CN1694300B - 锂二次电池 - Google Patents

锂二次电池 Download PDF

Info

Publication number
CN1694300B
CN1694300B CN200510068437XA CN200510068437A CN1694300B CN 1694300 B CN1694300 B CN 1694300B CN 200510068437X A CN200510068437X A CN 200510068437XA CN 200510068437 A CN200510068437 A CN 200510068437A CN 1694300 B CN1694300 B CN 1694300B
Authority
CN
China
Prior art keywords
alkali metal
secondary battery
lithium secondary
active material
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200510068437XA
Other languages
English (en)
Other versions
CN1694298A (zh
Inventor
赵重根
李相睦
柳永均
黄胜湜
李济玩
新田芳明
金俊燮
金性洙
尹在久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1694298A publication Critical patent/CN1694298A/zh
Application granted granted Critical
Publication of CN1694300B publication Critical patent/CN1694300B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Abstract

本发明公开一种锂二次电池,其包括含有正极活性物质的正极;含有负极活性物质的负极;介于正负极之间的隔板;及电解液,其中所述正极、负极和隔板中至少有一个的表面上通过分散液涂布法形成碱金属粉末层。

Description

锂二次电池
技术领域
本发明涉及一种锂二次电池,更具体地,本发明涉及初始不可逆容量降低且能量密度提高的锂二次电池。
背景技术
在锂二次电池的正负极中使用能够可逆地嵌入和脱出锂离子的材料。锂二次电池是通过将有机电解液或聚合物电解液装填于正负极之间而制备的。电能是通过正负极中锂离子的嵌入/脱出期间的氧化还原反应而产生的。
正极活性物质包含氧属化物,其实例包括LiCoO2,LiMn2O4,LiNiO2,LiNi1-xCoxO2(式中0<x<1),及LiMnO2
对于锂二次电池的负极活性物质,已经使用过锂金属,但是锂金属往往形成导致短路而爆炸的枝晶。因此,经常使用诸如无定形碳或结晶碳等碳质材料代替锂金属。然而,对于首先的几个初始循环而言,碳质材料的使用显现5~30%的不可逆容量损失。这种不可逆容量消耗锂离子,并导致一定量的活性物质颗粒不能充电或放电,造成电池的能量密度恶化。
而且,这种不可逆容量问题在近来作为高容量负极活性物质而研究的Si、Sn等负极活性物质上严重显现。
为了解决上述问题,US 5948569揭示,周期表第1族的元素可以通过真空沉积法(如蒸发和溅射)沉积在隔板或电极上,以将第1族元素放置在正负极之间。然而,由于该方法使用沉积工艺,所以设备成本非常高,而且设备难于修理。再者,在将隔板或电极置于真空室之后,实现真空需要很长的时间,使得制造速度低下。另外,在沉积过程中,第1族元素(特别是锂金属)沉积于真空室中,其需要定期地除去。然而,这种去除又带来安全问题,因为第1族元素具有高反应活性。
US 6706447公开一种制备负极的方法,即均匀地混合锂金属粉末与活性物质。然而,由于锂金属与活性物质间的密度差异,在浆料制备、集电体涂布以及干燥过程中,不能获得均匀性。而且,在初始充放电过程中,在锂金属溶解之后,会产生孔隙,这些孔隙又使电极发生变化,最终导致电池循环寿命和可靠性恶化。
发明内容
根据本发明的一个实施方案,锂二次电池是通过简单和经济的方法制备的,且具有良好的安全性以及改善的容量和循环寿命。
本发明的另一实施方案提供一种锂二次电池,其包括含有正极活性物质的正极;含有负极活性物质的负极;介于正负极之间的隔板;及电解液。在正极、负极和隔板中至少一个的表面上,通过分散液涂布法形成碱金属粉末层。
附图说明
结合附图并参照下面的详细说明,对本发明的更完整的评价及与之相伴随的许多优点,将会更加显而易见和更好理解,在附图中:
图1是锂二次电池的示意图;及
图2是涂有碱金属粉末的电极或隔板的截面图。
具体实施方式
在锂二次电池中,效率会因为活性物质在充放电过程中的初始不可逆容量而降低。在本发明中,碱金属粉末防止这种效率的降低,它们也充当采用无锂活性物质(如V2O5)的电池的锂离子源。碱金属粉末利用一般的涂布方法形成于正极、负极和隔板中至少一个的表面上,得到初始不可逆容量得到降低且具有良好能量密度的锂二次电池。
锂二次电池包括含有正极活性物质的正极;含有负极活性物质的负极;介于正负极之间的隔板;及电解液。在正极、负极和隔板中至少一个的表面上,通过分散液涂布法形成碱金属粉末层。
碱金属的实例有Li,Na,及K,并且优选Li。为了降低其与溶剂或电解液的反应活性,可以在制备碱金属粉末的过程中加入二氧化碳、氢氟酸、硫或少量的水。作为选择,碱金属可以涂有聚合物。涂布工艺是通过下列步骤进行的:将聚合加到适当的溶剂中,制得聚合物液体;将碱金属浸渍在聚合物液体中;将碱金属与聚合物液体分离;及干燥碱金属。适宜的聚合物的实例包括聚环氧乙烷,聚偏二氟乙烯,聚四氟乙烯,聚偏二氟乙烯与六氟丙烯的共聚物,聚氨酯,及聚丙烯酸酯。
碱金属粉末层可以形成足够的厚度,以补偿因负极活性物质的不可逆性而消耗的锂离子。如果使用无锂的正极活性物质,则碱金属粉末层可以按这样的厚度形成,该厚度提供与正极活性物质的容量相对应的锂离子。碱金属粉末层的厚度小于或等于30μm,优选小于或等于20μm,更优选小于或等于10μm,最优选小于或等于5μm。当碱金属粉末层的厚度超过30μm时,则在充放电过程中电极与隔板间的间隔太大,导致循环寿命特性恶化。
碱金属粉末层是通过下列方法形成的:将碱金属粉末加到溶剂中,制得碱金属组合物;将该组合物涂布在电极或隔板的表面上;并干燥。涂布过程可以通过普通的液体涂布技术进行。液体涂布技术的实例包括刮刀涂布法,直接的辊涂法,逆转辊涂法,照相凹版辊涂法,间隙涂布法,喷涂法,缝模涂布法(slot die coating),及带铸法(tape casting)。
由于碱金属粉末层是通过液体涂布法而不是通过沉积法形成的,所得碱金属粉末层具有很多孔隙。因而,注入的电解液可以迅速浸透,因为容易被吸附到电极中。因此,可以提高容量和循环寿命特性。
碱金属粉末颗粒的平均粒径为1~100μm,优选为5~50μm,更优选为10~20μm。
当颗粒的平均粒径大于100μm时,涂层太厚,使其降低能量密度,且充放电期间隔板与电极间的间隔太大,使其降低循环寿命特性。当颗粒的平均尺寸小于1μm时,则难于处置碱金属。
碱金属组合物包含浓度足以改善正负极活性物质的不可逆容量的碱金属。如果使用不含锂的正极活性物质,碱金属应当以与正极活性金属反应并完全嵌入正极活性物质中的浓度存在。达成上述要求的碱金属的量,可以通过不可逆容量除以碱金属的理论容量而得到。根据上述计算,碱金属的浓度优选为1~30重量份,更优选为3~20重量份,基于100重量份的溶剂。当碱金属的量小于1重量份时,显示不出添加碱金属的效果(如容量和安全性的提高)。当碱金属的量大于30重量份时,碱金属占据过多的电池内部空间,且往往形成枝晶。
可以使用任何溶剂,只要该溶剂沸点低便于除去、与碱金属的反应性低且在干燥后不留下残余物。其实例包括乙腈,丙酮,四氢呋喃,二甲基甲酰胺,N-甲基吡咯烷酮,等等。
干燥时的温度不应超过碱金属的熔点。例如,当碱金属为锂时,所述温度不应大于180℃。为了完全除去溶剂,干燥过程可以在真空中进行。涂在电极或隔板上的干燥的碱金属粉末层,具有良好的延展性和附着力。为了使碱金属粉末层稠密或均匀,并增加其与电极或隔板的附着力,可以在干燥过程之后进行压制。压制的压力优选为10gf/cm2~500kgf/cm2。当压力小于10gf/cm2时,压制不充分;相反,当压力大于100kgf/cm2时,可能损坏隔板和锂金属层。这种压制降低了粉末层的厚度,并减小隔板与电极之间在充放电之后的间隔,进而改善循环寿命特性。
可以将聚合物粘合剂添加到碱金属组合物中,使得涂布过程更容易,并提高附着力。粘合剂的实例包括聚四氟乙烯,聚偏二氟乙烯,聚偏二氟乙烯与六氟丙烯的共聚物,及苯乙烯-丁二烯橡胶。聚合物粘合剂的用量可以为1~20重量份,基于100重量份的溶剂。当聚合物粘合剂的用量小于1重量份时,则粘度不够涂布困难;而当聚合物粘合剂的用量大于20重量份时,则粘度太高。当碱金属粉末层是通过添加聚合物粘合剂而形成于电极上时,则在充放电之后保留在电极表面的粘合剂的量,一般大于制备电极的浆料组合物中所用的粘合剂的量。这是因为碱金属粉末层中的碱金属补偿了不可逆容量并从电极表面消失,而仅留下粘合剂组分。结果,电极表面的粘合剂的量降低至约30重量%。在本说明书中,电极的“表面”是指自外表面相当于约1μm的深度。
另外,可以实施压制和聚合物粘合剂的添加,这是本领域中众所周知的。
碱金属粉末层可以形成于正极、负极和隔板中的至少一个上,因而可以存在于隔板与正极或者隔板与负极之间。图2示出了存在于电极或隔板102表面的碱金属粉末层100。当碱金属粉末层布置在正极或负极上时,其布置在与集电体相对的正极活性物质层或负极活性物质层的表面上。
正极活性物质包括能够进行可逆的电化学氧化/还原反应的锂氧夹层化合物,以及锂硫电池中常用的无机硫(S8)或硫基化合物。
锂氧夹层化合物的实例为下面化学式1~14所示的化合物:
LiAO2              (1)
LiMn2O4            (2)
LiaNibBcMdO2       (3)
(式中0.95≤a≤1.1,0≤b≤0.9,0≤c≤0.5,0.001≤d≤0.1)
LiaNibCocMndMeO2             (4)
(式中0.95≤a≤1.1,0≤b≤0.9,0≤c≤0.5,0≤d≤0.5,0.001≤e≤0.1)
LiaAMbO2                     (5)
(式中0.95≤a≤1.1,0.001≤b≤0.1)
LiaMn2MbO4                   (6)
(式中0.95≤a≤1.1,0.001≤b≤0.1)
DX2                          (7)
LiDS2                        (8)
V2O5                         (9)
LiV2O5                       (10)
LiEO2                        (11)
LiNiVO4                      (12)
Li(3-x)F2(PO4)3(式中0≤x≤3) (13)
Li(3-x)Fe2(PO4)3(式中0≤x≤2)(14)
其中:A选自Co、Ni和Mn;B为Co或Mn;D为Ti、Mo或Mn;E选自Cr、V、Fe、Sc和Y;F选自V、Cr、Mn、Co、Ni和Cu;M为至少一种过渡金属或镧系元素并选自Al、Cr、Mn、Fe、Mg、La、Ce、Sr和V;X为O或S。
硫基化合物包括选自下列的化合物:Li2Sn(式中n≥1),有机硫化合物,及碳-硫聚合物((C2Sx)n,式中x=2.5~50,n≥2)。
负极可由负极活性物质如碳质材料、Si、Sn、锡氧化物、复合的锡合金、过渡金属氧化物、锂金属氮化物或锂金属氧化物制成,并优选由碳质材料制成,更优选由石墨或碳黑制成。
适宜的隔板包括聚乙烯隔板,聚丙烯隔板,聚乙烯/聚丙烯双层隔板,聚乙烯/聚丙烯/聚乙烯三层隔板,或者聚丙烯/聚乙烯/聚丙烯三层隔板。
锂二次电池的电解液包括非水有机溶剂和锂盐。
前述溶解于有机溶剂中的锂盐不仅主要地充当锂二次电池内部的离子源,而且还促进正负极间的离子运动。锂盐包括一种或两种选自下列的支撑性电解质盐:LiPF6,LiBF4,LiSbF6,LiAsF6,LiCF3SO3,LiN(CF3SO2)3,Li(CF3SO2)2N,LiC4F9SO3,LiClO4,LiAlO4,LiAlCl4,LiN(CxF2x+1SO2)(CxF2y+1SO2)(式中x和y为自然数),LiCl,及LiI。适宜的锂盐浓度为0.1~2.0M。当锂盐浓度小于0.1M时,电解液的电导率下降,使得电解液的性能恶化。当锂盐的浓度大于2.0M时,锂离子的迁移率因电解液的粘度增加而降低。
前述非水有机溶剂的作用是帮助电化学反应中离子的移动,适宜的溶剂包括一种或多种选自下列的溶剂:苯,甲苯,氟苯,1,2-二氟苯,1,3-二氟苯,1,4-二氟苯,1,2,3-三氟苯,1,2,4-三氟苯,氯苯,1,2-二氯苯,1,3-二氯苯,1,4-二氯苯,1,2,3-三氯苯,1,2,4-三氯苯,碘苯,1,2-二碘苯,1,3-二碘苯,1,4-二碘苯,1,2,3-三碘苯,1,2,4-三碘苯,氟甲苯,1,2-二氟甲苯,1,3-二氟甲苯,1,4-二氟甲苯,1,2,3-三氟甲苯,1,2,4-三氟甲苯,氯甲苯,1,2-二氯甲苯,1,3-二氯甲苯,1,4-二氯甲苯,1,2,3-三氯甲苯,1,2,4-三氯甲苯,碘甲苯,1,2-二碘甲苯,1,3-二碘甲苯,1,4-二碘甲苯,1,2,3-三碘甲苯,1,2,4-三碘甲苯,R-CN(式中R为C2至C50的直链、支链或环状烃并且可以包含双键、芳环或醚基),二甲基甲酰胺,乙酸二甲酯,二甲苯,环己烷,四氢呋喃,2-甲基四氢呋喃,环己酮,乙醇,异丙醇,碳酸二甲酯,碳酸甲乙酯,碳酸二乙酯,碳酸甲丙酯,丙酸甲酯,丙酸乙酯,乙酸甲酯,乙酸乙酯,乙酸丙酯,二甲氧基乙烷,1,3-二氧戊环,二甘醇二甲醚,四甘醇二甲醚,碳酸亚乙酯,碳酸亚丙酯,γ-丁内酯,环丁砜,戊内酯,癸内酯,及甲羟戊内酯。当使用一种以上前述有机溶剂的混合物时,混合比可以根据预期的电池性能而适当地调整,这是本领域的普通技术人员所公知的。
图1示出了根据上述举例说明而构建的锂二次电池的一个实施方案。图1所示的本发明的锂二次电池包括负极2;正极3;介于负极2与正极3之间的隔板4;浸渍于负极2、正极3和隔板4中的电解液;圆筒状容器5;及密封容器5的密封件6。图1图示说明了圆筒形电池的结构,但是本发明并不受此限制,其可以是任何形状如棱形或袋形的电池。
下面的实施例用于更详细地说明本发明。然而,应当理解,本发明并不受限于这些实施例。
实施例1
将94重量%的LiCoO2正极活性物质,3重量%的Super P导电剂,及3重量%的聚偏二氟乙烯(PVdF)粘合剂混合于N-甲基-2-吡咯烷酮(NMP)中,制得正极活性物质浆料。LiCoO2正极活性物质是这样的活性物质,其以0.1C初始充电至4.3V时具有160mAh/g的充电容量,且在放电至3.0V时具有157mAh/g的放电容量。
将正极活性物质浆料涂布在Al箔集电体上并干燥,以在集电体上形成正极活性物质层。在正极活性物质层上,涂布锂金属组合物并在110℃下干燥,制得具有7μm厚的锂金属粉末层的正极。锂金属组合物是通过将10重量份平均粒径约5μm的锂金属加到100重量份的四氢呋喃溶剂中而制备的。要加入的锂金属的量通过负极活性物质的不可逆容量除以理论容量而计算。
90重量%的初始容量为370mAh/g、可逆容量为350mAh/g的石墨和10重量%的聚偏二氟乙烯(PVdF)粘合剂混合于N-甲基-2-吡咯烷酮(NMP)中,制得负极活性物质浆料。将负极活性物质浆料涂布在Cu箔集电体上并干燥,制得负极。
将聚乙烯聚合物隔板放入正负极之间。将N/P比例(负极活性物质的量与正极的容量之比,按可逆容量计)调整为1∶1.2,制得锂二次电池的单元电池。作为电解液,使用1M的LiPF6于体积比为3∶5∶1∶1的碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯和氟苯的混合溶剂中的溶液。
实施例2
按与实施例1相同的方法制备锂二次电池的单元电池,所不同的是,根据实施例1的方法制备的正极活性物质浆料被涂布在Al箔集电体上,制得正极,并在将负极活性物质浆料涂布在Cu箔上形成负极活性物质层之后,将锂金属组合物涂布于其上,且于110℃下干燥,制得负极。
实施例3
按与实施例1相同的方法制备锂二次电池的单元电池,所不同的是,根据实施例1的方法制备的正极活性物质浆料被涂布在Al箔集电体上,制得正极,且锂金属组合物被涂布在聚乙烯乙烯聚合物薄膜上并于60℃下干燥,制得具有锂金属粉末层的隔板。锂金属粉末层与正极的表面相邻。
实施例4
按与实施例1相同的方法制备锂二次电池的单元电池,所不同的是,根据实施例1的方法制备的正极活性物质浆料被涂布在Al箔集电体上,制得正极,且锂金属组合物被涂布在聚乙烯乙烯聚合物薄膜上并于60℃下干燥,制得具有锂金属粉末层的隔板。锂金属粉末层与负极的表面相邻。
对比例1
按与实施例1相同的方法制备锂二次电池的单元电池,所不同的是,根据实施例1的方法制备的正极活性物质浆料被涂布在Al箔集电体上,制得正极。
就实施例1~4和对比例1而言,各制备5个单元电池,并就过充电穿透进行评价。结果示于表1中。
表1
  实施例1   实施例2   实施例3   实施例4   对比例1
  正极活性物质的量(g)   4.459   4.458   4.458   4.457   4.827
  负极活性物质的量(g)   2.200   2.200   2.200   2.200   2.200
  第一次充电(mAh/g)   814   713   812   714   814
  第一次放电(mAh/g)   700.063   701   699   700   700
  第二次充电(mAh/g)   701   700   699   700   700
  第二次放电(mAh/g)   700   700   700   700   700
  过充电穿透*   5L0   5L0   5L0   5L0   5L3
*术语“过充电穿透”定义如下:L0,无变化;L1,泄漏;L2,冒烟;L3,在小于或等于200℃下发热;L4,在大于200℃下发热;L5,爆炸。
如表1所示,根据实施例1~4的单元电池所用的正极活性物质比对比例1的少,但它们却具有接近或略高于对比例1的充放电容量。根据实施例1~4的单元电池包含锂金属粉末层,因而降低负极的不可逆容量,导致容量提高。
在表1中,5L0是指5个单元电池在过充电穿透期间均未发生变化,该结果表明,根据实施例1~4的单元电池满足穿透要求并且是安全的。相反,根据对比例1的5个单元电池在小于或等于200℃的温度下燃烧,表明安全性较低。如上所述,与对比例1相比,根据实施例1~4的单元电池的安全性得到了提高。上述结果归因于包含实施例1~4中所述的锂金属粉末层,其降低不可逆容量,因而可获得必要量的活性物质,以得到与对比例1相等容量。
如上所述,锂二次电池包含碱金属粉末层,其是通过简单而经济的液体涂布方法而形成的,因而具有良好的安全性以及改善的容量和循环寿命特性。

Claims (25)

1.一种锂二次电池,包括:
含有正极活性物质的正极;
含有负极活性物质的负极;
介于正负极之间的隔板;及
电解液,
其中在所述正极、负极和隔板中至少有一个的表面上,通过涂布碱金属分散液,形成多孔的碱金属粉末层。
2.根据权利要求1的锂二次电池,其中所述碱金属选自Li,Na,及K。
3.根据权利要求2的锂二次电池,其中所述碱金属为Li。
4.根据权利要求1的锂二次电池,其中所述碱金属粉末层具有小于或等于30μm的厚度。
5.根据权利要求4的锂二次电池,其中所述碱金属粉末层具有小于或等于20μm的厚度。
6.根据权利要求5的锂二次电池,其中所述碱金属粉末层具有小于或等于10μm的厚度。
7.根据权利要求6的锂二次电池,其中所述碱金属粉末层具有小于或等于5μm的厚度。
8.根据权利要求1的锂二次电池,其中所述正极活性物质包括选自下列中的至少一种化合物:锂氧夹层化合物,元素硫S8,及硫基化合物。
9.根据权利要求1的锂二次电池,其中所述负极活性物质包括选自下列的材料:碳质材料,Si,Sn,锡氧化物,复合锡合金,过渡金属氧化物,锂金属氮化物,锂金属氧化物,及其组合。
10.根据权利要求1的锂二次电池,其中所述碱金属粉末具有1~100μm的平均粒径。
11.根据权利要求1的锂二次电池,其中所述碱金属粉末具有5~50μm的平均粒径。
12.根据权利要求1的锂二次电池,其中所述碱金属粉末具有10~20μm的平均粒径。
13.一种制备锂二次电池的方法,该锂二次电池包括正极、负极、介于正负极之间的隔板和电解液,该方法包括:
通过将碱金属粉末添加到溶剂中,制备碱金属组合物;
通过分散液涂布法,将所述碱金属组合物涂布在正极、负极和隔板中至少一个的表面上;及
干燥该碱金属组合物,形成碱金属层。
14.根据权利要求13的方法,其中所述分散液涂布法是通过选自下列的方法进行的:刮刀涂布法,直接的辊涂法,逆转辊涂法,照相凹版辊涂法,间隙涂布法,喷涂法,缝模涂布法,及带铸法。
15.根据权利要求13的方法,其中所述碱金属组合物是通过将1~30重量份的碱金属添加到100重量份的溶剂中而制备的。
16.根据权利要求13的方法,其中所述碱金属组合物是通过将1~30重量份的碱金属和1~20重量份的粘合剂添加到100重量份的溶剂中而制备的。
17.根据权利要求13的方法,还包括在干燥之后压制所述碱金属层。
18.根据权利要求13的方法,其中所述碱金属选自Li,Na,及K。
19.根据权利要求18的方法,其中所述碱金属为Li。
20.根据权利要求13的方法,其中所述碱金属层具有小于或等于30μm的厚度。
21.根据权利要求13的方法,其中所述碱金属层具有小于或等于20μm的厚度。
22.根据权利要求13的方法,其中所述碱金属层具有小于或等于10μm的厚度。
23.根据权利要求13的方法,其中所述碱金属具有1~100μm的平均粒径。
24.根据权利要求13的方法,其中所述碱金属具有5~50μm的平均粒径。
25.根据权利要求13的方法,其中所述碱金属具有10~20μm的平均粒径。
CN200510068437XA 2004-04-29 2005-04-28 锂二次电池 Expired - Fee Related CN1694300B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040029968A KR100590096B1 (ko) 2004-04-29 2004-04-29 리튬 이차 전지
KR29968/04 2004-04-29

Publications (2)

Publication Number Publication Date
CN1694298A CN1694298A (zh) 2005-11-09
CN1694300B true CN1694300B (zh) 2011-03-23

Family

ID=35187476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510068437XA Expired - Fee Related CN1694300B (zh) 2004-04-29 2005-04-28 锂二次电池

Country Status (4)

Country Link
US (1) US8173303B2 (zh)
JP (1) JP4330551B2 (zh)
KR (1) KR100590096B1 (zh)
CN (1) CN1694300B (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119584B2 (ja) * 2005-10-11 2013-01-16 パナソニック株式会社 非水電解質二次電池およびその負極の製造法
CN1983676A (zh) * 2006-01-27 2007-06-20 松下电器产业株式会社 锂离子二次电池及其充电系统
JP5165899B2 (ja) * 2006-01-27 2013-03-21 パナソニック株式会社 リチウムイオン二次電池およびその充電システム
KR101329905B1 (ko) * 2006-08-30 2013-11-14 신에쓰 가가꾸 고교 가부시끼가이샤 비수계 이차 전지용 세퍼레이터 및 그의 제조 방법 및비수전해질 이차 전지
JP5256660B2 (ja) * 2006-08-30 2013-08-07 信越化学工業株式会社 非水系二次電池用セパレータ及びその製造方法並びに非水電解質二次電池
US20080070120A1 (en) * 2006-09-14 2008-03-20 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery and making method
JP5196118B2 (ja) * 2006-09-14 2013-05-15 信越化学工業株式会社 非水電解質二次電池及びその製造方法
US8334073B2 (en) * 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US20090035663A1 (en) 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
EP2102924B1 (en) * 2006-12-04 2018-03-28 Sion Power Corporation Separation of electrolytes in lithium batteries
US20090061321A1 (en) * 2007-08-31 2009-03-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
KR101440884B1 (ko) 2007-12-18 2014-09-18 삼성에스디아이 주식회사 표면 처리된 음극 활물질을 포함하는 음극 및 이를 채용한리튬 전지
US8083859B2 (en) * 2008-05-30 2011-12-27 Applied Materials, Inc. Arrangement and method for removing alkali- or alkaline earth-metals from a vacuum coating chamber
KR101091228B1 (ko) 2008-12-30 2011-12-07 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
TWI425703B (zh) * 2009-05-26 2014-02-01 Lg Chemical Ltd 高能量密度之鋰二次電池
KR100919691B1 (ko) 2009-06-24 2009-10-06 에너테크인터내셔널 주식회사 도전성 시트층을 구비한 이차전지용 단위셀 및 이를 이용한 리튬이온 이차전지
EP2469624A1 (en) 2009-08-19 2012-06-27 Mitsubishi Chemical Corporation Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5463817B2 (ja) * 2009-09-16 2014-04-09 日産自動車株式会社 非水電解質二次電池およびこの製造方法
US20110135810A1 (en) * 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
KR101302787B1 (ko) 2010-01-11 2013-09-02 주식회사 엘지화학 고에너지 밀도 리튬 이차전지 및 그 제조방법
CN102064316A (zh) * 2010-12-24 2011-05-18 上海中兴派能能源科技有限公司 锂离子电池负极的制作方法及锂离子电池
KR101453037B1 (ko) * 2011-03-23 2014-10-21 주식회사 엘지화학 전극조립체 및 이의 제조방법
JP2012248478A (ja) * 2011-05-30 2012-12-13 Denso Corp リチウムイオン二次電池
WO2013108841A1 (ja) * 2012-01-19 2013-07-25 株式会社カネカ 捕捉体を含む非水電解質二次電池
JP2013175313A (ja) * 2012-02-24 2013-09-05 Toyota Industries Corp リチウムイオン二次電池および車両
JP2013175315A (ja) * 2012-02-24 2013-09-05 Toyota Industries Corp リチウムイオン二次電池および車両
US9722284B2 (en) 2012-09-12 2017-08-01 Hitachi, Ltd. Nonaqueous secondary battery and battery control system
CN103779572B (zh) * 2012-10-26 2016-02-24 华为技术有限公司 一种锂离子电池负极添加剂及其制备方法、锂离子电池负极片和锂离子电池
JPWO2014073217A1 (ja) * 2012-11-12 2016-09-08 パナソニックIpマネジメント株式会社 非水電解質電池の製造方法及び非水電解質電池
KR102124054B1 (ko) * 2012-11-14 2020-06-17 삼성전자주식회사 고분자, 이를 포함하는 리튬 전지용 전극 및 이를 구비한 리튬 전지
CN103804599B (zh) * 2012-11-14 2019-05-03 三星电子株式会社 聚合物、含其的用于锂电池的电极、和含该电极的锂电池
TWI622211B (zh) * 2013-02-14 2018-04-21 Lg化學股份有限公司 用於鋰二次電池之陰極及包含彼之鋰二次電池
US8999584B2 (en) * 2013-03-15 2015-04-07 GM Global Technology Operations LLC Method for pre-lithiation of the negative electrode in lithium ion batteries
KR101442403B1 (ko) * 2013-03-27 2014-09-23 고려대학교 산학협력단 리튬 이차 전지의 제조 방법
KR101497330B1 (ko) 2013-06-03 2015-03-02 주식회사 엘지화학 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
KR102124053B1 (ko) * 2013-09-17 2020-06-17 삼성전자주식회사 고분자, 이를 포함하는 리튬 전지용 전극 및 이를 구비한 리튬 전지
WO2016047942A1 (ko) * 2014-09-26 2016-03-31 주식회사 엘지화학 리튬-황 전지 및 이를 포함하는 전지 모듈
KR101856830B1 (ko) * 2015-12-08 2018-06-19 주식회사 엘지화학 리튬 또는 리튬 화합물 코팅층이 도포되어 있는 분리막을 포함하는 전극조립체 및 이를 제조하는 방법
KR101984721B1 (ko) * 2016-07-14 2019-05-31 주식회사 엘지화학 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
KR101984722B1 (ko) * 2016-07-21 2019-05-31 주식회사 엘지화학 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
HUE046592T2 (hu) 2016-11-29 2020-03-30 Bosch Gmbh Robert Eljárás hõkezelést követõen nagy állékonysággal rendelkezõ bevonatolt acél munkadarabok készítésére
KR102617865B1 (ko) * 2017-05-12 2023-12-26 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
KR102488677B1 (ko) * 2017-05-12 2023-01-16 주식회사 엘지에너지솔루션 리튬 이차전지의 제조방법
KR102264691B1 (ko) * 2017-08-11 2021-06-15 (주)엘지에너지솔루션 리튬금속과 무기물 복합층을 이용한 전리튬화
KR20190101807A (ko) * 2018-02-23 2019-09-02 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
CN111599968B (zh) * 2020-05-29 2022-10-25 珠海冠宇动力电池有限公司 一种隔膜及其制备方法和包含该隔膜的锂离子动力电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196467A (ja) 1989-12-25 1991-08-27 Showa Denko Kk 二次電池
JP3644106B2 (ja) * 1995-12-26 2005-04-27 宇部興産株式会社 非水二次電池
KR100240743B1 (ko) * 1997-07-14 2000-01-15 성재갑 전도성 층이 도포된 전지 분리막을 이용한 리튬 이차전지
JPH11120993A (ja) 1997-10-17 1999-04-30 Japan Storage Battery Co Ltd 非水電解質二次電池
JPH11176419A (ja) * 1997-12-15 1999-07-02 Tdk Corp リチウム二次電池およびその製造方法
US6599662B1 (en) * 1999-01-08 2003-07-29 Massachusetts Institute Of Technology Electroactive material for secondary batteries and methods of preparation
KR100445792B1 (ko) * 2001-06-09 2004-08-25 한국과학기술연구원 분리막과 일체화된 리튬전극 및 이를 이용한 리튬전지
KR100424637B1 (ko) * 2001-10-25 2004-03-24 삼성에스디아이 주식회사 리튬 이차 전지용 박막 전극 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP平11-120993A 1999.04.30

Also Published As

Publication number Publication date
US20050244715A1 (en) 2005-11-03
KR20050104625A (ko) 2005-11-03
US8173303B2 (en) 2012-05-08
KR100590096B1 (ko) 2006-06-14
CN1694298A (zh) 2005-11-09
JP2005317551A (ja) 2005-11-10
JP4330551B2 (ja) 2009-09-16

Similar Documents

Publication Publication Date Title
CN1694300B (zh) 锂二次电池
US9349497B2 (en) Electrode active material having core-shell structure
JP5259268B2 (ja) 非水電解質二次電池
CN101295781B (zh) 可再充电锂电池用负极及包括该负极的可再充电锂电池
KR101041829B1 (ko) 폴리아크릴로니트릴-아크릴산 공중합체 및 바인더를 포함한음극 재료 조성물, 그 제조방법 및 그 음극 재료 조성물을포함하는 리튬 이차 전지
KR101201804B1 (ko) 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101268501B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
CN101188294A (zh) 负极活性物质及其制备方法和负极及可充电锂电池
CN107660316B (zh) 锂电化学发电装置的正电极
CN104779397A (zh) 可再充电锂电池
KR20150010159A (ko) 리튬 이차 전지 및 이의 제조 방법
US11508961B2 (en) Method of preparing positive electrode active material for secondary battery
KR20170134049A (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR101669110B1 (ko) 음극 활물질 조성물, 이를 이용한 음극 극판의 제조방법 및 리튬 이차 전지
KR20160081395A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN112335073A (zh) 用于锂二次电池的负极、预锂化所述负极的方法和包括所述负极的锂二次电池
KR101002652B1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20110056911A (ko) 리튬 이차 전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20160038860A (ko) 비수 전해액 리튬 이차전지
JP4798951B2 (ja) 非水電解質電池用正極及びこの正極を用いた電池
KR101049465B1 (ko) 폴리아크릴로니트릴-아크릴산 공중합체 및 바인더를 포함한 음극 재료 조성물의 제조방법 및 그 음극 재료 조성물을 포함하는 리튬 이차 전지용 음극의 제조방법
KR20170000903A (ko) 리튬 이차 전지
KR20120101971A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101084080B1 (ko) 비수 전해질 이차전지
KR101002651B1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110323

Termination date: 20210428