CN1741263A - 制造半导体器件的方法以及一种半导体衬底 - Google Patents

制造半导体器件的方法以及一种半导体衬底 Download PDF

Info

Publication number
CN1741263A
CN1741263A CNA2005101098493A CN200510109849A CN1741263A CN 1741263 A CN1741263 A CN 1741263A CN A2005101098493 A CNA2005101098493 A CN A2005101098493A CN 200510109849 A CN200510109849 A CN 200510109849A CN 1741263 A CN1741263 A CN 1741263A
Authority
CN
China
Prior art keywords
substrate
film
etching
oxide
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101098493A
Other languages
English (en)
Other versions
CN100452345C (zh
Inventor
宫崎邦浩
松尾弘之
中岛俊贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Toshiba Corp
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Seiko Epson Corp filed Critical Toshiba Corp
Publication of CN1741263A publication Critical patent/CN1741263A/zh
Application granted granted Critical
Publication of CN100452345C publication Critical patent/CN100452345C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3085Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Element Separation (AREA)
  • Weting (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种制造半导体器件的方法。在所述方法中,在具有(100)向晶面的硅(Si)衬底(11)上形成薄膜(12),去除位于元件隔离区上的所述薄膜(12)的部分。然后,通过利用所述薄膜(12)作为掩膜以及氢氟酸和臭氧水的混合溶液,对所述Si衬底(11)进行选择性蚀刻,在所述衬底(11)中形成沟槽(15)以隔离元件。

Description

制造半导体器件的方法以及一种半导体衬底
技术领域
本发明涉及一种制造半导体器件的方法。更具体地说,本发明涉及一种半导体器件的方法,其中改善了形成元件隔离区的工艺和处理衬底表面的步骤。本发明也涉及一种通过实施本方法形成的半导体衬底。
背景技术
为制造半导体器件,必须在衬底中形成元件隔离区以使元件相互隔离。为形成浅沟槽隔离(STI)区,即一种元件隔离区隔离,在多数情况下要进行反应离子蚀刻(RIE)。
更具体地说,将硅(Si)衬底的表面氧化,形成薄氧化膜,在该薄氧化膜上沉积氮化硅(SiN)膜,在氮化硅膜上沉积氧化膜(TEOS)。利用抗蚀剂图形作为掩膜,在TEOS膜上进行选择性RIE。接下来,利用TEOS膜作为掩膜,蚀刻氮化膜。然后,利用氮化膜作为掩膜,蚀刻薄氧化膜和Si衬底。此后,去除氮化膜的不必要部分和位于氮化膜下的氧化膜的不必要部分。然后,沉积绝缘膜并埋入在衬底中形成的STI区中。(见日本专利申请公开号2003-51536。)
这种方法在许多方面有弊端。首先,必须进行许多步骤以形成元件隔离区。可不进行形成TEOS膜的步骤。即使在这种情况下,应进行的步骤仍然很多。其次,当对Si衬底进行干法蚀刻,例如RIE时,在Si衬底中产生等离子损伤。如果在任何元件隔离区的侧面留有这种损伤,其将恶化晶体管的性能。为了防止性能的恶化,在STI区中埋入绝缘膜前可进行消除损伤的步骤。这增加了步骤的数量。
为了增加电容器的有效面积,通过与形成STI区的步骤相同的方法处理Si衬底,形成沟槽电容器。在这种情况下,也不可避免地增加了制造步骤的数量。
如上所述,常规方法在两方面有弊端。首先,为形成元件隔离区例如STI区,或者为处理Si衬底的表面以形成沟槽电容器,必须进行许多步骤。其次,由于RIE在衬底中产生的损伤恶化了元件的性能。
发明内容
根据本发明的一方面,提供一种制造半导体器件的方法,包括以下步骤:
在Si衬底的主表面上形成薄膜,所述主表面具有(100)向晶面;
去除位于元件隔离区上的所述薄膜的部分;以及
通过利用所述薄膜作为掩膜,并通过利用氢氟酸和臭氧水的混合溶液,在所述Si衬底上进行选择性蚀刻,从而在所述Si衬底中形成元件隔离沟槽。
根据本发明的另一方面,提供一种制造半导体器件的方法,包括以下步骤:
在Si衬底的主表面上形成薄膜,所述主表面具有(100)向晶面;
去除位于所述Si衬底将增大有效主表面面积的区域上的所述薄膜的部分;以及
通过利用所述薄膜作为掩膜,并通过利用氢氟酸和臭氧水的混合溶液,在所述Si衬底上进行选择性蚀刻,从而增大所述Si衬底的有效主表面面积。
根据本发明的又一方面,提供一种半导体衬底,包括:
Si衬底,具有(100)向晶面的主表面,其中的一部分被部分蚀刻,形成条状图形和(110)向晶面的倾斜表面。
附图说明
图1A至图1E是截面图,说明了根据本发明的第一实施例制造半导体器件的一些步骤;
图2是表示氢氟酸浓度与氧化膜的蚀刻速率之间的关系的图;
图3是说明氢氟酸浓度与Si衬底的蚀刻速率之间的关系的图;
图4是示出了臭氧水浓度与Si衬底的蚀刻速率之间的关系的图;
图5是示出了Si衬底可能具有的表面粗糙度的不同值的图;
图6A至图6C是示出了在不同晶向观测到的截面TEM图像的示意图;
图7A至图7C是截面图,说明了根据本发明的第二实施例制造半导体器件的一些步骤;
图8是透视图,画出了根据本发明的第三实施例的半导体器件的轮廓;
图9是截面图,画出了根据本发明的第三实施例的半导体器件的轮廓。
具体实施方式
下面将参考附图描述本发明的实施例。
(第一实施例)
图1A至图1E是截面图,说明了根据本发明的第一实施例制造半导体器件的一些步骤。
首先,如图1A所示,氧化具有(100)向晶面(主表面)的Si衬底11,形成具有预定厚度的氧化膜12。调整氧化膜12的厚度,以在蚀刻Si衬底11后留下剩余部分。更具体地说,根据将在Si衬底11中形成的STI区的深度、蚀刻氧化膜的速率和蚀刻Si衬底的速率来调整该厚度。
如图1B所示,在氧化膜12上形成抗蚀剂图形13。抗蚀剂图形13具有开口,该开口暴露膜12的部分,应在Si衬底11中膜12的该部分下形成STI。更具体地说,在氧化膜12上形成抗蚀剂膜,根据元件隔离区的图形曝光,并进行显影处理。结果,形成了抗蚀剂图形13。
如图1C所示,通过利用抗蚀剂图形13作为掩膜,在氧化膜12上进行选择性蚀刻。选择性蚀刻可以是干法蚀刻,例如RIE,或者湿法蚀刻。如果是各向同性蚀刻,抗蚀剂图形13的开口必须是使元件隔离区具有希望的宽度的尺寸。
如图1D所示,在图形13已用于处理氧化膜12后,去除抗蚀剂图形13。去除抗蚀剂图形13的方法可以是灰化处理或者利用硫酸和过氧化氢的混合溶液的常规处理,或它们的结合。
如图1E所示,通过利用氧化膜12作为掩膜,并且施加浓度为0.05%至2%的氢氟酸和浓度为3至20ppm的臭氧水的混合溶液,在Si衬底11上进行蚀刻。该蚀刻形成STI区15。通过施加氢氟酸,去除已用作掩膜蚀刻Si衬底11的氧化膜12。从而,完成形成STI区的工艺。
随后进行另一工艺,在STI区15中埋入氧化膜等。该氧化膜用作元件隔离绝缘膜。注意,定义混合溶液中氢氟酸浓度的“%”是重量百分比(wt%)。
图2至图4示出了用氢氟酸和臭氧水的混合溶液蚀刻热氧化膜和Si衬底的速率。
如图2所示,氢氟酸的浓度越高,热氧化膜的蚀刻速率越高。因此,热氧化膜的蚀刻速率取决于氢氟酸的浓度。相反地,Si衬底的蚀刻速率不随氢氟酸的浓度改变而改变,如图3所示。也就是说,Si衬底的蚀刻速率不取决于氢氟酸的浓度。如图4所示,当用氢氟酸和臭氧水的混合溶液蚀刻衬底时,Si衬底的蚀刻速率随着臭氧水的浓度增加而增大。换句话说,Si衬底的蚀刻速率取决于臭氧水的浓度。
因此,通过为氢氟酸的浓度和臭氧水的浓度选择适合的值,可将热氧化膜和Si衬底的蚀刻速率设定为期望值。
例如,浓度为0.65%的氢氟酸和浓度为10ppm的臭氧水的混合溶液可以用作蚀刻剂。在这种情况下,以约4nm/min蚀刻用作掩膜的热氧化膜,以33nm/min蚀刻Si衬底。由于在Si衬底上进行的蚀刻是各向异性的,所以在水平方向几乎不进行蚀刻。因此,Si衬底将具有梯形截面。衬底在水平方向蚀刻的距离与热氧化膜在水平方向蚀刻的距离几乎相同。
实际上,氢氟酸的浓度范围从0.05%至2%,臭氧水的浓度范围从3ppm至20ppm。热氧化膜的蚀刻速率约为0.5至13nm/min,Si衬底的蚀刻速率约为15至100nm/min。因此,为了增大氧化膜和Si衬底之间的蚀刻速率的差异,氢氟酸和臭氧水的浓度分别设定为0.05%和20ppm。相反地,为了减小这种差异,氢氟酸和臭氧水的浓度分别设定为2%和3ppm。
利用氢氟酸和臭氧水的混合溶液的蚀刻可以批处理或逐一处理地进行。在批处理中,将半导体衬底浸入混合溶液中。在逐一处理中,从喷嘴逐一向衬底施加混合溶液。只要氢氟酸和臭氧水的浓度落入上述特定范围,蚀刻就以不断地产生臭氧、废弃使用的溶液的顺序进行,或者在将臭氧溶解进循环的氢氟酸溶液的循环系统中进行。在冲净氢氟酸和臭氧水的混合溶液后,半导体衬底用水清洗并且通过干燥机干燥。然后,从半导体衬底去除用作掩膜的氧化膜,对该半导体衬底进行下一个制造步骤。
假定掩膜如此薄,以致该掩膜在利用氢氟酸和臭氧水的混合溶液的蚀刻过程中被完全去除。从而,可省略去除氧化膜的步骤。为了通过蚀刻Si衬底至例如300nm的深度形成STI区,形成具有20nm厚度的氧化膜以用作掩膜,并用浓度为0.3%的氢氟酸和浓度为15ppm的臭氧水的溶液处理八(8)分钟。从而在蚀刻结束时完全去除掩膜。得到的STI区具有期望的300nm的深度。
如上面指出,可以将半导体衬底浸入混合溶液批处理地进行蚀刻,或者从喷嘴逐一地向半导体衬底施加混合溶液逐一处理地进行蚀刻。如果处理时间相当长,优选批处理,因为批处理更有效。在半导体衬底用混合溶液处理后,将其用水冲洗,从其上去除溶液。随后,将半导体衬底烘干,进行下一个制造步骤。
在本实施例中,使用氢氟酸和臭氧水的混合溶液,通过利用氧化膜作掩膜蚀刻Si衬底。因此不必如常规方法中必需的形成氮化膜、在氮化膜上进行构图,或者去除构图的氮化膜。因此,本实施例可缩短制造半导体器件的时间。仅当氢氟酸浓度和臭氧水浓度设定为最优值时,Si衬底的蚀刻速率与热氧化膜的蚀刻速率的比率增大到足够的值。并且,因为在Si衬底中没有产生进行RIE导致的等离子损伤,所以本实施例可以提高元件的可靠性。
本实施例可以降低Si衬底的表面粗糙度。这是因为本实施例向Si衬底施加氢氟酸和臭氧水的混合溶液,从而蚀刻Si衬底的表面。
图5是示出了测得的Si衬底表面粗糙度的不同值的图。没有用氢氟酸和臭氧水的混合溶液蚀刻的裸Si衬底具有0.18的表面粗糙度Ra。用混合溶液蚀刻后,Si衬底呈现0.14的表面粗糙度Ra;其表面粗糙度降低了。当裸Si衬底用氨水和过氧化氢溶液的混合溶液(APM)蚀刻时,其表面粗糙度Ra变为2或更大;其表面粗糙度增加了。
通过利用氢氟酸和臭氧水的混合溶液,在Si衬底上进行的蚀刻变成各向异性。这是当Si衬底具有(100)向晶面(主表面)时可观测到的特殊现象。如果Si衬底具有(111)向晶面或者(110)向晶面,蚀刻将不是各向异性。
图6A至图6C示出了在用氢氟酸和臭氧水的混合溶液沿不同的晶向蚀刻Si衬底的情况下观测到的截面TEM图像的示意图。
对Si衬底进行利用氧化膜作为掩膜的选择性蚀刻。在这些衬底中,具有(100)向晶面的Si衬底受到各向异性蚀刻,而非各向同性蚀刻。结果,如图6A所示,露出衬底的(110)面。
相反地,如图6B所示,具有(110)向晶面的Si衬底受到各向同性蚀刻。蚀刻速率很小,并且发生侧向蚀刻。如图6C所示,具有(111)向晶面的Si衬底也受到各向同性蚀刻。蚀刻速率小于图6B所示的情况,并且发生侧向蚀刻。
本实施例的特征不仅在于利用氢氟酸和臭氧水的混合溶液,而且在于所述Si衬底具有(100)向晶面。为形成元件隔离区需进行的步骤数量小于其它方法。此外,形成的元件隔离区具有期望的形状,没有侧向蚀刻部分。因此,本实施例可以降低半导体器件的制造成本,从而提高其元件的可靠性。
(第二实施例)
图7A至图7C是截面图,说明了根据本发明的第二实施例制造半导体器件的一些步骤。更具体地说,它们说明了具有三维结构的电容器的制造方法。
首先,如图7A所示,氧化具有(100)向晶面的Si衬底的表面,形成2.5nm厚的氧化膜22。然后,与第一实施例一样,对氧化膜22进行其中利用抗蚀剂图形(未示出)的选择性蚀刻。从而形成线与间隙的图形。该图形由线(即开口)和间隙(即氧化膜条)构成。线具有75nm的宽度,间隙具有45nm的宽度。
接下来,如图7B所示,利用氧化膜22作为掩膜,施加氢氟酸和臭氧水的混合溶液,这样在Si衬底21上进行选择性蚀刻。从而在Si衬底21中形成具有40nm的深度的沟槽25。沟槽25底部宽40nm,顶部宽80nm。氢氟酸的浓度和臭氧水的浓度设定为与第一实施例一样的适当的值。从而在蚀刻结束时完全去除氧化膜22。
如图7C所示,在Si衬底21的表面上形成绝缘膜26以提供电容器。随后,沉积填充沟槽25的多晶硅膜27。
为了在Si衬底21的表面中形成沟槽,与在第一实施例一样,向Si衬底21的表面施加氢氟酸和臭氧水的混合溶液。随后,形成杂质扩散区和绝缘膜,沉积多晶硅层(电极),从而增大电容器的有效面积。进行随后的与常规的半导体器件制造相同的制造步骤。因为其表面用氢氟酸和臭氧水的混合溶液处理,所以Si衬底21没有损伤。所以不需要进行消除损伤的任何步骤。为形成电容器应进行的步骤的数量小于其它方法。并且,很容易增大电容器的有效面积。
用作掩膜的氧化膜22可具有2.5nm的厚度。在这种情况下,如果用浓度为0.3%的氢氟酸和浓度为15ppm的臭氧水的混合溶液处理一分钟,可完全去除掩膜。从而,形成具有40nm高度的阶梯形部分。在阶梯形部分可形成半导体元件,例如电容器。这有助于将有效面积增大1.5倍或更高。
可批处理或逐一处理地进行蚀刻。在批处理中,将半导体衬底浸入混合溶液中。在逐一处理中,从喷嘴逐一向衬底施加混合溶液。在半导体衬底用氢氟酸和臭氧水的混合溶液处理后,用水冲洗该半导体衬底,从其上去除溶液。随后,将半导体衬底烘干,进行下一个制造步骤。
在本实施例中,为了提供沟槽电容器,用氢氟酸和臭氧水的混合溶液蚀刻具有(100)向晶面的Si衬底21。因此,可以在不损伤衬底12的情况下,在衬底21的表面中形成沟槽,从而可增大衬底21的有效表面面积。这样,为形成沟槽电容,用少于其它方法的步骤,处理Si衬底的表面,并且在处理衬底时,在衬底中没有产生损伤。因此,本实施例可以降低半导体器件的制造成本,提高其元件的可靠性。
(第三实施例)
图8和图9示意性地说明了根据本发明的第三实施例的半导体器件。图8是透视图,图9是沿着栅极纵向延伸的方向截取的截面图。
本实施例涉及用作功率元件,例如IGBT的MOSFET。本实施例的特征在于有效元件面积的增大。
在具有(100)向晶面的Si衬底31的表面中刻出具有(110)面侧面的沟道35。沟道35可以如图7A和图7B所示的相同方法形成。在衬底31的表面上设置栅绝缘膜36。在栅绝缘膜36上形成栅电极37。在衬底31的表面中设置源漏区38。更具体地说,在衬底31中形成源区38a和漏区38b,通过位于栅电极37下的区域相互隔离。如图9所示,在栅电极37的侧面形成侧向绝缘膜39。为了清楚地示出元件结构,图8中没有显示出侧向绝缘膜39。
该结构的优点在于栅电极37具有大的有效宽度,虽然它看来没有如上面图所示的那么长和那么宽。因此,与常规的MOSFET相比,在源与漏之间可以流过更大的电流。希望栅绝缘膜36由具有高介电常数的材料制成。栅电极37不必由多晶硅制成。其可以是金属栅。
在本实施例中,也可以通过用氢氟酸和臭氧水的混合溶液蚀刻具有(100)向晶面的衬底31,在不损伤衬底31的情况下,在衬底31的表面中形成沟槽。因此可以增大衬底的有效表面面积。与第二实施例一样,可以数量少的步骤处理Si衬底,并且在衬底的处理过程中在衬底中没有产生损伤。这降低了MOSFET的制造成本,提高了其可靠性。可以同样的方法形成接触孔。然后,可增大有效的接触表面面积,以降低接触电阻。
(修改)
本发明不限于上述实施例。在上述各实施例中,Si衬底具有(100)向晶面。此外,在本发明中可以利用绝缘体上硅(SOI)衬底。SOI衬底可以用氢氟酸和臭氧水的混合溶液蚀刻,直到露出氧化物底层。这样,可以容易地实现元件隔离。因为氧化物具有比硅低得多的蚀刻速率,因此氧化物底层可以用作蚀刻停止层,这可增大处理余地。因此可以制造更高性能的半导体元件。
此外,在Si衬底上形成的薄膜不限于氧化膜。还可以利用任何具有低于Si衬底蚀刻速率的其它材料的膜。并且,氢氟酸和臭氧水的浓度,即混合溶液的组分,可以根据需要改变,与薄膜(用作掩膜)的蚀刻速率与Si衬底的蚀刻速率之间的比率一致。此外,氢氟酸和臭氧水的混合溶液可以用氢氟酸溶液代替,其可去除用作掩膜的氧化膜。
对于本领域的技术人员来说,其它的优点和修改将是显而易见的。因此,本发明在其更宽范围内并不限于在此示出和说明的具体细节和代表性实施例。因此,只要不脱离所附权利要求书和其等同替换限定的总发明构思的精神或范围,可以进行各种修改。

Claims (17)

1.一种制造半导体器件的方法,其特征在于包括以下步骤:
在硅(Si)衬底(11)的主表面上形成薄膜(12),所述主表面具有(100)向晶面;
去除位于元件隔离区上的所述薄膜(12)的部分;以及
通过利用所述薄膜(12)作为掩膜,并通过利用氢氟酸和臭氧水的混合溶液,在所述Si衬底上进行选择性蚀刻,从而在所述Si衬底(11)中形成元件隔离沟槽(15)。
2.根据权利要求1的方法,其特征在于,所述薄膜(12)是通过热氧化所述Si衬底(11)形成的氧化膜。
3.根据权利要求2的方法,其特征在于,在蚀刻所述Si衬底(11)时,以低于所述Si衬底(11)的速率蚀刻所述氧化膜(12),并且所述氧化膜(12)具有这样的厚度,当所述Si衬底(11)的蚀刻完成时,所述氧化膜(12)被蚀刻掉。
4.根据权利要求1的方法,其特征在于,在所述混合溶液中,氢氟酸和臭氧水分别具有0.05至2wt%和3至20ppm的浓度。
5.根据权利要求1的方法,其特征在于,为了去除位于元件隔离区上的所述薄膜(12)的部分,在所述薄膜(12)上形成抗蚀剂图形(13),通过利用所述抗蚀剂图形(13)作为掩膜,在所述薄膜(12)上进行选择性蚀刻,并且在进行所述选择性蚀刻后,去除所述抗蚀剂图形。
6.根据权利要求1的方法,其特征在于,通过利用氢氟酸和臭氧水的所述混合溶液,对所述Si衬底(11)进行选择性各向异性蚀刻,直到在所述Si衬底(11)的侧面露出(110)面。
7.一种制造半导体器件的方法,其特征在于包括以下步骤:
在Si衬底(21)的主表面上形成薄膜(22),所述主表面具有(100)向晶面;
去除位于所述Si衬底(21)将增大有效主表面面积的区域上的所述薄膜(22)的部分;以及
通过利用所述薄膜(22)作为掩膜,并通过利用氢氟酸和臭氧水的混合溶液,在所述Si衬底(21)上进行选择性蚀刻,从而增大所述Si衬底(21)的有效主表面面积。
8.根据权利要求7的方法,其特征在于,所述薄膜(22)是通过热氧化所述Si衬底(21)形成的氧化膜。
9.根据权利要求8的方法,其特征在于,在蚀刻所述Si衬底(21)时,以低于所述Si衬底(21)的速率蚀刻所述氧化膜(22),并且所述氧化膜(22)具有这样的厚度,当所述Si衬底(21)的蚀刻完成时,所述氧化膜(22)被蚀刻掉。
10.根据权利要求7的方法,其特征在于,在所述混合溶液中,氢氟酸和臭氧水分别具有0.05至2wt%和3至20ppm的浓度。
11.根据权利要求7的方法,其特征在于,为了去除位于所述Si衬底(21)将增大有效主表面面积的部分上的所述薄膜(22)的部分,在所述薄膜(22)上形成抗蚀剂图形,通过利用所述抗蚀剂图形作为掩膜,在所述薄膜(22)上进行选择性蚀刻,并且在进行所述选择性蚀刻后,去除所述抗蚀剂图形。
12.根据权利要求7的方法,其特征在于,通过利用氢氟酸和臭氧水的所述混合溶液,对所述Si衬底(21)进行选择性各向异性蚀刻,直到在所述Si衬底(21)的侧面露出(110)面。
13.根据权利要求7的方法,其特征在于,部分去除所述薄膜(22),从而形成线-开口图形。
14.根据权利要求7的方法,其特征在于,部分去除所述薄膜(22),从而形成线与间隙图形。
15.根据权利要求7的方法,其特征在于还包括以下步骤:在使有效主表面面积增大的所述衬底(21)的所述主表面上形成电容器-绝缘膜(26);以及在所述电容器-绝缘膜(26)上形成电容器电极(27)。
16.根据权利要求7的方法,其特征在于还包括以下步骤:在使有效主表面面积增大的所述衬底(31)的所述主表面上形成栅-绝缘膜(36);以及在所述栅-绝缘膜(36)上形成栅电极(37)。
17.一种半导体衬底,其特征在于包括:
Si衬底(21),具有(100)向晶面的主表面,所述主表面具有以条状图形的形式蚀刻的部分,并且在所述蚀刻的部分具有(110)向晶面的倾斜表面。
CNB2005101098493A 2004-08-27 2005-08-26 制造半导体器件的方法以及一种半导体衬底 Expired - Fee Related CN100452345C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP248957/2004 2004-08-27
JP2004248957A JP2006066726A (ja) 2004-08-27 2004-08-27 半導体装置の製造方法及び半導体基板

Publications (2)

Publication Number Publication Date
CN1741263A true CN1741263A (zh) 2006-03-01
CN100452345C CN100452345C (zh) 2009-01-14

Family

ID=35943914

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101098493A Expired - Fee Related CN100452345C (zh) 2004-08-27 2005-08-26 制造半导体器件的方法以及一种半导体衬底

Country Status (5)

Country Link
US (1) US7439183B2 (zh)
JP (1) JP2006066726A (zh)
KR (1) KR100693237B1 (zh)
CN (1) CN100452345C (zh)
TW (1) TWI279859B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330089A (zh) * 2010-07-14 2012-01-25 中国科学院微电子研究所 硅片打孔系统及方法
CN102347349A (zh) * 2010-07-28 2012-02-08 中国科学院微电子研究所 半导体结构及其制作方法
CN102361011A (zh) * 2008-06-11 2012-02-22 美格纳半导体有限会社 形成半导体器件的栅极的方法
CN106990461A (zh) * 2016-01-20 2017-07-28 上海新微技术研发中心有限公司 一种直角顶角硅阶梯光栅及其制造方法
CN108447774A (zh) * 2018-03-29 2018-08-24 睿力集成电路有限公司 同时去除热氧化膜和去除沉积氧化膜的方法及设备
CN109795977A (zh) * 2017-11-16 2019-05-24 上海新微技术研发中心有限公司 一种在薄膜中形成斜面的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200625437A (en) * 2004-12-30 2006-07-16 Macronix Int Co Ltd Shallow trench isolation process of forming smooth edge angle by cleaning procedure
US7566949B2 (en) * 2006-04-28 2009-07-28 International Business Machines Corporation High performance 3D FET structures, and methods for forming the same using preferential crystallographic etching
KR100869845B1 (ko) * 2006-12-04 2008-11-21 주식회사 하이닉스반도체 산화막 패턴의 형성 방법 및 이를 이용한 반도체 소자의패터닝 방법
US7776713B2 (en) * 2007-05-30 2010-08-17 Macronix International Co., Ltd. Etching solution, method of surface modification of semiconductor substrate and method of forming shallow trench isolation
JP5565735B2 (ja) * 2010-11-12 2014-08-06 国立大学法人東北大学 Soi基板のエッチング方法及びsoi基板上の裏面照射型光電変換モジュールの作製方法
US10868108B2 (en) * 2018-06-27 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having high voltage lateral capacitor and manufacturing method thereof
US11289637B2 (en) * 2019-04-11 2022-03-29 International Business Machines Corporation Transmon qubits with trenched capacitor structures

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085539A (ja) 1983-10-17 1985-05-15 Toshiba Corp 半導体装置の製造方法
US4702795A (en) * 1985-05-03 1987-10-27 Texas Instruments Incorporated Trench etch process
KR0156115B1 (ko) 1994-06-16 1998-12-01 문정환 반도체 소자의 격리막 구조 및 형성방법
JP3575859B2 (ja) * 1995-03-10 2004-10-13 株式会社東芝 半導体基板の表面処理方法及び表面処理装置
US6348157B1 (en) * 1997-06-13 2002-02-19 Tadahiro Ohmi Cleaning method
US6617226B1 (en) * 1999-06-30 2003-09-09 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6479395B1 (en) * 1999-11-02 2002-11-12 Alien Technology Corporation Methods for forming openings in a substrate and apparatuses with these openings and methods for creating assemblies with openings
JP2003051536A (ja) 2001-08-06 2003-02-21 Sony Corp 基板処理方法および半導体装置の製造方法
JP3923768B2 (ja) 2001-09-19 2007-06-06 株式会社東芝 半導体基板構造の製造方法
US6656852B2 (en) * 2001-12-06 2003-12-02 Texas Instruments Incorporated Method for the selective removal of high-k dielectrics
KR100546855B1 (ko) * 2002-12-28 2006-01-25 동부아남반도체 주식회사 반도체 소자의 제조 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361011A (zh) * 2008-06-11 2012-02-22 美格纳半导体有限会社 形成半导体器件的栅极的方法
CN102361011B (zh) * 2008-06-11 2016-06-22 美格纳半导体有限会社 形成半导体器件的栅极的方法
CN102330089A (zh) * 2010-07-14 2012-01-25 中国科学院微电子研究所 硅片打孔系统及方法
CN102330089B (zh) * 2010-07-14 2013-07-17 中国科学院微电子研究所 硅片打孔系统及方法
CN102347349A (zh) * 2010-07-28 2012-02-08 中国科学院微电子研究所 半导体结构及其制作方法
CN106990461A (zh) * 2016-01-20 2017-07-28 上海新微技术研发中心有限公司 一种直角顶角硅阶梯光栅及其制造方法
CN106990461B (zh) * 2016-01-20 2020-05-15 安徽中科米微电子技术有限公司 一种直角顶角硅阶梯光栅及其制造方法
CN109795977A (zh) * 2017-11-16 2019-05-24 上海新微技术研发中心有限公司 一种在薄膜中形成斜面的方法
CN108447774A (zh) * 2018-03-29 2018-08-24 睿力集成电路有限公司 同时去除热氧化膜和去除沉积氧化膜的方法及设备

Also Published As

Publication number Publication date
KR20060050643A (ko) 2006-05-19
TWI279859B (en) 2007-04-21
US7439183B2 (en) 2008-10-21
JP2006066726A (ja) 2006-03-09
CN100452345C (zh) 2009-01-14
US20060046487A1 (en) 2006-03-02
KR100693237B1 (ko) 2007-03-12
TW200620460A (en) 2006-06-16

Similar Documents

Publication Publication Date Title
CN1741263A (zh) 制造半导体器件的方法以及一种半导体衬底
CN1324654C (zh) 金属栅极形成方法
CN1173394C (zh) 制造半导体集成电路器件的方法
US9048087B2 (en) Methods for wet clean of oxide layers over epitaxial layers
US6770568B2 (en) Selective etching using sonication
TWI272697B (en) Semiconductor device and its manufacturing method
CN1145208C (zh) 半导体装置的制造方法和半导体装置
CN1770404A (zh) 清洗溶液和使用该溶液清洗半导体器件的方法
CN1620727A (zh) 半导体集成电路器件及其制造方法
CN1320653C (zh) 半导体集成电路器件
CN1862784A (zh) 包括隔离沟槽的半导体器件及其制造方法
JP2002141304A (ja) 半導体装置の製造方法
US9748111B2 (en) Method of fabricating semiconductor structure using planarization process and cleaning process
CN1551328A (zh) 半导体设备的制造方法以及半导体衬底的氧化方法
CN1828943A (zh) 半导体装置及半导体装置的制造方法
JPH07297276A (ja) 半導体集積回路の形成方法
CN1855433A (zh) 记忆体的制造方法
TW200903654A (en) Method of forming a gate oxide layer
CN1231949C (zh) 形成栅极结构的方法、自对准接触孔结构及其形成方法
JP4302971B2 (ja) 半導体装置の製造方法
CN1197132C (zh) 在栅极蚀刻处理后用湿式化学方法去除氧氮化硅材料
TWI336111B (en) Method for in-situ repairing plasma damage on substrate and method for fabricating transistor device
KR100643571B1 (ko) 금속 대머신 게이트 형성방법
CN1674236A (zh) 制造半导体器件的方法
CN1244041A (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SEIKO EPSON CORP.

Free format text: FORMER OWNER: TOSHIBA CORPORATION; APPLICANT

Effective date: 20070126

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070126

Address after: Tokyo, Japan, Japan

Applicant after: Seiko Epson Corp.

Address before: Tokyo, Japan, Japan

Applicant before: Toshiba Corp

Co-applicant before: Seiko Epson Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20190826