CN1623230A - 碳毫微管热界面结构 - Google Patents
碳毫微管热界面结构 Download PDFInfo
- Publication number
- CN1623230A CN1623230A CNA028282558A CN02828255A CN1623230A CN 1623230 A CN1623230 A CN 1623230A CN A028282558 A CNA028282558 A CN A028282558A CN 02828255 A CN02828255 A CN 02828255A CN 1623230 A CN1623230 A CN 1623230A
- Authority
- CN
- China
- Prior art keywords
- carbon nano
- tube
- sealant
- array
- conducting element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/02—Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F2013/005—Thermal joints
- F28F2013/006—Heat conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/29393—Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29499—Shape or distribution of the fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/832—Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
- Y10S977/833—Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种形成热界面的方法,该热界面采用碳毫微管以降低电子装置与冷却装置之间的热阻。对准的毫微管束接收注入的聚合物材料,以便形成聚合物/碳复合物,其随后设置在电子装置与散热装置或其它冷却装置之间。
Description
技术领域
本发明总体上涉及向电子电路提供冷却的技术方案,尤其涉及使用碳毫微管的热界面结构的制造,以便改进包含电子电路的电路小片的热性能。
附图说明
按照获得本发明的实施例的顺序来详细描述本发明的结合附图示出的实施例。本发明的附图没有按比例绘制并且不能认为是对本发明的限制,在附图中:
图1是使用依据本发明的实施例的热界面将倒装晶片联接道冷却板上的侧视图;
图2是图1所示的热界面的一部分的立体图,其中具有聚合物加成剂并且示出了碳毫微管束阵列;
图3是热界面的立体示意图,其中以夸大的比例示出了分布在热界面的表面上的碳毫微管束;
图4是图3所示的热界面结构的侧视截面图;
图5是制造依据本发明的一实施例的热界面结构的过程的流程图;和
图6是制造依据本发明的一实施例的在两个器件之间提供热通路的过程的流程图。
具体实施方式
本发明涉及热界面结构和由从衬底突伸的定向的毫微管的矩阵形成热界面的方法。
本领域的普通技术人员应当理解,在不脱离由权利要求限定的本发明的原理和范围的情况下,可描述和示出在部件和方法阶段的细节、材料、结构方面中的各种其它的改变,以便更好地理解本发明。
在图1中,例如计算机10的电子装置的一部分在侧视图中示出。在装置10中,在该实施例中所示的硅电路小片12以倒装晶片格栅阵列的形式安装在有机衬底14上,该衬底又安装在另一衬底15上并由焊料球18固定。例如散热板20的冷却装置(cooling solution)由在该实施例中所示的热界面结构22联接到电路小片12的表面上。
过去已经使用了各种热界面材料,以便降低电路小片和冷却装置之间的热阻。在一些应用场合中,热油脂用做热界面材料,这是因为这种材料具有高度的导热性,并且便于符合在散热装置和该装置中的不规则形状。然而,使用热油脂具有以下缺点,即,当电路小片被热加热并由于电路小片12和有机衬底14之间的热膨胀系数不同而引起热翘曲时,热油脂可能出现汲出和相分离。在其它的应用场合中,例如环氧树脂的粘接剂用做热界面材料,但该粘接剂在其施加之后具有需要固化过程的缺点。例如硅酮和某些烯烃的热凝胶也可用做热界面材料,但是它们在施加之后也需要固化并且具有比热油脂更低的导热性。例如聚氨酯橡胶的某些弹性体具有高度的导热性,但是其不利之处在于其接触热阻较高并且需要至少100psi的高压力施加在热接点处以提供足够的热耦合。最后,例如低分子量的聚酯的某些相变材料已经被使用了,但是其不利之处在于它们的导热性低于热油脂。通常使用的热界面材料的导热性的导热率数值是大约10W/m-°K。
在本发明的一个实施例中,热界面结构由在聚合物填隙材料中的对准的碳毫微管阵列形成。因为碳毫微管的导热率为3000W/m-°K的数量级,因此在热界面结构中使用这种碳毫微管将明显地增加其导热性。
在图2中,在聚合物加成剂注入之前的衬底28的具有从其表面突伸的碳毫微管26的间隔管束24的阵列的部分以高倍放大形式示出。这种阵列可从Nano-Lab,Inc.公司获得,该公司在化学气相淀积过程中按Dr.Z.F.Ren在
Science,282,1105(1998年)的文章制造该阵列。碳毫微管26的间隔管束24的阵列依据该过程来制造,该阵列在包括玻璃和硅的各种衬底28上生长。在衬底28上生长的毫微管26对准,以便绝大多数的毫微管彼此大致平行地定向并且垂直于它们从其上突伸的衬底28。毫微管的高度通常是基本上相同的。
本发明的热界面结构22由衬底28形成,毫微管束26支承在该衬底上。聚合物填隙材料30围绕毫微管束26注入,以便支承该毫微管。适当的聚合物材料包括聚碳酸酯、聚丙烯、乙缩醛。在聚合物材料30加成之后,除去了毫微管起初形成在其上的衬底28。用于除去衬底28的适当过程是机械磨削或化学蚀刻。
如图2所示,热界面结构22的长度L和宽度W如此选择,以便提供足够的热交换表面,同时使其落在电路小片12的暴露表面的轮廓之内。在一个实施例中,长度和宽度是2厘米和1厘米。
热界面结构的最大厚度由碳毫微管的长度来限制,而且落在大约5-20微米的范围内。当然,增加热界面结构22的厚度将增加电路小片与散热装置之间的热阻。如图4所示,碳毫微管定向成彼此大致平行和垂直该结构22的顶表面和底表面,这是因为它们沿其纵向轴线提供了其最大的导热性,并且所希望的是使得传导的热量在电路小片12与散热装置20之间沿最短的路径传递。
图5是示出了形成热界面结构的方法的实施例的流程图。在操作52中,碳毫微管26的阵列24包括其上有毫微管26突伸的衬底28。该阵列使用填隙材料30嵌入,该填隙材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、聚甲醛中选择的聚合物材料。填隙材料30是热塑性的并且以熔融形式注入以便使其嵌入到阵列中以形成半成品结构。
在操作54中,任何多余的填隙材料30从半成品和衬底28上除去,该衬底是毫微管束起初在其上生长的衬底。该除去可通过化学机械抛光过程或机械磨削过程来实施。在操作54结束时,制成了半成品的热界面结构。碳毫微管在该结构的形成过程中保持彼此对准,并且在多余的填隙材料和初始的衬底被除去之后,碳毫微管的端部在半成品的热界面结构的表面上以及冷却装置的表面上,该热界面结构的表面与被冷却的器件接合,并且热界面结构联接到该表面上。
如果半成品的热界面结构在两个器件的表面之间提供了热耦合并且半成品的热界面结构处于压力下,则填隙材料的屈服确保了碳毫微管与将其夹在其中的器件表面形成稳固的热接触,尽管该本发明的平面度中存在不规则的形状。
图6示出了在两个器件之间提供热耦合的过程。在操作62中,毫微管阵列联接到其中的一个器件上。在一个实施例中,毫微管阵列实际上在器件的表面上生长,而不是在独立的衬底上生长。在该实施例中,毫微管形成时的温度和其它条件必需处于其上生长碳毫微管阵列的器件所允许的温度范围和暴露次数的范围内。在该实施例中,在操作64中使用填隙材料的注入和多余材料的除去以与图5所示的操作大致相似的方式来实施。
在另一实施例中,在毫微管形成在独立的衬底上之后并且在操作64中施加填隙材料和在操作66中去除多余材料之后,实施操作62。
在以上所述的图6所示的过程的实施例中,操作68涉及将阵列的另一表面联接到两个器件的另一器件上。在一个实施例中,其中的一个器件可以是冷却装置,例如散热装置,另一器件可以是半导体电路小片。在一个实施例中,任一器件可接收在操作62中生长的碳毫微管。使用该过程,可获得与所述器件的特别强的热粘结的优点。
不脱离权利要求限定的本发明的范围和构思,本领域普通技术人员可以对上述的技术方案作出各种改变和改型。因此,所述的各种特征和配置以及等效物可用于各种组合和变更中。因而,本发明不由上述的说明限定,而是由下面的权利要求限定。
应当理解,本文所使用的措辞和术语仅仅是示意性的而不是限定性的。因此,本发明旨在包括落在后附权利要求限定的精神和范围内的所有替换、变型、等同形式和改变。
部件表
10 装置
12 硅电路小片
14 有机衬底
16 另一衬底
18 焊料球
20 散热板
22 热界面结构
24 阵列
26 毫微管束
28 (用于毫微管束)的衬底
30 聚合物填隙材料
Claims (26)
1.一种热界面结构,其包括:
至少一个碳毫微管,其定向成大致平行于该热界面的所需传热轴线;和
该毫微管嵌入其中的填隙材料。
2.如权利要求1所述的结构,其特征在于:该结构具有:第一表面,以便与电路小片的表面接触,和第二表面,以便与冷却装置的表面接触,该第一和第二表面彼此大致平行。
3.如权利要求2所述的结构,其特征在于:该结构从第一表面到第二表面的厚度大约是5-20微米。
4.如权利要求1所述的结构,其特征在于:该填隙材料是聚合物材料。
5.如权利要求4所述的结构,其特征在于:该聚合物材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的。
6.一种热界面,其包括:
至少一个毫微管束,该管束定向成大致彼此平行并且大致平行于该热界面的传热路径;和
在该毫微管束之间的填隙材料。
7.如权利要求6所述的热界面,其特征在于:该填隙材料是聚合物材料。
8.如权利要求6所述的热界面,其特征在于:该热界面具有第一和第二大致为平面的表面,所述表面均大致垂直于该传热路径。
9.一种与半导体电路小片一起使用的传热结构,其包括:
具有联接到该电路小片上的表面的散热装置;和
导热元件,其包括联接到该散热装置上的第一表面和联接到该电路小片上的第二表面,该导热元件包括多个碳毫微管,所述碳毫微管定向成其轴线大致垂直于该第一和第二表面。
10.如权利要求9所述的传热结构,其特征在于:该导热元件还包括在碳毫微管之间加入的填隙粘结材料。
11.如权利要求10所述的散热结构,其特征在于:该填隙粘结材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的聚合物材料。
12.如权利要求9所述的散热结构,其特征在于:该导热元件的表面面积与该电路小片的表面面积大致相同。
13.如权利要求9所述的散热结构,其特征在于:该导热元件的厚度是10-50微米。
14.一种包括至少一个集成的电路插件的电子组件,其包括:
至少一个集成的电路小片;
具有联接到该电路小片上的表面的散热装置;和
导热元件,其包括联接到该散热装置上的第一表面和联接到该电路小片上的第二表面,该导热元件包括多个碳毫微管,所述碳毫微管定向成其轴线大致垂直于该第一和第二表面。
15.如权利要求14所述的电子组件,其特征在于:该导热元件还包括在碳毫微管之间嵌入的填隙材料。
16.如权利要求15所述的电子组件,其特征在于:该填隙材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的聚合物材料。
17.一种数据处理系统,其包括:
将部件联接到该数据处理系统上的总线;
与该总线联接的显示装置;
与该总线联接的外部存储器;和
与该总线联接的处理器,该处理器包括电子组件,该电子组件包括至少一个电路插件,其包括:
至少一个集成的电路小片;
具有联接到该电路小片上的表面的散热装置;和
导热元件,其包括联接到该散热装置上的第一表面和联接到该电路小片上的第二表面,该导热元件包括多个碳毫微管,所述碳毫微管定向成其轴线大致垂直于该第一和第二表面。
18.如权利要求17所述的数据处理系统,其特征在于:该导热元件还包括在碳毫微管之间嵌入的填隙材料。
19.如权利要求18所述的数据处理系统,其特征在于:该填隙材料是从一组包括聚碳酸酯、聚丙烯、聚乙缩醛、聚氧甲烯、和聚甲醛中选择的聚合物材料。
20.一种制造热界面结构的方法,其包括:
将大致对准的碳毫微管的阵列嵌入到填隙材料中,以便形成一层嵌入其中的大致对准的碳毫微管的半成品;和
从该半成品上除去多余的材料,以便提供热界面结构,该热界面结构具有用于与一个器件的表面接合的第一大致为平面的表面以及用于与另一器件的表面接合的第二大致为平面的表面,该第一和第二表面定向成大致垂直于所述大致对准的碳毫微管。
21.如权利要求20所述的方法,其特征在于:所述大致对准的碳毫微管的阵列还包括该碳毫微管从其上突伸的衬底,并且除去多余材料还包括除去该衬底的至少一部分。
22.如权利要求20所述的方法,其特征在于:除去多余材料还包括半成品的化学机械抛光。
23.如权利要求20所述的方法,其特征在于:除去多余材料还包括对半成品蚀刻。
24.一种在两个器件之间提供热半成品的方法,其包括:
提供联接到所述器件中的一个器件上的大致对准的碳毫微管的阵列;
将大致对准的碳毫微管的阵列嵌入到填隙材料中,以便形成一层嵌入其中的大致对准的碳毫微管;和
将该阵列联接到另一器件上。
25.如权利要求24所述的方法,其特征在于:提供联接到所述器件上的阵列包括在该器件的表面上形成碳毫微管。
26.如权利要求24所述的方法,其特征在于:提供联接到所述器件上的阵列包括
在衬底上形成该阵列;
将该阵列嵌入到填隙材料中;
除去该衬底;和
将该阵列联接到另一器件上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/027,442 | 2001-12-20 | ||
US10/027,442 US6965513B2 (en) | 2001-12-20 | 2001-12-20 | Carbon nanotube thermal interface structures |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1623230A true CN1623230A (zh) | 2005-06-01 |
CN100576520C CN100576520C (zh) | 2009-12-30 |
Family
ID=21837757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN02828255A Expired - Fee Related CN100576520C (zh) | 2001-12-20 | 2002-12-17 | 碳毫微管热界面结构 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6965513B2 (zh) |
EP (1) | EP1329953B1 (zh) |
JP (1) | JP4541639B2 (zh) |
CN (1) | CN100576520C (zh) |
AU (1) | AU2002353167A1 (zh) |
WO (1) | WO2003054958A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100517661C (zh) * | 2005-11-26 | 2009-07-22 | 鸿富锦精密工业(深圳)有限公司 | 散热装置的制备方法 |
CN1929118B (zh) * | 2005-09-05 | 2010-05-26 | 鸿富锦精密工业(深圳)有限公司 | 散热器及其制造方法 |
CN101512760B (zh) * | 2006-09-22 | 2010-11-03 | 国际商业机器公司 | 热界面结构及其制造方法 |
CN102840488A (zh) * | 2012-09-11 | 2012-12-26 | 广东宏泰照明科技有限公司 | 具有散热功能的led灯 |
CN101083234B (zh) * | 2006-05-26 | 2013-06-19 | 香港科技大学 | 具有排列整齐的碳纳米管阵列的散热结构及其制造和应用 |
CN101827782B (zh) * | 2007-09-12 | 2014-12-10 | 斯莫特克有限公司 | 使用纳米结构连接和粘接相邻层 |
CN108306075A (zh) * | 2018-01-31 | 2018-07-20 | 陈攀攀 | 一种动力电池单体叠置模块的厚度变截面热管冷却装置 |
Families Citing this family (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7132161B2 (en) * | 1999-06-14 | 2006-11-07 | Energy Science Laboratories, Inc. | Fiber adhesive material |
US20040009353A1 (en) * | 1999-06-14 | 2004-01-15 | Knowles Timothy R. | PCM/aligned fiber composite thermal interface |
US6921462B2 (en) * | 2001-12-17 | 2005-07-26 | Intel Corporation | Method and apparatus for producing aligned carbon nanotube thermal interface structure |
US7800194B2 (en) * | 2002-04-23 | 2010-09-21 | Freedman Philip D | Thin film photodetector, method and system |
US8907323B2 (en) | 2002-04-23 | 2014-12-09 | Philip D. Freedman | Microprocessor assembly |
US20070122622A1 (en) * | 2002-04-23 | 2007-05-31 | Freedman Philip D | Electronic module with thermal dissipating surface |
US6856016B2 (en) * | 2002-07-02 | 2005-02-15 | Intel Corp | Method and apparatus using nanotubes for cooling and grounding die |
US6994584B1 (en) * | 2002-08-30 | 2006-02-07 | Advanced Micro Devices, Inc. | Thermally conductive integrated circuit mounting structures |
US10340424B2 (en) | 2002-08-30 | 2019-07-02 | GE Lighting Solutions, LLC | Light emitting diode component |
US20050175769A1 (en) * | 2002-10-10 | 2005-08-11 | Tomoaki Kunugi | Heat transfer method and heat exchange system between solid and fluid |
CN1296994C (zh) * | 2002-11-14 | 2007-01-24 | 清华大学 | 一种热界面材料及其制造方法 |
TWI265541B (en) * | 2002-12-25 | 2006-11-01 | Hon Hai Prec Ind Co Ltd | Plasma display |
US20040152240A1 (en) * | 2003-01-24 | 2004-08-05 | Carlos Dangelo | Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits |
US7656027B2 (en) * | 2003-01-24 | 2010-02-02 | Nanoconduction, Inc. | In-chip structures and methods for removing heat from integrated circuits |
US7316061B2 (en) * | 2003-02-03 | 2008-01-08 | Intel Corporation | Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface |
US7094679B1 (en) | 2003-03-11 | 2006-08-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon nanotube interconnect |
US7273095B2 (en) * | 2003-03-11 | 2007-09-25 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Nanoengineered thermal materials based on carbon nanotube array composites |
DE10324377A1 (de) * | 2003-05-28 | 2005-01-05 | Infineon Technologies Ag | Wärmeableiteinrichtung, deren Verwendung und Halbleiterbauelementeanordnung |
DE10327530A1 (de) | 2003-06-17 | 2005-01-20 | Electrovac Gesmbh | Vorrichtung mit wenigstens einer von einem zu kühlenden Funktionselement gebildeten Wärmequelle, mit wenigstens einer Wärmesenke und mit wenigstens einer Zwischenlage aus einer thermischen leitenden Masse zwischen der Wärmequelle und der Wärmesenke sowie thermische leitende Masse, insbesondere zur Verwendung bei einer solchen Vorrichtung |
US7112472B2 (en) * | 2003-06-25 | 2006-09-26 | Intel Corporation | Methods of fabricating a composite carbon nanotube thermal interface device |
US7481267B2 (en) * | 2003-06-26 | 2009-01-27 | The Regents Of The University Of California | Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes |
US6976532B2 (en) * | 2003-06-26 | 2005-12-20 | The Regents Of The University Of California | Anisotropic thermal applications of composites of ceramics and carbon nanotubes |
US7168484B2 (en) * | 2003-06-30 | 2007-01-30 | Intel Corporation | Thermal interface apparatus, systems, and methods |
US6864571B2 (en) * | 2003-07-07 | 2005-03-08 | Gelcore Llc | Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking |
WO2005052179A2 (en) * | 2003-08-13 | 2005-06-09 | The Johns Hopkins University | Method of making carbon nanotube arrays, and thermal interfaces using same |
US7538422B2 (en) * | 2003-08-25 | 2009-05-26 | Nanoconduction Inc. | Integrated circuit micro-cooler having multi-layers of tubes of a CNT array |
US20080131655A1 (en) * | 2006-03-21 | 2008-06-05 | Barbara Wacker | Double Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices |
US20070126116A1 (en) * | 2004-08-24 | 2007-06-07 | Carlos Dangelo | Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface |
US7109581B2 (en) * | 2003-08-25 | 2006-09-19 | Nanoconduction, Inc. | System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler |
US8080871B2 (en) * | 2003-08-25 | 2011-12-20 | Samsung Electronics Co., Ltd. | Carbon nanotube-based structures and methods for removing heat from solid-state devices |
US7732918B2 (en) * | 2003-08-25 | 2010-06-08 | Nanoconduction, Inc. | Vapor chamber heat sink having a carbon nanotube fluid interface |
US7477527B2 (en) * | 2005-03-21 | 2009-01-13 | Nanoconduction, Inc. | Apparatus for attaching a cooling structure to an integrated circuit |
US8039961B2 (en) * | 2003-08-25 | 2011-10-18 | Samsung Electronics Co., Ltd. | Composite carbon nanotube-based structures and methods for removing heat from solid-state devices |
US20070114658A1 (en) * | 2004-08-24 | 2007-05-24 | Carlos Dangelo | Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array |
US20080131722A1 (en) * | 2006-03-21 | 2008-06-05 | Ephraim Suhir | Single Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices |
US8048688B2 (en) * | 2006-10-24 | 2011-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays |
KR100528925B1 (ko) * | 2003-09-09 | 2005-11-15 | 삼성에스디아이 주식회사 | 방열시트 및 이를 구비한 플라즈마 디스플레이 장치 |
TW200519346A (en) * | 2003-09-16 | 2005-06-16 | Koila Inc | Nanostructure augmentation of surfaces for enhanced thermal transfer |
US7235421B2 (en) * | 2003-09-16 | 2007-06-26 | Nasreen Chopra | System and method for developing production nano-material |
US20050129928A1 (en) * | 2003-09-16 | 2005-06-16 | Koila, Inc. | Nanostructure augmentation of surfaces for enhanced thermal transfer with increased surface area |
US20050126766A1 (en) * | 2003-09-16 | 2005-06-16 | Koila,Inc. | Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact |
US20050116336A1 (en) * | 2003-09-16 | 2005-06-02 | Koila, Inc. | Nano-composite materials for thermal management applications |
US20050089638A1 (en) * | 2003-09-16 | 2005-04-28 | Koila, Inc. | Nano-material thermal and electrical contact system |
US20050214197A1 (en) * | 2003-09-17 | 2005-09-29 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
US7235159B2 (en) * | 2003-09-17 | 2007-06-26 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
DE10344492B4 (de) * | 2003-09-24 | 2006-09-07 | Carl Zeiss Nts Gmbh | Teilchenstrahlgerät |
DE10345157B4 (de) * | 2003-09-29 | 2009-01-08 | Qimonda Ag | Wärmeleitende Verpackung von elektronischen Schaltungseinheiten |
TW200517042A (en) * | 2003-11-04 | 2005-05-16 | Hon Hai Prec Ind Co Ltd | Heat sink |
CN100364081C (zh) * | 2003-11-08 | 2008-01-23 | 鸿富锦精密工业(深圳)有限公司 | 散热器及其制造方法 |
WO2005050717A2 (en) * | 2003-11-18 | 2005-06-02 | Washington State University Research Foundation | Micro-transducer and thermal switch for same |
CN100405587C (zh) * | 2003-11-22 | 2008-07-23 | 鸿富锦精密工业(深圳)有限公司 | 散热器及其制备方法 |
US7456052B2 (en) * | 2003-12-30 | 2008-11-25 | Intel Corporation | Thermal intermediate apparatus, systems, and methods |
US7180174B2 (en) * | 2003-12-30 | 2007-02-20 | Intel Corporation | Nanotube modified solder thermal intermediate structure, systems, and methods |
US20050169831A1 (en) * | 2004-02-04 | 2005-08-04 | Montgomery Stephen W. | Three-dimensional nanotube structure |
CN100383213C (zh) * | 2004-04-02 | 2008-04-23 | 清华大学 | 一种热界面材料及其制造方法 |
CN1290764C (zh) * | 2004-05-13 | 2006-12-20 | 清华大学 | 一种大量制造均一长度碳纳米管的方法 |
US20050255304A1 (en) * | 2004-05-14 | 2005-11-17 | Damon Brink | Aligned nanostructure thermal interface material |
US20060025515A1 (en) * | 2004-07-27 | 2006-02-02 | Mainstream Engineering Corp. | Nanotube composites and methods for producing |
US20060083927A1 (en) * | 2004-10-15 | 2006-04-20 | Zyvex Corporation | Thermal interface incorporating nanotubes |
US20060090885A1 (en) * | 2004-10-29 | 2006-05-04 | Stephen Montgomery | Thermally conductive channel between a semiconductor chip and an external thermal interface |
TWI388042B (zh) * | 2004-11-04 | 2013-03-01 | Taiwan Semiconductor Mfg | 基於奈米管基板之積體電路 |
TW200633171A (en) * | 2004-11-04 | 2006-09-16 | Koninkl Philips Electronics Nv | Nanotube-based fluid interface material and approach |
TWI247060B (en) * | 2004-12-31 | 2006-01-11 | Yonyu Plastics Co Ltd | Method producing vapor-grown carbon fibers having 3-d linkage structure |
US7025607B1 (en) * | 2005-01-10 | 2006-04-11 | Endicott Interconnect Technologies, Inc. | Capacitor material with metal component for use in circuitized substrates, circuitized substrate utilizing same, method of making said circuitized substrate, and information handling system utilizing said circuitized substrate |
CN100543103C (zh) * | 2005-03-19 | 2009-09-23 | 清华大学 | 热界面材料及其制备方法 |
US20060231237A1 (en) * | 2005-03-21 | 2006-10-19 | Carlos Dangelo | Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks |
CN1837147B (zh) * | 2005-03-24 | 2010-05-05 | 清华大学 | 热界面材料及其制备方法 |
CN100337981C (zh) * | 2005-03-24 | 2007-09-19 | 清华大学 | 热界面材料及其制造方法 |
CN1841713A (zh) * | 2005-03-31 | 2006-10-04 | 清华大学 | 热界面材料及其制作方法 |
US20060231946A1 (en) * | 2005-04-14 | 2006-10-19 | Molecular Nanosystems, Inc. | Nanotube surface coatings for improved wettability |
CN100404242C (zh) * | 2005-04-14 | 2008-07-23 | 清华大学 | 热界面材料及其制造方法 |
CN100358132C (zh) * | 2005-04-14 | 2007-12-26 | 清华大学 | 热界面材料制备方法 |
US7596751B2 (en) * | 2005-04-22 | 2009-09-29 | Hewlett-Packard Development Company, L.P. | Contact sheet based image management |
US7687876B2 (en) * | 2005-04-25 | 2010-03-30 | Smoltek Ab | Controlled growth of a nanostructure on a substrate |
US20060251897A1 (en) * | 2005-05-06 | 2006-11-09 | Molecular Nanosystems, Inc. | Growth of carbon nanotubes to join surfaces |
US7898079B2 (en) * | 2005-05-26 | 2011-03-01 | Nanocomp Technologies, Inc. | Nanotube materials for thermal management of electronic components |
US7269008B2 (en) * | 2005-06-29 | 2007-09-11 | Intel Corporation | Cooling apparatus and method |
CN1891780B (zh) | 2005-07-01 | 2013-04-24 | 清华大学 | 热界面材料及其制备方法 |
KR100631993B1 (ko) * | 2005-07-20 | 2006-10-09 | 삼성전기주식회사 | Led 패키지 및 그 제조방법 |
US8093715B2 (en) * | 2005-08-05 | 2012-01-10 | Purdue Research Foundation | Enhancement of thermal interface conductivities with carbon nanotube arrays |
US7777291B2 (en) * | 2005-08-26 | 2010-08-17 | Smoltek Ab | Integrated circuits having interconnects and heat dissipators based on nanostructures |
WO2007032081A1 (ja) * | 2005-09-16 | 2007-03-22 | Asahi Kasei Chemicals Corporation | マスターバッチおよびそれを配合した組成物 |
US20080019097A1 (en) * | 2005-10-11 | 2008-01-24 | General Electric Company | Thermal transport structure |
US7297399B2 (en) * | 2005-10-11 | 2007-11-20 | General Electric Company | Thermal transport structure and associated method |
US7871533B1 (en) * | 2006-01-12 | 2011-01-18 | South Dakota School Of Mines And Technology | Carbon nanoparticle-containing nanofluid |
US20070158610A1 (en) * | 2006-01-12 | 2007-07-12 | Haiping Hong | Carbon naoparticle-containing hydrophilic nanofluid |
US7494910B2 (en) * | 2006-03-06 | 2009-02-24 | Micron Technology, Inc. | Methods of forming semiconductor package |
US7532475B2 (en) * | 2006-03-30 | 2009-05-12 | International Business Machines Corporation | Semiconductor chip assembly with flexible metal cantilevers |
CN101054467B (zh) * | 2006-04-14 | 2010-05-26 | 清华大学 | 碳纳米管复合材料及其制备方法 |
US7868531B2 (en) * | 2006-05-05 | 2011-01-11 | Brother International Corporation | Carbon nanotube arrays for field electron emission |
JP4897360B2 (ja) * | 2006-06-08 | 2012-03-14 | ポリマテック株式会社 | 熱伝導性成形体及びその製造方法 |
WO2008000045A1 (en) * | 2006-06-30 | 2008-01-03 | University Of Wollongong | Nanostructured composites |
US20080026505A1 (en) * | 2006-07-28 | 2008-01-31 | Nirupama Chakrapani | Electronic packages with roughened wetting and non-wetting zones |
US8389119B2 (en) * | 2006-07-31 | 2013-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Composite thermal interface material including aligned nanofiber with low melting temperature binder |
CN100591613C (zh) * | 2006-08-11 | 2010-02-24 | 清华大学 | 碳纳米管复合材料及其制造方法 |
US20080292835A1 (en) * | 2006-08-30 | 2008-11-27 | Lawrence Pan | Methods for forming freestanding nanotube objects and objects so formed |
WO2008049015A2 (en) * | 2006-10-17 | 2008-04-24 | Purdue Research Foundation | Electrothermal interface material enhancer |
US20100173228A1 (en) * | 2006-12-14 | 2010-07-08 | University Of Wollongong | Nanotube and Carbon Layer Nanostructured Composites |
DE102007006175A1 (de) * | 2007-02-07 | 2008-08-14 | Osram Opto Semiconductors Gmbh | Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht |
JP4992461B2 (ja) * | 2007-02-21 | 2012-08-08 | 富士通株式会社 | 電子回路装置及び電子回路装置モジュール |
US8020621B2 (en) * | 2007-05-08 | 2011-09-20 | Baker Hughes Incorporated | Downhole applications of composites having aligned nanotubes for heat transport |
US7743763B2 (en) * | 2007-07-27 | 2010-06-29 | The Boeing Company | Structurally isolated thermal interface |
DE102007039905A1 (de) | 2007-08-23 | 2008-08-28 | Siemens Ag | Verfahren zur Herstellung einer wärmeleitfähigen Materialschicht |
DE102007039904A1 (de) | 2007-08-23 | 2008-08-28 | Siemens Ag | Verfahren zur Herstellung einer wärmeleitfähigen Materialschicht |
US9305735B2 (en) | 2007-09-28 | 2016-04-05 | Brigham Young University | Reinforced polymer x-ray window |
EP2190778A4 (en) | 2007-09-28 | 2014-08-13 | Univ Brigham Young | CARBON NANOTUBES ASSEMBLY |
US8498381B2 (en) | 2010-10-07 | 2013-07-30 | Moxtek, Inc. | Polymer layer on X-ray window |
WO2009051561A1 (en) * | 2007-10-17 | 2009-04-23 | Agency For Science, Technology And Research | Composite films comprising carbon nanotubes and polymer |
US8919428B2 (en) * | 2007-10-17 | 2014-12-30 | Purdue Research Foundation | Methods for attaching carbon nanotubes to a carbon substrate |
JP5104688B2 (ja) * | 2007-10-22 | 2012-12-19 | 富士通株式会社 | シート状構造体及びその製造方法並びに電子機器 |
JP5018419B2 (ja) * | 2007-11-19 | 2012-09-05 | 富士通株式会社 | モジュール構造体、その製造方法および半導体装置 |
JP5746808B2 (ja) * | 2007-11-22 | 2015-07-08 | 富士通株式会社 | カーボンナノチューブを用いたパッケージ及び電子デバイス |
US8262835B2 (en) | 2007-12-19 | 2012-09-11 | Purdue Research Foundation | Method of bonding carbon nanotubes |
US7760507B2 (en) * | 2007-12-26 | 2010-07-20 | The Bergquist Company | Thermally and electrically conductive interconnect structures |
JP5474835B2 (ja) | 2008-02-25 | 2014-04-16 | スモルテック アーベー | ナノ構造処理のための導電性補助層の形成及び選択的除去 |
EP2269948B1 (en) * | 2008-02-29 | 2017-08-02 | Fujitsu Limited | Sheet structure |
JP5146256B2 (ja) * | 2008-03-18 | 2013-02-20 | 富士通株式会社 | シート状構造体及びその製造方法、並びに電子機器及びその製造方法 |
US20090323276A1 (en) * | 2008-06-25 | 2009-12-31 | Mongia Rajiv K | High performance spreader for lid cooling applications |
CN101626674B (zh) * | 2008-07-11 | 2015-07-01 | 清华大学 | 散热结构及其制备方法 |
JP2010073843A (ja) * | 2008-09-18 | 2010-04-02 | Nitto Denko Corp | マイクロプロセッサ構造 |
CN102159499B (zh) * | 2008-09-18 | 2013-07-24 | 日东电工株式会社 | 碳纳米管集合体 |
JP2010073842A (ja) * | 2008-09-18 | 2010-04-02 | Nitto Denko Corp | マイクロプロセッサ構造 |
KR100978571B1 (ko) * | 2008-10-27 | 2010-08-27 | 삼성엘이디 주식회사 | Led 패키지 |
JP5239768B2 (ja) * | 2008-11-14 | 2013-07-17 | 富士通株式会社 | 放熱材料並びに電子機器及びその製造方法 |
US20100128439A1 (en) * | 2008-11-24 | 2010-05-27 | General Electric Company | Thermal management system with graphene-based thermal interface material |
CN101768427B (zh) * | 2009-01-07 | 2012-06-20 | 清华大学 | 热界面材料及其制备方法 |
US20100190023A1 (en) * | 2009-01-26 | 2010-07-29 | Adam Franklin Gross | Metal bonded nanotube array |
KR20100087932A (ko) * | 2009-01-29 | 2010-08-06 | 삼성전기주식회사 | 자기 조립 단분자막을 이용한 다이 어태치 방법 및 자기 조립 단분자막을 이용하여 다이가 어태치된 패키지 기판 |
CN101814867B (zh) * | 2009-02-20 | 2013-03-20 | 清华大学 | 热电发电装置 |
TWI473309B (zh) * | 2009-02-27 | 2015-02-11 | Hon Hai Prec Ind Co Ltd | 熱電發電裝置 |
CN101826467B (zh) * | 2009-03-02 | 2012-01-25 | 清华大学 | 热界面材料的制备方法 |
US8541058B2 (en) * | 2009-03-06 | 2013-09-24 | Timothy S. Fisher | Palladium thiolate bonding of carbon nanotubes |
US8247971B1 (en) | 2009-03-19 | 2012-08-21 | Moxtek, Inc. | Resistively heated small planar filament |
JP5431793B2 (ja) * | 2009-05-29 | 2014-03-05 | 新光電気工業株式会社 | 放熱部品、電子部品装置及び電子部品装置の製造方法 |
JP5605360B2 (ja) * | 2009-06-16 | 2014-10-15 | 富士通株式会社 | グラファイト構造体、電子部品及び電子部品の製造方法 |
US8405996B2 (en) * | 2009-06-30 | 2013-03-26 | General Electric Company | Article including thermal interface element and method of preparation |
US8593040B2 (en) | 2009-10-02 | 2013-11-26 | Ge Lighting Solutions Llc | LED lamp with surface area enhancing fins |
TWI452704B (zh) * | 2009-12-17 | 2014-09-11 | Hon Hai Prec Ind Co Ltd | 太陽能發電裝置及太陽能發電模組 |
CA2786838C (en) * | 2010-01-14 | 2017-01-10 | Saab Ab | Multifunctional de-icing/anti-icing system |
CA2786839A1 (en) * | 2010-01-14 | 2011-07-21 | Saab Ab | Article with de-icing/anti-icing function |
US10240772B2 (en) * | 2010-04-02 | 2019-03-26 | GE Lighting Solutions, LLC | Lightweight heat sinks and LED lamps employing same |
US8668356B2 (en) * | 2010-04-02 | 2014-03-11 | GE Lighting Solutions, LLC | Lightweight heat sinks and LED lamps employing same |
JP2013524439A (ja) * | 2010-04-02 | 2013-06-17 | ジーイー ライティング ソリューションズ エルエルシー | 軽量ヒートシンク及びそれを使用するledランプ |
US8564954B2 (en) | 2010-06-15 | 2013-10-22 | Chipmos Technologies Inc. | Thermally enhanced electronic package |
US9096784B2 (en) | 2010-07-23 | 2015-08-04 | International Business Machines Corporation | Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance |
JP5373731B2 (ja) * | 2010-10-05 | 2013-12-18 | トヨタ自動車株式会社 | 触媒担体の製造方法 |
US10962297B2 (en) | 2011-02-21 | 2021-03-30 | Board Of Regents, The University Of Texas System | Multidimensional heat transfer system for cooling electronic components |
WO2012142613A1 (en) | 2011-04-14 | 2012-10-18 | Ada Technologies, Inc. | Thermal interface materials and systems and devices containing the same |
US8989354B2 (en) | 2011-05-16 | 2015-03-24 | Brigham Young University | Carbon composite support structure |
US9174412B2 (en) | 2011-05-16 | 2015-11-03 | Brigham Young University | High strength carbon fiber composite wafers for microfabrication |
US9076628B2 (en) | 2011-05-16 | 2015-07-07 | Brigham Young University | Variable radius taper x-ray window support structure |
US9257359B2 (en) * | 2011-07-22 | 2016-02-09 | International Business Machines Corporation | System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks |
US9874688B2 (en) | 2012-04-26 | 2018-01-23 | Acacia Communications, Inc. | Co-packaging photonic integrated circuits and application specific integrated circuits |
US9500355B2 (en) | 2012-05-04 | 2016-11-22 | GE Lighting Solutions, LLC | Lamp with light emitting elements surrounding active cooling device |
US9656246B2 (en) | 2012-07-11 | 2017-05-23 | Carbice Corporation | Vertically aligned arrays of carbon nanotubes formed on multilayer substrates |
US9111899B2 (en) | 2012-09-13 | 2015-08-18 | Lenovo | Horizontally and vertically aligned graphite nanofibers thermal interface material for use in chip stacks |
US9245813B2 (en) | 2013-01-30 | 2016-01-26 | International Business Machines Corporation | Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance |
US9090004B2 (en) | 2013-02-06 | 2015-07-28 | International Business Machines Corporation | Composites comprised of aligned carbon fibers in chain-aligned polymer binder |
US9173623B2 (en) | 2013-04-19 | 2015-11-03 | Samuel Soonho Lee | X-ray tube and receiver inside mouth |
US9082744B2 (en) | 2013-07-08 | 2015-07-14 | International Business Machines Corporation | Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field |
JP5864486B2 (ja) * | 2013-07-24 | 2016-02-17 | 富士通株式会社 | シート状構造体及びその製造方法 |
CN104349648B (zh) * | 2013-08-09 | 2017-03-01 | 技嘉科技股份有限公司 | 复合式散热组件 |
WO2015191897A1 (en) | 2014-06-11 | 2015-12-17 | Georgia Tech Research Corporation | Polymer-based nanostructured materials with tunable properties and methods of making thereof |
US20160106005A1 (en) * | 2014-10-13 | 2016-04-14 | Ntherma Corporation | Carbon nanotubes as a thermal interface material |
US11360278B2 (en) * | 2014-10-29 | 2022-06-14 | Acacia Communications, Inc. | Optoelectronic ball grid array package with fiber |
US10444515B2 (en) | 2015-01-20 | 2019-10-15 | Microsoft Technology Licensing, Llc | Convective optical mount structure |
US10028418B2 (en) | 2015-01-20 | 2018-07-17 | Microsoft Technology Licensing, Llc | Metal encased graphite layer heat pipe |
US9791704B2 (en) | 2015-01-20 | 2017-10-17 | Microsoft Technology Licensing, Llc | Bonded multi-layer graphite heat pipe |
US10108017B2 (en) | 2015-01-20 | 2018-10-23 | Microsoft Technology Licensing, Llc | Carbon nanoparticle infused optical mount |
US20160286692A1 (en) * | 2015-03-23 | 2016-09-29 | The Boeing Company | High thermal conductivity joint utlizing continuous aligned carbon nanotubes |
CN105128372B (zh) * | 2015-09-22 | 2017-04-19 | 清华大学 | 一种高导热复合聚合物薄膜的制备方法 |
US10292255B2 (en) | 2016-05-18 | 2019-05-14 | Raytheon Company | Expanding thermal device and system for effecting heat transfer within electronics assemblies |
US10791651B2 (en) | 2016-05-31 | 2020-09-29 | Carbice Corporation | Carbon nanotube-based thermal interface materials and methods of making and using thereof |
US10153224B2 (en) | 2016-09-14 | 2018-12-11 | Globalfoundries Inc. | Backside spacer structures for improved thermal performance |
TWI755492B (zh) | 2017-03-06 | 2022-02-21 | 美商卡爾拜斯有限公司 | 基於碳納米管的熱界面材料及其製造和使用方法 |
DE102017126028B4 (de) | 2017-06-30 | 2020-12-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gehäuse und Herstellungsverfahren mit einem Trennfilm als Isolierfilm |
US10170341B1 (en) * | 2017-06-30 | 2019-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Release film as isolation film in package |
DE102017217105A1 (de) * | 2017-09-26 | 2019-03-28 | Robert Bosch Gmbh | Kühlvorrichtung und Verfahren zur Kühlung eines zu kühlenden Elements |
US10707596B2 (en) | 2018-09-21 | 2020-07-07 | Carbice Corporation | Coated electrical connectors and methods of making and using thereof |
CN111417282B (zh) * | 2019-01-04 | 2021-07-30 | 清华大学 | 散热片以及利用该散热片的电子装置 |
USD903610S1 (en) | 2019-08-28 | 2020-12-01 | Carbice Corporation | Flexible heat sink |
USD904322S1 (en) | 2019-08-28 | 2020-12-08 | Carbice Corporation | Flexible heat sink |
US20210063099A1 (en) | 2019-08-28 | 2021-03-04 | Carbice Corporation | Flexible and conformable polymer-based heat sinks and methods of making and using thereof |
USD906269S1 (en) | 2019-08-28 | 2020-12-29 | Carbice Corporation | Flexible heat sink |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6203814B1 (en) | 1994-12-08 | 2001-03-20 | Hyperion Catalysis International, Inc. | Method of making functionalized nanotubes |
US5780101A (en) | 1995-02-17 | 1998-07-14 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide |
US5753088A (en) | 1997-02-18 | 1998-05-19 | General Motors Corporation | Method for making carbon nanotubes |
US6006168A (en) * | 1997-12-12 | 1999-12-21 | Digital Equipment Corporation | Thermal model for central processing unit |
KR100494974B1 (ko) * | 1998-06-24 | 2005-06-14 | 존슨 마테이 일렉트로닉스, 인코포레이티드 | 반도체 조립체 및 그의 제조방법 |
US6232706B1 (en) | 1998-11-12 | 2001-05-15 | The Board Of Trustees Of The Leland Stanford Junior University | Self-oriented bundles of carbon nanotubes and method of making same |
AU1616300A (en) | 1998-12-02 | 2000-06-19 | Intel Corporation | A fibrous thermal interface adaptor |
EP1054036A1 (en) | 1999-05-18 | 2000-11-22 | Fina Research S.A. | Reinforced polymers |
CN101104514A (zh) | 1999-10-27 | 2008-01-16 | 威廉马歇莱思大学 | 碳质毫微管的宏观有序集合体 |
ATE355323T1 (de) | 1999-12-07 | 2006-03-15 | Univ Rice William M | Orientierte nanofaser eingebunden in einer polymermatrix |
US6256996B1 (en) | 1999-12-09 | 2001-07-10 | International Business Machines Corporation | Nanoscopic thermoelectric coolers |
JP2001172398A (ja) | 1999-12-17 | 2001-06-26 | Polymatech Co Ltd | 熱伝導性成形体およびその製造方法 |
US6407922B1 (en) * | 2000-09-29 | 2002-06-18 | Intel Corporation | Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader |
JP2002121404A (ja) * | 2000-10-19 | 2002-04-23 | Polymatech Co Ltd | 熱伝導性高分子シート |
JP4697829B2 (ja) * | 2001-03-15 | 2011-06-08 | ポリマテック株式会社 | カーボンナノチューブ複合成形体及びその製造方法 |
US6667548B2 (en) * | 2001-04-06 | 2003-12-23 | Intel Corporation | Diamond heat spreading and cooling technique for integrated circuits |
-
2001
- 2001-12-20 US US10/027,442 patent/US6965513B2/en not_active Expired - Lifetime
-
2002
- 2002-12-17 CN CN02828255A patent/CN100576520C/zh not_active Expired - Fee Related
- 2002-12-17 AU AU2002353167A patent/AU2002353167A1/en not_active Abandoned
- 2002-12-17 WO PCT/US2002/040515 patent/WO2003054958A1/en not_active Application Discontinuation
- 2002-12-18 JP JP2002366897A patent/JP4541639B2/ja not_active Expired - Fee Related
- 2002-12-19 EP EP02258760.4A patent/EP1329953B1/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1929118B (zh) * | 2005-09-05 | 2010-05-26 | 鸿富锦精密工业(深圳)有限公司 | 散热器及其制造方法 |
CN100517661C (zh) * | 2005-11-26 | 2009-07-22 | 鸿富锦精密工业(深圳)有限公司 | 散热装置的制备方法 |
CN101083234B (zh) * | 2006-05-26 | 2013-06-19 | 香港科技大学 | 具有排列整齐的碳纳米管阵列的散热结构及其制造和应用 |
US8890312B2 (en) | 2006-05-26 | 2014-11-18 | The Hong Kong University Of Science And Technology | Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use |
CN101512760B (zh) * | 2006-09-22 | 2010-11-03 | 国际商业机器公司 | 热界面结构及其制造方法 |
CN101827782B (zh) * | 2007-09-12 | 2014-12-10 | 斯莫特克有限公司 | 使用纳米结构连接和粘接相邻层 |
CN102840488A (zh) * | 2012-09-11 | 2012-12-26 | 广东宏泰照明科技有限公司 | 具有散热功能的led灯 |
CN108306075A (zh) * | 2018-01-31 | 2018-07-20 | 陈攀攀 | 一种动力电池单体叠置模块的厚度变截面热管冷却装置 |
CN108306075B (zh) * | 2018-01-31 | 2019-11-08 | 陈攀攀 | 一种动力电池单体叠置模块的厚度变截面热管冷却装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2002353167A1 (en) | 2003-07-09 |
EP1329953B1 (en) | 2014-01-22 |
JP4541639B2 (ja) | 2010-09-08 |
JP2003249613A (ja) | 2003-09-05 |
EP1329953A1 (en) | 2003-07-23 |
US20030117770A1 (en) | 2003-06-26 |
CN100576520C (zh) | 2009-12-30 |
WO2003054958A1 (en) | 2003-07-03 |
US6965513B2 (en) | 2005-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1623230A (zh) | 碳毫微管热界面结构 | |
US10262966B2 (en) | Methods for surface attachment of flipped active components | |
US11318663B2 (en) | Multi-layer stamp | |
US7641938B2 (en) | Method for manufacturing carbon nanotube composite material | |
US20180158753A1 (en) | Heat dissipating structure and manufacture | |
US8194407B2 (en) | Heat radiation material, electronic device and method of manufacturing electronic device | |
US20110030938A1 (en) | Heat dissipation structure and heat dissipation system adopting the same | |
US7569425B2 (en) | Method for manufacturing thermal interface material with carbon nanotubes | |
US20100172101A1 (en) | Thermal interface material and method for manufacturing the same | |
US20080128122A1 (en) | Method for making a thermal interface material | |
US20100003804A1 (en) | Electronic Device and Method for Manufacturing Same | |
US11062936B1 (en) | Transfer stamps with multiple separate pedestals | |
KR20160061993A (ko) | 열 전도성 접착 시트, 그의 제조 방법 및 그것을 사용한 전자 디바이스 | |
CN101014821A (zh) | 具有金属基底和石墨翼片的复合散热器 | |
US8518304B1 (en) | Nano-structure enhancements for anisotropic conductive material and thermal interposers | |
TWI848035B (zh) | 電子裝置及其製造方法 | |
CN113764558A (zh) | 一种显示面板及其制备方法 | |
WO2021256220A1 (ja) | 熱伝導体及び熱伝導体の製造方法 | |
US11503701B1 (en) | Electronic device having heat transfer clamp and associated methods | |
CN101840894B (zh) | 半导体器件 | |
Yeung et al. | Thermal cycling analysis of TAB OLB connection with ACF | |
Cao et al. | Optimization of lasing in semiconductor micro-stadiums |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091230 Termination date: 20191217 |