CN1613128A - 具有三层横梁的mems器件及其相关方法 - Google Patents

具有三层横梁的mems器件及其相关方法 Download PDF

Info

Publication number
CN1613128A
CN1613128A CNA028269144A CN02826914A CN1613128A CN 1613128 A CN1613128 A CN 1613128A CN A028269144 A CNA028269144 A CN A028269144A CN 02826914 A CN02826914 A CN 02826914A CN 1613128 A CN1613128 A CN 1613128A
Authority
CN
China
Prior art keywords
electrode
contact
interconnection
switch
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028269144A
Other languages
English (en)
Other versions
CN1292447C (zh
Inventor
肖恩·J·坎宁安
达纳·R·德吕斯
苏巴哈姆·塞特
斯韦特兰娜·塔蒂克-卢奇克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Pte Ltd
Original Assignee
Wispry Inc
Coventor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wispry Inc, Coventor Inc filed Critical Wispry Inc
Publication of CN1613128A publication Critical patent/CN1613128A/zh
Application granted granted Critical
Publication of CN1292447C publication Critical patent/CN1292447C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0024Transducers for transforming thermal into mechanical energy or vice versa, e.g. thermal or bimorph actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/04Electrothermal relays wherein the thermally-sensitive member is only heated directly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/01Switches
    • B81B2201/012Switches characterised by the shape
    • B81B2201/014Switches characterised by the shape having a cantilever fixed on one side connected to one or more dimples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/01Switches
    • B81B2201/012Switches characterised by the shape
    • B81B2201/018Switches not provided for in B81B2201/014 - B81B2201/016
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0107Sacrificial metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0108Sacrificial polymer, ashing of organics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/04Co-operating contacts of different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/504Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by thermal means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0063Switches making use of microelectromechanical systems [MEMS] having electrostatic latches, i.e. the activated position is kept by electrostatic forces other than the activation force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0089Providing protection of elements to be released by etching of sacrificial element; Avoiding stiction problems, e.g. of movable element to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • H01H2059/0072Electrostatic relays; Electro-adhesion relays making use of micromechanics with stoppers or protrusions for maintaining a gap, reducing the contact area or for preventing stiction between the movable and the fixed electrode in the attracted position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H2061/006Micromechanical thermal relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/49222Contact or terminal manufacturing by assembling plural parts forming array of contacts or terminals

Abstract

提供一种悬挂在基板(102)上的活动的、三层微元件(108),并且包括第一导电层(116),将该第一导电层构图限定活动电极(114)。用间隙将基板(102)与第一金属层(116)分开。微元件(108)还包括在第一金属层(116)上形成并且一端相对于基板(102)固定的电介质层(112)。此外,微元件(102)包括在介质层(112)上形成的第二导电层(120),并且构图限定与活动电极(114)电连接的电极互连(124)。

Description

具有三层横梁的MEMS器件及其相关方法
相关申请的交叉参考
本申请要求2001年11月9日申请的美国临时申请No.60/337,527、2001年11月9日申请的美国临时申请No.60/337,528、2001年11月9日申请的美国临时申请No.60/337,529、2001年11月9日申请的美国临时申请No.60/338,055、2001年11月9日申请的美国临时申请No.60/338,069、2001年11月9日申请的美国临时申请No.60/338,072的优先权,其公开通过参考在这里全部引入。另外,共同受让并且同时申请的以下美国专利申请的公开在这里全部作为参考引入:标题为“Trilayered Beam MEMS Device and Related Methods”、“MEMSDevice Having Contact and Standoff Bumps and Related Methods”、“MEMS Switch Having Electrothermal Actuation and Release andMethod for Fabricating”以及“Electrothermal Self-Latching MEMSSwitch and Method”。
技术领域
本发明涉及微电子机械(micro-electro-mechanical)系统(MEMS)器件。更具体的,本发明涉及具有三层横梁的MEMS器件的设计及其方法。
背景技术
静电MEMS开关是由静电电荷操作的开关,并采用微电子机械系统(MEMS)技术制造。MEMS开关可以控制电、机械或光信号的流动。MEMS开关已经应用于电信,例如DSL开关矩阵和移动电话、自动测试设备(ATE)和其它要求低成本开关或低成本高密度阵列的系统。
正如本领域的技术人员所理解的,许多类型的MEMS开关和相关器件可以由体型(bulk)或表面微机械加工(surface micromachining)技术制造。体型微机械加工通常包括雕刻基板的一个或多个侧面,在同一种基板材料中形成所需的三维结构和器件。基板由可容易地批量得到的材料构成,因此通常为硅或玻璃。采用湿和/或干蚀刻技术结合蚀刻掩模和蚀刻停止层以形成微结构。蚀刻通常在基板的前面或背面进行。蚀刻技术实质上通常为各向同性或各向异性的。各向同性蚀刻对要蚀刻的材料平面的晶体取向不敏感(例如,使用硝酸作为蚀刻剂蚀刻硅)。各向异性蚀刻剂,例如,氢氧化钾(KOH)、四甲基氢氧化铵(TMAH)和ethylenediamine pyrochatechol(EDP),以不同的速度选择性地腐蚀不同的结晶取向,由此在产生蚀刻凹陷时可以用来限定较精确的侧壁。蚀刻掩模和蚀刻停止层用来防止基板的预定区域被蚀刻。
另一方面,表面微机械加工通常包括通过在硅晶片的顶部淀积大量不同的薄膜来形成三维结构,而不雕刻晶片本身。膜通常作为结构或牺牲层(sacrificial layer)。结构层常常由多晶硅、氮化硅、二氧化硅、碳化硅或铝构成。牺牲层常常由多晶硅、光致抗蚀剂材料、聚酰亚胺、金属或各种氧化物,例如,PGS(磷硅酸盐玻璃)和LTO(低温氧化物)构成。进行连续的淀积、蚀刻和构图过程,得到所需的微结构。在典型的表面微机械加工工艺中,硅基板涂覆有隔离层,并且在涂覆的基板上淀积牺牲层。在牺牲层中形成窗口,然后淀积并蚀刻结构层。然后选择性地蚀刻牺牲层,在结构层之外形成独立的、活动的微结构,例如,横梁或悬臂。微结构通常锚定(anchor)在硅基板上,并且可以设计为根据来自适当的致动机构的输入而移动。
许多目前的MEMS开关设计采用悬臂(cantilievered)横梁(或盘),或者多支撑的横梁几何结构作为开关结构。在悬臂横梁的情况下,这些MEMS开关包括活动的、由电介质材料结构层和金属层构成的双材料横梁。通常,电介质材料固定在基板的一端,并为横梁提供结构支撑。金属层附着在电介质层的下表面,并形成活动的电极和活动的触头。金属层可形成锚点(anchor)部件。通过在附着在基板表面上的一个电极和另一个电极之间施加电压差,将活动的横梁向着基板的方向驱动。加在两个电极上的电压差产生将横梁拉向基板的电场。横梁和基板都具有触头,当没加电压时,彼此之间隔着空气隙,此时开关处于“断开”的位置。当加上电压差时,横梁被拉向基板,触头形成电连接,此时开关处于“闭合”的位置。
目前具有双材料横梁的MEMS开关所面临的一个问题是横梁的弯曲或其它形式的静态位移或变形。静态变形可以由膜中的应力不匹配或应力梯度引起。在某些平衡的温度下,可以平衡不匹配的影响,实现平坦的双材料结构,但是这不适用于依赖于温度的效应。通过特定的工艺(即,淀积速度、压力、方法等)、通过材料的选择以及通过几何参数,例如,厚度,可以平衡这种不匹配。随着温度的变化这种金属和电介质的双材料结构引起功能上的较大变化,因为金属通常比电介质具有更大的热膨胀率。由于在两个材料中的静态应力的不同状态,开关具有高可变性的变形。时常地,由于横梁的变形引起开关故障。当由于静态变形或者由于引入了作为温度的函数的变形而在活动的和固定的触头之间没有建立电接触时,导致开关故障。当活动的接触和固定的接触之间过早地闭合时,观察到故障的第二种方式,导致“短路”。由于横梁的变形,根据横梁背离基板或向着基板弯曲,致动电压分别增加或减小。由于这种可变性,可用的电压可能不足以达到所希望的接触力,由此导致接触电阻。
某些目前具有双材料横梁的MEMS开关设计将活动电极的金属层附着在介质材料的上表面。移动触头的金属层仍然必须在介质材料的下表面。该设计用来在活动电极和固定基板电极之间提供隔离;但是,该设计要求更高的致动电压,因为在金属层和附着在基板表面上的电极之间的间隙距离更大。现在有效间隙是在固定电极和电介质之间的间隙与电介质厚度的和。因此,这种设计要求更大的功耗,并且产生关于介质充电的问题。
因此,希望提供改善MEMS开关的产量、温度特性、致动和质量的横梁。还希望减小横梁的变形,以便改善开关的可靠性。此外,希望降低开关的功耗。
发明内容
根据一个实施例,提供一种悬挂于基板上的活动的、三层微元件。三层微元件包括构图以限定活动电极的第一导电层。第一金属层与基板分开一个间隙。微元件还包括在第一金属层上形成并且一端相对于基板固定的电介质层。此外,微元件包括在介质层上形成的第二导电层,并且构图来限定与活动电极电连接的电极互连。
根据第二实施例,提供具有活动的、三层微元件的致动器。致动器包括附着有固定电极的基板以及包括相对于基板固定的第一端和悬在基板上的第二端的弹性结构层。致动器还包括附着在结构层上的活动电极,由此活动电极与固定电极由间隙分开。此外,致动器包括在结构层上形成的电极互连,用来与活动电极电连接。
根据第三实施例,提供具有活动的、三层微元件的、微小规模的、静电致动开关。该开关包括具有固定电极和其上附着触头的基板以及包括相对于基板固定的第一端和悬在基板上的第二端的弹性结构层。该开关还包括附着在结构层上的活动电极,由此活动电极与固定电极由间隙分开。此外,开关包括在结构层上形成的电极互连,用来与活动电极电连接。
因此,一个目的是提供一种如在这里所介绍的新颖的MEMS开关器件和方法。
以上介绍了本发明的一个目的,并且通过具有三层横梁的新颖的MEMS器件以及这里介绍的相关方法来完全或部分地实现这一目的,随着下面结合作为最佳描述的附图的进一步介绍,其它目的也将变得明显。
附图简要介绍
下面参考附图说明本发明的示例性实施例,其中:
图1示出了处于“断开”位置的MEMS开关的剖侧视面图;
图2示出了处于“闭合”位置的MEMS开关的侧视剖面图;
图3示出了MEMS开关的固定电极、结构层、活动电极以及电极互连的前视剖面图;
图4示出了MEMS开关的顶视图;
图5示出了MEMS开关的透视顶视图;
图6示出了具有接触凸点的MEMS开关的透视底视图;
图7示出了MEMS开关的另一个实施例的顶视图,其中电极互连宽度大于接触互连宽度;
图8示出了MEMS开关的另一个实施例的顶视图,其中电极互连延伸靠近接触互连;
图9示出了MEMS开关的透视顶视图,其中电极互连更宽,并且延伸靠近接触互连;
图10示出了根据本发明的MEMS开关的透视侧视图;
图11示出了MEMS开关的实施例的顶视图,其隔离区在电极互连和接触互连之间的宽度减小;
图12示出了MEMS开关的另一个实施例的透视顶视图,其中电极互连比接触互连更宽,并且结构层在锚点附近变窄;
图13示出了MEMS开关的透视底视图,其中电极互连比接触互连更宽,并且结构层在锚点附近变窄;
图14示出了具有柔性切口(compliance cuts)的MEMS开关的另一个实施例的透视顶视图;
图15示出了具有柔性切口的MEMS开关的另一个实施例的透视侧视图;
图16示出了具有折叠的横梁几何形状的MEMS开关的另一个实施例的顶视图;
图17示出了具有两个悬臂横梁的MEMS开关的另一个实施例的透视顶视图;
图18示出了具有两个悬臂横梁的MEMS开关的另一个实施例的透视底视图;
图19示出了具有两个悬臂横梁的MEMS开关的另一个实施例的顶视图;
图20示出了具有两个悬臂横梁的MEMS开关的另一个实施例的顶视图;
图21示出了在结构层的底面具有接触通路的MEMS开关的另一个
实施例的顶视图;
图22示出了在结构层的底面具有接触通路的MEMS开关的另一个
实施例的底视图;
图23示出了在结构层的底面和顶面具有接触通路的MEMS开关的另一个实施例的顶视图;
图24示出了在结构层的底面和顶面具有接触通路的MEMS开关的另一个实施例的底视图;
图25示出了接触互连尺寸基本等于活动触头和活动电极尺寸,并且对准活动触头和活动电极的MEMS开关的侧视剖面图;
图26示出了接触互连尺寸基本等于活动触头和活动电极尺寸,并且对准活动触头和活动电极的MEMS开关的透视顶视图;以及
图27示出了接触互连尺寸基本等于触头和活动电极尺寸,并且对准活动触头和活动电极的MEMS开关的透视底视图。
发明的详细介绍
这里为了说明的目的,应当理解,当谈到一个元件,例如一个层或基板,淀积或形成在另一个元件“上”时,该元件可以直接在另一个元件之上,或者,可选择地,也可以存在插入元件(例如,一个或多个缓冲或过渡层、夹层、电极或触头)。此外,应当理解,术语“淀积在……上”和“形成在……上”是可替换的,表示给定的元件相对于另一个元件如何定位。因此,应当理解,术语“淀积在……上”和“形成在……上”没有对材料转移、淀积或制造引入任何限制。
通过溅射、CVD或蒸发可以形成各种材料的触头、互连、导电过孔和电极。如果采用金、镍或PERMALLOYTM(NixFey)作为金属成分,则可以进行电镀工艺将材料输送到所需的表面。在各种金属的电镀中所用的化学溶液是公知的。某些金属,例如,金,要求适当的中间附着层来防止剥离。经常使用的附着材料的例子包括铬、钛或例如钛-钨(TiW)等合金。某些金属组合要求扩散阻挡层,以防止铬附着层穿过金扩散。在金和铬之间的扩散阻挡层的例子包括铂或镍。
根据下面介绍的本发明的微机械加工可以采用常规光刻工艺。因此,在这里不再介绍基本的光刻工艺步骤,例如光致抗蚀剂应用、光学曝光以及显影剂的使用。
同样,可以采用公知的蚀刻工艺选择性的去除材料或几个区域的材料。通常使用成像的光致抗蚀剂层作为掩蔽模板。可以在基板体上蚀刻出图形,或在薄膜或层中蚀刻出图形,然后用这些图形作为后续蚀刻步骤的掩模。
在特定制造步骤中采用的蚀刻工艺的类型(例如,湿、干、各向同性、各向异性、依赖于各向异性取向(anisotropic-orientationdependent))、蚀刻速度以及所用蚀刻剂的类型将依赖于所要去掉的材料的成分、要使用的任何掩蔽或蚀刻停止层的成分以及要形成的蚀刻区的形状。例如,通常多蚀刻(polyetch)(HF:HNO3:CH3COOH)可用于各向同性湿蚀刻。碱金属的氢氧化物(例如,KOH)、简单氢氧化铵(NH4OH)、四(四甲基)氢氧化铵((CH3)4NOH,在商业上也称为TMAH)以及在水中与pyrochatechol混合的乙二胺(EDP)可以用于各向异性湿蚀刻,用于制造V形或锥形凹槽、沟槽或空腔。氮化硅通常用作通过KOH蚀刻的掩蔽材料,并且从而可以与硅的选择性蚀刻相结合。二氧化硅被KOH缓慢蚀刻,所以如果蚀刻时间较短,可以用作掩蔽层。KOH可以蚀刻未掺杂的硅,而重掺杂的(p++)硅可以用作KOH以及其它碱性蚀刻剂和EDP的蚀刻停止层。氧化硅和氮化硅可以用作TMAH和EDP的掩模。根据本发明用来形成触头和互连的优选金属为金及其合金。
众所周知湿蚀刻剂可以用来蚀刻例如铜、金、二氧化硅以及辅助材料等材料,辅助材料例如为附着和阻挡材料。例如,可以在20到50℃的温度范围内用KI3的水溶液蚀刻金。作为另一个例子,可以在25℃下在铈的硝酸铵、硝酸和H2O溶液中湿蚀刻铬(公共附着层)。此外,例如,可以在25℃下在硝酸的稀溶液中蚀刻铜。蚀刻二氧化硅的普通方法是用HF的各种水溶液或者用氟化铵缓冲的HF溶液。
应当理解,可以在氢氧化物溶液中进行电化学蚀刻来代替定时的湿蚀刻。例如,如果p型硅晶片用作基板,则可以通过外延生长n型硅终止层以形成p-n结二极管来产生蚀刻停止层。在n型层和放在溶液中的电极之间施加电压,反向偏置p-n结。结果,通过掩模蚀刻体p型硅直到p-n结,在n型层停止。此外,光电的和电流的蚀刻停止技术也是合适的。
也可以使用,例如,等离子相蚀刻和反应离子蚀刻(RIE),等干蚀刻技术去除硅及其氧化物和氮化物,以及各种金属。深反应离子蚀刻(DRIE)可以用来在体层中各向异性地蚀刻深的、垂直的沟槽。二氧化硅通常用作DRIE的蚀刻停止层,从而根据本发明的方法,可以使用包含埋置的二氧化硅层的结构,例如绝缘体上硅(SOI)晶片,作为制造微结构的初始基板。例如,对于干蚀刻工艺,可以在包括CF4+O2、CHF3、C2F6或C3F3的化学试剂中蚀刻二氧化硅。作为另一个例子,可以用C2Cl2F4或C4Cl2F4+O2干蚀刻金。
可选择的蚀刻构图工艺为本领域的技术人员已知的提升(lift-off)工艺。在这种情况下,常规光刻技术用于所希望图形的负像。该工艺通常用来在金属上构图,该金属淀积为连续膜或当需要附着层和扩散阻挡层时而淀积的膜。金属淀积在要构图的区域上并在光致抗蚀剂掩模(负像)的上面。去掉光致抗蚀剂和其上面的金属,留下所需的金属图形。
如在这里所用的,术语“器件”具有与术语“元件”可互换的意思。
如在这里所用的,术语“导电”通常包括导体和半导体材料。
现在参考附图介绍例子。
参考图1-4,示出了一般用100表示的具有三层横梁的MEMS开关的不同视图。具体参考图1,示出了处于“断开”位置的MEMS开关的侧视剖面图。MEMS开关100包括基板102。基板102可以包含的材料的非限定性的例子包括硅(以单晶、多晶或非晶的形式)、氮氧化硅(silicon oxinitride)、玻璃、石英、蓝宝石、氧化锌、氧化铝、二氧化硅或者以二重、三重或四重的形式的各种族III-V的化合物的一种(例如,GaAs、InP、GaN、AlN、AlGaN、InGaAs等)。如果选择的基板102的成分为导电的或半导体材料,则可以在基板102的表面上或者至少在需要电接触或导电区的部分的部分顶部表面上淀积不导电的电介质层。
基板102包括第一固定触头104、第二固定触头(未示出)和在其表面上形成的固定电极106。第一固定触头104、第二固定触头和固定电极106可以由例如金属的导电材料构成。或者,第一固定触头104、第二固定触头和固定电极106可以分别包含不同的导电材料,例如金-镍合金(AuNi5)和铝,以及本领域的技术人员已知的其他合适的导电材料。固定电极106的导电性可以远低于第一固定触头104和第二固定触头的导电性。最好,第一固定触头104和第二固定触头包含例如铜等具有非常高导电性的材料。优选地,第一固定触头104和第二固定触头的宽度范围为7μm到100μm,长度范围为15μm到75μm。固定电极106的尺寸的宽度范围依赖于所要求的致动电压、接触电阻以及其它功能参数。优选地,固定电极106的宽度范围为25μm到250μm,长度范围为100μm到500μm。或者第一固定触头104、第二固定触头和固定电极106可以是适合制造能力和MEMS开关100的功能要求的任何尺寸。
MEMS开关100还包括悬在第一固定触头104、第二固定触头和固定电极106上方的活动的三层横梁,用108表示。横梁108的一端固定附着在固定件110上。当MEMS开关100处于“断开”位置时,横梁108基本平行于基板102的上表面延伸。横梁108通常包括夹在下面要详细介绍的两个导电层之间的电介质结构层112。结构层112包括可弯曲的材料,优选氧化硅(SiO2,通过溅射、电镀、旋涂或者其它方法淀积),可以弯向基板102而转变为“闭合”位置。结构层112提供电隔离和所希望的机械特性,包括弹性特性。或者,结构层112可包含氮化硅(SixNy)、氮氧化硅、氧化铝(AlxOy)、聚合物、CVD钻石、它们的合金或者本领域的技术人员已知的任何其它合适的弹性材料。
横梁108还包括附着在结构层112的下表面116的活动电极114。活动电极114形成横梁108的第二层。活动电极114设置在固定电极106的上方,并且由空气间隙与固定电极106隔开。通过加在固定电极106和活动电极114之间的电压差横梁108在向着基板102的方向移动。加在固定电极106和活动电极114的电压差产生静电场,使横梁108向基板102偏移。下面详细介绍MEMS开关100的操作。
活动电极114的尺寸基本与固定电极106的相同。通过使活动电极114和固定电极106的尺寸匹配从而产生最大静电耦合,即致动力。该结论忽略了在各个电极的边缘的边缘场效应的任何影响。活动电极114和固定电极106匹配尺寸的缺点可以通过不匹配各自的尺寸来克服。通过使固定电极106的广度大于活动电极114,制造工艺容差和制造对准容差在致动响应上具有最小的影响。第二个要考虑的问题是活动电极114和固定电极106之间的电场的强化,这一电场被两个电极的边缘的最接近的部分加强。由于介质或气体击穿问题,希望使这两个电极的边缘远离。第三个要考虑的问题是屏蔽,由此固定电极106可以屏蔽活动电极114不受基板102上的电荷或其它电势的影响。
活动电极114和固定电极106可以包含相同的材料,如,金,从而通过将用于制造的不同材料的数量最小化来简化制造工艺。活动电极114和固定电极106可以包含导体(金、铂、铝、钯、铜、钨、镍以及本领域的技术人员已知的其它材料)、导电氧化物(氧化铟锡)和低电阻率的半导体(硅、多晶硅以及本领域的技术人员已知的其它材料)。活动电极114包括导电材料,其中包括在活动电极114和结构材料112之间的附着层(Cr、Ti、TiW等)。活动电极114包括导电材料和包含扩散阻挡层的附着层,该扩散阻挡层用于防止附着层扩散穿过电极材料、导电材料穿过附着层或进入结构材料。考虑到击穿或放电、考虑到湿化学处理期间的“粘贴(stiction)”或者由于制造工艺兼容性的问题,活动电极114和固定电极106还可以由不同的材料构成。
横梁108还包括附着在结构层112的下表面116并且悬在第一固定触头104和第二固定触头(未示出)上方的导电活动触头118。以这样的方式定位活动触头118,当横梁108处于“闭合”位置时,活动触头118在第一固定触头104和第二固定触头之间提供连接,从而在第一固定触头104和第二固定触头之间提供电连接。当操作MEMS开关100处于“断开”位置时,活动触头118与第一固定触头104和第二固定触头之间由空气间隙分开。当MEMS开关100移动到“闭合”位置时,活动触头118、第一固定触头104和第二固定触头电连接。活动触头118的尺寸小于第一固定触头104和第二固定触头,从而当考虑工艺可变性和对准可变性时有利于接触。需要为第一固定触头104和第二固定触头确定适当的尺寸,从而致动时活动触头118总是能与第一固定触头104和第二固定触头接触。第二个要考虑的确定活动触头118、第一固定触头104和第二固定触头的尺寸的问题是对开关100的寄生响应(parasitic response)。寄生致动响应(或“自致动”)由活动触头118和固定电极106之间的电位差产生的电场,或者由第一固定电极106和第二固定触头与横梁108之间的电荷(或电位)差产生,该电荷差产生电场和作用在活动触头118上的力。活动触头118的尺寸连接到活动电极114的尺寸,从而实现寄生致动对致动电压的特定比值。
在本实施例中,由于活动触头118与活动电极114在同一层中形成,所以它们由相同的导电材料制成。活动触头118和活动电极114可以包含导体(例如,金、铂、铝、钯、铜、钨、镍以及本领域的技术人员已知的其它材料)、导电氧化物(例如,氧化铟锡以及本领域的技术人员已知的其它材料)和低电阻率的半导体(硅、多晶硅以及本领域的技术人员已知的其它材料)。活动触头118包含导电材料,该导电材料包括在活动触头118和结构材料112之间的附着层(Cr、Ti、TiW以及本领域的技术人员已知的其它材料)。活动触头118包含导电材料和附着层,该附着层包括扩散阻挡层,用于防止附着层扩散穿过电极材料、防止导电材料穿过附着层或进入结构材料。在同一个光刻步骤中用相同的材料淀积并构图来制造活动触头118和活动电极114,这简化了制造工艺。因为活动触头118和活动电极114要求的材料不同,所以这对开关的操作不是必需的。最好,活动电极114包含的材料具有良好导电特性,和本领域技术人员公知的合适的触头所具有的其他所需特性。最好,活动触头118包含的材料具有低电阻率、低硬度、低氧化性、低磨损性,以及本领域技术人员公知的合适的触头所具有的其他所需特性。
横梁108还包括附着在结构层112的上表面122的电极互连120。电极互连120在横梁108上形成第三层。如图所示,电极互连120附着在结构层112的活动电极114的对侧。电极互连120的尺寸基本与活动电极114的尺寸相同。在本实施例中,电极互连120与活动电极114的尺寸相同,并且对准活动电极114。或者,电极互连120具有与活动电极114不同的尺寸和广度。最好,电极互连120与活动电极114的尺寸相同,并且对准活动电极114,以便实现随着温度改变而保持的可制造的平坦性。在本实施例中,电极互连120包含的导电材料与活动电极114具有相同热膨胀系数、弹性模量、残留膜应力和其它电/机械特性。电极互连120和活动电极114可以包含导体(例如,金、铂、铝、钯、铜、钨、镍以及本领域的技术人员已知的其它合适材料)、导电氧化物(例如,氧化铟锡以及本领域的技术人员已知的其它合适材料)和低电阻率的半导体(例如,硅、多晶硅以及本领域的技术人员已知的其它合适材料)。或者,电极互连120包含的导电材料与构成活动电极114的导电材料不同。
在电极互连120和结构层112之间设置附着层。附着层包括扩散阻挡层,用于防止附着层扩散穿过导电电极材料、并防止导电材料穿过附着层或进入结构材料。
电极互连120通过互连过孔124电连接到活动电极114。互连过孔124由穿过结构层112形成的导电材料构成,用来电连接活动电极114和电极互连120。互连过孔124包含与电极互连120和活动电极114相同的导电材料。或者,互连过孔124包含不同于电极互连120和活动电极114的导电材料。
横梁108还包括附着在结构层112的上表面122的接触互连126。如图所示,接触互连126附着在结构层112的活动触头118的对侧。接触互连126的尺寸基本与活动触头118的尺寸相同。接触互连126与活动触头118彼此对准,并且具有相同的尺寸。或者,接触互连126具有与活动触头118不同的尺寸和广度。试图通过机械形式的安排来保持几何形状的均等。试图使接触互连126和活动触头118共有几何和热机械均等。该均等使横梁在温度和其它环境条件变化下达到可制造的乒坛性,该其它环境条件为,例如,管芯固定、封装盖密封工艺或焊接回流工艺。在本实施例中,接触互连126包括的导电材料与活动触头118具有相同热膨胀系数、弹性模量、残留膜应力和本领域的技术人员公知的其它所期望的电/机械特性。接触互连126和活动触头118可包括导体(例如,金、铂、铝、钯、铜、钨、镍以及本领域的技术人员已知的其它合适材料)、导电氧化物(例如,氧化铟锡以及本领域的技术人员已知的其它合适材料)和低电阻率的半导体(硅、多晶硅以及本领域的技术人员已知的其它合适材料)。接触互连126包含导电材料,该导电材料包括在接触互连126和结构材料112之间的附着层(例如,Cr、Ti、TiW以及本领域的技术人员已知的其它合适材料)。接触互连126包括导电材料和附着层,该附着层包括用于防止附着层扩散穿过电极材料、导电材料穿过附着层或进入结构材料的扩散阻挡层。或者,接触互连126包含与构成活动触头118的导电材料不同的导电材料。该替代实施例要求设计的互连接触具有这样的尺寸,使得其能够几何地和热机械的平衡材料特性的差别。接触互连126通过第二互连过孔128电连接到活动电极114。第二互连过孔128由穿过结构层112形成的导电材料构成,用来电连接活动触头118和接触互连126。第二互连过孔128包含与接触互连126和活动触头118相同的导电材料。第二互连过孔128可由不同于接触互连126和活动触头118的导电材料构成。例如,第二互连过孔128可以由钨或铝构成,而接触互连126和活动触头118由例如金构成。在本实施例中,第二互连过孔128由与互连过孔124、互连电极120和接触互连126相同的材料构成。或者,第二互连过孔128由不同于互连过孔124、互连电极120和接触互连126的材料构成。
MEMS开关100由加在活动电极114和固定电极106之间的电压差操作。所加的电压使横梁108向基板102偏移,直到活动触头118接触第一固定触头104和第二固定触头,由此在活动触头118与第一固定触头104和第二固定触头之间建立电连接。参考图2,示出了处于“闭合”位置的MEMS开关100的侧视剖面图。如在所示的“闭合”位置,活动触头118接触第一固定触头104和第二固定触头。如在下面所述,确定MEMS开关100的元件的尺寸,从而在“闭合”位置活动电极114不接触固定电极106,从而防止在元件106和114之间的短路。此外,确定MEMS开关100的元件的尺寸,使得在“闭合”位置第一固定触头104和第二固定触头接触活动触头118。通过显著降低或去掉加在固定电极106和活动电极114之间的电压差,MEMS开关100返回“断开”位置。由此降低了活动电极114和固定电极106之间的吸引力,从而结构层112的弹性使结构层112回到基本平行于基板102的表面的位置。
现在参考图1,电压源130提供固定电极106和活动电极114之间的电压差。这里电压源设置为0伏。固定电极106通过导线132直接连接到电压源。活动电极114通过互连过孔124、电极互连120和第二导线134电连接到电压源130。导线134在电压源130和电极互连120之间提供连接。互连过孔124在电极互连120和活动电极114之间提供连接。因此,当电压源130施加电压时,在固定电极106和活动电极114之间产生电压差。这在活动电极114和固定电极106之间建立穿过空气间隙的静电耦合。或者,在活动电极114和固定电极106之间的间隙可以是本领域的技术人员所公知的任何合适的绝缘气体或液体。
在本实施例中,第一固定触头104、第二固定触头、固定电极106、活动触头110、活动电极112、电极互连120、接触互连128以及互连过孔124和128由金属构成。最好,活动电极114和电极互连120用相同的材料制造,并且尺寸相同,以便实现两个功能。第一,在结构层112的两侧提供机械平衡。由于弹性对称,由于以相同的方式淀积膜来产生对称的应力场,并且由于热膨胀特性对称,所以可以提供机械平衡。通过使用相同的材料并且采用相同的尺寸保持弹性对称。通过使用相同的工艺淀积相同厚度的同一种材料产生对称的应力场。由于在结构层112的两侧为相同的材料,所以对称的热膨胀特性将开关操作中相对于温度的任何变化最小化。这意味着MEMS开关100表现出的任何功能变化主要来自于工艺的变化,可以通过正确优化工艺中的设计使其最小。第二,由于活动触头118和接触互连126由相同的材料制成并且具有相同的尺寸,有助于触头的载流能力。最好横梁108具有相同类型的金属,用相同的工艺淀积,以相同的几何形状构图,并且淀积相同的厚度,但是通过适当地设计和特性,可以适合使用不同材料。为了解决接触粘结、冷焊接或热焊接的问题,第一固定触头104、第二固定触头、固定电极106、活动电极114、活动触头118、电极互连120、接触互连126以及互连过孔124和128可以是不同的材料或相同材料的不同合金。材料的选择使接触电阻和故障,例如,粘贴,最小。
在“断开”位置,活动触头118与第一固定触头104和第二固定触头分开间隙距离a136,如图1所示。活动电极114与固定电极106分开间隙距离b138。在本实施例中,距离a136小于距离b138。如果距离a136小于距离b138,则由于活动触头118与固定触头104首先建立接触,而降低固定电极106与活动电极114之间短路的可能性,从而MEMS开关100的操作更可靠。横梁108的长度用距离c140表示。活动触头118的中心到固定件110的距离为d142,到横梁108的远离固定件110的一端的距离为e144。电极互连120远离固定件110的边缘到固定件110的距离为f146。电极互连120靠近固定件110的边缘到固定件110的距离为g148。在本实施例中,距离a136额定为1.5微米;距离b138优选2微米;距离c140优选155微米;距离为d142优选135微米;距离e144优选20微米;距离f146优选105微米;距离g148优选10微米。距离a136、b138、c140、d142、e144、f146和g148提供了所需的功能特性,但是也可以选择其它尺寸以优化其它功能特性、可制造性和可靠性。
参考图3,示出了MEMS开关100的固定电极106、结构层112、活动电极114以及电极互连120的前视剖面图。活动电极114的宽度由距离a300表示。电极互连120的宽度由距离b302表示。最好,活动电极114和电极互连120的宽度相等。或者,活动电极114和电极互连120具有不同的宽度。固定电极106的宽度由距离c304表示。结构层112的宽度由距离d306表示。活动电极114、电极互连120和固定电极106的厚度分别由距离e308、f310和g312表示。结构层112的厚度由距离h314表示。第一固定触头104和固定电极106的尺寸可以分别大于活动电极114和活动触头118,以利于为MEMS开关100屏蔽任何寄生电压。在本实施例中,距离a300优选75微米;距离b302优选75微米;距离c304优选95微米;距离d306优选85微米;距离e308优选0.5微米;距离f310优选0.5微米;距离g312优选在0.3和0.5微米之间;距离h314优选2微米。距离a300、b302、c304、d306、e308、f310、g312和h314提供了所需要的功能特性,但是也可以选择其它尺寸以优化其它功能特性、可制造性和可靠性。
参考图4,示出了MEMS开关100的顶视图。如图所示,电极互连120和接触互连126通常为矩形。此外,电极互连120和接触互连126为外角圆滑的矩形,以消除尖锐的棱角。在电极互连120和接触互连126成形包含向内凹的角的情况下,可以使这些内角圆滑,以消除尖锐的棱角。将这些尖锐的棱角圆滑处理以减小电场的强化,该电场是由导体之间的电位差产生的。在本实施例中,活动电极114的尺寸与电极互连120相同。或者,电极互连120可以具有与活动电极114的形状基本匹配的另一种形状。此外,接触互连126的形状基本匹配活动触头118的形状。第一和第二互连过孔124和128用虚线示出。第一和第二互连过孔124和128显示为矩形,但是,它们也可以具有任何适合于过孔的几何形状,包括圆形、椭圆形或具有圆角的矩形。电极互连120的宽度基本等于接触互连126的宽度。在本实施例中,电极互连120和接触互连126的宽度为75微米。
参考图5和6,示出了根据本发明的另一个实施例的用500表示的另一个MEMS开关的不同视图。具体参考图5,示出了MEMS开关500的透视顶视图。MEMS开关500包括用502表示的横梁,具有端部506附着在固定件(未示出)上的结构层504。横梁502还包括附着在结构层504的上表面的电极互连508和接触互连510。活动电极(在图6中示出)和接触电极(在图5中示出)位于结构层504的下表面,分别对准电极互连508和接触互连510,并且分别与电极互连508和接触互连510具有相同的尺寸。电极互连508和接触互连510分别通过上述穿过结构层504的互连过孔电连接到活动电极和活动触头上。
现在参考图6,MEMS开关500还包括附着在基板520(在图5中示出)的表面518上的固定电极512以及固定触头514和516。横梁502还包括附着在结构层504的下表面的活动触头522。当操作MEMS开关500处于“闭合”位置时,活动触头522接触514和516。因此,在“闭合”位置,固定触头514和516通过活动触头522或者通过接触互连510电连接。活动触头522还包括分别用526和528表示的第一和第二组接触凸点。接触凸点526和528由导电材料构成,以利于在“闭合”位置固定触头514和516之间的电连接。接触凸点526和528减小了活动触头522与固定触头514和516之间的间隙距离,从而降低了固定电极512和活动电极524之间短路的可能性。接触凸点526和528提供与固定触头514和516的可靠接触。没有支座凸点526和528,在活动触头522和表面518之间以及在固定触头514和516之间可能有干扰。接触凸点526和528提供设计灵活性,以满足接触电阻和电流容量的要求。这可以通过优化下面的变量的设计来实现:接触凸点的几何形状(例如,圆形、正方形、椭圆形、矩形、半球形以及其它形状)、接触凸点的尺寸(优选5微米)、接触凸点的数量(在本实施例中为三个)以及接触凸点的几何构图(例如,矩形构图或三角形构图、椭圆形构图、星形构图以及其它构图)。在本实施例中,以三个接触凸点中一个接触凸点在另两个前面的三角形分组的方式示出了圆柱形接触凸点。此外,可以认为接触凸点526和528是接触粗糙度的宏观定义,该粗糙度通常由接触表面的表面粗糙度确定。接触电阻和电流容量由微管粗糙度的数量确定,所以粗糙度的宏观定义考虑提升了设计空间。
参考图7,示出了根据本发明的MEMS开关700的另一个实施例的顶视图。MEMS开关700包括电极互连702和接触互连704。电极互连702和接触互连704附着在结构层706的上表面。结构层706的一端连接到固定件708。在类似于在前面介绍的实施例的结构中,MEMS开关700还包括附着在结构层706下表面的活动电极和活动触头(未示出)。最好,电极互连702和接触互连704分别与在本实施例中提供的活动电极和活动触头具有基本相同的尺寸。电极互连702和接触互连704分别通过上述穿过结构层706的互连过孔电连接到活动电极和活动触头上。此外,MEMS开关700包括固定电极(未示出)以及连接到基板(未示出)上的第一和第二固定触头(未示出)。固定电极以及第一和第二固定触头分别与上面介绍的电极互连702和接触互连704具有基本相同的尺寸。
电极互连702的宽度由距离a710表示。接触互连704的宽度由距离b712表示。最好,距离a710为75微米,距离b712为15微米。电极互连702的宽度大于接触互连704的宽度。因此,接触互连704及其相应的活动触头的尺寸分别小于上述实施例的电极互连702及其活动电极的相关尺寸。接触互连704相对于电极互连702按比例的减小可以降低产生MEMS开关700的不需要的致动的寄生电源的电位。活动触头与第一和第二固定触头之间的寄生电压可以产生将MEMS开关拉向基板的静电力。通过减小触头的尺寸,减小了寄生电压,从而降低了在触头之间不需要的吸引力。因此,活动电极的宽度大于活动触头的宽度。活动电极与活动触头的宽度差有利于增加活动触头与MEMS开关700的致动部分的隔离,从而防止由于例如电压尖峰导致的不需要的寄生致动的出现。因为活动电极的面积变小,所以在接触时使静电压力(即,每单位面积的静电力)最小,而在致动时最大。如上所述,制造比活动电极和电极互连的宽度更窄的活动触头和接触互连改善了致动电压与寄生致动电压的比值。MEMS开关700消除了活动电极和电极互连的宽度与活动触头和接触互连的宽度之间的相互影响。通过消除宽度的影响,消除了致动的静电力与寄生致动电压引起的寄生致动的相互影响。因为消除了静电致动力与寄生致动力的相互影响,所以可以增加活动电极的宽度,以增强致动力,同时进一步降低寄生致动。可以实现这一结果是由于随着活动电极宽度的增加,致动电压保持为常数,但是寄生致动受到的硬度也增加,从而增加了寄生致动电压。
参考图8,示出了根据本发明的MEMS开关800的另一个实施例的顶视图。MEMS开关800包括电极互连802和接触互连804。电极互连802和接触互连804附着在结构层806的上表面。结构层806在一端连接到固定件808上。电极互连802和接触互连804分别与活动电极(未示出)和活动触头(未示出)具有基本相同的尺寸。活动电极和活动触头附着在结构层806的下表面。电极互连802和接触互连804分别通过上述穿过结构层806的互连过孔电连接到活动电极和活动触头上。此外,MEMS开关800包括固定电极(未示出)以及连接到基板(未示出)上的第一和第二固定触头(未示出)。固定电极以及第一和第二固定触头分别与上面介绍的电极互连802和接触互连804具有基本相同的尺寸。
电极互连802的宽度用距离a810表示。接触互连804的宽度用距离b812表示。在本实施例中的电极互连802被延伸以部分地围绕接触互连804,同时保持与接触互连804电隔离。因此,固定电极、活动电极和电极互连804的静电压力中心移动到离锚点808更远的位置。由此,在操作中,在固定电极和活动电极之间的吸引力的中心移动到离锚点808更远的位置。由于力的中心离横梁的支点,即,锚点808的距离更远,所以需要将横梁偏移到“闭合”位置上的力更小。由此,需要较小的功率。这样,该方案有助于防止寄生电压引起的不需要的致动。因为改善(即,更小)了致动电压与寄生致动电压的比值,所以使不需要的致动被最小化。在这种情况下,对于固定的寄生致动电压可以减小致动电压,或者对于增加的寄生致动电压该致动电压可以固定不变。电极互连802部分围绕接触互连804的延伸部分将最小化氧化物的可用区域,否则该区域会存储自由电荷,这将干扰功能性。
参考图9和10,示出了根据本发明的另一个实施例的表示为900的另一个MEMS开关的不同视图。具体参考图9,示出了MEMS开关900的透视顶视图。MEMS开关900包括用总的用902表示的横梁,其一端904附着在固定件(未示出)上。横梁902通过结构层906附着在固定件上。横梁902还包括附着在结构层906的上表面的电极互连908和接触互连910。活动电极912(在图10中示出)和接触电极914(在图10中示出)附着在结构层906的下表面,分别对准电极互连908和接触互连910,并且分别与电极互连908和接触互连910具有相同的尺寸。电极互连908和接触互连910分别通过上述穿过结构层906的互连过孔电连接到活动电极和活动触头上。
MEMS开关900还包括固定电极916以及分别在基板924的表面922上形成的第一和第二接触电极918和920。固定电极916和接触互连918分别对准电极互连908和接触互连910,并且分别与电极互连908和接触互连910具有相同的尺寸。横梁902的末端904相对于基板924固定。如图所示,电极互连908部分围绕接触互连910。如上所述,电极互连、活动电极和固定电极进一步远离锚点的排列降低了将MEMS开关移动到“闭合”位置所需的功率。另外,该结构有助于防止寄生电压引起的不需要的致动。如在本实施例中所示,电极互连908、活动电极912和固定电极916与前面介绍的实施例相比触头更宽。
活动电极912分别包括由不导电材料构成的第一和第二支座凸点926和928。支座凸点926和928用来防止活动电极912与固定电极916之间的短路。在操作期间,随着横梁902向固定电极916偏移,由于支座凸点926和928从活动电极912向固定电极916的方向凸出,所以防止活动电极912接触固定电极916。活动触头914还包括由导电材料构成的第一和第二接触凸点930和932。在操作“闭合”MEMS开关900期间,第一和第二接触凸点930和932延伸超过支座凸点926和928,用于在支座凸点926和928之前分别接触第一和第二固定触头918和920。在本实施例中,由于简化了工艺流程,接触凸点930和932与支座凸点926和928具有相等的延伸。支座凸点926和928的优化布局是使得支撑最大过载电压(施加在固定电极916和活动电极912之间),而不会短路致动电极,但是最大化接触力(即,最小化接触电阻)。这意味着支座凸点926和928设置在接触凸点930和932之后(更靠近横梁902的固定端904)的一定距离处。在该结构中,接触凸点930和932在支座凸点926和928建立与固定电极916接触之前建立与固定触头918的接触。一旦接触凸点930和932建立接触,可以进一步增加致动电压,以增加接触力并降低接触电阻。接触电阻将进一步减小,直到支座凸点926和928建立与固定电极916的接触。此时,接触电阻和短路的可能性将开始增加。如此,支座凸点926和928没有降低发展基本接触力和最小化接触电阻的能力。最好,支座凸点沿横梁的宽度方向放置,从而随着横梁宽度的增加,支座凸点的数量也按比例增加,以保持开关的隔离。放置支座凸点的另一个关键要素是最小化支座凸点占用的总面积,因为它们会降低产生的静电力。
参考图11,示出了根据本发明的MEMS开关1100的另一个实施例的顶视图。MEMS开关1100包括附着在结构层1106的上表面的电极互连1102和接触互连1104。结构层1106在一端1108连接到固定件1110上。电极互连1102和接触互连1104分别与附着在结构层1106的下表面的活动电极(未示出)和活动触头(未示出)具有基本相同的尺寸,并且分别对准活动电极和活动触头。电极互连1102和接触互连1104分别通过上述穿过结构层1106的互连过孔电连接到活动电极和活动触头上。电极互连1102的宽度用距离a1112表示。接触互连1104的宽度用距离b1114表示。结构层1106包括变窄的隔离区1116,用来改善致动MEMS开关1110形成的接触。通过将过载电压加到电极互连1102和固定电极(未示出)上来改善接触。过载电压加在活动电极(未示出)和固定电极(未示出)之间,由此,这仅仅是致动电压的扩展。致动电压是使活动触头(未示出)“闭合”到固定触头上并且建立电连接所需的最小电压。过载电压是超过致动电压的电压,并且是有助于增加接触力的电压。
由过载电压产生的力在横梁1108的固定端1110和活动触头与固定触头的接触之间分配,意味着由于横梁在其两端被支撑,所以力将更硬的横梁拉变形。通过增加变窄的隔离区1116降低横梁的总硬度。通过使隔离区1116相对于接触区变得更窄,可以降低过载电压而不影响致动电压。变窄的隔离区1116降低了偏转活动触头(未示出)与固定触头(未示出)接触所需的力。变窄的隔离区1116的设计必须保持寄生致动要求和接触断开力。一旦在活动电极和固定电极之间的过载电压和致动电压被充分减小,开关应当返回到“断开”位置。这意味着储存在变形的横梁中的弹性应变能量应当足够大,以克服活动触头与固定触头之间的附着力。
参考图12和13,示出了根据本发明的另一个实施例的表示为1200的另一个MEMS开关的不同视图。具体参考图12,示出了MEMS开关1200的透视顶视图。MEMS开关1200包括用1202表示的横梁,一端1204附着在固定件(未示出)上。横梁1202通过结构层1206附着在固定件上。横梁1202还包括附着在结构层1206的上表面的电极互连1208和接触互连1210。活动电极(在图13中示出)和活动触头(在图13中示出)定位在结构层1206的下表面,分别对准电极互连1208和接触互连1210,并且分别与电极互连1208和接触互连1210具有相同的尺寸。电极互连1208和接触互连1210分别通过上述穿过结构层1206的互连过孔电连接到活动电极和活动触头上。
MEMS开关1200还包括分别附着在基板1220的表面1218上的固定电极1212以及第一和第二固定触头1214和1216。固定电极1212分别对准电极互连1208和接触互连1210,并且分别与电极互连1208和接触互连1210具有相同的尺寸。如图所示,电极互连1208部分围绕接触互连1210。结构层1206包括在末端1204包括变窄的锚点区,用来降低“闭合”MEMS开关1200所需的致动力。由于必须在向着固定电极1212的方向弯曲的结构层1206的局部剖面面积的减小,所以降低了致动力。通过对电极互连1202和固定电极施加过载电压来改善接触。
在本实施例中,消除了结构层1206的宽度与电极互连1208或活动电极(未示出)的宽度之间的相互影响。当结构层1206的宽度与活动电极的宽度基本相同时,致动电压将不依赖于结构层的宽度。这意味着对于任何宽度,致动电压为常数,但是接触力和断开力将增加。本实施例的可量测性(scalability)仅限于接触/断开力的增加,而不是降低致动电压或超速转动开关的能力。通过消除了结构层1206的宽度与电极互连1208和活动电极(未示出)的宽度之间的相互影响,由于可以最小化致动电压,使实现高接触力的过载能力最大并且使接触力的形成最大化,所以设计的可量测性增加了。随着结构层1206、电极互连1208以及活动电极宽度的增加,同时固定端1204的宽度保持不变,致动电压降增加,接触力将增加,接触电阻将减小,并且过载的量将增加。过载能力的量由致动电压与加在致动电极之间的最大电压之间的差确定。随着致动电压与该最大电压之间的差的增加,过载能力(电压差)将增加。
参考图13,MEMS开关1200还包括活动触头1300和活动电极1302。活动电极1302包括上述第一支座凸点1304和第二支座凸点(未示出)。活动触头1300包括上述第一和第二接触凸点1306和1308。由于上述原因,第一支座凸点1304和第二支座凸点设置在接触凸点1306和1308的后面。
参考图14和15,示出了根据本发明的另一个实施例的总的表示为1400的另一个MEMS开关的不同视图。具体参考图14,示出了MEMS开关1400的透视顶视图。MEMS开关1400包括用总的用1402表示的横梁,其具有一端1406附着在固定件(未示出)上的结构层1404。横梁1402还包括附着在结构层1404的上表面的电极互连1408和接触互连1410。活动电极(在图15中示出)和接触电极(在图15中示出)位于在结构层1404的下表面,分别对准电极互连1408和接触互连1410,并且分别与电极互连1408和接触互连1410具有相同的尺寸。电极互连1408和接触互连1410分别通过上述穿过结构层1404的互连过孔电连接到活动电极和活动触头上。
MEMS开关1400还包括在基板1418的表面1416上形成的固定电极1412以及固定触头1414。固定电极1412与总的用1414表示的第一和第二固定触头分别对准电极互连1408和接触互连1410,并且具有分别与电极互连1408和接触互连1410相同的尺寸。如图所示,电极互连1408部分围绕接触互连1410。
横梁1402还包括活动电极1420和活动触头1422。活动电极1420包括通常放置在离末端1406最远的活动电极1420的表面的角部区域的支座凸点1424、1426、1428和1430。支座凸点1424、1426、1428和1430由不导电材料制成。活动触头1422包括由导电材料制成的接触凸点。在本实施例中,支座凸点1424、1426、1428和1430远离接触凸点1422。支座凸点1424、1426、1428和1430会在接触凸点1422建立接触之前建立接触。一旦支座凸点1424、1426、1428和1430建立接触,致动电压增加,以使横梁1402进一步变形,包括绕支座凸点1424、1426、1428和1430的旋转。电压继续增加,直到接触凸点与固定触头1414建立接触。
重新参考图14,横梁1402还包括柔性切口1432、1434和1436,以增加横梁1402的柔性性。当致动电压增加到在活动触头1422的接触凸点与固定触头1414之间建立接触时,柔性切口1432、1434和1436增加横梁1402的变形能力。活动触头1422的位置靠近或者在柔性切口的中心,以增加要建立接触的位置处的柔韧性。本实施例通过延伸致动电极远远超过活动触头可以改善致动电压与寄生致动的比值。基本原理是移动致动电极的静电压力中心更远离活动触头的静电压力的中心。这降低了致动电压,同时增加了寄生致动电压。此外,由于绕支座凸点旋转,所以本实施例有助于接触的分离。
参考图16,示出了根据本发明的另一个实施例的总的用1600表示的具有折叠的横梁几何形状的MEMS开关的顶视图。MEMS开关1600包括附着在两个折叠横梁1604和1606上的臂1602。折叠横梁1604和1606附着在悬臂1602的一端1608。折叠横梁1604和1606的功能是将悬臂1602附着在固定件1610上,并且将臂1602悬在基板(未示出)上方。悬臂1602通过折叠横梁1604和1606而悬挂起来,从而接触互连靠近固定件1610。臂1602的折叠产生了具有较长有效长度的横梁,以降低致动电压。接触互连靠近固定件,从而靠近寄生致动的静电压力中心,具有增加静电压力的作用。臂1602和折叠横梁1604和1606通过结构层1612互连,为臂1602和折叠横梁1604和1606提供弹性结构。臂1602和折叠横梁1604和1606包括基本上在结构层1612的顶面以上延伸的电极互连1614。臂1602还包括附着在远离末端1608的末端1618的接触互连1616。活动电极(未示出)和接触电极(未示出)设置在结构层1612的下表面,分别对准电极互连1614和接触互连1616,并且分别与电极互连1614和接触互连1616具有相同的尺寸。电极互连1614和接触互连1616分别通过上述穿过结构层1612的互连过孔电连接到活动电极和活动触头。本实施例的原理上的优点是提供高寄生致动和低致动电压。这通过在折叠横梁1604和1606悬挂悬臂1602,并且通过靠近固定件1610放置触头来实现。通过在固定电极和活动电极(未示出)之间施加致动电压,将折叠横梁1604和1606拉向基板(未示出)。当折叠横梁1604和1606拉向基板,根据设计,悬臂1602将向着或背离基板变形。该运动产生虚轴(virtual pivot)点,确定悬臂1602将向着或背离基板变形。虚轴点的位置将由悬臂1602的相对长度、基板上的固定电极的几何形状和布局以及悬臂1602相对于折叠横梁1604和1606的硬度确定。例如,固定电极可以限制在直接在悬臂1602下表面的区域和远端1608与折叠横梁1604和1606连接的区域范围内。定位虚轴点以实现低致动电压和高寄生电压。
参考图17和18,示出了根据本发明的另一个实施例的总的表示为1700的具有两个致动电极的MEMS开关的不同视图。具体参考图17,示出了MEMS开关1700的透视顶视图。MEMS开关1700包括在结构层1706的中心部分1704的顶面的接触互连1702。结构层1706的中心部分1704附着在第一弯曲部分1708和第二弯曲部分1710上。结构层1706的第一部分1712和第二部分1714分别连接到第一弯曲部分1708和第二弯曲部分1710上。第一部分1712和第二部分1714连接到固定件(未示出)上。
MEMS开关1700还包括附着在第一部分1712和第二部分1714上侧的第一电极互连1716和第二电极互连1718。第一活动电极(在图18中示出)、第二活动电极(在图18中示出)以及活动触头(在图18中示出)在结构层1706的下表面,分别对准第一电极互连1716、第二电极互连1718和接触互连1702,并且分别与第一电极互连1716、第二电极互连1718和接触互连1702具有基本相同的尺寸。第一电极互连1716、第二电极互连1718和接触互连1702通过上述穿过结构层1706的互连过孔分别电连接到第一活动电极、第二活动电极和活动触头上。
MEMS开关1700还包括具有附着在其表面1726上的第一固定电极1722、第二固定电极1724和固定触头(在图18中示出)的基板1720。第一固定电极1722、第二固定电极1724和固定触头分别对准第一活动电极、第二活动电极和活动触头,并且分别与第一活动电极、第二活动电极和活动触头具有基本相同的尺寸。
参考图18,示出了MEMS开关1700的结构层1706的下表面的透视图。如上所述,第一活动电极1800、第二活动电极1802和活动触头1804附着在结构层1706的下表面,在图18中没有示出基板1720,以便说明第一固定电极1722、第二固定电极1724、第一固定触头1806和第二固定触头1808相对于第一活动电极1800、第二活动电极1802、第一活动触头1804和第二活动触头1806的位置。活动触头1804包括由上述导电材料构成的接触凸点1808。本实施例具有改善致动电压与寄生致动电压比值的优点。如上所述包括两个简单的悬臂开关。活动触头和接触互连由弯曲部分1708和1710悬在两个结构1712和1714之间。弯曲部分1708和1710将该触头与构成开关1700的材料中的残留膜应力隔离。
在操作期间,致动电压分别加在固定电极1722和1724与活动电极1800和1802之间。致动电压在结构1706的悬臂部分1712和1714中产生偏斜。致动电压具有使活动触头1804与固定触头建立接触的幅度。原则上,驱动两个结构1712和1714建立接触,但是致动电压保持与单结构的情况相同。因为寄生电压必须克服两个元件,所以可以实现显著改善致动电压与寄生电压比值的优点。弯曲部分1708和1710在从结构1712的末端到结构1714的末端的方向中是柔性的。弯曲部分1708和1710在垂直于基板的方向中具有有限的柔顺性,因为这将对寄生致动产生不利影响。
参考图19,示出了根据本发明的另一个实施例总的用1900表示的另一个MEMS开关的视图。MEMS开关1900包括通过第一固定件1906和第二固定件1908附着在基板1904上的悬架1902。悬架1902将活动触头(未示出)悬在基板1904的表面1910上方。折叠横梁悬架1902包括从第一端1914延伸到第二端1016的结构层1912。第一端1914和第二端1016分别连接到第一固定件1906和第二固定件1908。结构层1912形成附着在结构层1912的第一部分1922上的第一折叠悬架1918和第二折叠悬架1920。
悬架1902还包括附着在第一部分1922上表面的接触互连1924。悬架1902包括附着在第一端1914和第一折叠悬架1918之间的第二部分1926。悬架1902还包括附着在第二端1916和第二折叠悬架1920之间的第三部分1928。第一电极互连1930和第二电极互连1932分别附着在第二部分1926和第三部分1928的上侧。第一活动电极(未示出)、第二活动电极(未示出)和活动触头(未示出)分别位于结构层1912的第二部分1926、第三部分1928和第一部分1922的下侧,分别对准第一电极互连1930、第二电极互连1932和接触互连1924,并且与第一电极互连1930、第二电极互连1932和接触互连1924具有基本相同的尺寸。第一电极互连1930、第二电极互连1932和接触互连1924分别通过上述穿过结构层1912的互连过孔电连接到第一活动电极、第二活动电极和活动触头上。本实施例包括两个如上所述的悬臂横梁开关。活动触头和接触互连由弯曲部分1918和1920悬在用1926和1928表示的两个悬臂横梁结构之间。弯曲部分1918和1920将该触头与构成开关1900的材料中的残留膜应力隔离。在操作期间,致动电压加在固定电极(未示出)与活动电极(未示出)之间。致动电压在结构1902的部分1926和1928上产生偏移。致动电压的大小能够使得活动电极与固定触头建立接触。大体上,两个致动部分1926和1928被驱动以建立接触,但是致动电压保持与致动单个部分1926或1928的电压相同。寄生致动电压必须克服这两个因素,这显著改善了致动电压与寄生电压的比值。将弯曲部分1918和1920设计成在从第一端1914到第二端1916的方向中是柔性的。弯曲部分1918和1920在垂直于基板的方向中具有有限的柔顺性,因为这将对寄生致动产生不利影响。
参考图20,示出了根据本发明另一个实施例的总的表示为2000的另一个MEMS开关的图。MEMS开关2000包括通过第一固定件2006和第二固定件2008附着在基板2004上的悬架2002。悬架2002将一对活动触头(未示出)悬在基板2004的表面2010上方。折叠横梁悬架2002包括从第一端2014延伸到第二端2016的结构层2012。第一端2014和第二端2016分别连接到第一固定件2006和第二固定件2008。
悬架2002包括附着在第一端2014和折叠悬架2018之间的第一部分2024。悬架2002还包括附着在第二端2016和折叠悬架2018之间的第二部分2024。悬架2002包括附着在第一部分2022的上侧的第一接触互连2026。悬架2002包括附着在第二部分2024的上侧的第二接触互连2028。悬架2002包括附着在弯曲部分2018的上侧,并且连接第一和第二接触互连2026和2028的第三接触互连。第一电极互连2032和第二电极互连2034分别附着在第一部分2022和第二部分2024的上表面。第一活动电极(未示出)、第二活动电极(未示出)和活动触头(未示出)分别设置在结构层2012的第一部分2022、第二部分2024和弯曲部分2018的下侧,分别对准第一电极互连2032、第二电极互连2034以及接触互连2026、2028和2030,并且与第一电极互连2032、第二电极互连2034以及接触互连2026、2028和2030具有基本相同的尺寸。第一电极互连2032、第二电极互连2034以及接触互连2026、2028和2030分别通过上述穿过结构层2012的互连过孔(未示出)电连接到第一活动电极、第二活动电极和活动触头上。
与上述其它实施例一样,本实施例包括两个悬臂横梁开关。活动触头和接触互连2026和2028由弯曲部分2018悬在用2022和2024表示的两个悬臂横梁结构之间。弯曲部分2018将部分2022和2024与构成开关2000的材料中的残留膜应力隔离。在操作期间,致动电压加在固定电极与活动电极之间。致动电压在结构2002的两个悬臂部分2022和2024上产生偏斜。致动电压的幅度使得在活动触头上的接触凸点(未示出)与固定触头建立接触。当建立接触后,通过其接触凸点到基板2004的第二固定触头,第一活动触头的接触凸点与第二活动触头电连接。通过接触互连2026、2028和2030进行电连接。大体上,驱动两个致动部分2022和2024建立接触,但是致动电压保持与致动单个部分的电压相同。寄生电压必须克服两个部分2022和2024,这显著改善了致动电压与寄生致动电压的比值。弯曲部分2018被设计成在从末端2014到末端2016的方向是柔性的。弯曲部分2018在垂直于基板2004的方向有有限的柔顺性,因为这将对寄生致动产生不利影响。
参考图21和22,示出了根据本发明的另一个实施例的总的表示为2100的MEMS开关的另一个实施例的不同视图。具体参考图21,提供MEMS开关2100的顶视图,MEMS开关2100包括电极互连2102和接触互连2104。电极互连2102和接触互连2104附着在结构层2106的上表面。结构层2106的一端连接到固定件2108。
现在参考图22,提供了MEMS开关2100的横梁的下表面的图。MEMS开关2100包括附着在MEMS开关2100的横梁的下表面上的活动触头2110、活动电极2112以及第一和第二接触通路2114和2116。MEMS开关2100包括单个固定触头(未示出),当MEMS开关2100处于“闭合”位置时,用来接触活动触头2110。第一和第二接触通路2114和2116由导电材料构成,并且连接到活动触头2110。第一和第二接触通路2114和2116延伸通过锚点2108,并且可以连接到合适的电子器件(未示出)上,当MEMS开关2100处于“闭合”位置时,用来在电子器件和固定触头之间提供电连接。
参考图23和24,示出了根据本发明的另一个实施例的总的表示为2300的MEMS开关的不同视图。具体参考图23,提供了MEMS开关2300的横梁的顶视图,MEMS开关2300包括电极互连2302、接触互连2304以及第一和第二接触通路2306和2308。部件2302、2304、2306和2308附着在结构层2310的上表面。结构层2310的一端连接到固定件2312。MEMS开关2300包括单个固定触头(未示出),当MEMS开关2300处于“闭合”位置时,用来接触活动触头2314(在图24中示出)。第一和第二接触通路2306和2308由导电材料构成,并且连接到接触互连2304。第一和第二接触通路2306和2308延伸通过锚点2312,并且可以连接到合适的电子器件(未示出)上,当MEMS开关2300处于“闭合”位置时,用来在电子器件和固定触头之间提供电连接。
现在参考图24,提供了MEMS开关2300的横梁的底视图。MEMS开关2300还包括附着在MEMS开关2400的横梁下表面的活动电极2316以及第三和第四接触通路2318和2320。第三和第四接触通路2318和2320由导电材料构成,并且连接到活动触头2314。第一和第二接触通路2114和2116延伸通过锚点1208,并且可以电连接到电子器件(未示出),当MEMS开关2300处于“闭合”位置时,用来在电子器件和固定触头之间提供电连接。接触互连2304通过上述穿过结构层2310的过孔(未示出)连接到活动触头2314。通过接触通路2306、2308、2318和2320实现固定触头与电子器件(未示出)之间的电连接。运载电流的多个通路将增加通过开关的载流能力,同时保持致动性能和隔离性能。电极互连2302、接触互连2304以及第一和第二接触通路2306和2308分别与活动电极2316、活动触头2314以及接触通路2318和2320在几何形状、温度特性和机械特性方面相匹配。
参考图25-27,示出了根据本发明的另一个实施例的具有三层横梁的总的表示为2500的MEMS开关的不同视图。具体参考图25,示出了处于“断开”位置的MEMS开关2500的侧视剖面图。MEMS开关2500包括基板2502。基板2502包括形成在其表面上的单个固定触头2504和固定电极2506。MEMS开关2500还包括附着在结构层2512下表面的活动电极2508和活动触头2510。结构层2512的一端固定在锚点2514上。
MEMS开关2500还包括基本延伸到结构层2512的整个长度的接触互连2516。接触互连2516延伸通过锚点2514,用来电连介适于与MEMS开关2500相互作用的电子器件。接触互连2516通过穿过结构层2512的第一互连过孔2518连接到活动触头2510。当MEMS开关2500处于“闭合”位置时,通过活动电极2510、第一互连过孔2518和接触互连2516在电子器件和固定触头2504之间提供电连接。
MEMS开关2500还包括附着在结构层2512的上侧并且与接触互连2516相邻的第一电极互连2520和第二电极互连(未示出)。第一电极互连2520和第二电极互连通过第二互连过孔2522和第三互连过孔(未示出)连接到活动电极2508。第一电极互连2520和第二电极互连延伸超过锚点2514,用来连接电压源2524。
接触互连2516包括与活动电极2508(在图27中示出)和活动触头2510的形状和尺寸基本匹配的电极部分2526和接触部分2528,并且在结构层2512的下表面上对准活动电极2508和活动触头2510。接触互连2516包括第一和第二连接通路2530和2532,用来连接电极部分2526和接触部分2528,并且连接到电子器件。
现在参考图26,示出了MEMS开关2500的透视顶视图。如图所示,第二电极互连2600设置在与第一电极互连2520相对的第二连接通路2530的另一侧。此外,所示的电极部分2526和接触部分2528分别与活动电极2508和活动触头2510具有相同的形状和尺寸(在图25和27中示出)。MEMS开关2500通过使用在结构层2512上表面的大部分面积为载流能力而最大化电连接通路中的物质。上表面的少量可用面积用作活动电极2508的电极互连。建立从固定触头2504到活动触头2510,通过穿过结构层2512的过孔到接触部分2528,通过第一连接通路2530,通过电极部分2526,并且通过第二连接通路到电子器件(未示出)电连接。在本实施例中,通路截面积的增加降低了电阻并且增加载流能力。第一和第二连接通路2530和2532的尺寸小于电极部分2526和接触部分2528,以限制在结构层2512的上表面和下表面上材料的不匹配。以不限制电阻或载流能力的方式确定尺寸。相对于接触部分2528的截面积减小了的第一连接通路2530的截面积引起局部自加热,这有利于接触力。由结构层2512的厚度保持在连接通路(2504、2510、2528、2530、2526和2532)与活动电极2508之间的电绝缘。
该开关设计可以在适当的工艺中制造,能够生产如图1-24所示的单个开关产品或者具有各种排列的开关阵列产品。
应当理解,可以对本发明的各个细节进行修改而不脱离本发明的范围。上面介绍的开关实施例可以应用于悬臂横梁、双支撑横梁、盘形或者本领域的技术人员所公知的其它已知类型的开关几何形状。此外,上述介绍只是为了说明的目的,而不是为了限制由权力要求书定义的本发明。

Claims (51)

1、一种悬挂于基板上的活动的、三层微元件,该微元件包括:
(a)第一导电层,将该导电层构图以限定活动电极,第一导电层与基板分开一个间隙;
(b)在第一导电层上形成的电介质层,并且包括至少一个相对于基板固定的端部;以及
(c)在电介质层上形成的第二导电层,并且该第二导电层被构图来限定与活动电极电连接的电极互连。
2、根据权利要求1的微元件,其中第一导电层和第二导电层具有基本相等的热膨胀系数。
3、根据权利要求1的微元件,其中第一导电层由金属材料形成。
4、根据权利要求1的微元件,其中第一导电层由半导体材料形成。
5、根据权利要求1的微元件,其中活动电极基本覆盖电介质层的下表面。
6、根据权利要求1的微元件,其中电介质层具有相对于基板自由悬挂的第二端。
7、根据权利要求1的微元件,其中第二金属层由金属材料形成。
8、根据权利要求1的微元件,其中第二金属层由半导体材料形成。
9、根据权利要求1的微元件,其中电极互连基本覆盖电介质层的上表面。
10、根据权利要求1的微元件,其中电介质层由不导电的弹性材料构成。
11、一种具有活动的、三层微元件的致动器,该致动器包括:
(a)固定电极;
(b)弹性结构层,包括相对于固定电极固定的至少一端、悬在固定电极上方的下表面以及上表面;
(c)附着在弹性结构层的下表面上的活动电极,从而活动电极与固定电极分开一定间隙;以及
(d)附着在结构层的上表面并且连接到活动电极上用于电连接的电极互连。
12、根据权利要求11的致动器,其中固定电极附着在基板上。
13、根据权利要求11的致动器,其中活动电极和固定电极各自具有基本相等的热膨胀系数。
14、根据权利要求11的致动器,其中固定电极由金属材料形成。
15、根据权利要求11的致动器,其中固定电极由半导体材料形成。
16、根据权利要求11的致动器,其中活动电极基本覆盖弹性结构层的下表面。
17、根据权利要求11的致动器,其中活动电极由金属材料形成。
18、根据权利要求11的致动器,其中活动电极由半导体材料形成。
19、根据权利要求11的致动器,其中弹性结构层具有相对于基板自由悬挂的第二端。
20、根据权利要求11的致动器,其中电极互连基本覆盖弹性结构层的上表面。
21、根据权利要求11的致动器,其中活动电极与电极互连的尺寸基本相等,并且在弹性结构层的相对表面上彼此对准。
22、根据权利要求11的致动器,其中弹性结构层由不导电材料构成。
23、一种具有活动的、三层微元件的、微小规模的、静电致动的开关,该开关包括:
(a)包括固定电极和附着有固定触头的基板;
(b)弹性结构层,包括相对于基板固定的至少一端、悬在基板上方的下表面以及与下表面相对的上表面;
(c)附着在弹性结构层的下表面上的活动电极,从而活动电极与固定电极分开第一间隙;
(e)附着在弹性结构层的上表面并且连接到活动电极上用于电连接的电极互连;
(f)附着在弹性结构层的下表面上的活动触头,从而用第二间隙将活动触头与固定触头分开;以及
(g)在结构层的上表面上形成的并且连接到活动触头上用于电连接的接触互连。
24、根据权利要求23的开关,其中活动电极和电极互连各自具有基本相等的热膨胀系数。
25、根据权利要求23的开关,其中活动触头和接触互连各自具有基本相等的热膨胀系数。
26、根据权利要求23的开关,其中固定电极由金属材料形成。
27、根据权利要求23的开关,其中活动电极基本覆盖弹性结构层的下表面。
28、根据权利要求23的开关,其中电极互连基本覆盖弹性结构层的上表面。
29、根据权利要求23的开关,其中活动电极与电极互连的尺寸基本相等,并且在弹性结构层的相对表面上彼此对准。
30、根据权利要求23的开关,其中活动触头位于靠近该至少一端。
31、根据权利要求30的开关,其中活动电极基本覆盖围绕活动触头的下表面的区域。
32、根据权利要求31的开关,其中活动电极与电极互连的尺寸基本相等,并且在弹性结构层的相对表面上彼此对准。
33、根据权利要求32的开关,其中活动触头与接触互连的尺寸基本相等,并且在弹性结构层的相对表面上彼此对准。
34、根据权利要求23的开关,其电中介质层具有相对于基板自由悬挂的第二端。
35、根据权利要求23的开关,其中第二金属层由金属材料形成。
36、根据权利要求23的开关,其中电极互连扩展到电介质层的第二表面的整个区域中。
37、根据权利要求23的开关,其中弹性介质层由不导电材料构成。
38、根据权利要求23的开关,其中弹性介质层还包括通过接触互连和活动触头连接到电极互连和活动电极的变窄的部分。
39、根据权利要求23的开关,其中接触互连还包括延伸到至少一端的接触通路,用来连接电子器件。
40、根据权利要求23的开关,其中接触互连还包括延伸到至少一端的第一和第二接触通路,用来连接到电子器件,从而接触通路在电极互连的相对侧延伸。
41、根据权利要求23的开关,其中活动触头还包括延伸到至少一端的接触通路,用来连接到电子器件。
42、根据权利要求41的开关,其中接触互连还包括延伸到至少一端的接触通路,用来连接到电子器件。
43、一种具有活动的、三层元件的、微小规模的、静电致动的开关,该开关包括:
(a)包括附着有第一和第二固定电极和固定触头的基板,其中固定触头在第一和第二固定电极之间;
(b)弹性结构层,包括相对于基板固定的第一和第二端,并且包括具有上和下表面的第一、第二和第三部分,下表面悬在基板上方;
(c)附着在第一部分的下表面上并且悬在第一固定电极上方的第一活动电极;
(d)附着在第一部分的上表面上并且电连接到第一活动电极上的第一电极互连;
(e)附着在第二部分的下表面上并且悬在第二固定电极上方的第二活动电极;
(f)附着在第二部分的上表面上并且电连接到第二活动电极上的第二电极互连;
(g)附着在第三部分的下表面上并且悬在固定触头上方的的活动触头;以及
(h)附着在第三部分的上表面上并且电连接到活动触头上的接触互连。
44、根据权利要求37的开关,其中第一和第二活动电极以及第一和第二电极互连各自具有基本相等的热膨胀系数。
45、根据权利要求37的开关,其中弹性结构层还包括将第一部分连接到第三部分的第一弯曲部分和将第二部分连接到第三部分的第二弯曲部分。
46、一种具有活动的、三层微元件的、微小规模的、静电致动的开关,该开关包括:
(a)附着有固定电极和固定触头的基板;
(b)弹性结构层,包括相对于基板固定的至少一端、悬在基板上方的下表面以及与下表面相对的上表面;
(c)附着在弹性结构层的下表面上的活动电极,从而活动电极与固定电极分开一个间隙;
(d)附着在结构层的下表面上的活动触头,从而活动触头与固定触头分开一个间隙;以及
(e)在结构层的上表面上形成的接触互连,连接到活动触头上用于电连接,尺寸基本与活动触头和活动电极相同,并且对准活动触头和活动电极。
47、根据权利要求46的开关,其中活动触头和接触互连各自具有基本相等的热膨胀系数。
48、根据权利要求46的开关,其中接触互连包括尺寸与活动电极基本相同并且对准活动电极的电极部分。
49、根据权利要求46的开关,其中接触互连包括尺寸与活动触头基本相同并且对准活动触头的接触部分。
50、根据权利要求46的开关,其中接触互连还包括尺寸与活动电极基本相同并且对准活动电极的电极部分,和用于电连接电极部分和接触部分的接触通路。
51、一种实现具有活动的、三层微元件的致动器的致动功能的方法,包括:
(a)提供具有活动的、三层微元件的致动器,该致动器包括:
i.固定电极;
ii.弹性结构层,包括相对于固定电极固定的至少一端、悬在固定电极上方的下表面以及上表面;
iii.附着在弹性结构层的下表面上的活动电极,从而活动电极与固定电极分开一定间隙;以及
iv.附着在结构层的上表面并且电连接到活动电极上用于电连接活动电极的电极互连;以及
(b)在电极互连和固定电极之间施加电压,跨过一个间隙将活动电极与固定电极静电耦合,从而弹性结构层向基板偏移。
CNB028269144A 2001-11-09 2002-11-08 具有三层横梁的mems器件 Expired - Lifetime CN1292447C (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US33806901P 2001-11-09 2001-11-09
US33807201P 2001-11-09 2001-11-09
US33805501P 2001-11-09 2001-11-09
US33752701P 2001-11-09 2001-11-09
US33752801P 2001-11-09 2001-11-09
US33752901P 2001-11-09 2001-11-09
US60/338,072 2001-11-09
US60/338,055 2001-11-09
US60/337,529 2001-11-09
US60/337,527 2001-11-09
US60/337,528 2001-11-09
US60/338,069 2001-11-09

Publications (2)

Publication Number Publication Date
CN1613128A true CN1613128A (zh) 2005-05-04
CN1292447C CN1292447C (zh) 2006-12-27

Family

ID=27559772

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB028269144A Expired - Lifetime CN1292447C (zh) 2001-11-09 2002-11-08 具有三层横梁的mems器件
CNB028269748A Expired - Lifetime CN100550429C (zh) 2001-11-09 2002-11-08 具有触头和支座凸块的mems器件及其相关方法
CNB028269756A Expired - Lifetime CN100474519C (zh) 2001-11-09 2002-11-08 三层横梁mems器件及相关方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CNB028269748A Expired - Lifetime CN100550429C (zh) 2001-11-09 2002-11-08 具有触头和支座凸块的mems器件及其相关方法
CNB028269756A Expired - Lifetime CN100474519C (zh) 2001-11-09 2002-11-08 三层横梁mems器件及相关方法

Country Status (7)

Country Link
US (9) US6847114B2 (zh)
EP (9) EP1721866B1 (zh)
CN (3) CN1292447C (zh)
AT (8) ATE417021T1 (zh)
AU (3) AU2002359369A1 (zh)
DE (7) DE60229675D1 (zh)
WO (6) WO2003043038A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082043A (zh) * 2009-11-30 2011-06-01 通用电气公司 开关结构
CN102367165A (zh) * 2011-08-31 2012-03-07 华东光电集成器件研究所 一种基于soi的mems器件电极互连方法
CN106413437A (zh) * 2014-01-24 2017-02-15 吉瑞高新科技股份有限公司 电池座、电子烟及电子烟的雾化控制方法
CN107917750A (zh) * 2016-10-08 2018-04-17 北京大学 一种mems热式声粒子传感器
CN111819653A (zh) * 2017-07-24 2020-10-23 火花热离子学公司 小间隙设备系统及制造方法

Families Citing this family (308)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853067B1 (en) 1999-10-12 2005-02-08 Microassembly Technologies, Inc. Microelectromechanical systems using thermocompression bonding
US20020096421A1 (en) * 2000-11-29 2002-07-25 Cohn Michael B. MEMS device with integral packaging
JP3651671B2 (ja) * 2001-08-30 2005-05-25 株式会社東芝 マイクロメカニカルスイッチ及びその製造方法
US7132736B2 (en) * 2001-10-31 2006-11-07 Georgia Tech Research Corporation Devices having compliant wafer-level packages with pillars and methods of fabrication
US6847114B2 (en) 2001-11-09 2005-01-25 Turnstone Systems, Inc. Micro-scale interconnect device with internal heat spreader and method for fabricating same
US7521366B2 (en) * 2001-12-12 2009-04-21 Lg Display Co., Ltd. Manufacturing method of electro line for liquid crystal display device
US7045459B2 (en) * 2002-02-19 2006-05-16 Northrop Grumman Corporation Thin film encapsulation of MEMS devices
US7763947B2 (en) * 2002-04-23 2010-07-27 Sharp Laboratories Of America, Inc. Piezo-diode cantilever MEMS
US7135777B2 (en) * 2002-05-03 2006-11-14 Georgia Tech Research Corporation Devices having compliant wafer-level input/output interconnections and packages using pillars and methods of fabrication thereof
US7002225B2 (en) * 2002-05-24 2006-02-21 Northrup Grumman Corporation Compliant component for supporting electrical interface component
US6777258B1 (en) * 2002-06-28 2004-08-17 Silicon Light Machines, Inc. Conductive etch stop for etching a sacrificial layer
US7064637B2 (en) * 2002-07-18 2006-06-20 Wispry, Inc. Recessed electrode for electrostatically actuated structures
US7551048B2 (en) * 2002-08-08 2009-06-23 Fujitsu Component Limited Micro-relay and method of fabricating the same
EP1394554B1 (en) * 2002-08-30 2011-11-02 STMicroelectronics Srl Process for the fabrication of a threshold acceleration sensor
US7053736B2 (en) * 2002-09-30 2006-05-30 Teravicta Technologies, Inc. Microelectromechanical device having an active opening switch
US20040121505A1 (en) * 2002-09-30 2004-06-24 Magfusion, Inc. Method for fabricating a gold contact on a microswitch
US7317232B2 (en) * 2002-10-22 2008-01-08 Cabot Microelectronics Corporation MEM switching device
US6835589B2 (en) * 2002-11-14 2004-12-28 International Business Machines Corporation Three-dimensional integrated CMOS-MEMS device and process for making the same
US6800503B2 (en) * 2002-11-20 2004-10-05 International Business Machines Corporation MEMS encapsulated structure and method of making same
US7498911B2 (en) * 2003-02-26 2009-03-03 Memtronics Corporation Membrane switch components and designs
EP1609206B1 (en) 2003-03-04 2010-07-28 Rohm and Haas Electronic Materials, L.L.C. Coaxial waveguide microstructures and methods of formation thereof
US6720267B1 (en) * 2003-03-19 2004-04-13 United Microelectronics Corp. Method for forming a cantilever beam model micro-electromechanical system
NL1023275C2 (nl) * 2003-04-25 2004-10-27 Cavendish Kinetics Ltd Werkwijze voor het vervaardigen van een micro-mechanisch element.
CA2429909A1 (en) * 2003-05-27 2004-11-27 Cognos Incorporated Transformation of tabular and cross-tabulated queries based upon e/r schema into multi-dimensional expression queries
DE10325564B4 (de) * 2003-06-05 2008-12-18 Infineon Technologies Ag Chipkartenmodul
US7061022B1 (en) * 2003-08-26 2006-06-13 United States Of America As Represented By The Secretary Of The Army Lateral heat spreading layers for epi-side up ridge waveguide semiconductor lasers
JP4823478B2 (ja) * 2003-09-19 2011-11-24 株式会社半導体エネルギー研究所 発光装置の作製方法
US7520790B2 (en) 2003-09-19 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of display device
US7388459B2 (en) * 2003-10-28 2008-06-17 Medtronic, Inc. MEMs switching circuit and method for an implantable medical device
US7283024B2 (en) * 2003-12-18 2007-10-16 Intel Corporation MEMS switch stopper bumps with adjustable height
GB0330010D0 (en) 2003-12-24 2004-01-28 Cavendish Kinetics Ltd Method for containing a device and a corresponding device
US7142087B2 (en) * 2004-01-27 2006-11-28 Lucent Technologies Inc. Micromechanical latching switch
US7101724B2 (en) * 2004-02-20 2006-09-05 Wireless Mems, Inc. Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation
US7265299B2 (en) * 2004-03-04 2007-09-04 Au Optronics Corporation Method for reducing voltage drop across metal lines of electroluminescence display devices
US20050244099A1 (en) * 2004-03-24 2005-11-03 Pasch Nicholas F Cantilevered micro-electromechanical switch array
US7362199B2 (en) * 2004-03-31 2008-04-22 Intel Corporation Collapsible contact switch
FR2868591B1 (fr) * 2004-04-06 2006-06-09 Commissariat Energie Atomique Microcommutateur a faible tension d'actionnement et faible consommation
US7476327B2 (en) * 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
DE102004026654B4 (de) * 2004-06-01 2009-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanisches HF-Schaltelement sowie Verfahren zur Herstellung
US7749792B2 (en) * 2004-06-02 2010-07-06 Carnegie Mellon University Self-assembling MEMS devices having thermal actuation
US20060055499A1 (en) * 2004-09-16 2006-03-16 Bolle Cristian A Fuse arrangement
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7304784B2 (en) * 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7369296B2 (en) 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US20060065622A1 (en) * 2004-09-27 2006-03-30 Floyd Philip D Method and system for xenon fluoride etching with enhanced efficiency
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7944599B2 (en) * 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7417783B2 (en) * 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7193492B2 (en) * 2004-09-29 2007-03-20 Lucent Technologies Inc. Monolithic MEMS device having a balanced cantilever plate
US7239064B1 (en) * 2004-10-15 2007-07-03 Morgan Research Corporation Resettable latching MEMS temperature sensor apparatus and method
KR100619110B1 (ko) 2004-10-21 2006-09-04 한국전자통신연구원 미세전자기계적 스위치 및 그 제조 방법
US7230513B2 (en) * 2004-11-20 2007-06-12 Wireless Mems, Inc. Planarized structure for a reliable metal-to-metal contact micro-relay MEMS switch
TWI252838B (en) * 2004-12-02 2006-04-11 Delta Electronics Inc Micro-switch
WO2006063257A2 (en) * 2004-12-09 2006-06-15 Wispry, Inc. Micro-electro-mechanical system (mems) capacitors, inductors, and related systems and methods
KR100661176B1 (ko) * 2004-12-17 2006-12-26 삼성전자주식회사 Mems 스위치 및 그 제조 방법
US7521784B2 (en) * 2004-12-17 2009-04-21 Hewlett-Packard Development Company, L.P. System for coupling wire to semiconductor region
US7391090B2 (en) * 2004-12-17 2008-06-24 Hewlett-Packard Development Company, L.P. Systems and methods for electrically coupling wires and conductors
US7597819B1 (en) * 2004-12-20 2009-10-06 Sandia Corporation Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films
TWI287634B (en) * 2004-12-31 2007-10-01 Wen-Chang Dung Micro-electromechanical probe circuit film, method for making the same and applications thereof
US7235750B1 (en) 2005-01-31 2007-06-26 United States Of America As Represented By The Secretary Of The Air Force Radio frequency MEMS switch contact metal selection
US7601554B1 (en) 2005-01-31 2009-10-13 The United States Of America As Represented By The Secretary Of The Air Force Shaped MEMS contact
US7655996B1 (en) * 2005-02-03 2010-02-02 The United States Of America As Represented By The Secretary Of The Army MEMS structure support and release mechanism
US7404167B2 (en) * 2005-02-23 2008-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method for improving design window
ATE525738T1 (de) * 2005-03-18 2011-10-15 Reseaux Mems Mems-aktuatoren und -schalter
JP4707424B2 (ja) * 2005-03-18 2011-06-22 株式会社東芝 可変容量素子および可変容量装置ならびに可変容量装置を用いた携帯電話
JP4498181B2 (ja) * 2005-03-22 2010-07-07 東京エレクトロン株式会社 スイッチアレイ
EP1872443A1 (en) * 2005-03-31 2008-01-02 Molex Incorporated High-density, robust connector with castellations
DE102005016243B3 (de) 2005-04-08 2006-09-28 Austriamicrosystems Ag Mikromechanisches Bauelement, Verfahren zur Herstellung und Verwendung
FR2885735B1 (fr) * 2005-05-10 2007-08-03 St Microelectronics Sa Circuit integre guide d'ondes
US7692521B1 (en) * 2005-05-12 2010-04-06 Microassembly Technologies, Inc. High force MEMS device
US7884989B2 (en) * 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7321275B2 (en) * 2005-06-23 2008-01-22 Intel Corporation Ultra-low voltage capable zipper switch
EP2495212A3 (en) * 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
JP4489651B2 (ja) * 2005-07-22 2010-06-23 株式会社日立製作所 半導体装置およびその製造方法
WO2007015219A2 (en) * 2005-08-03 2007-02-08 Kolo Technologies, Inc. Micro-electro-mechanical transducer having a surface plate
US20070040637A1 (en) * 2005-08-19 2007-02-22 Yee Ian Y K Microelectromechanical switches having mechanically active components which are electrically isolated from components of the switch used for the transmission of signals
US8736081B2 (en) 2005-08-26 2014-05-27 Innovative Micro Technology Wafer level hermetic bond using metal alloy with keeper layer
US20070048887A1 (en) * 2005-08-26 2007-03-01 Innovative Micro Technology Wafer level hermetic bond using metal alloy
US7569926B2 (en) * 2005-08-26 2009-08-04 Innovative Micro Technology Wafer level hermetic bond using metal alloy with raised feature
US7233048B2 (en) * 2005-08-26 2007-06-19 Innovative Micro Technology MEMS device trench plating process and apparatus for through hole vias
US7528691B2 (en) * 2005-08-26 2009-05-05 Innovative Micro Technology Dual substrate electrostatic MEMS switch with hermetic seal and method of manufacture
US7582969B2 (en) * 2005-08-26 2009-09-01 Innovative Micro Technology Hermetic interconnect structure and method of manufacture
US7960208B2 (en) * 2005-08-26 2011-06-14 Innovative Micro Technology Wafer level hermetic bond using metal alloy with raised feature
US20070090474A1 (en) * 2005-09-08 2007-04-26 Li Gary G MEMS device and method of fabrication
US20080094149A1 (en) * 2005-09-22 2008-04-24 Sungsung Electronics Co., Ltd. Power amplifier matching circuit and method using tunable mems devices
US7332980B2 (en) * 2005-09-22 2008-02-19 Samsung Electronics Co., Ltd. System and method for a digitally tunable impedance matching network
WO2007041302A2 (en) * 2005-09-30 2007-04-12 Qualcomm Mems Technologies, Inc. Mems device and interconnects for same
KR100827314B1 (ko) * 2005-10-10 2008-05-06 삼성전기주식회사 열처리에 의해 평탄면을 가지는 멤스 소자 및 광변조기제조 방법
US8043950B2 (en) 2005-10-26 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7630114B2 (en) * 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
US20070096860A1 (en) * 2005-11-02 2007-05-03 Innovative Micro Technology Compact MEMS thermal device and method of manufacture
KR100744543B1 (ko) * 2005-12-08 2007-08-01 한국전자통신연구원 미세전자기계적 구조 스위치 및 그 제조방법
JP2009518830A (ja) * 2005-12-12 2009-05-07 テレズィゴロジー インク ビーム型ファスナー
JP5399075B2 (ja) * 2005-12-22 2014-01-29 エプコス アクチエンゲゼルシャフト 直列接続されたキャパシタを有するmemsデバイス装置
US7602261B2 (en) * 2005-12-22 2009-10-13 Intel Corporation Micro-electromechanical system (MEMS) switch
US7525151B2 (en) * 2006-01-05 2009-04-28 International Rectifier Corporation Vertical DMOS device in integrated circuit
FR2895986B1 (fr) * 2006-01-06 2008-09-05 Centre Nat Rech Scient Preparation de microcomposants multicouches par la methode de la couche epaisse sacrificielle
US20070196048A1 (en) * 2006-01-12 2007-08-23 Almantas Galvanauskas Optical waveform shaping
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7678601B2 (en) * 2006-01-20 2010-03-16 Texas Instruments Incorporated Method of forming an acceleration sensor
US20070170528A1 (en) * 2006-01-20 2007-07-26 Aaron Partridge Wafer encapsulated microelectromechanical structure and method of manufacturing same
US7671693B2 (en) * 2006-02-17 2010-03-02 Samsung Electronics Co., Ltd. System and method for a tunable impedance matching network
US7463113B2 (en) * 2006-02-28 2008-12-09 Motorla, Inc. Apparatus and methods relating to electrically conductive path interfaces disposed within capacitor plate openings
US7480432B2 (en) * 2006-02-28 2009-01-20 Corning Incorporated Glass-based micropositioning systems and methods
EP1999772B1 (en) * 2006-03-08 2020-05-06 Wispry, Inc. Micro-electro-mechanical system mems variable capacitor
US7710045B2 (en) * 2006-03-17 2010-05-04 3M Innovative Properties Company Illumination assembly with enhanced thermal conductivity
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7554421B2 (en) * 2006-05-16 2009-06-30 Intel Corporation Micro-electromechanical system (MEMS) trampoline switch/varactor
GB0610392D0 (en) * 2006-05-25 2006-07-05 Univ Durham Electro-mechanical actuator and apparatus incorporating such device
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7605675B2 (en) * 2006-06-20 2009-10-20 Intel Corporation Electromechanical switch with partially rigidified electrode
US7835061B2 (en) * 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7911010B2 (en) * 2006-07-17 2011-03-22 Kwj Engineering, Inc. Apparatus and method for microfabricated multi-dimensional sensors and sensing systems
JP4234737B2 (ja) * 2006-07-24 2009-03-04 株式会社東芝 Memsスイッチ
JP4265630B2 (ja) * 2006-08-04 2009-05-20 セイコーエプソン株式会社 Memsスイッチ、電圧分割回路、利得調整回路、減衰器及びmemsスイッチの製造方法
US7944332B2 (en) * 2006-08-09 2011-05-17 Koninklijke Philips Electronics N.V. Self-locking micro electro mechanical device
US7495368B2 (en) * 2006-08-31 2009-02-24 Evigia Systems, Inc. Bimorphic structures, sensor structures formed therewith, and methods therefor
US7688167B2 (en) * 2006-10-12 2010-03-30 Innovative Micro Technology Contact electrode for microdevices and etch method of manufacture
US7684106B2 (en) * 2006-11-02 2010-03-23 Qualcomm Mems Technologies, Inc. Compatible MEMS switch architecture
JP5085101B2 (ja) * 2006-11-17 2012-11-28 オリンパス株式会社 可変分光素子
WO2008064216A2 (en) * 2006-11-20 2008-05-29 Massachusetts Institute Of Technology Micro-electro mechanical tunneling switch
CN101188159B (zh) * 2006-11-24 2011-01-12 阎跃军 分段可调电感器
US8222087B2 (en) 2006-12-19 2012-07-17 HGST Netherlands, B.V. Seed layer for a heat spreader in a magnetic recording head
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
KR100840644B1 (ko) * 2006-12-29 2008-06-24 동부일렉트로닉스 주식회사 스위칭 소자 및 그 제조 방법
EP1939137B1 (en) * 2006-12-30 2016-08-24 Nuvotronics, LLC Three-dimensional microstructures and methods of formation thereof
JP4916893B2 (ja) * 2007-01-05 2012-04-18 株式会社日本マイクロニクス プローブの製造方法
US7400015B1 (en) * 2007-01-15 2008-07-15 International Business Machines Corporation Semiconductor structure with field shield and method of forming the structure
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
CN101632150B (zh) * 2007-02-20 2011-11-23 高通Mems科技公司 用于蚀刻微机电系统的装备及方法
US20080197964A1 (en) * 2007-02-21 2008-08-21 Simpler Networks Inc. Mems actuators and switches
EP1973189B1 (en) 2007-03-20 2012-12-05 Nuvotronics, LLC Coaxial transmission line microstructures and methods of formation thereof
EP1973190A1 (en) 2007-03-20 2008-09-24 Rohm and Haas Electronic Materials LLC Integrated electronic components and methods of formation thereof
WO2008124372A2 (en) * 2007-04-04 2008-10-16 Qualcomm Mems Technologies, Inc. Eliminate release etch attack by interface modification in sacrificial layers
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
CN101765741B (zh) * 2007-05-25 2012-07-04 莫列斯公司 用于发热装置与电源的散热器
US8102638B2 (en) * 2007-06-13 2012-01-24 The University Court Of The University Of Edinburgh Micro electromechanical capacitive switch
US7625825B2 (en) * 2007-06-14 2009-12-01 Qualcomm Mems Technologies, Inc. Method of patterning mechanical layer for MEMS structures
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8068268B2 (en) 2007-07-03 2011-11-29 Qualcomm Mems Technologies, Inc. MEMS devices having improved uniformity and methods for making them
US8310016B2 (en) * 2007-07-17 2012-11-13 Kwj Engineering, Inc. Apparatus and method for microfabricated multi-dimensional sensors and sensing systems
CN101849289B (zh) * 2007-07-23 2014-02-26 维斯普瑞公司 制备三层梁的方法和设备
EP2181355A1 (en) 2007-07-25 2010-05-05 Qualcomm Mems Technologies, Inc. Mems display devices and methods of fabricating the same
CN101809471B (zh) 2007-07-31 2013-12-25 高通Mems科技公司 用于增强干涉式调制器的色彩偏移的装置
US8154378B2 (en) * 2007-08-10 2012-04-10 Alcatel Lucent Thermal actuator for a MEMS-based relay switch
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
KR20100061731A (ko) * 2007-09-14 2010-06-08 퀄컴 엠이엠스 테크놀로지스, 인크. Mems 제조에 이용되는 에칭 방법
WO2009050209A2 (en) * 2007-10-15 2009-04-23 Epcos Ag Manufacturing a mems element having cantilever and cavity on a substrate
TW200919593A (en) * 2007-10-18 2009-05-01 Asia Pacific Microsystems Inc Elements and modules with micro caps and wafer level packaging method thereof
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
JP5209727B2 (ja) 2007-10-19 2013-06-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 一体型光起電力デバイスを有するディスプレイ
EP2203765A1 (en) 2007-10-23 2010-07-07 Qualcomm Mems Technologies, Inc. Adjustably transmissive mems-based devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US20090140433A1 (en) * 2007-11-30 2009-06-04 Alces Technology, Inc. MEMS chip-to-chip interconnects
WO2009079460A1 (en) * 2007-12-14 2009-06-25 University Of Florida Research Foundation, Inc. Electrothermal microactuator for large vertical displacement without tilt or lateral shift
US7609136B2 (en) * 2007-12-20 2009-10-27 General Electric Company MEMS microswitch having a conductive mechanical stop
US8071411B2 (en) * 2007-12-21 2011-12-06 The Royal Institution For The Advancement Of Learning/Mcgill University Low temperature ceramic microelectromechanical structures
US7863079B2 (en) 2008-02-05 2011-01-04 Qualcomm Mems Technologies, Inc. Methods of reducing CD loss in a microelectromechanical device
US8199020B1 (en) * 2008-02-11 2012-06-12 The United States Of America As Represented By The Secretary Of The Army Thermal cutoff fuse for arbitrary temperatures
US7989262B2 (en) 2008-02-22 2011-08-02 Cavendish Kinetics, Ltd. Method of sealing a cavity
US8164821B2 (en) * 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
EP2107038B1 (en) * 2008-03-31 2012-05-16 Imec Electrostatically actuatable MEMS device featuring reduced substrate charging
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
JP2011518336A (ja) * 2008-04-21 2011-06-23 トップ エンジニアリング カンパニー リミテッド Memsプローブカード及びその製造方法
US8451077B2 (en) 2008-04-22 2013-05-28 International Business Machines Corporation MEMS switches with reduced switching voltage and methods of manufacture
US7993950B2 (en) * 2008-04-30 2011-08-09 Cavendish Kinetics, Ltd. System and method of encapsulation
US8023191B2 (en) * 2008-05-07 2011-09-20 Qualcomm Mems Technologies, Inc. Printable static interferometric images
US7956759B1 (en) 2008-05-13 2011-06-07 The United States Of America As Represented By The Secretary Of The Army Humidity sensitive cutoff fuse
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8704315B2 (en) * 2008-06-26 2014-04-22 Cornell University CMOS integrated micromechanical resonators and methods for fabricating the same
US7859740B2 (en) 2008-07-11 2010-12-28 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US7977635B2 (en) * 2008-08-08 2011-07-12 Oliver Edwards Radiant energy imager using null switching
US7855826B2 (en) * 2008-08-12 2010-12-21 Qualcomm Mems Technologies, Inc. Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
JP2012502274A (ja) * 2008-09-05 2012-01-26 トップ・エンジニアリング・カンパニー・リミテッド Memsプローブ用カード及びその製造方法
ITTO20080714A1 (it) 2008-09-30 2010-04-01 St Microelectronics Srl Dispositivo microelettromeccanico provvisto di una struttura antiadesione e relativo metodo di antiadesione
EP2370346B1 (en) 2008-11-26 2017-08-23 NXP USA, Inc. Electromechanical transducer device having stress compensation layers
US8736145B2 (en) * 2008-11-26 2014-05-27 Freescale Semiconductor, Inc. Electromechanical transducer device and method of forming a electromechanical transducer device
US8257119B2 (en) 2008-12-19 2012-09-04 Honeywell International Systems and methods for affixing a silicon device to a support structure
US8445306B2 (en) * 2008-12-24 2013-05-21 International Business Machines Corporation Hybrid MEMS RF switch and method of fabricating same
US8957485B2 (en) * 2009-01-21 2015-02-17 Cavendish Kinetics, Ltd. Fabrication of MEMS based cantilever switches by employing a split layer cantilever deposition scheme
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
WO2010111601A2 (en) * 2009-03-26 2010-09-30 Semprius, Inc. Methods of forming printable integrated circuit devices and devices formed thereby
JP5187441B2 (ja) * 2009-04-24 2013-04-24 株式会社村田製作所 Mems素子およびその製造方法
FR2946036B1 (fr) * 2009-05-26 2011-11-25 Thales Sa Procede d'integration de micro-interrupteurs de type mems sur des substrats en gan comportant des composants electroniques de puissance
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
JP2010284748A (ja) * 2009-06-11 2010-12-24 Toshiba Corp 電気部品
WO2011001293A2 (en) 2009-06-29 2011-01-06 Freescale Semiconductor, Inc. Method of forming an electromechanical transducer device
JP2011017626A (ja) * 2009-07-09 2011-01-27 Sony Corp 力学量検知部材及び力学量検知装置
TWM378928U (en) * 2009-07-29 2010-04-21 Pixart Imaging Inc Mems device and spring element of mems
JP5398411B2 (ja) * 2009-08-10 2014-01-29 株式会社東芝 マイクロ可動デバイスおよびマイクロ可動デバイスの製造方法
US8138007B2 (en) 2009-08-26 2012-03-20 Freescale Semiconductor, Inc. MEMS device with stress isolation and method of fabrication
US8569091B2 (en) * 2009-08-27 2013-10-29 International Business Machines Corporation Integrated circuit switches, design structure and methods of fabricating the same
US20110063068A1 (en) * 2009-09-17 2011-03-17 The George Washington University Thermally actuated rf microelectromechanical systems switch
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8354899B2 (en) 2009-09-23 2013-01-15 General Electric Company Switch structure and method
US8826529B2 (en) 2009-09-23 2014-09-09 General Electric Company Method of forming a micro-electromechanical system device
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US20110123783A1 (en) 2009-11-23 2011-05-26 David Sherrer Multilayer build processses and devices thereof
CN102086017B (zh) * 2009-12-03 2014-11-26 原相科技股份有限公司 微机电元件及微机电弹簧元件
CN102110616B (zh) * 2009-12-25 2012-09-05 华东光电集成器件研究所 一种在ltcc基板上实现薄膜多层布线的方法
US8237263B2 (en) * 2009-12-31 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for cooling an integrated circuit
CN102741958B (zh) * 2010-01-15 2016-09-14 维斯普瑞公司 装有弹簧的mems悬臂可调电容器及方法
KR101067214B1 (ko) * 2010-04-07 2011-09-22 삼성전기주식회사 인쇄회로기판 및 그 제조방법
KR20130100232A (ko) 2010-04-09 2013-09-10 퀄컴 엠이엠에스 테크놀로지스, 인크. 전기 기계 디바이스의 기계층 및 그 형성 방법
CN101814866B (zh) * 2010-04-16 2012-08-01 大连理工大学 一种电热驱动微结构的制作方法
US20110269295A1 (en) * 2010-04-30 2011-11-03 Hopper Peter J Method of Forming a Semiconductor Wafer that Provides Galvanic Isolation
US8458888B2 (en) 2010-06-25 2013-06-11 International Business Machines Corporation Method of manufacturing a micro-electro-mechanical system (MEMS)
FR2963784B1 (fr) * 2010-08-11 2012-08-31 Univ Limoges Microsystemes electromecaniques a gaps d'air.
JP5667391B2 (ja) * 2010-08-11 2015-02-12 日本電波工業株式会社 ディスク型mems振動子
JP2013544370A (ja) 2010-08-17 2013-12-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 干渉ディスプレイデバイスの電荷中性電極の作動及び較正
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
DE102010047128A1 (de) * 2010-09-30 2012-04-05 Infineon Technologies Ag Hallsensoranordnung zum redundanten Messen eines Magnetfeldes
KR20120064364A (ko) * 2010-12-09 2012-06-19 삼성전자주식회사 태양 전지의 제조 방법
US8735200B2 (en) * 2010-12-13 2014-05-27 Sagnik Pal Fabrication of robust electrothermal MEMS with fast thermal response
US9221677B2 (en) * 2010-12-20 2015-12-29 Rf Micro Devices, Inc. Composite sacrificial structure for reliably creating a contact gap in a MEMS switch
US20120174572A1 (en) * 2011-01-10 2012-07-12 Donato Clausi Method for mechanical and electrical integration of sma wires to microsystems
US8171800B1 (en) * 2011-01-25 2012-05-08 Continental Automotive Systems, Inc. Differential pressure sensor using dual backside absolute pressure sensing
US8962443B2 (en) * 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8531192B2 (en) * 2011-04-15 2013-09-10 Robert Bosch Gmbh High-impedance MEMS switch
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8866300B1 (en) 2011-06-05 2014-10-21 Nuvotronics, Llc Devices and methods for solder flow control in three-dimensional microstructures
US8814601B1 (en) 2011-06-06 2014-08-26 Nuvotronics, Llc Batch fabricated microconnectors
US9019687B2 (en) 2011-06-07 2015-04-28 Wispry, Inc. Systems and methods for current density optimization in CMOS-integrated MEMS capacitive devices
US9120667B2 (en) 2011-06-20 2015-09-01 International Business Machines Corporation Micro-electro-mechanical system (MEMS) and related actuator bumps, methods of manufacture and design structures
US8973250B2 (en) 2011-06-20 2015-03-10 International Business Machines Corporation Methods of manufacturing a micro-electro-mechanical system (MEMS) structure
US8643140B2 (en) * 2011-07-11 2014-02-04 United Microelectronics Corp. Suspended beam for use in MEMS device
WO2013010108A1 (en) 2011-07-13 2013-01-17 Nuvotronics, Llc Methods of fabricating electronic and mechanical structures
CN102423258B (zh) * 2011-09-20 2013-12-25 上海交通大学 基于mems技术的无线传输可植入对称结构压力传感器
US20130106875A1 (en) * 2011-11-02 2013-05-02 Qualcomm Mems Technologies, Inc. Method of improving thin-film encapsulation for an electromechanical systems assembly
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US9349558B2 (en) * 2011-12-06 2016-05-24 Palo Alto Research Center Incorporated Mechanically acuated heat switch
FR2984013B1 (fr) 2011-12-09 2014-01-10 St Microelectronics Rousset Dispositif mecanique de commutation electrique integre possedant un etat bloque
FR2984010B1 (fr) * 2011-12-09 2014-01-03 St Microelectronics Rousset Dispositif capacitif integre ayant une valeur capacitive thermiquement variable
US8673670B2 (en) 2011-12-15 2014-03-18 International Business Machines Corporation Micro-electro-mechanical system (MEMS) structures and design structures
US20130181893A1 (en) * 2012-01-13 2013-07-18 Qualcomm Mems Technologies, Inc. Electrostatically transduced sensors composed of photochemically etched glass
FR2988712B1 (fr) 2012-04-02 2014-04-11 St Microelectronics Rousset Circuit integre equipe d'un dispositif de detection de son orientation spatiale et/ou d'un changement de cette orientation.
US8748999B2 (en) * 2012-04-20 2014-06-10 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitive sensors and methods for forming the same
US9224821B2 (en) * 2012-04-26 2015-12-29 Hewlett Packard Enterprise Development Lp Customizable nonlinear electrical devices
DE112013003408T5 (de) * 2012-07-06 2015-04-09 Luxvue Technoly Corporation Konformer bipolarer Mikrovorrichtungsübertragungskopf mitSiliziumelektroden
US8569115B1 (en) 2012-07-06 2013-10-29 LuxVue Technology Corporation Method of forming a compliant bipolar micro device transfer head with silicon electrodes
US9162878B2 (en) 2012-08-30 2015-10-20 Innovative Micro Technology Wafer level hermetic bond using metal alloy with raised feature and wetting layer
US9325044B2 (en) 2013-01-26 2016-04-26 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
JP6105304B2 (ja) * 2013-01-31 2017-03-29 ルネサスエレクトロニクス株式会社 インダクタ装置及び半導体装置
US9306255B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Microstructure including microstructural waveguide elements and/or IC chips that are mechanically interconnected to each other
US9306254B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Substrate-free mechanical interconnection of electronic sub-systems using a spring configuration
US9233832B2 (en) 2013-05-10 2016-01-12 Globalfoundries Inc. Micro-electro-mechanical system (MEMS) structures and design structures
US9911563B2 (en) * 2013-07-31 2018-03-06 Analog Devices Global MEMS switch device and method of fabrication
FR3009653B1 (fr) * 2013-08-09 2015-08-07 Commissariat Energie Atomique Dispositif de conversion d'energie thermique en energie electrique
FR3012671B1 (fr) 2013-10-29 2015-11-13 St Microelectronics Rousset Dispositif mecanique integre a mouvement vertical
US9162868B2 (en) * 2013-11-27 2015-10-20 Infineon Technologies Ag MEMS device
WO2015109208A2 (en) 2014-01-17 2015-07-23 Nuvotronics, Llc Wafer scale test interface unit: low loss and high isolation devices and methods for high speed and high density mixed signal interconnects and contactors
US9796578B2 (en) * 2014-03-10 2017-10-24 Apple Inc. Microelectromechanical systems devices with improved reliability
US9385306B2 (en) 2014-03-14 2016-07-05 The United States Of America As Represented By The Secretary Of The Army Ferroelectric mechanical memory and method
WO2015153781A1 (en) * 2014-04-01 2015-10-08 Wispry, Inc. Systems, devices, and methods for reducing surface dielectric charging in a rf mems actuator element
EP2937311B1 (fr) * 2014-04-25 2019-08-21 Rolex Sa Procédé de fabrication d'un composant horloger renforcé, composant horloger et pièce d'horlogerie correspondants
US9274277B2 (en) 2014-05-15 2016-03-01 Globalfoundries Inc. Waveguide devices with supporting anchors
FR3022691B1 (fr) 2014-06-23 2016-07-01 Stmicroelectronics Rousset Dispositif capacitif commandable integre
CN105366624B (zh) * 2014-07-30 2017-06-13 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN105428256B (zh) * 2014-07-30 2018-07-20 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
EP3201123A4 (en) * 2014-10-03 2018-05-23 Wispry, Inc. Systems, devices, and methods to reduce dielectric charging in micro-electromechanical systems devices
US10132699B1 (en) 2014-10-06 2018-11-20 National Technology & Engineering Solutions Of Sandia, Llc Electrodeposition processes for magnetostrictive resonators
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
FR3034567B1 (fr) 2015-03-31 2017-04-28 St Microelectronics Rousset Dispositif metallique a piece(s) mobile(s) ameliore loge dans une cavite de la partie d'interconnexion (" beol ") d'un circuit integre
US9466452B1 (en) 2015-03-31 2016-10-11 Stmicroelectronics, Inc. Integrated cantilever switch
US10068181B1 (en) 2015-04-27 2018-09-04 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafer and methods for making the same
WO2017019557A1 (en) * 2015-07-24 2017-02-02 Trustees Of Boston University Mems devices for smart lighting applications
US10612925B2 (en) * 2016-02-29 2020-04-07 The Regents Of The University Of Michigan Assembly processes for three-dimensional microstructures
WO2017201459A1 (en) 2016-05-20 2017-11-23 Macom Technology Solutions Holdings, Inc. Semiconductor lasers and processes for the planarization of semiconductor lasers
US20180079640A1 (en) * 2016-09-22 2018-03-22 Innovative Micro Technology Mems device with offset electrode
CN107915280B (zh) * 2016-10-11 2020-05-26 青岛经济技术开发区海尔热水器有限公司 一种双循环模式的水吧系统
DE102016122525B4 (de) * 2016-11-22 2019-09-19 Infineon Technologies Ag Sensorbauelemente eines mikroelektronischen Systems
US10996125B2 (en) * 2017-05-17 2021-05-04 Infineon Technologies Ag Pressure sensors and method for forming a MEMS pressure sensor
US11121301B1 (en) 2017-06-19 2021-09-14 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafers and their methods of manufacture
US11276727B1 (en) 2017-06-19 2022-03-15 Rigetti & Co, Llc Superconducting vias for routing electrical signals through substrates and their methods of manufacture
JP6842386B2 (ja) * 2017-08-31 2021-03-17 キオクシア株式会社 半導体装置
WO2019090057A1 (en) * 2017-11-02 2019-05-09 Nextinput, Inc. Sealed force sensor with etch stop layer
US10720338B1 (en) 2017-11-07 2020-07-21 Honeywell Federal Manufacturing & Technologies, Llc Low temperature cofired ceramic substrates and fabrication techniques for the same
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US11040871B2 (en) * 2017-12-14 2021-06-22 Invensense, Inc. Device comprising a micro-electro-mechanical system substrate with protrusions of different heights that has been integrated with a complementary metal-oxide-semiconductor substrate
US10943850B2 (en) 2018-08-10 2021-03-09 Frore Systems Inc. Piezoelectric MEMS-based active cooling for heat dissipation in compute devices
US11464140B2 (en) 2019-12-06 2022-10-04 Frore Systems Inc. Centrally anchored MEMS-based active cooling systems
GB201815797D0 (en) 2018-09-27 2018-11-14 Sofant Tech Ltd Mems devices and circuits including same
US10793422B2 (en) * 2018-12-17 2020-10-06 Vanguard International Semiconductor Singapore Pte. Ltd. Microelectromechanical systems packages and methods for packaging a microelectromechanical systems device
TWI708424B (zh) * 2019-07-04 2020-10-21 國家中山科學研究院 直接平貼式主動頻率選擇表面之開關元件與其製作方法
US11802554B2 (en) 2019-10-30 2023-10-31 Frore Systems Inc. MEMS-based airflow system having a vibrating fan element arrangement
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
US11510341B2 (en) * 2019-12-06 2022-11-22 Frore Systems Inc. Engineered actuators usable in MEMs active cooling devices
CN113336187A (zh) * 2020-02-14 2021-09-03 绍兴中芯集成电路制造股份有限公司 Mems器件封装方法及封装结构
JP2023544160A (ja) 2020-10-02 2023-10-20 フロー・システムズ・インコーポレーテッド アクティブヒートシンク
US20230068451A1 (en) * 2021-08-30 2023-03-02 Texas Instruments Incorporated Methods and apparatus to thermally actuate microelectromechanical structures devices
US20230108475A1 (en) * 2021-10-04 2023-04-06 Formfactor, Inc. Thermal management techniques for high power integrated circuits operating in dry cryogenic environments

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095911B (en) * 1981-03-17 1985-02-13 Standard Telephones Cables Ltd Electrical switch device
US4423401A (en) * 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
US5376772A (en) * 1990-08-31 1994-12-27 The Pilot Ink Co., Ltd. Electrothermal instrument with heat generating element of sintered BaTiO3 in contact with heat transmitting member
JP2804196B2 (ja) * 1991-10-18 1998-09-24 株式会社日立製作所 マイクロセンサ及びそれを用いた制御システム
US5479042A (en) * 1993-02-01 1995-12-26 Brooktree Corporation Micromachined relay and method of forming the relay
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5662771A (en) * 1994-12-01 1997-09-02 Analog Devices, Inc. Surface micromachining process
US5619177A (en) * 1995-01-27 1997-04-08 Mjb Company Shape memory alloy microactuator having an electrostatic force and heating means
US5597643A (en) * 1995-03-13 1997-01-28 Hestia Technologies, Inc. Multi-tier laminate substrate with internal heat spreader
US5629794A (en) * 1995-05-31 1997-05-13 Texas Instruments Incorporated Spatial light modulator having an analog beam for steering light
US5578976A (en) * 1995-06-22 1996-11-26 Rockwell International Corporation Micro electromechanical RF switch
US5717631A (en) * 1995-07-21 1998-02-10 Carnegie Mellon University Microelectromechanical structure and process of making same
GB2304918B (en) * 1995-08-30 1999-05-19 Daewoo Electronics Co Ltd Method for manufacturing a thin film actuated mirror having a stable elastic member
US5920391A (en) * 1995-10-27 1999-07-06 Schlumberger Industries, S.A. Tunable Fabry-Perot filter for determining gas concentration
US5638946A (en) * 1996-01-11 1997-06-17 Northeastern University Micromechanical switch with insulated switch contact
JPH09232465A (ja) * 1996-02-27 1997-09-05 Fuji Kiko Denshi Kk 半導体実装用プリント配線板
US5914801A (en) * 1996-09-27 1999-06-22 Mcnc Microelectromechanical devices including rotating plates and related methods
US5994816A (en) 1996-12-16 1999-11-30 Mcnc Thermal arched beam microelectromechanical devices and associated fabrication methods
US5796152A (en) * 1997-01-24 1998-08-18 Roxburgh Ltd. Cantilevered microstructure
US6232847B1 (en) * 1997-04-28 2001-05-15 Rockwell Science Center, Llc Trimmable singleband and tunable multiband integrated oscillator using micro-electromechanical system (MEMS) technology
US5870007A (en) * 1997-06-16 1999-02-09 Roxburgh Ltd. Multi-dimensional physical actuation of microstructures
JP4240575B2 (ja) 1998-05-15 2009-03-18 ヤマハ株式会社 楽音合成方法、記録媒体および楽音合成装置
US6046659A (en) * 1998-05-15 2000-04-04 Hughes Electronics Corporation Design and fabrication of broadband surface-micromachined micro-electro-mechanical switches for microwave and millimeter-wave applications
US6154176A (en) * 1998-08-07 2000-11-28 Sarnoff Corporation Antennas formed using multilayer ceramic substrates
DE69831228T2 (de) * 1998-08-14 2006-07-13 Renata Ag Schmelzsicherung und diese enthaltende Batterie
US6040611A (en) * 1998-09-10 2000-03-21 Hughes Electonics Corporation Microelectromechanical device
JP2000188049A (ja) * 1998-12-22 2000-07-04 Nec Corp マイクロマシンスイッチおよびその製造方法
US6316278B1 (en) * 1999-03-16 2001-11-13 Alien Technology Corporation Methods for fabricating a multiple modular assembly
US6236300B1 (en) * 1999-03-26 2001-05-22 R. Sjhon Minners Bistable micro-switch and method of manufacturing the same
US6229683B1 (en) * 1999-06-30 2001-05-08 Mcnc High voltage micromachined electrostatic switch
US6057520A (en) * 1999-06-30 2000-05-02 Mcnc Arc resistant high voltage micromachined electrostatic switch
US6175170B1 (en) * 1999-09-10 2001-01-16 Sridhar Kota Compliant displacement-multiplying apparatus for microelectromechanical systems
US6211598B1 (en) * 1999-09-13 2001-04-03 Jds Uniphase Inc. In-plane MEMS thermal actuator and associated fabrication methods
US6307452B1 (en) * 1999-09-16 2001-10-23 Motorola, Inc. Folded spring based micro electromechanical (MEM) RF switch
US6310339B1 (en) * 1999-10-28 2001-10-30 Hrl Laboratories, Llc Optically controlled MEM switches
US6396368B1 (en) 1999-11-10 2002-05-28 Hrl Laboratories, Llc CMOS-compatible MEM switches and method of making
US6535318B1 (en) * 1999-11-12 2003-03-18 Jds Uniphase Corporation Integrated optoelectronic devices having pop-up mirrors therein and methods of forming and operating same
WO2001043153A1 (en) * 1999-12-10 2001-06-14 Koninklijke Philips Electronics N.V. Electronic devices including micromechanical switches
US6229684B1 (en) * 1999-12-15 2001-05-08 Jds Uniphase Inc. Variable capacitor and associated fabrication method
US6367251B1 (en) * 2000-04-05 2002-04-09 Jds Uniphase Corporation Lockable microelectromechanical actuators using thermoplastic material, and methods of operating same
US6275325B1 (en) * 2000-04-07 2001-08-14 Microsoft Corporation Thermally activated microelectromechanical systems actuator
US6580170B2 (en) * 2000-06-22 2003-06-17 Texas Instruments Incorporated Semiconductor device protective overcoat with enhanced adhesion to polymeric materials
US6630367B1 (en) * 2000-08-01 2003-10-07 Hrl Laboratories, Llc Single crystal dual wafer, tunneling sensor and a method of making same
US6555404B1 (en) * 2000-08-01 2003-04-29 Hrl Laboratories, Llc Method of manufacturing a dual wafer tunneling gyroscope
US6708491B1 (en) * 2000-09-12 2004-03-23 3M Innovative Properties Company Direct acting vertical thermal actuator
US6531947B1 (en) * 2000-09-12 2003-03-11 3M Innovative Properties Company Direct acting vertical thermal actuator with controlled bending
US6504118B2 (en) * 2000-10-27 2003-01-07 Daniel J Hyman Microfabricated double-throw relay with multimorph actuator and electrostatic latch mechanism
US6483056B2 (en) * 2000-10-27 2002-11-19 Daniel J Hyman Microfabricated relay with multimorph actuator and electrostatic latch mechanism
US6538798B2 (en) * 2000-12-11 2003-03-25 Axsun Technologies, Inc. Process for fabricating stiction control bumps on optical membrane via conformal coating of etch holes
US6583374B2 (en) * 2001-02-20 2003-06-24 Rockwell Automation Technologies, Inc. Microelectromechanical system (MEMS) digital electrical isolator
US7280014B2 (en) * 2001-03-13 2007-10-09 Rochester Institute Of Technology Micro-electro-mechanical switch and a method of using and making thereof
US6522452B2 (en) * 2001-04-26 2003-02-18 Jds Uniphase Corporation Latchable microelectromechanical structures using non-newtonian fluids, and methods of operating same
US20020162685A1 (en) * 2001-05-07 2002-11-07 Jeffrey Gotro Thermal dissipating printed circuit board and methods
US6664885B2 (en) * 2001-08-31 2003-12-16 Adc Telecommunications, Inc. Thermally activated latch
US6847114B2 (en) * 2001-11-09 2005-01-25 Turnstone Systems, Inc. Micro-scale interconnect device with internal heat spreader and method for fabricating same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082043A (zh) * 2009-11-30 2011-06-01 通用电气公司 开关结构
US8779886B2 (en) 2009-11-30 2014-07-15 General Electric Company Switch structures
CN102082043B (zh) * 2009-11-30 2015-09-23 通用电气公司 开关结构
CN102367165A (zh) * 2011-08-31 2012-03-07 华东光电集成器件研究所 一种基于soi的mems器件电极互连方法
CN102367165B (zh) * 2011-08-31 2015-01-21 华东光电集成器件研究所 一种基于soi的mems器件电极互连方法
CN106413437A (zh) * 2014-01-24 2017-02-15 吉瑞高新科技股份有限公司 电池座、电子烟及电子烟的雾化控制方法
CN106413437B (zh) * 2014-01-24 2019-08-06 吉瑞高新科技股份有限公司 电池座、电子烟及电子烟的雾化控制方法
CN107917750A (zh) * 2016-10-08 2018-04-17 北京大学 一种mems热式声粒子传感器
CN107917750B (zh) * 2016-10-08 2020-06-26 北京大学 一种mems热式声粒子传感器
CN111819653A (zh) * 2017-07-24 2020-10-23 火花热离子学公司 小间隙设备系统及制造方法
CN111819653B (zh) * 2017-07-24 2023-06-09 火花热离子学公司 小间隙设备系统及制造方法

Also Published As

Publication number Publication date
WO2003042721A2 (en) 2003-05-22
ATE412611T1 (de) 2008-11-15
DE60229675D1 (de) 2008-12-11
EP1454333B1 (en) 2007-09-12
EP1717194B1 (en) 2009-05-27
EP1454349B1 (en) 2006-09-27
US20040188785A1 (en) 2004-09-30
DE60238956D1 (de) 2011-02-24
EP1717194A1 (en) 2006-11-02
CN1292447C (zh) 2006-12-27
WO2003040338A2 (en) 2003-05-15
CN1613154A (zh) 2005-05-04
EP1760746A3 (en) 2007-03-14
US20070158775A1 (en) 2007-07-12
WO2003041133A3 (en) 2003-09-12
ATE524412T1 (de) 2011-09-15
EP1760036B1 (en) 2012-06-13
WO2003043044A1 (en) 2003-05-22
US20030116848A1 (en) 2003-06-26
DE60215045T2 (de) 2007-03-29
CN100550429C (zh) 2009-10-14
DE60217924T2 (de) 2007-08-02
US8264054B2 (en) 2012-09-11
US20040197960A1 (en) 2004-10-07
EP1760746A2 (en) 2007-03-07
ATE432240T1 (de) 2009-06-15
EP1717195A1 (en) 2006-11-02
EP1760036A1 (en) 2007-03-07
DE60222468D1 (de) 2007-10-25
US6746891B2 (en) 2004-06-08
EP1461816B1 (en) 2007-01-24
EP1461816A2 (en) 2004-09-29
US6876047B2 (en) 2005-04-05
DE60217924D1 (de) 2007-03-15
ATE417021T1 (de) 2008-12-15
EP1717193B1 (en) 2008-10-29
US8420427B2 (en) 2013-04-16
ATE372955T1 (de) 2007-09-15
EP1454333A1 (en) 2004-09-08
AU2002359370A1 (en) 2003-05-26
WO2003043038A3 (en) 2004-07-15
DE60230341D1 (de) 2009-01-22
EP1717193A1 (en) 2006-11-02
EP1721866B1 (en) 2008-12-10
ATE341098T1 (de) 2006-10-15
EP1454333A4 (en) 2005-09-21
US6876482B2 (en) 2005-04-05
WO2003041133A2 (en) 2003-05-15
EP1461816A4 (en) 2005-03-30
WO2003043042A1 (en) 2003-05-22
ATE352854T1 (de) 2007-02-15
EP1721866A1 (en) 2006-11-15
EP1760746B1 (en) 2011-01-12
AU2002363529A1 (en) 2003-05-19
EP1717195B1 (en) 2011-09-14
CN100474519C (zh) 2009-04-01
US6847114B2 (en) 2005-01-25
US20030119221A1 (en) 2003-06-26
WO2003042721A3 (en) 2003-11-13
US6917086B2 (en) 2005-07-12
CN1695233A (zh) 2005-11-09
US20040012298A1 (en) 2004-01-22
DE60215045D1 (de) 2006-11-09
EP1454349A2 (en) 2004-09-08
US6882264B2 (en) 2005-04-19
US20030117257A1 (en) 2003-06-26
ATE495538T1 (de) 2011-01-15
DE60222468T2 (de) 2008-06-12
AU2002359369A1 (en) 2003-05-26
US20030116417A1 (en) 2003-06-26
WO2003043038A2 (en) 2003-05-22
WO2003040338A3 (en) 2003-10-02
US20030116851A1 (en) 2003-06-26
DE60232471D1 (de) 2009-07-09
EP1454349A4 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
CN1292447C (zh) 具有三层横梁的mems器件
JP2007535797A (ja) マイクロマシン技術(mems)スイッチ用のビーム
CN102185517A (zh) 静电致动器
JP2011146403A (ja) 湾曲バイレイヤーによるメカニカルスイッチ
KR100840765B1 (ko) 캔틸레버 타입의 프로브 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: WISPRY INC.

Free format text: FORMER OWNER: COVENTOR INC.

Effective date: 20130304

Free format text: FORMER OWNER: WISPRY INC.

Effective date: 20130304

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130304

Address after: American California

Patentee after: WISPRY, Inc.

Address before: American California

Patentee before: Coventor Inc.

Patentee before: WISPRY, Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220314

Address after: Room 1, 3rd floor, 22 tambini industrial Bay, Singapore

Patentee after: AAC TECHNOLOGIES Pte. Ltd.

Address before: California, USA

Patentee before: WISPRY, Inc.

CX01 Expiry of patent term

Granted publication date: 20061227

CX01 Expiry of patent term