CN1623230A - 碳毫微管热界面结构 - Google Patents

碳毫微管热界面结构 Download PDF

Info

Publication number
CN1623230A
CN1623230A CNA028282558A CN02828255A CN1623230A CN 1623230 A CN1623230 A CN 1623230A CN A028282558 A CNA028282558 A CN A028282558A CN 02828255 A CN02828255 A CN 02828255A CN 1623230 A CN1623230 A CN 1623230A
Authority
CN
China
Prior art keywords
carbon nano
tube
sealant
array
conducting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028282558A
Other languages
English (en)
Other versions
CN100576520C (zh
Inventor
S·蒙特戈梅里
V·霍拉克雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1623230A publication Critical patent/CN1623230A/zh
Application granted granted Critical
Publication of CN100576520C publication Critical patent/CN100576520C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种形成热界面的方法,该热界面采用碳毫微管以降低电子装置与冷却装置之间的热阻。对准的毫微管束接收注入的聚合物材料,以便形成聚合物/碳复合物,其随后设置在电子装置与散热装置或其它冷却装置之间。

Description

碳毫微管热界面结构
技术领域
本发明总体上涉及向电子电路提供冷却的技术方案,尤其涉及使用碳毫微管的热界面结构的制造,以便改进包含电子电路的电路小片的热性能。
附图说明
按照获得本发明的实施例的顺序来详细描述本发明的结合附图示出的实施例。本发明的附图没有按比例绘制并且不能认为是对本发明的限制,在附图中:
图1是使用依据本发明的实施例的热界面将倒装晶片联接道冷却板上的侧视图;
图2是图1所示的热界面的一部分的立体图,其中具有聚合物加成剂并且示出了碳毫微管束阵列;
图3是热界面的立体示意图,其中以夸大的比例示出了分布在热界面的表面上的碳毫微管束;
图4是图3所示的热界面结构的侧视截面图;
图5是制造依据本发明的一实施例的热界面结构的过程的流程图;和
图6是制造依据本发明的一实施例的在两个器件之间提供热通路的过程的流程图。
具体实施方式
本发明涉及热界面结构和由从衬底突伸的定向的毫微管的矩阵形成热界面的方法。
本领域的普通技术人员应当理解,在不脱离由权利要求限定的本发明的原理和范围的情况下,可描述和示出在部件和方法阶段的细节、材料、结构方面中的各种其它的改变,以便更好地理解本发明。
在图1中,例如计算机10的电子装置的一部分在侧视图中示出。在装置10中,在该实施例中所示的硅电路小片12以倒装晶片格栅阵列的形式安装在有机衬底14上,该衬底又安装在另一衬底15上并由焊料球18固定。例如散热板20的冷却装置(cooling solution)由在该实施例中所示的热界面结构22联接到电路小片12的表面上。
过去已经使用了各种热界面材料,以便降低电路小片和冷却装置之间的热阻。在一些应用场合中,热油脂用做热界面材料,这是因为这种材料具有高度的导热性,并且便于符合在散热装置和该装置中的不规则形状。然而,使用热油脂具有以下缺点,即,当电路小片被热加热并由于电路小片12和有机衬底14之间的热膨胀系数不同而引起热翘曲时,热油脂可能出现汲出和相分离。在其它的应用场合中,例如环氧树脂的粘接剂用做热界面材料,但该粘接剂在其施加之后具有需要固化过程的缺点。例如硅酮和某些烯烃的热凝胶也可用做热界面材料,但是它们在施加之后也需要固化并且具有比热油脂更低的导热性。例如聚氨酯橡胶的某些弹性体具有高度的导热性,但是其不利之处在于其接触热阻较高并且需要至少100psi的高压力施加在热接点处以提供足够的热耦合。最后,例如低分子量的聚酯的某些相变材料已经被使用了,但是其不利之处在于它们的导热性低于热油脂。通常使用的热界面材料的导热性的导热率数值是大约10W/m-°K。
在本发明的一个实施例中,热界面结构由在聚合物填隙材料中的对准的碳毫微管阵列形成。因为碳毫微管的导热率为3000W/m-°K的数量级,因此在热界面结构中使用这种碳毫微管将明显地增加其导热性。
在图2中,在聚合物加成剂注入之前的衬底28的具有从其表面突伸的碳毫微管26的间隔管束24的阵列的部分以高倍放大形式示出。这种阵列可从Nano-Lab,Inc.公司获得,该公司在化学气相淀积过程中按Dr.Z.F.Ren在 Science,282,1105(1998年)的文章制造该阵列。碳毫微管26的间隔管束24的阵列依据该过程来制造,该阵列在包括玻璃和硅的各种衬底28上生长。在衬底28上生长的毫微管26对准,以便绝大多数的毫微管彼此大致平行地定向并且垂直于它们从其上突伸的衬底28。毫微管的高度通常是基本上相同的。
本发明的热界面结构22由衬底28形成,毫微管束26支承在该衬底上。聚合物填隙材料30围绕毫微管束26注入,以便支承该毫微管。适当的聚合物材料包括聚碳酸酯、聚丙烯、乙缩醛。在聚合物材料30加成之后,除去了毫微管起初形成在其上的衬底28。用于除去衬底28的适当过程是机械磨削或化学蚀刻。
如图2所示,热界面结构22的长度L和宽度W如此选择,以便提供足够的热交换表面,同时使其落在电路小片12的暴露表面的轮廓之内。在一个实施例中,长度和宽度是2厘米和1厘米。
热界面结构的最大厚度由碳毫微管的长度来限制,而且落在大约5-20微米的范围内。当然,增加热界面结构22的厚度将增加电路小片与散热装置之间的热阻。如图4所示,碳毫微管定向成彼此大致平行和垂直该结构22的顶表面和底表面,这是因为它们沿其纵向轴线提供了其最大的导热性,并且所希望的是使得传导的热量在电路小片12与散热装置20之间沿最短的路径传递。
图5是示出了形成热界面结构的方法的实施例的流程图。在操作52中,碳毫微管26的阵列24包括其上有毫微管26突伸的衬底28。该阵列使用填隙材料30嵌入,该填隙材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、聚甲醛中选择的聚合物材料。填隙材料30是热塑性的并且以熔融形式注入以便使其嵌入到阵列中以形成半成品结构。
在操作54中,任何多余的填隙材料30从半成品和衬底28上除去,该衬底是毫微管束起初在其上生长的衬底。该除去可通过化学机械抛光过程或机械磨削过程来实施。在操作54结束时,制成了半成品的热界面结构。碳毫微管在该结构的形成过程中保持彼此对准,并且在多余的填隙材料和初始的衬底被除去之后,碳毫微管的端部在半成品的热界面结构的表面上以及冷却装置的表面上,该热界面结构的表面与被冷却的器件接合,并且热界面结构联接到该表面上。
如果半成品的热界面结构在两个器件的表面之间提供了热耦合并且半成品的热界面结构处于压力下,则填隙材料的屈服确保了碳毫微管与将其夹在其中的器件表面形成稳固的热接触,尽管该本发明的平面度中存在不规则的形状。
图6示出了在两个器件之间提供热耦合的过程。在操作62中,毫微管阵列联接到其中的一个器件上。在一个实施例中,毫微管阵列实际上在器件的表面上生长,而不是在独立的衬底上生长。在该实施例中,毫微管形成时的温度和其它条件必需处于其上生长碳毫微管阵列的器件所允许的温度范围和暴露次数的范围内。在该实施例中,在操作64中使用填隙材料的注入和多余材料的除去以与图5所示的操作大致相似的方式来实施。
在另一实施例中,在毫微管形成在独立的衬底上之后并且在操作64中施加填隙材料和在操作66中去除多余材料之后,实施操作62。
在以上所述的图6所示的过程的实施例中,操作68涉及将阵列的另一表面联接到两个器件的另一器件上。在一个实施例中,其中的一个器件可以是冷却装置,例如散热装置,另一器件可以是半导体电路小片。在一个实施例中,任一器件可接收在操作62中生长的碳毫微管。使用该过程,可获得与所述器件的特别强的热粘结的优点。
不脱离权利要求限定的本发明的范围和构思,本领域普通技术人员可以对上述的技术方案作出各种改变和改型。因此,所述的各种特征和配置以及等效物可用于各种组合和变更中。因而,本发明不由上述的说明限定,而是由下面的权利要求限定。
应当理解,本文所使用的措辞和术语仅仅是示意性的而不是限定性的。因此,本发明旨在包括落在后附权利要求限定的精神和范围内的所有替换、变型、等同形式和改变。
部件表
10  装置
12  硅电路小片
14  有机衬底
16  另一衬底
18  焊料球
20  散热板
22  热界面结构
24  阵列
26  毫微管束
28  (用于毫微管束)的衬底
30  聚合物填隙材料

Claims (26)

1.一种热界面结构,其包括:
至少一个碳毫微管,其定向成大致平行于该热界面的所需传热轴线;和
该毫微管嵌入其中的填隙材料。
2.如权利要求1所述的结构,其特征在于:该结构具有:第一表面,以便与电路小片的表面接触,和第二表面,以便与冷却装置的表面接触,该第一和第二表面彼此大致平行。
3.如权利要求2所述的结构,其特征在于:该结构从第一表面到第二表面的厚度大约是5-20微米。
4.如权利要求1所述的结构,其特征在于:该填隙材料是聚合物材料。
5.如权利要求4所述的结构,其特征在于:该聚合物材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的。
6.一种热界面,其包括:
至少一个毫微管束,该管束定向成大致彼此平行并且大致平行于该热界面的传热路径;和
在该毫微管束之间的填隙材料。
7.如权利要求6所述的热界面,其特征在于:该填隙材料是聚合物材料。
8.如权利要求6所述的热界面,其特征在于:该热界面具有第一和第二大致为平面的表面,所述表面均大致垂直于该传热路径。
9.一种与半导体电路小片一起使用的传热结构,其包括:
具有联接到该电路小片上的表面的散热装置;和
导热元件,其包括联接到该散热装置上的第一表面和联接到该电路小片上的第二表面,该导热元件包括多个碳毫微管,所述碳毫微管定向成其轴线大致垂直于该第一和第二表面。
10.如权利要求9所述的传热结构,其特征在于:该导热元件还包括在碳毫微管之间加入的填隙粘结材料。
11.如权利要求10所述的散热结构,其特征在于:该填隙粘结材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的聚合物材料。
12.如权利要求9所述的散热结构,其特征在于:该导热元件的表面面积与该电路小片的表面面积大致相同。
13.如权利要求9所述的散热结构,其特征在于:该导热元件的厚度是10-50微米。
14.一种包括至少一个集成的电路插件的电子组件,其包括:
至少一个集成的电路小片;
具有联接到该电路小片上的表面的散热装置;和
导热元件,其包括联接到该散热装置上的第一表面和联接到该电路小片上的第二表面,该导热元件包括多个碳毫微管,所述碳毫微管定向成其轴线大致垂直于该第一和第二表面。
15.如权利要求14所述的电子组件,其特征在于:该导热元件还包括在碳毫微管之间嵌入的填隙材料。
16.如权利要求15所述的电子组件,其特征在于:该填隙材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的聚合物材料。
17.一种数据处理系统,其包括:
将部件联接到该数据处理系统上的总线;
与该总线联接的显示装置;
与该总线联接的外部存储器;和
与该总线联接的处理器,该处理器包括电子组件,该电子组件包括至少一个电路插件,其包括:
至少一个集成的电路小片;
具有联接到该电路小片上的表面的散热装置;和
导热元件,其包括联接到该散热装置上的第一表面和联接到该电路小片上的第二表面,该导热元件包括多个碳毫微管,所述碳毫微管定向成其轴线大致垂直于该第一和第二表面。
18.如权利要求17所述的数据处理系统,其特征在于:该导热元件还包括在碳毫微管之间嵌入的填隙材料。
19.如权利要求18所述的数据处理系统,其特征在于:该填隙材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的聚合物材料。
20.一种制造热界面结构的方法,其包括:
将大致对准的碳毫微管的阵列嵌入到填隙材料中,以便形成一层嵌入其中的大致对准的碳毫微管的半成品;和
从该半成品上除去多余的材料,以便提供热界面结构,该热界面结构具有用于与一个器件的表面接合的第一大致为平面的表面以及用于与另一器件的表面接合的第二大致为平面的表面,该第一和第二表面定向成大致垂直于所述大致对准的碳毫微管。
21.如权利要求20所述的方法,其特征在于:所述大致对准的碳毫微管的阵列还包括该碳毫微管从其上突伸的衬底,并且除去多余材料还包括除去该衬底的至少一部分。
22.如权利要求20所述的方法,其特征在于:除去多余材料还包括半成品的化学机械抛光。
23.如权利要求20所述的方法,其特征在于:除去多余材料还包括对半成品蚀刻。
24.一种在两个器件之间提供热半成品的方法,其包括:
提供联接到所述器件中的一个器件上的大致对准的碳毫微管的阵列;
将大致对准的碳毫微管的阵列嵌入到填隙材料中,以便形成一层嵌入其中的大致对准的碳毫微管;和
将该阵列联接到另一器件上。
25.如权利要求24所述的方法,其特征在于:提供联接到所述器件上的阵列包括在该器件的表面上形成碳毫微管。
26.如权利要求24所述的方法,其特征在于:提供联接到所述器件上的阵列包括
在衬底上形成该阵列;
将该阵列嵌入到填隙材料中;
除去该衬底;和
将该阵列联接到另一器件上。
CN02828255A 2001-12-20 2002-12-17 碳毫微管热界面结构 Expired - Fee Related CN100576520C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/027,442 2001-12-20
US10/027,442 US6965513B2 (en) 2001-12-20 2001-12-20 Carbon nanotube thermal interface structures

Publications (2)

Publication Number Publication Date
CN1623230A true CN1623230A (zh) 2005-06-01
CN100576520C CN100576520C (zh) 2009-12-30

Family

ID=21837757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02828255A Expired - Fee Related CN100576520C (zh) 2001-12-20 2002-12-17 碳毫微管热界面结构

Country Status (6)

Country Link
US (1) US6965513B2 (zh)
EP (1) EP1329953B1 (zh)
JP (1) JP4541639B2 (zh)
CN (1) CN100576520C (zh)
AU (1) AU2002353167A1 (zh)
WO (1) WO2003054958A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100517661C (zh) * 2005-11-26 2009-07-22 鸿富锦精密工业(深圳)有限公司 散热装置的制备方法
CN1929118B (zh) * 2005-09-05 2010-05-26 鸿富锦精密工业(深圳)有限公司 散热器及其制造方法
CN101512760B (zh) * 2006-09-22 2010-11-03 国际商业机器公司 热界面结构及其制造方法
CN102840488A (zh) * 2012-09-11 2012-12-26 广东宏泰照明科技有限公司 具有散热功能的led灯
CN101083234B (zh) * 2006-05-26 2013-06-19 香港科技大学 具有排列整齐的碳纳米管阵列的散热结构及其制造和应用
CN101827782B (zh) * 2007-09-12 2014-12-10 斯莫特克有限公司 使用纳米结构连接和粘接相邻层
CN108306075A (zh) * 2018-01-31 2018-07-20 陈攀攀 一种动力电池单体叠置模块的厚度变截面热管冷却装置

Families Citing this family (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132161B2 (en) * 1999-06-14 2006-11-07 Energy Science Laboratories, Inc. Fiber adhesive material
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US7800194B2 (en) * 2002-04-23 2010-09-21 Freedman Philip D Thin film photodetector, method and system
US8907323B2 (en) 2002-04-23 2014-12-09 Philip D. Freedman Microprocessor assembly
US20070122622A1 (en) * 2002-04-23 2007-05-31 Freedman Philip D Electronic module with thermal dissipating surface
US6856016B2 (en) * 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die
US6994584B1 (en) * 2002-08-30 2006-02-07 Advanced Micro Devices, Inc. Thermally conductive integrated circuit mounting structures
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US20050175769A1 (en) * 2002-10-10 2005-08-11 Tomoaki Kunugi Heat transfer method and heat exchange system between solid and fluid
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
TWI265541B (en) * 2002-12-25 2006-11-01 Hon Hai Prec Ind Co Ltd Plasma display
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
US7094679B1 (en) 2003-03-11 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube interconnect
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
DE10324377A1 (de) * 2003-05-28 2005-01-05 Infineon Technologies Ag Wärmeableiteinrichtung, deren Verwendung und Halbleiterbauelementeanordnung
DE10327530A1 (de) 2003-06-17 2005-01-20 Electrovac Gesmbh Vorrichtung mit wenigstens einer von einem zu kühlenden Funktionselement gebildeten Wärmequelle, mit wenigstens einer Wärmesenke und mit wenigstens einer Zwischenlage aus einer thermischen leitenden Masse zwischen der Wärmequelle und der Wärmesenke sowie thermische leitende Masse, insbesondere zur Verwendung bei einer solchen Vorrichtung
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7481267B2 (en) * 2003-06-26 2009-01-27 The Regents Of The University Of California Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes
US6976532B2 (en) * 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US6864571B2 (en) * 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
WO2005052179A2 (en) * 2003-08-13 2005-06-09 The Johns Hopkins University Method of making carbon nanotube arrays, and thermal interfaces using same
US7538422B2 (en) * 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US20080131655A1 (en) * 2006-03-21 2008-06-05 Barbara Wacker Double Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US20070126116A1 (en) * 2004-08-24 2007-06-07 Carlos Dangelo Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US8080871B2 (en) * 2003-08-25 2011-12-20 Samsung Electronics Co., Ltd. Carbon nanotube-based structures and methods for removing heat from solid-state devices
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US8039961B2 (en) * 2003-08-25 2011-10-18 Samsung Electronics Co., Ltd. Composite carbon nanotube-based structures and methods for removing heat from solid-state devices
US20070114658A1 (en) * 2004-08-24 2007-05-24 Carlos Dangelo Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
US20080131722A1 (en) * 2006-03-21 2008-06-05 Ephraim Suhir Single Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
KR100528925B1 (ko) * 2003-09-09 2005-11-15 삼성에스디아이 주식회사 방열시트 및 이를 구비한 플라즈마 디스플레이 장치
TW200519346A (en) * 2003-09-16 2005-06-16 Koila Inc Nanostructure augmentation of surfaces for enhanced thermal transfer
US7235421B2 (en) * 2003-09-16 2007-06-26 Nasreen Chopra System and method for developing production nano-material
US20050129928A1 (en) * 2003-09-16 2005-06-16 Koila, Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with increased surface area
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US20050089638A1 (en) * 2003-09-16 2005-04-28 Koila, Inc. Nano-material thermal and electrical contact system
US20050214197A1 (en) * 2003-09-17 2005-09-29 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US7235159B2 (en) * 2003-09-17 2007-06-26 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
DE10344492B4 (de) * 2003-09-24 2006-09-07 Carl Zeiss Nts Gmbh Teilchenstrahlgerät
DE10345157B4 (de) * 2003-09-29 2009-01-08 Qimonda Ag Wärmeleitende Verpackung von elektronischen Schaltungseinheiten
TW200517042A (en) * 2003-11-04 2005-05-16 Hon Hai Prec Ind Co Ltd Heat sink
CN100364081C (zh) * 2003-11-08 2008-01-23 鸿富锦精密工业(深圳)有限公司 散热器及其制造方法
WO2005050717A2 (en) * 2003-11-18 2005-06-02 Washington State University Research Foundation Micro-transducer and thermal switch for same
CN100405587C (zh) * 2003-11-22 2008-07-23 鸿富锦精密工业(深圳)有限公司 散热器及其制备方法
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
US20050169831A1 (en) * 2004-02-04 2005-08-04 Montgomery Stephen W. Three-dimensional nanotube structure
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
CN1290764C (zh) * 2004-05-13 2006-12-20 清华大学 一种大量制造均一长度碳纳米管的方法
US20050255304A1 (en) * 2004-05-14 2005-11-17 Damon Brink Aligned nanostructure thermal interface material
US20060025515A1 (en) * 2004-07-27 2006-02-02 Mainstream Engineering Corp. Nanotube composites and methods for producing
US20060083927A1 (en) * 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
US20060090885A1 (en) * 2004-10-29 2006-05-04 Stephen Montgomery Thermally conductive channel between a semiconductor chip and an external thermal interface
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
TWI247060B (en) * 2004-12-31 2006-01-11 Yonyu Plastics Co Ltd Method producing vapor-grown carbon fibers having 3-d linkage structure
US7025607B1 (en) * 2005-01-10 2006-04-11 Endicott Interconnect Technologies, Inc. Capacitor material with metal component for use in circuitized substrates, circuitized substrate utilizing same, method of making said circuitized substrate, and information handling system utilizing said circuitized substrate
CN100543103C (zh) * 2005-03-19 2009-09-23 清华大学 热界面材料及其制备方法
US20060231237A1 (en) * 2005-03-21 2006-10-19 Carlos Dangelo Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN1841713A (zh) * 2005-03-31 2006-10-04 清华大学 热界面材料及其制作方法
US20060231946A1 (en) * 2005-04-14 2006-10-19 Molecular Nanosystems, Inc. Nanotube surface coatings for improved wettability
CN100404242C (zh) * 2005-04-14 2008-07-23 清华大学 热界面材料及其制造方法
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
US7596751B2 (en) * 2005-04-22 2009-09-29 Hewlett-Packard Development Company, L.P. Contact sheet based image management
US7687876B2 (en) * 2005-04-25 2010-03-30 Smoltek Ab Controlled growth of a nanostructure on a substrate
US20060251897A1 (en) * 2005-05-06 2006-11-09 Molecular Nanosystems, Inc. Growth of carbon nanotubes to join surfaces
US7898079B2 (en) * 2005-05-26 2011-03-01 Nanocomp Technologies, Inc. Nanotube materials for thermal management of electronic components
US7269008B2 (en) * 2005-06-29 2007-09-11 Intel Corporation Cooling apparatus and method
CN1891780B (zh) 2005-07-01 2013-04-24 清华大学 热界面材料及其制备方法
KR100631993B1 (ko) * 2005-07-20 2006-10-09 삼성전기주식회사 Led 패키지 및 그 제조방법
US8093715B2 (en) * 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
US7777291B2 (en) * 2005-08-26 2010-08-17 Smoltek Ab Integrated circuits having interconnects and heat dissipators based on nanostructures
WO2007032081A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation マスターバッチおよびそれを配合した組成物
US20080019097A1 (en) * 2005-10-11 2008-01-24 General Electric Company Thermal transport structure
US7297399B2 (en) * 2005-10-11 2007-11-20 General Electric Company Thermal transport structure and associated method
US7871533B1 (en) * 2006-01-12 2011-01-18 South Dakota School Of Mines And Technology Carbon nanoparticle-containing nanofluid
US20070158610A1 (en) * 2006-01-12 2007-07-12 Haiping Hong Carbon naoparticle-containing hydrophilic nanofluid
US7494910B2 (en) * 2006-03-06 2009-02-24 Micron Technology, Inc. Methods of forming semiconductor package
US7532475B2 (en) * 2006-03-30 2009-05-12 International Business Machines Corporation Semiconductor chip assembly with flexible metal cantilevers
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
US7868531B2 (en) * 2006-05-05 2011-01-11 Brother International Corporation Carbon nanotube arrays for field electron emission
JP4897360B2 (ja) * 2006-06-08 2012-03-14 ポリマテック株式会社 熱伝導性成形体及びその製造方法
WO2008000045A1 (en) * 2006-06-30 2008-01-03 University Of Wollongong Nanostructured composites
US20080026505A1 (en) * 2006-07-28 2008-01-31 Nirupama Chakrapani Electronic packages with roughened wetting and non-wetting zones
US8389119B2 (en) * 2006-07-31 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including aligned nanofiber with low melting temperature binder
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
US20080292835A1 (en) * 2006-08-30 2008-11-27 Lawrence Pan Methods for forming freestanding nanotube objects and objects so formed
WO2008049015A2 (en) * 2006-10-17 2008-04-24 Purdue Research Foundation Electrothermal interface material enhancer
US20100173228A1 (en) * 2006-12-14 2010-07-08 University Of Wollongong Nanotube and Carbon Layer Nanostructured Composites
DE102007006175A1 (de) * 2007-02-07 2008-08-14 Osram Opto Semiconductors Gmbh Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht
JP4992461B2 (ja) * 2007-02-21 2012-08-08 富士通株式会社 電子回路装置及び電子回路装置モジュール
US8020621B2 (en) * 2007-05-08 2011-09-20 Baker Hughes Incorporated Downhole applications of composites having aligned nanotubes for heat transport
US7743763B2 (en) * 2007-07-27 2010-06-29 The Boeing Company Structurally isolated thermal interface
DE102007039905A1 (de) 2007-08-23 2008-08-28 Siemens Ag Verfahren zur Herstellung einer wärmeleitfähigen Materialschicht
DE102007039904A1 (de) 2007-08-23 2008-08-28 Siemens Ag Verfahren zur Herstellung einer wärmeleitfähigen Materialschicht
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
EP2190778A4 (en) 2007-09-28 2014-08-13 Univ Brigham Young CARBON NANOTUBES ASSEMBLY
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
WO2009051561A1 (en) * 2007-10-17 2009-04-23 Agency For Science, Technology And Research Composite films comprising carbon nanotubes and polymer
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
JP5104688B2 (ja) * 2007-10-22 2012-12-19 富士通株式会社 シート状構造体及びその製造方法並びに電子機器
JP5018419B2 (ja) * 2007-11-19 2012-09-05 富士通株式会社 モジュール構造体、その製造方法および半導体装置
JP5746808B2 (ja) * 2007-11-22 2015-07-08 富士通株式会社 カーボンナノチューブを用いたパッケージ及び電子デバイス
US8262835B2 (en) 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
US7760507B2 (en) * 2007-12-26 2010-07-20 The Bergquist Company Thermally and electrically conductive interconnect structures
JP5474835B2 (ja) 2008-02-25 2014-04-16 スモルテック アーベー ナノ構造処理のための導電性補助層の形成及び選択的除去
EP2269948B1 (en) * 2008-02-29 2017-08-02 Fujitsu Limited Sheet structure
JP5146256B2 (ja) * 2008-03-18 2013-02-20 富士通株式会社 シート状構造体及びその製造方法、並びに電子機器及びその製造方法
US20090323276A1 (en) * 2008-06-25 2009-12-31 Mongia Rajiv K High performance spreader for lid cooling applications
CN101626674B (zh) * 2008-07-11 2015-07-01 清华大学 散热结构及其制备方法
JP2010073843A (ja) * 2008-09-18 2010-04-02 Nitto Denko Corp マイクロプロセッサ構造
CN102159499B (zh) * 2008-09-18 2013-07-24 日东电工株式会社 碳纳米管集合体
JP2010073842A (ja) * 2008-09-18 2010-04-02 Nitto Denko Corp マイクロプロセッサ構造
KR100978571B1 (ko) * 2008-10-27 2010-08-27 삼성엘이디 주식회사 Led 패키지
JP5239768B2 (ja) * 2008-11-14 2013-07-17 富士通株式会社 放熱材料並びに電子機器及びその製造方法
US20100128439A1 (en) * 2008-11-24 2010-05-27 General Electric Company Thermal management system with graphene-based thermal interface material
CN101768427B (zh) * 2009-01-07 2012-06-20 清华大学 热界面材料及其制备方法
US20100190023A1 (en) * 2009-01-26 2010-07-29 Adam Franklin Gross Metal bonded nanotube array
KR20100087932A (ko) * 2009-01-29 2010-08-06 삼성전기주식회사 자기 조립 단분자막을 이용한 다이 어태치 방법 및 자기 조립 단분자막을 이용하여 다이가 어태치된 패키지 기판
CN101814867B (zh) * 2009-02-20 2013-03-20 清华大学 热电发电装置
TWI473309B (zh) * 2009-02-27 2015-02-11 Hon Hai Prec Ind Co Ltd 熱電發電裝置
CN101826467B (zh) * 2009-03-02 2012-01-25 清华大学 热界面材料的制备方法
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
JP5431793B2 (ja) * 2009-05-29 2014-03-05 新光電気工業株式会社 放熱部品、電子部品装置及び電子部品装置の製造方法
JP5605360B2 (ja) * 2009-06-16 2014-10-15 富士通株式会社 グラファイト構造体、電子部品及び電子部品の製造方法
US8405996B2 (en) * 2009-06-30 2013-03-26 General Electric Company Article including thermal interface element and method of preparation
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
TWI452704B (zh) * 2009-12-17 2014-09-11 Hon Hai Prec Ind Co Ltd 太陽能發電裝置及太陽能發電模組
CA2786838C (en) * 2010-01-14 2017-01-10 Saab Ab Multifunctional de-icing/anti-icing system
CA2786839A1 (en) * 2010-01-14 2011-07-21 Saab Ab Article with de-icing/anti-icing function
US10240772B2 (en) * 2010-04-02 2019-03-26 GE Lighting Solutions, LLC Lightweight heat sinks and LED lamps employing same
US8668356B2 (en) * 2010-04-02 2014-03-11 GE Lighting Solutions, LLC Lightweight heat sinks and LED lamps employing same
JP2013524439A (ja) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー 軽量ヒートシンク及びそれを使用するledランプ
US8564954B2 (en) 2010-06-15 2013-10-22 Chipmos Technologies Inc. Thermally enhanced electronic package
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
JP5373731B2 (ja) * 2010-10-05 2013-12-18 トヨタ自動車株式会社 触媒担体の製造方法
US10962297B2 (en) 2011-02-21 2021-03-30 Board Of Regents, The University Of Texas System Multidimensional heat transfer system for cooling electronic components
WO2012142613A1 (en) 2011-04-14 2012-10-18 Ada Technologies, Inc. Thermal interface materials and systems and devices containing the same
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9257359B2 (en) * 2011-07-22 2016-02-09 International Business Machines Corporation System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks
US9874688B2 (en) 2012-04-26 2018-01-23 Acacia Communications, Inc. Co-packaging photonic integrated circuits and application specific integrated circuits
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
US9656246B2 (en) 2012-07-11 2017-05-23 Carbice Corporation Vertically aligned arrays of carbon nanotubes formed on multilayer substrates
US9111899B2 (en) 2012-09-13 2015-08-18 Lenovo Horizontally and vertically aligned graphite nanofibers thermal interface material for use in chip stacks
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
JP5864486B2 (ja) * 2013-07-24 2016-02-17 富士通株式会社 シート状構造体及びその製造方法
CN104349648B (zh) * 2013-08-09 2017-03-01 技嘉科技股份有限公司 复合式散热组件
WO2015191897A1 (en) 2014-06-11 2015-12-17 Georgia Tech Research Corporation Polymer-based nanostructured materials with tunable properties and methods of making thereof
US20160106005A1 (en) * 2014-10-13 2016-04-14 Ntherma Corporation Carbon nanotubes as a thermal interface material
US11360278B2 (en) * 2014-10-29 2022-06-14 Acacia Communications, Inc. Optoelectronic ball grid array package with fiber
US10444515B2 (en) 2015-01-20 2019-10-15 Microsoft Technology Licensing, Llc Convective optical mount structure
US10028418B2 (en) 2015-01-20 2018-07-17 Microsoft Technology Licensing, Llc Metal encased graphite layer heat pipe
US9791704B2 (en) 2015-01-20 2017-10-17 Microsoft Technology Licensing, Llc Bonded multi-layer graphite heat pipe
US10108017B2 (en) 2015-01-20 2018-10-23 Microsoft Technology Licensing, Llc Carbon nanoparticle infused optical mount
US20160286692A1 (en) * 2015-03-23 2016-09-29 The Boeing Company High thermal conductivity joint utlizing continuous aligned carbon nanotubes
CN105128372B (zh) * 2015-09-22 2017-04-19 清华大学 一种高导热复合聚合物薄膜的制备方法
US10292255B2 (en) 2016-05-18 2019-05-14 Raytheon Company Expanding thermal device and system for effecting heat transfer within electronics assemblies
US10791651B2 (en) 2016-05-31 2020-09-29 Carbice Corporation Carbon nanotube-based thermal interface materials and methods of making and using thereof
US10153224B2 (en) 2016-09-14 2018-12-11 Globalfoundries Inc. Backside spacer structures for improved thermal performance
TWI755492B (zh) 2017-03-06 2022-02-21 美商卡爾拜斯有限公司 基於碳納米管的熱界面材料及其製造和使用方法
DE102017126028B4 (de) 2017-06-30 2020-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Gehäuse und Herstellungsverfahren mit einem Trennfilm als Isolierfilm
US10170341B1 (en) * 2017-06-30 2019-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Release film as isolation film in package
DE102017217105A1 (de) * 2017-09-26 2019-03-28 Robert Bosch Gmbh Kühlvorrichtung und Verfahren zur Kühlung eines zu kühlenden Elements
US10707596B2 (en) 2018-09-21 2020-07-07 Carbice Corporation Coated electrical connectors and methods of making and using thereof
CN111417282B (zh) * 2019-01-04 2021-07-30 清华大学 散热片以及利用该散热片的电子装置
USD903610S1 (en) 2019-08-28 2020-12-01 Carbice Corporation Flexible heat sink
USD904322S1 (en) 2019-08-28 2020-12-08 Carbice Corporation Flexible heat sink
US20210063099A1 (en) 2019-08-28 2021-03-04 Carbice Corporation Flexible and conformable polymer-based heat sinks and methods of making and using thereof
USD906269S1 (en) 2019-08-28 2020-12-29 Carbice Corporation Flexible heat sink

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203814B1 (en) 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
US6006168A (en) * 1997-12-12 1999-12-21 Digital Equipment Corporation Thermal model for central processing unit
KR100494974B1 (ko) * 1998-06-24 2005-06-14 존슨 마테이 일렉트로닉스, 인코포레이티드 반도체 조립체 및 그의 제조방법
US6232706B1 (en) 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
AU1616300A (en) 1998-12-02 2000-06-19 Intel Corporation A fibrous thermal interface adaptor
EP1054036A1 (en) 1999-05-18 2000-11-22 Fina Research S.A. Reinforced polymers
CN101104514A (zh) 1999-10-27 2008-01-16 威廉马歇莱思大学 碳质毫微管的宏观有序集合体
ATE355323T1 (de) 1999-12-07 2006-03-15 Univ Rice William M Orientierte nanofaser eingebunden in einer polymermatrix
US6256996B1 (en) 1999-12-09 2001-07-10 International Business Machines Corporation Nanoscopic thermoelectric coolers
JP2001172398A (ja) 1999-12-17 2001-06-26 Polymatech Co Ltd 熱伝導性成形体およびその製造方法
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
JP2002121404A (ja) * 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
JP4697829B2 (ja) * 2001-03-15 2011-06-08 ポリマテック株式会社 カーボンナノチューブ複合成形体及びその製造方法
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929118B (zh) * 2005-09-05 2010-05-26 鸿富锦精密工业(深圳)有限公司 散热器及其制造方法
CN100517661C (zh) * 2005-11-26 2009-07-22 鸿富锦精密工业(深圳)有限公司 散热装置的制备方法
CN101083234B (zh) * 2006-05-26 2013-06-19 香港科技大学 具有排列整齐的碳纳米管阵列的散热结构及其制造和应用
US8890312B2 (en) 2006-05-26 2014-11-18 The Hong Kong University Of Science And Technology Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use
CN101512760B (zh) * 2006-09-22 2010-11-03 国际商业机器公司 热界面结构及其制造方法
CN101827782B (zh) * 2007-09-12 2014-12-10 斯莫特克有限公司 使用纳米结构连接和粘接相邻层
CN102840488A (zh) * 2012-09-11 2012-12-26 广东宏泰照明科技有限公司 具有散热功能的led灯
CN108306075A (zh) * 2018-01-31 2018-07-20 陈攀攀 一种动力电池单体叠置模块的厚度变截面热管冷却装置
CN108306075B (zh) * 2018-01-31 2019-11-08 陈攀攀 一种动力电池单体叠置模块的厚度变截面热管冷却装置

Also Published As

Publication number Publication date
AU2002353167A1 (en) 2003-07-09
EP1329953B1 (en) 2014-01-22
JP4541639B2 (ja) 2010-09-08
JP2003249613A (ja) 2003-09-05
EP1329953A1 (en) 2003-07-23
US20030117770A1 (en) 2003-06-26
CN100576520C (zh) 2009-12-30
WO2003054958A1 (en) 2003-07-03
US6965513B2 (en) 2005-11-15

Similar Documents

Publication Publication Date Title
CN1623230A (zh) 碳毫微管热界面结构
US10262966B2 (en) Methods for surface attachment of flipped active components
US11318663B2 (en) Multi-layer stamp
US7641938B2 (en) Method for manufacturing carbon nanotube composite material
US20180158753A1 (en) Heat dissipating structure and manufacture
US8194407B2 (en) Heat radiation material, electronic device and method of manufacturing electronic device
US20110030938A1 (en) Heat dissipation structure and heat dissipation system adopting the same
US7569425B2 (en) Method for manufacturing thermal interface material with carbon nanotubes
US20100172101A1 (en) Thermal interface material and method for manufacturing the same
US20080128122A1 (en) Method for making a thermal interface material
US20100003804A1 (en) Electronic Device and Method for Manufacturing Same
US11062936B1 (en) Transfer stamps with multiple separate pedestals
KR20160061993A (ko) 열 전도성 접착 시트, 그의 제조 방법 및 그것을 사용한 전자 디바이스
CN101014821A (zh) 具有金属基底和石墨翼片的复合散热器
US8518304B1 (en) Nano-structure enhancements for anisotropic conductive material and thermal interposers
TWI848035B (zh) 電子裝置及其製造方法
CN113764558A (zh) 一种显示面板及其制备方法
WO2021256220A1 (ja) 熱伝導体及び熱伝導体の製造方法
US11503701B1 (en) Electronic device having heat transfer clamp and associated methods
CN101840894B (zh) 半导体器件
Yeung et al. Thermal cycling analysis of TAB OLB connection with ACF
Cao et al. Optimization of lasing in semiconductor micro-stadiums

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20191217