1829668A (zh) 2006-09-06
CN1829668B true CN1829668B (zh) 2011-02-23

Family

ID=33551802

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200480016202XA Expired - Fee Related CN1829668B (zh) 2003-06-12 2004-06-14 碳化硼元件及其制备方法
CNA2008100094893A Pending CN101260002A (zh) 2003-06-12 2004-06-14 制备碳化硼和碳化硼元件的工艺和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2008100094893A Pending CN101260002A (zh) 2003-06-12 2004-06-14 制备碳化硼和碳化硼元件的工艺和方法

Country Status (7)

Country Link
US (3) US7592279B1 (zh)
EP (1) EP1641727A4 (zh)
JP (2) JP4464405B2 (zh)
KR (1) KR100906254B1 (zh)
CN (2) CN1829668B (zh)
IL (1) IL172451A (zh)
WO (1) WO2004110685A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377369B2 (en) * 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
EP1879630A2 (en) * 2005-04-11 2008-01-23 Georgia Tech Research Corporation Boron carbide component and methods for the manufacture thereof
US8223208B2 (en) 2005-11-10 2012-07-17 Motion Analysis Corporation Device and method for calibrating an imaging device for generating three dimensional surface models of moving objects
US20100184583A1 (en) * 2007-06-15 2010-07-22 Takeshi Kumazawa Dense boron carbide ceramic and process for producing the same
US20120186425A1 (en) * 2008-11-24 2012-07-26 Ideal Innovations, Inc. Embedding particle armor for vehicles
CN102464490B (zh) * 2010-11-17 2013-06-12 东北大学 一种碳化硼基陶瓷复合材料的制备方法
KR101557908B1 (ko) 2010-12-28 2015-10-06 버코 머티리얼즈 엘엘씨 탄화붕소계 물질 및 그것의 제작방법
CN103113108B (zh) * 2013-04-03 2015-11-18 常熟佳合高级陶瓷材料有限公司 一种碳化硼陶瓷的制备方法
CN105732047B (zh) * 2014-12-08 2018-06-26 北京市射线应用研究中心 一种中子过滤材料及其制备方法
US9677858B1 (en) * 2015-05-18 2017-06-13 Verco Materials, Llc Method for wrapping of ceramic tiles for armor applications, a wrapped ceramic tile for armor applications and an armor system constructed with a wrapped ceramic tile for armor applications
CN108675793A (zh) * 2018-03-21 2018-10-19 北京清核材料科技有限公司 一种碳化硼陶瓷的二次烧结方法
CN108911754A (zh) * 2018-09-29 2018-11-30 吉林长玉特陶新材料技术股份有限公司 一种干法常压烧结制备碳化硼陶瓷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195066A (en) * 1977-11-22 1980-03-25 Elektroschmelzwerk Kempten Gmbh Process for the production of dense sintered shaped articles of polycrystalline boron carbide by pressureless sintering
US4524138A (en) * 1982-05-13 1985-06-18 Elektroschmelzwerk Kempten Gmbh Substantially pore-free sintered polycrystalline articles of α-silicon carbide, boron carbide and free carbon and process for their manufacture
EP0239789A2 (en) * 1986-02-28 1987-10-07 Asea Cerama Ab Method of manufacturing bodies of boron carbide
US5545687A (en) * 1990-02-21 1996-08-13 Dow Corning Corporation Preparation of high density boron carbide ceramics with preceramic polymer binders

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2027786A (en) 1933-10-20 1936-01-14 Norton Co Method of making boron carbide articles
US4104062A (en) 1969-08-13 1978-08-01 Norton Company Process for making aluminum modified boron carbide and products resulting therefrom
US3914371A (en) * 1973-12-27 1975-10-21 Us Energy Method for preparing boron-carbide articles
US4005235A (en) 1975-11-17 1977-01-25 General Electric Company Dense sintered boron carbide containing beryllium carbide
DE3201563A1 (de) 1982-01-20 1983-07-28 Elektroschmelzwerk Kempten GmbH, 8000 München Dichte formkoerper aus polykristallinem, hexagonalem bornitrid und verfahren zu ihrer herstellung durch isostatisches heisspressen
JPS59162180A (ja) * 1983-03-04 1984-09-13 日本タングステン株式会社 緻密で微細な結晶構造を有する炭化ほう素焼結体およびその製造方法
JPS62153166A (ja) * 1985-12-27 1987-07-08 旭硝子株式会社 B↓4c系複合焼結体
US4804525A (en) 1986-04-14 1989-02-14 The Dow Chemical Company Producing boron carbide
US4704250A (en) 1986-11-04 1987-11-03 The United States Of America As Represented By The United States Department Of Energy Method for making boron carbide cermets
JPS63156068A (ja) 1986-12-18 1988-06-29 富士通株式会社 炭化ほう素−炭化けい素複合焼結体の製法
JP2672136B2 (ja) 1987-03-23 1997-11-05 ザ・オーストラリアン・ナショナル・ユニバーシティ ダイヤモンドコンパクト
KR910002578B1 (ko) 1988-01-19 1991-04-27 닙폰 가이시 카부시키카이샤 고밀도 SiC 소결체의 제조방법
US4879165A (en) 1988-06-20 1989-11-07 Smith W Novis Lightweight armor
US4946808A (en) 1988-11-10 1990-08-07 Ceramics Process Systems Corporation Method for preparing dense, pressureless sintered SiC whisker reinforced composite ceramics
US5348694A (en) 1988-12-20 1994-09-20 Superior Graphite Co. Method for electroconsolidation of a preformed particulate workpiece
US5182059A (en) 1989-01-17 1993-01-26 Ngk Insulators, Ltd. Process for producing high density SiC sintered bodies
GB8926455D0 (en) 1989-11-23 1990-05-30 T & N Technology Ltd Manufacture of shaped articles from sinterable powder
JPH06508339A (ja) 1991-06-17 1994-09-22 アライド−シグナル・インコーポレーテッド 高靱性−高強度焼結窒化ケイ素
NL9201931A (nl) * 1992-11-05 1994-06-01 Dsm Nv Werkwijze voor de dimerisatie van een geconjungeerd diëen.
DE4319460A1 (de) 1993-06-11 1994-12-15 Kempten Elektroschmelz Gmbh Verbundwerkstoffe auf der Basis von Borcarbid, Titandiborid und elementarem Kohlenstoff sowie Verfahren zu ihrer Herstellung
DE4320102A1 (de) 1993-06-17 1994-12-22 Kempten Elektroschmelz Gmbh Verfahren zur Herstellung von polykristallinen dichten Formkörpern auf der Basis von Borcarbid durch drucklose Sinterung
US5523268A (en) 1993-12-22 1996-06-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon nitride sintered body
GB9418817D0 (en) * 1994-09-19 1994-11-09 Secr Defence Sintered boron carbide articles
US5720910A (en) 1995-07-26 1998-02-24 Vlajic; Milan D. Process for the production of dense boron carbide and transition metal carbides
US6203908B1 (en) 1996-08-26 2001-03-20 Michael Cohen Composite armor
JPH10106875A (ja) 1996-09-30 1998-04-24 Tokin Corp 希土類磁石の製造方法
US6315945B1 (en) 1997-07-16 2001-11-13 The Dow Chemical Company Method to form dense complex shaped articles
DE19736560C2 (de) * 1997-08-22 2002-01-24 Daimler Chrysler Ag Verfahren zur Herstellung eines porösen Körpers, Körper aus SiC, sowie Verwendung des porösen Körpers
JP3500278B2 (ja) * 1997-09-29 2004-02-23 京セラ株式会社 半導体製造用耐食性部材
JP3667062B2 (ja) * 1997-12-01 2005-07-06 京セラ株式会社 炭化ホウ素焼結体の製造方法
EP0967453A1 (en) 1998-06-25 1999-12-29 Armortec Incorporated Flexible, impact-resistant materials
JP3667121B2 (ja) * 1998-11-17 2005-07-06 京セラ株式会社 炭化ホウ素焼結体およびその製造方法
US6001304A (en) 1998-12-31 1999-12-14 Materials Modification, Inc. Method of bonding a particle material to near theoretical density
US6699450B2 (en) 1999-01-08 2004-03-02 Redunndant Materials, Inc. Carbide material by electromagnetic processing
GB2349601A (en) 1999-05-07 2000-11-08 Secr Defence Boron carbide cast bodies
JP2001122665A (ja) 1999-10-27 2001-05-08 Denki Kagaku Kogyo Kk 炭化ほう素常圧焼結体の製造方法
JP2001247366A (ja) * 2000-03-06 2001-09-11 Denki Kagaku Kogyo Kk 炭化硼素焼結体及びその製造方法
ATE350358T1 (de) 2000-09-29 2007-01-15 Goodrich Corp Verbundwerkstoffe mit keramischer matrix auf borcarbidbasis
EP1399396A2 (en) 2000-11-21 2004-03-24 M Cubed Technologies Inc. Boron carbide composite bodies, and methods for making same
DE10135485A1 (de) 2001-07-20 2003-02-06 Schwaebische Huettenwerke Gmbh Verfahren zur endkonturnahen Fertigung von Bauteilen bzw. Halbzeugen aus schwer zerspanbaren Leichtmetalllegierungen, und Bauteil bzw. Halbzeug, hergestellt durch das Verfahren
US6860186B2 (en) 2002-09-19 2005-03-01 Michael Cohen Ceramic bodies and ballistic armor incorporating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195066A (en) * 1977-11-22 1980-03-25 Elektroschmelzwerk Kempten Gmbh Process for the production of dense sintered shaped articles of polycrystalline boron carbide by pressureless sintering
US4524138A (en) * 1982-05-13 1985-06-18 Elektroschmelzwerk Kempten Gmbh Substantially pore-free sintered polycrystalline articles of α-silicon carbide, boron carbide and free carbon and process for their manufacture
EP0239789A2 (en) * 1986-02-28 1987-10-07 Asea Cerama Ab Method of manufacturing bodies of boron carbide
US5545687A (en) * 1990-02-21 1996-08-13 Dow Corning Corporation Preparation of high density boron carbide ceramics with preceramic polymer binders

Also Published As

Publication number Publication date
JP2007504095A (ja) 2007-03-01
IL172451A (en) 2011-11-30
WO2004110685A3 (en) 2005-04-14
US20090026665A1 (en) 2009-01-29
JP2009221103A (ja) 2009-10-01
US7517491B2 (en) 2009-04-14
EP1641727A4 (en) 2009-04-01
IL172451A0 (en) 2006-04-10
WO2004110685A2 (en) 2004-12-23
US20100032874A1 (en) 2010-02-11
US7592279B1 (en) 2009-09-22
CN1829668A (zh) 2006-09-06
CN101260002A (zh) 2008-09-10
EP1641727A2 (en) 2006-04-05
KR100906254B1 (ko) 2009-07-07
KR20060065582A (ko) 2006-06-14
JP4464405B2 (ja) 2010-05-19

Similar Documents

Publication Publication Date Title
US7517491B2 (en) Processes and methods of making boron carbide
US9822040B1 (en) Pressureless sintering-based method for making a two-phase ceramic composite body
CN107721406B (zh) 一种制备高透光性镁铝尖晶石透明陶瓷的方法
US7662736B2 (en) High thermally conductive aluminum nitride sintered product
JP3100871B2 (ja) 窒化アルミニウム焼結体
CN108640687A (zh) 一种碳化硼/碳化硅复相陶瓷及其制备方法
US7854190B2 (en) Boron carbide component and methods for the manufacture thereof
KR20070097530A (ko) 밀도와 경도가 향상되고 무가압 소결 및 후 열간(後熱間)정수압 소결(post-HIP)시킨 B₄C
KR20200112008A (ko) 붕소화지르코늄이 포함된 탄화규소 방탄 세라믹 및 이의 제조방법
CN112939606B (zh) 一种多孔碳化硅陶瓷及其制备方法
US5229046A (en) Process for producing thermal shock-resistant silicon nitride sintered material
KR20020019129A (ko) 고온강도가 향상된 탄화규소 소재 및 그의 제조방법
CN110028320A (zh) 一种碳化硼陶瓷材料及其制备方法
JP2003002760A (ja) セラミックス多孔体の製造方法
CN112441838B (zh) 一种表面晶粒定向生长的氮化硅陶瓷及其制备方法
JPH1121175A (ja) 窒化珪素質焼結体
KR100503352B1 (ko) 치밀한 탄화규소계 세라믹스의 제조방법
Wang et al. The microstructure of pressureless sintered silver-toughened alumina: an in situ TEM study
EP0335525A1 (en) Armour plate material
JPS6241773A (ja) 複合セラミツクスの製造法
JP2697090B2 (ja) 窒化珪素焼結体の製造方法
JPH09227233A (ja) 炭化けい素焼結体の製造方法
GB1427251A (en) High energy absorption-porous beryllium and the process for producing it
Jeong et al. INFLUENCE OF SINTERING CONDITION ON CHARACTERISTICS OF ALPHA-SiC CERAMICS
JPH046166A (ja) 高靭性セラミックスの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110223

Termination date: 20160614