CN1447189A - 光掩模、聚焦监视方法、曝光量监视方法和半导体器件的制造方法 - Google Patents

光掩模、聚焦监视方法、曝光量监视方法和半导体器件的制造方法 Download PDF

Info

Publication number
CN1447189A
CN1447189A CN03121360A CN03121360A CN1447189A CN 1447189 A CN1447189 A CN 1447189A CN 03121360 A CN03121360 A CN 03121360A CN 03121360 A CN03121360 A CN 03121360A CN 1447189 A CN1447189 A CN 1447189A
Authority
CN
China
Prior art keywords
pattern
exposure
mentioned
peristome
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03121360A
Other languages
English (en)
Other versions
CN1237396C (zh
Inventor
酢谷拓路
出羽恭子
藤泽忠仁
井上壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1447189A publication Critical patent/CN1447189A/zh
Application granted granted Critical
Publication of CN1237396C publication Critical patent/CN1237396C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

本发明的目的在于以高灵敏度,高精度,监视曝光光源相对焦点位置的偏离,或曝光量变化。在光掩模上,具有器件图案,该器件图案具有开口部与掩模部;聚焦监视图案,或曝光量监视图案,该聚焦监视图案或曝光量监视图案具有开口部和掩模部,具有与器件图案中的至少一部分区域相同的平面图案形状。聚焦监视图案的开口部与掩模部的透射曝光光的相位差,与上述器件图案的开口部与掩模部的透射曝光光的相位差不同。另外,曝光量监视图案的开口部与器件图案的开口部的曝光光透射率不同。

Description

光掩模、聚焦监视方法、曝光量 监视方法和半导体器件的制造方法
技术领域
本发明涉及半导体器件的制造,本发明特别是涉及光掩模和使用该光掩模的光刻步骤中所采用的曝光装置的聚焦条件,或曝光量条件的管理方法,以及采用该方法的半导体装置的制造方法。
背景技术
伴随器件图案的细微化,在光刻处理中,对于曝光装置的焦点深度或曝光量调整等的工艺条件的容限(process margin)减少。因此,人们寻求将工艺容限(process margin)的消耗这一误差因素抑制在最小值的曝光条件等的高精度的管理(监视)方法。
在过去,例如,采用图21(a)所示那样的,具有对角线短轴长度为0.5μm左右的棱形监视图案1000的光掩模,如图21(b)所示的那样,通过测定将转印于晶片上的棱形图案1010的长度1(对角线长轴的长度),进行聚焦条件的管理。
图22表示转印于晶片上的棱形图案1010的长度1与相对焦点位置的偏离距离(散焦值)之间的关系。对于棱形图案1010,越接近最佳聚焦,分辨率越高,连棱形图案1010中的较窄的边缘部都可转印到晶片上。其结果是,棱形图案1010的长度1在最佳聚焦的位置达到最大值,散焦值越大,该长度1越小。于是,在制造半导体器件时,在使批量制品经过制造步骤之前,首先,求出转印到晶片上的棱形图案1010的长度1与散焦值的关系,确定该批量制品的曝光步骤中的最佳聚焦条件。
另外,在管理批量制品的聚焦条件的场合,在与该批量制品同一曝光条件下,采用具有棱形图案1000的光掩模,制作转印图案,测定已转印的棱形图案1010的长度1,由此,监视散焦值。
发明内容
但是,在采用上述的棱形图案的过去的光掩模方法中,不能够获得曝光装置的焦点朝向上下的哪个方向偏离的信息。另外,由于监视图案的尺寸,形状与器件图案的尺寸,形状有较大差异,故当产生曝光量等的变化时,有下述情况,即,相对这些变化的监视图案的灵敏度与器件图案的灵敏度不同,监视的可靠性降低。
作为不影响曝光量,对聚焦进行监视的方法,有人提出将聚焦的变化量作为图案的位置偏离量进行检测的方法(US5300786号专利)。但是,在该方法中,由于聚焦的检测灵敏度大大依赖于光源形状(σ形状),故虽然在较低的σ的曝光条件下,可获得充分地灵敏度,但是,在一般使用的较大的σ条件,或环带照明条件下,无法获得充分的灵敏度。
另外,作为曝光量监视方法,有特开P2000-310850号公报中公开的方法。该方法采用特殊的图案,以便监视曝光量,通过测定转印于晶片上的图案的尺寸或中心位置的偏离可监视曝光量。但是在此场合,同样由于器件图案与曝光量监视图案的尺寸,或形状是完全不同的,故在这两个图案中,相对曝光量的尺寸的灵敏度是不同的场合,无法正确地相对器件图案,监视曝光量。
本发明的目的在于针对上述课题,提供可用于更正确的聚焦监视方法的光掩模,采用该光掩模的聚焦监视方法,采用该聚焦监视方法的半导体器件的制造方法。
此外,本发明的另一目的在于提供可用于更正确的曝光量监视方法的光掩模,采用该光掩模的曝光量监视方法,采用该曝光量监视方法的半导体器件的制造方法。
本发明的第1光掩模的特征在于,该光掩模具有掩模基板;器件图案,该器件图案设置于上述掩模基板上,具有开口部与掩模部;第1聚焦监视图案,该第1聚焦监视图案设置于上述掩模基板上,其具有与上述器件图案中的至少一部分区域相同的平面图案形状的开口部与掩模部。另外,上述第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差,与上述器件图案的开口部与掩模部的透射曝光光的相位差不同。
本发明的第2光掩模的特征在于,其具有掩模基板;器件图案,该器件图案设置于上述掩模基板上,其具有开口部与掩模部;第1聚焦监视图案,第1聚焦监视图案设置于上述掩模基板上,其具有与上述器件图案中的至少一部分区域相同的平面图案形状的开口部与掩模部;第2聚焦监视图案,该第2监视图案设置于上述掩模基板上,具有开口部与掩模部,具有与上述第1聚焦监视图案相同的平面图案形状。另外,上述第2聚焦监视图案的开口部与掩模部的透射曝光光的相位差,与上述第1聚焦监视案的开口部与掩模部的透射曝光光的相位差的绝对值基本相同,但是上述两个相位差的符号相反。
本发明的聚焦监视方法的特征在于,该方法包括下述步骤:准备表示下述关系的聚焦校正曲线数据的步骤,该关系指采用上述第1,或2光掩模转印于晶片上的器件图案,参考监视图案,或第2聚焦监视图案中的任何图案,与转印于该晶片上的第1聚焦监视图案的相对应的部位的尺寸差与曝光光源与焦点的偏离距离之间的关系。另外,该方法还包括下述步骤:采用上述光掩模,制作半导体器件的器件图案的步骤;通过制作上述器件图案的步骤,测定转印于晶片上的器件图案,参考监视图案,或第2聚焦监视图案中的任何图案,与转印于该晶片上的第1聚焦监视图案的相对应的部位的尺寸差ΔL的步骤;根据已测定的尺寸差ΔL与聚焦校正曲线数据,测定曝光光源与焦点的偏离距离ΔD;根据已检测的与焦点的偏离距离ΔD,将曝光光源的位置调整到焦点位置的步骤。
本发明的第1半导体器件的制造方法的特征在于,采用上述聚焦监视方法,在对曝光光源的焦点位置进行管理的条件下制造半导体器件。
按照上述第1和第2的光掩模,由于转印到晶片上而获得的器件图案,参考监视图案,或第2聚焦监视图案与第1聚焦监视图案相对应的任何部位的尺寸差对应曝光光源与焦点的偏离距离(散焦值)的变化而改变,故可将尺寸差与散焦值之间的关系用作聚焦校正曲线。另外,可通过调整第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差,获得相对散焦值的变化,尺寸差变化较大的聚焦校正曲线。另外,由于在第1聚焦监视图案中,与器件图案的一部分相同的平面图案形状,即,各个开口图案的形状,尺寸,间距,排列方向等是相同的,故即使在对于伴随图案的形状,尺寸的差异产生不同的影响的曝光光源的透镜象差,曝光量变化的情况下,仍可得到变化很小的聚焦校正曲线。
此外,如果按照使用上述第1,或第2光掩模的本发明的聚焦监视方法,在半导体器件的器件图案制造步骤中,可通过测定同时转印于晶片上的器件图案,参考监视图案,或第2聚焦监视图案,与第1聚焦监视图案的相对应的任何的部位的尺寸差ΔL,检测曝光光源与焦点的偏离距离(散焦值),根据预先准备的聚焦校正曲线,进行聚焦的调整。
还有,如果采用本发明的第1半导体器件的制造方法,则可通过使用高灵敏度的聚焦监视方法,制造图案精度较高的半导体器件。
本发明的第3光掩模的特征在于,其包括掩模基板;器件图案,该器件图案设置于上述掩模基板上,其具有开口部与掩模部;曝光量监视图案,曝光量监视图案设置于上述掩模基板上,其具有与上述器件图案中的至少一部分区域相同的平面图案形状的开口部与掩模部。另外,上述曝光量监视图案的开口部与掩模部,相对于上述器件图案的开口部与掩模部,透射曝光光的相位差相同,透射率不同。
本发明的曝光量监视方法的特征在于,其包括下述步骤:准备表示下述关系的曝光量校正曲线数据的步骤,该关系指采用上述本发明的第3光掩模,转印于晶片上的器件图案,或参考监视图案,与转印于该晶片上的曝光量监视图案的相对应的特定部位的尺寸差与曝光量之间的关系。另外,该方法还包括下述步骤,采用上述光掩模制作半导体器件的器件图案的步骤;在制作上述器件图案的步骤中,测定转印于晶片上的器件图案,或参考监视图案,与所转印的第1曝光量监视图案的相对应的部位的尺寸差ΔL的步骤;根据已测定的尺寸差ΔL与上述曝光量校正曲线数据,检测曝光光源的曝光量的变化值ΔE的步骤;根据已检测的曝光量的变化值ΔE,调整曝光量的步骤。
本发明的第2半导体器件的制造方法的特征在于,采用上述曝光量监视方法,在对曝光量进行管理的条件下进行制造。
按照上述本发明的第3光掩模,由于转印于晶片上而获得的器件图案,或参考监视图案与曝光量监视图案的相对应的任何部位的尺寸差对应于曝光量的变化而变化,故可将该尺寸差与曝光量之间的关系,用作曝光量校正曲线。另外,由于曝光量监视图案具有与器件图案的一部分相同的平面图案形状,即,各个开口图案的形状,尺寸,间距,排列方向等相同,故即使在相对于伴随图案的形状,尺寸的差异产生不同的影响的曝光光源的透镜象差,或散焦值变化的情况下,仍可得到变化很小的曝光量校正曲线。
此外,按照采用第3光掩模的本发明的曝光量监视方法,在半导体器件的器件图案制造步骤中,可通过测定同时转印于晶片上的器件图案,或参考监视图案与曝光量监视图案的相对应的任何部位的尺寸差ΔL,检测曝光量的变化值ΔE,根据预先准备的曝光量校正曲线,进行曝光量的调整。
还有,按照本发明的第2半导体器件的制造方法,可通过采用高灵敏度的曝光量监视方法,制造图案精度较高的半导体器件。
如果采用本发明的第1和第2光掩模,可实现本发明的聚焦监视方法。如果采用该聚焦监视方法,则可提供高灵敏度的聚焦监视方法。另外,由于可抑制曝光光源的透镜象差的影响,或曝光量的变化的影响,故可进行精度高的聚焦监视图案。另外,如果按照采用本发明的聚焦监视方法的半导体器件的制造方法,则可抑制工艺容限(process margin)的消耗,可提供合格率较高的工艺。
如果采用本发明的第3光掩模,可实现本发明的曝光量监视方法。如果采用该曝光量监视方法,则可提供灵敏度高的曝光量监视方法。另外,由于可抑制曝光光源的透镜象差影响或曝光光源的焦点偏离,因此可进行精度较高的曝光量监视。另外,按照采用了本发明的曝光量监视方法的半导体器件的制造方法,可抑制工艺容限(process margin)的消耗,提供合格率较高的工艺。
附图说明
图1为第1实施方案的光掩模的平面图和剖视图;
图2为形成于第1实施方案的光掩模上的聚焦监视用监视图案的平面图;
图3为表示以第1实施方案的第1聚焦监视图案60的相位差为参数的,开口尺寸L1与散焦值之间的关系和尺寸差(L0-L1)与散焦值之间的关系的曲线图;
图4为表示另一器件图案的实例的平面图;
图5为表示以第1实施方案的第1聚焦监视图案60的相位差为参数的,开口尺寸L1与散焦值之间的关系和尺寸差(L1-L0)与散焦值之间的关系的曲线图;
图6为表示转印到第1实施方案的晶片上的监视图案尺寸L1,L0与散焦值之间的关系和尺寸差(L1-L0)与散焦值之间的关系的曲线图;
图7为表示曝光量对于转印到第1实施方案的晶片上的监视图案尺寸差(L1-L0)与散焦值之间的关系的影响的曲线图;
图8为表示透镜象差对于转印到第1实施方案的晶片上的监视图案尺寸差(L1-L0)与散焦值之间的关系的影响的曲线图;
图9为表示第1实施方案的另一光掩模的平面图;
图10为形成于第2实施方案上的光掩模上的聚焦监视图案的平面图;
图11为表示转印到第2实施方案的晶片上的监视图案尺寸L1,L0与散焦值之间的关系和尺寸差(L1-L0)和散焦值之间的关系的曲线图;
图12为表示第3实施方案的光掩模的平面图;
图13为形成于第3实施方案的光掩模上的监视图案的平面图;
图14为表示第3实施方案的监视图案的尺寸差(L5-L4)与曝光量之间的关系的曲线图;
图15为表示第3实施方案的监视图案90的开口部透射率与曝光量较正曲线的斜率之间的关系的曲线图;
图16为表示散焦对于第3实施方案的监视图案的尺寸差(L5-L4)与曝光量之间的关系的影响的曲线图;
图17为表示曝光装置的透镜象差对于第3实施方案的监视图案的尺寸差(L5-L4)与曝光量之间的关系的影响的曲线图;
图18为表示透镜的各Zernike象差对于第3实施方案的曝光量较正曲线的斜率的影响的曲线图;
图19为表示其它的光掩模的平面图;
图20为表示采用第1实施方案的聚焦监视方法的半导体器件的制作方法的步骤的流程图;
图21为表示在过去的聚焦监视方法所采用的监视图案的概略平面图;
图22为表示采用了过去的监视图案的场合的转印图案的长度1与散焦之间的关系的曲线图。符号的说明
10              光掩膜
20              切割相当区域
40              器件图案
50,80          参考监视图案
60,62          第1聚焦监视图案
52              第2聚焦监视图案
70              掩模基板
80              参考监视图案
90              曝光量监视图案
具体实施方式
(第1实施方案)
下面参照附图,对本发明的第1实施方案的光掩模,采用该光掩模的聚焦监视方法和采用该方法的半导体器件的制造方法进行描述。
首先,针对半导体器件的制造步骤,以要求最高图案精度的元件分离层的制造步骤为实例,对光掩模和聚焦监视方法进行描述。
图1(a)和图1(b)为元件分离图案的光刻步骤所采用的光掩模10的放大平面图和该平面图的剖面线A-A线的剖视图。图1(a)所示的掩模与1个芯片相对应。
如图1(a)和图1(b)所示的那样,第1实施方案的光掩模10具有例如,器件图案40,在该图案40的基本中间处,反复地设置有相当于微小矩形的开口部的元件分离图案40a,在图案40的外周围的没有设置器件图案的区域,设置有聚焦监视器用的2个监视图案。其中一个图案为参考监视图案50,另一个图案为第1聚焦监视图案60。
上述参考监视图案50和第1聚焦监视图案60的设置场所可为晶片上的未形成器件图案40的区域,只要是不对器件图案造成影响的区域都可以。由于在芯片分离步骤后,所有图案均是不需要的,故例如,其可形成于相当于晶片的切割(dicing)区域的光掩模10上的区域20。
在参考监视图案50和第1聚焦监视图案60上,形成具有与器件图案40的一部分的图案相同的平面形状的图案。即,与元件分离图案40a相同的形状,尺寸的单位开口部50a,60a按照相同间距,相同方向设置。
此外,最好,参考监视图案50和第1聚焦监视图案60的区域尺寸按照图案转印条件,即,抗蚀层(resist)的形成,曝光和到显影为止的一系列的光刻步骤时的条件与器件图案40基本相同的方式设定。例如,在单位开口部的间距为数十nm的场合,单位开口部为至少可反复地设置于数μm□或以上的区域的区域尺寸。
第1实施方案的光掩模的1个特征在于,参考监视图案50具有与器件图案40相同的掩模条件,开口部50a和其以外的区域(在下面称为“掩模部”)50b的透射曝光光的相位差,与器件图案40的开口部40a与掩模部40b的透射曝光光的相位差相同,相对该情况,第1聚焦监视图案60按照开口部60a与掩模部60b的曝光透射光的相位差与器件图案40不同的方式设定。
图2(a),图2(b)表示参考监视图案50与第1聚焦监视图案60的放大平面图。例如,参考监视图案50具有曝光光透射率基本为100%的开口部50a,与曝光光透射率约为6%的掩模部50b,开口部50a与掩模部50b的透射曝光光的相位差例如,为180度。该条件与器件图案40是相同的条件。
另一方面,第1聚焦监视图案60也具有曝光光透射率基本为100%的开口部60a,与曝光光透射率约为6%的掩模部60b,但是,通过调整掩模部60b的例如,厚度,将开口部60a与掩模部60b的透射曝光光的相位差设定为,与器件图案40和参考监视图案50的相位差,即,180度不同的值,例如,120度。
在这里,掩模上的参考监视图案50的开口部50a的长边尺寸由L0*表示,第1聚焦监视图案60的开口部60a的长边尺寸由L1*表示。另外,对于采用该掩模,形成于晶片上的转印图案的各开口部长边尺寸,按照去掉符号*的方式表示为L1,L2。在下面,在其它的实施方案的描述中,也采用同样的表示方法。
另外,参考监视图案50与第1聚焦监视图案60分别具有的具体的相位差由下面描述的方法确定。
图3(a)为曲线图,在该曲线图中,以第1聚焦监视图案60的开口部60a和掩模部60b的透射曝光光的相位差(在下面将其简称为“相位差”)作为参数,按照模拟方式,求出曝光光源位置与焦点位置的偏离距离(在下面将其称为“散焦值”)与转印于晶片上的开口部60a的长边尺寸L1之间的关系。纵轴按照nm单位表示长边尺寸L1,横轴按照μm单位表示散焦值。另外,在该曲线图中,设计上的开口部60a的长边尺寸L1为720nm。可通过图3(a)的曲线图确认,开口部60a的长边尺寸L1相对于散焦值的变化的情况因相位差而产生较大不同。
图3(b)为曲线图,该曲线图表示从参考监视图案50的开口部50a向晶片上转印图案的长边尺寸L0中,扣除第1聚焦监视图案60的开口部60a向晶片上转印图案的长边尺寸L1的尺寸差(L0-L1),与散焦值之间的关系。纵轴,横轴的单位与图3(a)是共同的。参考监视图案50的相位差为180度。
在第1聚焦监视图案60与参考监视图案50具有相同的相位差的场合,即,第1聚焦监视图案60的相位差为180度的场合,由于形成有完全相同的转印图案,故开口部长边尺寸差(L0-L1)不依赖散焦值,而基本上为0,但是,在两个监视图案的相位差不同的场合,如果散焦值变化,则对应于该情况,开口部长边尺寸差(L0-L1)变化。
因此,图3(b)的曲线图所示的,表示开口部长边尺寸差(L0-L1)与散焦值之间的关系的各曲线可用作聚焦监视方法的聚焦校正曲线。
在半导体器件的制造步骤中,在采用图1所示的光掩模的场合,在晶片上制造器件图案40时,由于可同时在晶片上形成参考监视图案50与第1聚焦监视图案60的转印图案,故如果测定已获得的转印图案的开口部长边尺寸差(L0-L1),则可根据聚焦校正曲线,求出应校正的散焦值。
此外知道,如图3(b)所示的那样,如果以第1聚焦监视图案60的相位差为参数,则开口部长边尺寸差(L0-L1)相对于散焦值的变化的情况因相位差而产生较大不同。因此,可通过适当地设定监视图案60的相位差,借助聚焦监视,获得适合的聚焦校正曲线。另外,聚焦校正曲线的开口部长边尺寸差既可为(L0-L1),也可为(L1-L0)。
作为这样的优选的聚焦校正曲线,例如,可列举相对于散焦值的变化尺寸差(L0-L1)值的变化较大的曲线。另外,相对于曲线的变化为2维的曲线,更优选呈现单调增减变化的曲线。这样做的原因在于:在为二维变化的场合,对于相同的尺寸差(L0-L1)散焦值与两个相对应,不能判断根本意义上的散焦值,即,散焦的方向。另外,更优选采用聚焦校正曲线的变化较大的曲线。其原因在于:变化越大,越可以较高的灵敏度检测散焦值的变化。
如果从这样的观点进行判断,由于,例如,在图3(b)所示的条件下,在第1聚焦监视图案60的相位差为90度,120度,150度,210度,240度的场合,可获得能相对散焦值的变化单调递增或递减的聚焦校正曲线,因此优选。特别是,在采用相位差为120度的第1聚焦监视图案60的场合,如果近似于直线,则由于其斜率较大,可获得高灵敏度的“聚焦校正曲线”。另外,当决定第1聚焦监视图案60的上述相位差时,只要是可确保必要的图案精度就可以。
开口部与掩模部的相位差可通过改变例如,构成掩模部的部分的基板的厚度的方式调整。在光掩模的基板采用玻璃基板的场合,预先采用使用了氟酸等的干蚀刻法,或湿蚀刻法,对掩模部进行蚀刻,将该区域的玻璃基板的厚度减小到规定的厚度,由此,可改变相位差。
上述实例针对制作作为器件图案40的元件分离图案40a的场合进行了描述,但是器件图案40不特别受到限制。可以将在半导体器件的工艺中必要的各种器件图案作为对象。
例如,在形成作为图4所示的器件图案40的,DRAM的存储节点(storage node)图案41a的场合,可形成不仅与该存储节点(storage node)图案41a相同的平面形状,即,形状,而且尺寸,间距,排列方向等相同的参考监视图案50和监视图案60。
在形成作为器件图案40的存储节点(storage node)图案41a的场合,参考监视图案50与该存储节点图案41a的相位差相同,第1聚焦监视图案60的相位差与该相位差不同。
图5(a)为曲线图,在该曲线图中,通过模拟方式,求出于器件图案40上形成存储节点图案41a时的散焦值,与转印于晶片上的第1聚焦监视器60的开口部的长边尺寸L1之间的关系。
另外,图5(b)为表示已转印的第1聚焦监视图案60和参考监视图案50的开口部的长边尺寸差(L1-L0)与散焦值之间的关系的曲线图。均以第1聚焦监视图案60的相位差作为参数。另外,参考监视图案50的相位差为180度。此外,曲线图的单位等与图3(a),图3(b)是共同的。
如从图5(a)的曲线图知道的那样,如果改变第1聚焦监视图案60的相位差,则已转印的监视图案60的开口部的长边尺寸L1变化。
此外,如图5(b)的曲线图所示的那样,在第1聚焦监视图案60和参考监视图案50的相位差不同的场合,可获得伴随散焦值的变化而改变的开口部长边尺寸差(L1-L0)。在图5(b)所示的条件下,第1聚焦监视图案60的开口部60a与掩模部60b的相位差为150度,120度,210度,240度的场合,可获得对应于散焦值的增减,单调递增或递减的聚焦校正曲线。特别是,在采用相位差为120度的监视图案60的场合,在近似直线的场合,由于其斜率也较大,故可获得高灵敏度的聚焦校正曲线。另外,当决定监视图案的相位差时,只要是可确保必要的图案精度就可以。
最好针对每种器件图案40,求出聚焦校正曲线,最好对应于该条件,决定第1聚焦监视图案60的适合的相位差。
还有,在上述实例中,在测定监视图案和器件图案的尺寸差时,测定的是开口部的长边的尺寸,测定对象不限于长边部分。最好,根据各图案的形状,将发生散焦的场合中尺寸变化最容易掌握的部位作为测定对象。
(实施例)
下面对采用上述第1实施方案的光掩模10的,曝光装置的聚焦监视方法的具体实施例进行描述。
首先,采用图1所示的,具有参考监视图案50和第1聚焦监视图案60的光掩模10,按照下述步骤,在晶片上制作转印图案。即,采用作为器件图案具有元件分离图案,器件图案40和参考监视图案50的相位差为180度,第1聚焦监视图案60的相位差为120度的光掩模,在晶片上进行图案的转印。
对于转印用的光刻步骤的各个条件,除了曝光光源的聚焦条件以外,采用与器件图案的制作条件相同的条件。
首先,在晶片上,通过旋涂方式设置厚度约为60nm的涂敷型反射防止膜,接着,在其上,通过旋涂方式设置厚度约为200nm的化学放大作用系的正型抗蚀剂膜。接着,相对晶片,采用上述图1所示的光掩模10,在下述条件下进行曝光,该条件指投影光学系统的缩小比为1/4,曝光波长为248nm,NA为0.68,相干系数(coherency factor)σ为0.75,环带屏蔽系数ε为0.67,设定曝光量为28mJ/cm2。在曝光后,在100℃的温度下,对晶片进行约90秒的后曝光烘焙(post-exposure bake)(PEB),进一步,将其浸渍于0.21当量的碱性显影液中达60秒,进行显影处理,在晶片上制作转印图案。
在该条件下,采用SEM(扫描电子显微镜)测定转印到晶片上的抗蚀层(resist)上的参考监视图案50和第1聚焦监视图案60的开口部的长边尺寸L0,L1,求出尺寸差(L1-L0)。
此外,改变曝光位置条件,即,散焦值条件,按照与上述的步骤相同的步骤,在晶片上制作转印图案,求出各条件下的开口部的长边尺寸的尺寸差(L1-L0)。
图6表示转印于晶片上的第1监视图案60的开口部的长边尺寸L1与散焦值之间的关系。另外,图7表示第1聚焦监视图案60和参考监视图案50的开口部的长边尺寸的差(L1-L0)与散焦值之间的关系。在图6中,横轴以单位nm表示散焦值,左侧纵轴以单位nm表示长边尺寸(L1),右侧纵轴以单位nm表示尺寸差(L1-L0)。
在图6中,实线A表示已转印的参考监视图案50,即,相位差180度的场合的开口部长边尺寸L0与散焦值之间的关系。虚线B表示已转印的第1聚焦监视图案60,即,相位差为120度的场合的开口部长边尺寸L1与散焦值的关系。此外,点划线C表示参考监视图案50和第1聚焦监视图案60的开口部长边尺寸的差(L1-L0)(在下面将其简称为“尺寸差(L1-L0)”)。
如图6所示的那样,尺寸差(L1-L0)相对散焦值的变化,基本递减。因此,如果通过将点划线C用作聚焦校正曲线,测定尺寸差(L1-L0),则可知道散焦值和散焦的方向(负方向,或正方向)。另外,由于该聚焦校正曲线的变化(斜率)较大,故可确认可形成灵敏度高的聚焦监视器。
(曝光量的影响)
下面,在采用第1实施方案的光掩模10的聚焦监视方法中,确认曝光装置的曝光量变化的场合的变化的影响。即,在使曝光量变化的场合,确认上述的尺寸差(L1-L0)与散焦值之间的关系怎样地变化。具体来说,在以作为最适曝光量的28mJ/cm2为中心,使曝光量从-10%,到+10%变化的各条件下,以上述条件,在晶片上转印光掩模。求出各曝光条件中的尺寸差(L1-L0)与散焦值之间的关系。图7表示其结果。
图7的曲线图表示以作为最适曝光量的28mJ/cm2为中心,使曝光量从-10%,到+10%变化的场合的尺寸差(L1-L0)与散焦值之间的关系。可确认即使使曝光量从-10%到+10%变化的情况下,尺寸差(L1-L0)与散焦值之间的关系仍几乎不发生改变。因此,如果按照采用上述第1实施方案的光掩模的聚焦监视方法,可确认即使在曝光量变化的情况下,仍可以高精度检测出相对于焦点的偏离量。
在相对器件图案,采用尺寸,形状不同的聚焦监视图案的场合,如果曝光量变化,由于在所转印的器件图案与聚焦图案中产生不同的影响,故难于进行基于聚焦图案的正确的聚焦监视。但是,在第1实施方案的聚焦监视方法中,由于器件图案与聚焦监视图案的平面图案形状是相同的,故相对于曝光量的变化,在两个图案中产生基本相同的影响,由此,将该影响抵消。因此,即使在曝光量变化的情况下,仍可进行正确的聚焦监视。
(透镜象差的影响)
接着,在采用第1实施方案的光掩模的聚焦监视方法中,确认曝光装置的透镜象差的影响。采用在表示透镜象差时广泛使用的Zernike的多项式,确认相对于各项,具有一定量大小的象差的场合的聚焦监视灵敏度。另外,在例如,R.Shannon and J.Wyant编“Applied optics and opticalengineering,vol.XI(Academic Press,San Diego USA,1992)”中,对该Zernike的多项式进行了具体描述。
图8(a)为在透镜中有球面象差的条件下,以模拟方式求出尺寸差(L1-L0)和散焦值之间的关系的图。即,其为表示下述关系的曲线图,该关系指在参考监视图案50和第1聚焦监视图案60这两者中,有意使用仅仅对Zernike的多项式中的第9项的球面象差附加0.05λ的透镜,制作转印图案的场合的尺寸差(L1-L0)与散焦值之间的关系。
可确认图8(a)中的曲线图中所示的实线为单调递增函数,其适合用作聚焦监视器用的聚焦校正曲线。另外,使该单调递性增函数近似直线,在求斜率时,其值约为118nm/μm。
图8(b)为通过模拟方式,求出没有透镜象差的场合的尺寸差(L1-L0)与散焦值之间的关系的图。在此场合,实线表示的单调递增函数的斜率约为120nm/μm。即,根据图8(a)和图8(b)的比较,通过透镜象差的有无,可确认表示散焦值与尺寸差(L1-L0)之间的关系的聚焦校正曲线的近似直线的斜率的变化极小。
另外,图8(c)为曲线图,在该曲线图中,通过模拟方式求出针对Zernike多项式的第1~第16项中的各项,存在透镜象差的场合的尺寸差(L1-L0)与散焦值之间的关系,另外,与图8(a)相同,求出单调各递增函数的斜率。横轴表示Zernike的各象差项,纵轴表示斜率的绝对值。
无论存在哪一项的象差,斜率的绝对值均基本为一定值,看不到较大的变化。根据该结果,即使在曝光装置的透镜具有象差的情况下,如果按照采用第1实施方案的光掩模的聚焦监视方法,确认不产生透镜象差的影响,可实现高灵敏度的聚焦监视。
在相对器件图案,采用尺寸,形状不同的聚焦监视图案的场合,如果曝光光源有透镜象差,由于在所转印的器件图案与聚焦图案中产生不同的影响,故难于实现基于聚焦图案的正确的聚焦监视。但是,在第1实施方案的聚焦监视方法中,由于器件图案与聚焦监视图案的平面图案形状是相同的,故无论存在什么样的透镜象差,在两个图案中都将产生基本相同的影响,因此,可确认其影响被抵消,可实现行正确的聚焦监视器。
如上面所描述的那样,由于本发明的第1实施方案的光掩模具备参考监视图案50,该参考监视图案50具有与器件图案40相同的相位差条件;第1聚焦监视图案60,该第1聚焦监视图案60具有与器件图案40不同的相位差,故可通过测定转印于晶片上的参考监视图案50和监视图案60之间的尺寸差(L1-L0),检测出散焦值。
此外,由于可通过选择第1聚焦监视图案60的相位差,进行高灵敏度的聚焦监视,故可以高精度地调整聚焦条件。
由于光掩模上的器件图案40与参考监视图案50和第1聚焦监视图案60具有相同的平面图案形状,故可基本消除曝光装置的透镜象差,或曝光量的影响差异。因此,如果采用第1实施方案的聚焦监视方法,则可进行不受透镜象差,或曝光量的影响的正确的聚焦监视。
上面对本发明的第1实施方案和其实施例进行了描述,但是,对于本领域的普通技术人员来说,显然也可将本发明的第1实施方案的光掩模的开口部与掩模部调转,形成负型的抗蚀层(resist)用光掩模图案。
还有,在上述的第1实施方案的光掩模中,将其相位与器件图案相同的参考监视图案50在第1聚焦监视图案60的横向邻接地设置,但是,这些图案的布置场所没有特别的限定。只是在进行图案的尺寸L1,L0的测定时,如果将2个监视图案邻接地设置,则容易进行SEM测定等处理。
另外,由于参照监视图案50具有与器件图案40相同的平面图案形状和相位条件,故也可不采用参考监视图案50,而直接以器件图案40的开口部边长尺寸L作为测定对象。在此场合,如图9(a),图9(b)所示的那样,可采用从图1(a),图1(b)所示的光掩模中,去除了参考监视图案50的光掩模。
(第2实施方案)
第2实施方案的光掩模的基本结构与第1实施方案的光掩模是共同的。与图1(a)和图1(b)所示的第1实施方案的光掩模相同,具有与器件图案相同的图案的2种聚焦监视图案设置于器件图案形成区域之外的,例如,切割(dicing)区域上。第2实施方案的光掩模的主要特征在于按照下述方式设定,该方式为:2种第1聚焦监视图案62和第2聚焦监视图案52,各自具有相位差,符号相反。
图10为第2实施方案的第1聚焦监视图案62和第2聚焦监视图案52的平面图。例如,在第1聚焦监视图案62的开口部62a和掩模部62b的透射曝光光的相位差为+120度的场合,第2聚焦监视图案52的开口部52a与掩模部52b的透射曝光光的相位差(在下面将其称为“相位差”)设定为-120度。掩模上的各开口部52a和62a的长边尺寸为L*2,L*3。在这里,显示的是作为器件图案采用元件分离区域图案的场合,但是器件图案没有限制。
具体来说,例如,第1聚焦监视图案62的掩模部62b具有下述作用,相对曝光光,透射率为6%,相对从开口部62a透射的曝光光,使相位偏离+120度。另一方面,第2聚焦监视图案52的掩模部52b具有下述的作用,相对曝光光,透射率为6%,相对从开口部52a透射的曝光光,使相位偏离-120度。另外,-120度为等价于+240度的条件。
图11为曲线图,该曲线图表示采用第2实施方案的光掩模,在第1实施方案中给出的条件下,转印到晶片上的第1聚焦监视图案62和第2聚焦监视图案52的开口部长边尺寸L3,L2和其尺寸差(L3-L2)与散焦值之间的关系。横轴以单位μm表示散焦值,左侧纵轴以单位nm表示开口部长边尺寸L2,或L3,右侧纵轴以单位nm表示尺寸差(L3-L2)。
实线A表示通过相位差为-120度的第2聚焦监视图案52,转印到晶片上的开口部的长边尺寸L2与散焦值的关系。虚线B表示通过相位差为+120度的第1聚焦监视图案62转印到晶片上的开口部的长边尺寸L3与散焦值的关系。另外,点划线C表示第1聚焦监视图案62与第2聚焦监视图案52的开口部长边尺寸差(L3-L2)与散焦值之间的关系。
如果象这样,2种监视图案按照两者的相位差的值绝对值相等,符号相反的方式设定,由于相对于散焦值转印图案的开口部长边尺寸L2和L3的增减变化相反的关系,故可使相对于散焦值的变化尺寸差(L3-L2)的变化增加。因此,在聚焦监视方法中,如果将该尺寸差(L3-L2)与散焦值之间的关系用作聚焦校正曲线,则在近似直线的场合,获得较大斜率,可实现高灵敏度的聚焦监视。
例如,如果与图6所示的第1实施方案的场合进行比较,可知道聚焦校正曲线近似直线的场合的直线的斜率约为2倍,监视灵敏度得以大大改善。
象这样,在采用第2实施方案的光掩模的聚焦监视方法中,可使采用第1实施方案的光掩模的聚焦监视方法成为灵敏度进一步提高的方法。
另外,在这里,将第1聚焦监视图案62的相位差和第2聚焦监视图案52的相位差设定为+120度与-120度,但是,可对应所形成的图案精度,设定各种相位差。例如,如果参考图3(a)的曲线图,则可选择相对于散焦值变化,开口部长边尺寸L1的变化的增减是相反的相位差,例如,90度与270度,即,+90度与-90度,150度与210度,即,+150度与-150度的组合。
此外,对于具体的聚焦监视步骤,可按照与第1实施方案的方法相同的方法进行。另外,作为器件图案不仅可适合采用元件分离区域图案,而且还可适合采用各种图案。
同样在采用第2实施方案的光掩模的聚焦监视方法中,与第1实施方案的场合相同,由于光掩模上的器件图案40与第1聚焦监视图案52和第2聚焦监视图案62具有相同的平面图案形状,故可基本消除曝光装置的透镜象差,或曝光量的影响差异。因此,如果采用第2实施方案的聚焦监视方法,则可实现不受透镜象差,或曝光量的影响的正确的聚焦监视。
(第3实施方案)
第3实施方案的光掩模具有用于监视曝光量(照射剂量)的2种监视图案。
图12(a)和图12(b)是表示第3实施方案的光掩模15的局部放大平面图和沿剖面线A-A的剖视图。基本的光掩模的结构与图1(a)和图1(b)所示的第1实施方案的光掩模是共同的。具有与器件图案40相同的平面图案形状的参考监视图案80和曝光量监视图案90设置于器件图案40之外的,例如,晶片上的相当于切割(dicing)区域的区域20。这2种参考监视图案80和曝光量监视图案90为用于监视从曝光装置照射于晶片上的光的曝光量(照射剂量)的图案。另外,在这里,作为器件图案虽然例示了元件分离区域图案,但是,器件图案不受到特别限制。
图13(a),图13(b)是表示参考监视监视图案80和曝光量监视图案90的平面图。参考监视图案80和曝光量监视图案90具有与器件图案40的一部分的图案相同的平面图案形状。即,与元件分离图案40a相同的形状,尺寸的单位开口部80a,90a按照相同的间距,相同的方向被排列。掩模上的开口部80a,90a的分别的长边尺寸为L*4,L*5。
另外,参考监视图案80和曝光量监视图案90的区域尺寸按照下述方式设定,该方式为:图案转印条件,即,抗蚀层(resist)的形成,曝光和到达显影为止的一系列的光刻步骤时的条件基本与器件图案40相同。
此外,参考监视图案80和曝光量监视图案90的各开口部与掩模部的透射曝光光的相位差,与器件图案40的开口部与掩模部的透射曝光光的相位差相同。
其特征在于相对于参考监视图案80的开口部80a的透射率与器件图案40的开口部40a相同的情况,曝光量监视图案90的开口部90a具有与上述不同的透射率。例如,当参考监视图案80的开口部80a具有100%的曝光光透射率时,曝光量监视图案90的开口部90a的曝光光透射率为例如,具有98~84%的透射率。
图14为曲线图,在该曲线图中,采用第3实施方案的光掩模15,改变曝光量条件,在晶片上形成转印图案,根据通过SEM测定的转印到晶片上的参考监视图案80和曝光量监视图案90的开口部长边尺寸L4,L5的结果,求出其尺寸差(L5-L4)与曝光量之间的关系。纵轴按照单位nm表示尺寸差(L5-L4),横轴按照%单位,表示曝光量。另外,基本的转印图案条件采用第1实施方案的实施例的条件。
如从该图知道的那样,尺寸差(L5-L4)与曝光量具有基本近似直线的相关性,通过测定参考监视图案80和曝光量监视图案90的尺寸差(L5-L4),可监视曝光量的变化。即,表示尺寸差(L5-L4)与曝光量之间的关系的曲线图中的线可用作曝光量监视方法中的曝光量校正曲线。
在半导体器件的制造步骤中,在采用图12所示的光掩模15,在晶片上制作器件图案40时,由于可同时在晶片上形成参考监视图案80和曝光量监视图案90的转印图案,故如果测定获得的转印图案的开口部长边尺寸差(L5-L4),则可基于曝光量校正曲线,求出曝光量变化值。
图15为曲线图,该曲线图表示曝光量监视图案90的开口部90a的透射率,与使曝光量校正曲线直线近似的斜率的绝对值之间的关系。另外,参考监视图案80的开口部80a的透射率为100%。
为了进行灵敏度更高的曝光量监视,最好,曝光量校正曲线的斜率的绝对值较高。根据图15可知,曝光量监视图案90的开口部90a的透射率越低,斜率的绝对值越大,灵敏度越高。但是,例如,在形成130nm间距的微小元件分离区域图案的场合,如果开口部90a的透射率小于84%,则开口部90a与掩模部90b的对比度不充分,无法实现转印图案本身的分辨。因此,最好,在获得足够的图案分辨率的范围内,即,可形成具有对比度的转印图案的范围内,减小开口部90a的曝光光透射率。因此,在参考监视图案80的开口部透射率为100%的场合,曝光量监视图案90的开口部透射率优选在84~98%的范围内,更优选在90~95%的范围内。另外,器件图案40的开口部40a和参考监视图案80的开口部80a的透射率不限于100%。参考监视图案80与曝光量监视图案90的曝光光透射率的差优选在2~16%的范围内,更优选在5~10%的范围内。
(散焦的依赖性)
图16表示在采用第3实施方案的光掩模的曝光量监视方法中,针对产生散焦(焦点位置偏离)的场合的影响而给出的曲线图。横轴表示曝光量,纵轴表示尺寸差(L5-L4)。当散焦值在+0.3μm~-0.3μm的范围内变化时,如该曲线图所示的那样,表示曝光量与尺寸差(L5-L4)之间的关系的线基本重叠。根据该结果,在采用第3实施方案的曝光量监视方法的场合,可确认可在不依赖散焦值的情况下,正确地监视曝光量的变化值。
与第1实施方案的场合相同,在第3实施方案的聚焦监视方法中,由于器件图案与曝光量聚焦监视图案的平面图案形状,相位差条件等是相同的,故相对于散焦值的变化,在两个图案中,产生基本相同的影响,因此,其影响被抵消,即使在散焦值变化的情况下,仍可进行正确的曝光量监视。
(透镜象差的影响)
图17为采用第3实施方案的光掩模的曝光量监视方法中的,针对曝光装置的透镜象差的影响而给出的曲线图。在该图中,如第1实施方案中所描述的那样,在具有球面象差的条件下,通过模拟方式,求出尺寸差(L5-L4)与曝光量之间的关系。其为表示下述关系的曲线图,该关系指在监视图案80和监视图案90这两者中,有意采用仅仅对Zernike的多项式中的第9项的球面象差附加0.05λ的透镜,制作转印图案的场合的尺寸差(L5-L4)与曝光量之间的关系。图17的曲线图中所示的实线基本为单调递增函数,获得与在没有透镜象差的条件下求出的图14的曲线图基本相同的斜率的单调递增函数。根据该结果,可确认即使在有透镜象差的情况下,仍可进行灵敏度高的曝光量监视。
在图18所示的曲线图中,横轴表示Zernike象差的项,即,象差的种类,纵轴表示曝光量校正曲线近似直线的场合的斜率的绝对值。如该图所预想的那样,伴随象差的种类,几乎不产生斜率的变化。即,如果采用第3实施方案的曝光量监视方法,则无论在曝光装置的透镜中存在什么样的象差,均在不受到其影响的状态,可对曝光量进行监视。
与第1实施方案相同,第3实施方案的聚焦掩模,由于器件图案与曝光量监视图案的平面图案形状,相位差条件是相同的,故无论在存在什么样的透镜相差的情况下,在两个图案中产生基本相同的影响,因此其影响被抵消,可实现正确的曝光量的监视。
如上面所描述的那样,如果采用第3实施方案的曝光量的监视方法,采用开口部的透射率不同的2种监视图案,求出转印图案的尺寸差(L5-L4),由此,可求出曝光量的变化值。
另外,由于参考监视图案80具有与器件图案相同的条件,故也可代替参考监视图案80的开口部长边长度L4,而直接测定器件图案40的开口部长边长度L。在此场合,在图12所示的光掩模15中,可取消参考监视图案80。
此外,由于光掩模15上的器件图案40与参考监视图案80和曝光量监视图案90具有相同的平面图案形状和相位差条件,故可基本上消除曝光装置的透镜象差,或曝光量的影响差异。因此,可进行不受透镜象差,或焦点偏离的影响的正确的曝光量监视。
还有,还可将本发明的第3实施方案的光掩模的开口部与掩模部调转,形成负型的抗蚀层用的光掩模图案。
再有,在上述的本发明的第3实施方案的光掩模中,具有2个监视图案,其中一个监视图案80是具有与器件图案40相同的平面图案形状和尺寸的图案,对于开口部的曝光光透射率,其条件与器件图案40内的条件相同,但是,也可代替参考监视图案80,而将器件图案40的开口部长边长度作为直接测定对象。在此场合,也可从图12(a),图12(b)所示的光掩模中,去掉参考监视图案80。
(其它的光掩模)
上面对第1~第3实施方案进行了描述,但是,优选采用下述光掩模,其中,在1片光掩模上,具有曝光装置的聚焦监视用的监视图案与曝光量监视用的监视图案这两个图案。
例如,如图20所示的那样,在光掩模18的切割(dicing)区域上,在具备具有与第1实施方案的器件图案相同的相位差条件的参考监视图案50,和聚焦监视图案60的同时,具备第3实施方案的曝光量监视图案90。
在进行聚焦监视的场合,测定转印到晶片上的参考监视图案50和聚焦监视图案60所对应的开口部长边尺寸差,在进行曝光量监视的场合,可求转印到晶片上的参考监视图案50与曝光量监视图案90的开口部长边尺寸差。
如果采用光掩模18,则可监视聚焦与曝光量这两者。
另外,也可在一片光掩模上,设置第2实施方案的第1聚焦监视图案62和第2聚焦监视图案52与第3实施方案的参考监视图案80和曝光量监视图案90。
此外,形成于1片光掩模上的监视图案可形成于器件图案的形成区域以外的部分,数量,布置位置没有限制。
(半导体器件的制造方法)
图20为采用第1实施方案的光掩模和聚焦监视方法,制造半导体器件的场合的流程图。
首先,在半导体器件的制品批量制作之前,采用第1实施方案的图1所述的光掩模10,在步骤S101,制作聚焦监视用的转印图案试样。这些转印图案试样采用第1实施方案的光掩模,在多个不同的曝光装置的散焦值条件下分别制作。散焦值以外的光刻工艺条件采用与制品批量相同的条件。
然后在步骤S102,采用SEM,测定已制作试样的转印监视图案50与60的长边尺寸L0,L1,制作表示尺寸差(L1-L0)与散焦值之间的关系的聚焦校正曲线数据。
根据在步骤S102制作的聚焦校正曲线数据,找到曝光装置的最佳聚焦位置,将曝光装置设定在焦点位置(步骤S103)。
象这样,将曝光装置的位置调整到焦点位置后,采用第1实施方案的光掩模,使实际的半导体器件的制品批量经历制作步骤(步骤S104)。
如果制品批量的制作结束,从制作过程中抽出多枚晶片,测定各晶片上转印的监视图案50和60的开口部长边尺寸L1,L0,求出尺寸差(L1-L0)的平均值(步骤S105)。
根据通过步骤S102求出的聚焦校正曲线数据,判断相对尺寸差(L1-L0)的平均值,有无焦点位置的偏离(步骤S106)。在没有焦点位置的偏离的场合,进行下一半导体器件的制品批量的制作步骤(步骤S108)。在具有焦点位置偏离的场合,根据聚焦校正曲线数据,求出散焦值,将该值反馈给曝光装置条件,再次调整曝光装置的焦点位置(步骤S107)。然后,进行下一半导体器件的制品批量制作。
在没有下一批制品的场合,结束工艺,但是,在有下一批制品的场合,再次返回到步骤S105(步骤S109),反复进行步骤S105~S108。
如果象这样,采用第1实施方案的光掩模,进行半导体器件的制作,针对每批,反馈散焦值,调整曝光装置的焦点位置,因此,可进行精度高的聚焦监视。因此,可抑制焦点偏离产生的图案精度的误差,可提高制品的成品率。
采用第2实施方案的聚焦监视方法,第3实施方案的曝光量监视方法的半导体器件的制造方法均可按照同样的步骤进行。
上面通过实施方案,对本发明的光掩模,聚焦监视方法,曝光量监视方法,以及半导体器件的制造方法进行了描述,但是,本发明不限于这些描述,对于本领域的普通技术人员,显然可进行各种的材料的置换,改变,改进。
例如,在上述第1~第3实施方案中,作为器件图案,虽然例示出了单位图案按照相同间距反复地设置的图案,但是,也可采用图案尺寸,或图案间距伴随场所而不同的器件图案。在此场合,最好,在器件图案中,抽出分辨率最严格的条件的图案区域,形成聚焦监视图案,或曝光量监视图案。

Claims (19)

1.一种光掩模,其特征在于该光掩模具有:
掩模基板;
器件图案,该器件图案设置于上述掩模基板上,具有开口部与掩模部;
第1聚焦监视图案,该第1聚焦监视图案设置于上述掩模基板上,其具有与上述器件图案中的至少一部分区域相同的平面图案形状的开口部与掩模部;
上述第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差,与上述器件图案的开口部与掩模部的透射曝光光的相位差不同。
2.根据权利要求1所述的光掩模,其特征在于:
其具有参考监视图案,该参考监视图案设置于上述掩模基板上,具有上述第1聚焦监视图案中的相同的平面图案形状的开口部与掩模部;
上述参考监视图案的开口部与掩模部的透射曝光光的相位差,与上述器件图案的开口部与掩模部的透射曝光光的相位差相同。
3.一种光掩模,其特征在于其具有:
掩模基板;
器件图案,该器件图案设置于上述掩模基板上,其具有开口部与掩模部;
第1聚焦监视图案,第1聚焦监视图案设置于上述掩模基板上,其具有与上述器件图案中的至少一部分区域相同的平面图案形状的开口部与掩模部;
第2聚焦监视图案,该第2聚焦监视图案设置于上述掩模基板上,其具有开口部和掩模部,具有与上述第1聚焦监视图案相同的平面图案形状;
上述第2聚焦监视图案的开口部与掩模部的透射曝光光的相位差,与上述第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差的绝对值基本相同,但是这两个相位差的符号相反。
4.根据权利要求1所述的光掩模,其特征在于,上述第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差满足下述条件,该条件指:
相对于曝光光源与焦点位置的偏离距离的变化,转印到晶片上的上述器件图案与上述第1聚焦监视图案中的相对应的部位的尺寸差基本呈现单调递增,或单调递减。
5.根据权利要求2所述的光掩模,其特征在于,上述第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差满足下述条件,该条件指:
相对于曝光光源与焦点位置的偏离距离的变化,转印到晶片上的上述参考监视图案与上述第1聚焦监视图案中的相对应的部位的尺寸差的值基本呈现单调递增,或单调递减。
6.根据权利要求3所述的光掩模,其特征在于,上述第1聚焦监视图案的开口部与掩模部的透射曝光光的相位差和第2聚焦监视图案的开口部与掩模部的透射曝光光的相位差满足下述条件,该条件指:
相对于曝光光源与焦点位置的偏离距离的变化,转印到晶片上的上述第1聚焦监视图案与上述第2聚焦监视图案中的相对应的部位的尺寸差基本呈现单调递增,或单调递减。
7.根据权利要求1所述的光掩模,其特征在于上述第1聚焦监视图案设置于与晶片的切割(dicing)区域相对应的上述掩模基板上的区域。
8.根据权利要求2所述的光掩模,其特征在于上述第1聚焦监视图案与上述参考监视图案,设置于与晶片的切割(dicing)区域相对应的上述掩模基板上的区域。
9.根据权利要求3所述的光掩模,其特征在于上述第1聚焦监视图案和上述第2聚焦监视图案设置于与晶片的切割(dicing)区域相对应的上述掩模基板上的区域。
10.一种光掩模,其特征在于其具有:
掩模基板;
器件图案,该器件图案设置于上述掩模基板上,其具有开口部与掩模部;
曝光量监视图案,曝光量监视图案设置于上述掩模基板上,其具有与上述器件图案中的至少一部分区域相同的平面图案形状的开口部与掩模部;
上述曝光量监视图案的开口部与掩模部,相对于上述器件图案的开口部与掩模部,透射曝光光的相位差相同,透射率不同。
11.根据权利要求10所述的光掩模,其特征在于其还包括参考监视图案,该参考监视图案形成于上述掩模基板上,其具有开口部和掩模部,具有与上述曝光量监视图案相同的平面图案形状;
上述参考监视图案的开口部与掩模部的透射曝光光的相位差与透射率,与上述器件图案的开口部与掩模部的透射曝光光的相位差和透射率相同。
12.根据权利要求10所述的光掩模,其特征在于上述曝光量监视图案的开口部的曝光光透射率处于满足可在晶片上转印具有对比度的图案的条件的范围内。
13.根据权利要求10所述的光掩模,其特征在于对于上述器件图案的开口部与上述曝光量监视图案的开口部,透射曝光光的透射率相对于上述器件图案的开口部的曝光光的透射率,在2~16%的范围内变化。
14.一种聚焦监视方法,其特征在于该方法包括下述步骤:
准备表示下述关系的聚焦校正曲线数据的步骤,该关系指采用权利要求1~9中任何一项所述的光掩模转印于晶片上的器件图案,参考监视图案,或第2聚焦监视图案中的任何图案,与转印于该晶片上的第1聚焦监视图案的相对应的部位的尺寸差与曝光光源相对焦点的偏离距离之间的关系;
采用上述光掩模制作半导体器件的器件图案的步骤;
通过制作上述器件图案的步骤,测定转印于晶片上的器件图案,参考监视图案,或第2聚焦监视图案中的任何图案,与转印于该晶片上的第1聚焦监视图案的相对应的部位的尺寸差ΔL的步骤;
根据已测定的尺寸差ΔL与聚焦校正曲线数据,测定曝光光源与焦点的偏离距离ΔD的步骤;
根据已检测的与焦点的偏离距离ΔD,将曝光光源的位置调整到焦点位置的步骤。
15.根据权利要求14所述的聚焦监视方法,其特征在于该方法包括下述步骤:
准备上述校正曲线数据的步骤;
在曝光光源与晶片之间的距离不同的多个条件下,分别在晶片上转印上述光掩模的图案的步骤;
测定转印于上述晶片上的器件图案,参考监视图案,或第2聚焦监视图案,与转印于该晶片上的第1聚焦监视图案的相对应的部位的尺寸差ΔL的步骤。
16.一种曝光量监视方法,其特征在于该方法包括下述步骤:
准备表示下述关系的曝光量校正曲线数据的步骤,该关系指采用权利要求10~13中任何一项所述的光掩模转印于晶片上的器件图案,或参考监视图案,与转印于该晶片上的曝光量监视图案的相对应的特定部位的尺寸差与曝光量之间的关系;
采用上述光掩模制作半导体器件的器件图案的步骤;
在制作上述器件图案的步骤中,测定转印于晶片上的器件图案,或参考监视图案,与所转印的第1曝光量监视图案的相对应的部位的尺寸差ΔL的步骤;
根据已测定的尺寸差ΔL与上述曝光量校正曲线数据,检测曝光光源的曝光量的变化值ΔE的步骤;
根据已检测的曝光量的变化值ΔE,调整曝光量。
17.根据权利要求16所述的曝光量监视方法,其特征在于准备上述校正曲线数据的工序包括下述步骤:
在曝光量不同的多个条件下,在晶片上转印上述光掩模的图案的步骤;
测定转印于上述晶片上的器件图案,或参考监视图案与转印于该晶片的曝光量监视图案的相对应的部位的尺寸差ΔL的步骤。
18.一种半导体器件的制造方法,其特征在于采用权利要求14所述的聚焦监视方法,在对曝光光源的焦点位置进行管理的条件下进行制造。
19.一种半导体器件的制造方法,其特征在于采用上述权利要求16所述的聚焦监视方法,在对曝光量进行管理的条件下进行制造。
CNB03121360XA 2002-03-27 2003-03-26 光掩模、聚焦监视方法、曝光量监视方法和半导体器件的制造方法 Expired - Fee Related CN1237396C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP090010/2002 2002-03-27
JP2002090010A JP3850746B2 (ja) 2002-03-27 2002-03-27 フォトマスク、フォーカスモニター方法、露光量モニター方法及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN1447189A true CN1447189A (zh) 2003-10-08
CN1237396C CN1237396C (zh) 2006-01-18

Family

ID=28449550

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB03121360XA Expired - Fee Related CN1237396C (zh) 2002-03-27 2003-03-26 光掩模、聚焦监视方法、曝光量监视方法和半导体器件的制造方法

Country Status (5)

Country Link
US (1) US7108945B2 (zh)
JP (1) JP3850746B2 (zh)
KR (1) KR100498197B1 (zh)
CN (1) CN1237396C (zh)
TW (1) TW594446B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162961A (zh) * 2010-12-20 2011-08-24 友达光电股份有限公司 阵列基板
CN1862385B (zh) * 2005-04-15 2011-08-24 三星电子株式会社 使用测试特征检测光刻工艺中的焦点变化的系统和方法
CN101359188B (zh) * 2007-08-02 2012-02-01 优志旺电机株式会社 带状工件的曝光装置及带状工件的曝光装置的聚焦调整方法
CN101923281B (zh) * 2009-06-17 2012-02-15 上海华虹Nec电子有限公司 提高Si/Ge发射极窗口图形保真度的方法
CN102116978B (zh) * 2009-12-31 2014-07-30 北京京东方光电科技有限公司 Tft-lcd阵列基板、多层图形尺寸检测方法和设备
CN104914599A (zh) * 2015-06-03 2015-09-16 南京中电熊猫液晶显示科技有限公司 一种液晶阵列基板

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605064B2 (ja) * 2001-10-15 2004-12-22 株式会社ルネサステクノロジ フォーカスモニタ用フォトマスク、フォーカスモニタ方法、フォーカスモニタ用装置および装置の製造方法
JP3971255B2 (ja) * 2002-07-03 2007-09-05 株式会社東芝 露光量モニタ方法及び半導体デバイスの製造方法
JP3854234B2 (ja) * 2003-02-24 2006-12-06 株式会社東芝 フォーカスモニタ方法及びマスク
DE10324502B3 (de) * 2003-05-26 2005-04-21 Infineon Technologies Ag Photomaske, sowie Verfahren zur Herstellung von Halbleiter-Bauelementen
JP2005004890A (ja) * 2003-06-12 2005-01-06 Yasuo Cho 針状部材を用いたデータ記録再生装置およびデータ記録再生方法
US7678516B2 (en) * 2004-07-22 2010-03-16 Kla-Tencor Technologies Corp. Test structures and methods for monitoring or controlling a semiconductor fabrication process
JP2006042267A (ja) * 2004-07-30 2006-02-09 Canon Inc 画像処理方法、画像処理装置、およびプログラム
JP4566666B2 (ja) * 2004-09-14 2010-10-20 富士通セミコンダクター株式会社 露光用マスクとその製造方法
DE102005009554B4 (de) * 2005-03-02 2010-04-01 Qimonda Ag Verfahren zur Fokuskorrektur eines Belichtungsgeräts bei der lithographischen Projektion und Verfahren zur Auswertung von Messergebnissen eines Messgeräts für die Fokuskorrektur eines Belichtungsgeräts in einer Halbleiterfertigungsanlage
US7642019B2 (en) * 2005-04-15 2010-01-05 Samsung Electronics Co., Ltd. Methods for monitoring and adjusting focus variation in a photolithographic process using test features printed from photomask test pattern images; and machine readable program storage device having instructions therefore
JP2007010951A (ja) * 2005-06-30 2007-01-18 Canon Inc 焦点検出装置及び撮像装置
JP2007103841A (ja) * 2005-10-07 2007-04-19 Toshiba Corp 半導体装置の製造方法
JP4997748B2 (ja) * 2005-11-28 2012-08-08 凸版印刷株式会社 フォーカスモニターマークを有するフォトマスクの転写シミュレーション方法
JP4825569B2 (ja) * 2006-04-12 2011-11-30 株式会社東芝 測定座標設定システム及び測定座標設定方法
US20080233487A1 (en) * 2007-03-21 2008-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method and System for Optimizing Lithography Focus and/or Energy Using a Specially-Designed Optical Critical Dimension Pattern
US7790340B2 (en) * 2007-04-20 2010-09-07 Photronics, Inc. Photomask with detector for optimizing an integrated circuit production process and method of manufacturing an integrated circuit using the same
US7864294B2 (en) * 2007-05-29 2011-01-04 Micron Technology, Inc. Focus sensitive lithographic apparatus, systems, and methods
US7824829B2 (en) * 2007-06-27 2010-11-02 Texas Instruments Incorporated Method of monitoring focus in lithographic processes
JP5058003B2 (ja) * 2008-01-25 2012-10-24 株式会社リコー フォトマスクデータ検証用半導体セル、半導体チップ、及びフォトマスクデータ検証方法
KR20110054393A (ko) * 2009-11-17 2011-05-25 삼성전자주식회사 포토리소그래피 장비의 초점 변화 측정 방법 및 그것을 이용한 반도체 소자의 제조 방법
US9411223B2 (en) 2012-09-10 2016-08-09 Globalfoundries Inc. On-product focus offset metrology for use in semiconductor chip manufacturing
JP6279833B2 (ja) * 2013-02-13 2018-02-14 株式会社オーク製作所 露光装置
US9411249B2 (en) 2013-09-23 2016-08-09 Globalfoundries Inc. Differential dose and focus monitor
CN105988299B (zh) * 2015-02-02 2017-11-10 中芯国际集成电路制造(上海)有限公司 一种掩膜板及扫描曝光机台焦距的监测方法
US10739685B2 (en) * 2018-02-14 2020-08-11 Qoniac Gmbh Process control method for lithographically processed semiconductor devices
CN109557738B (zh) * 2018-12-21 2022-06-10 惠科股份有限公司 测试线路、测试方法及显示面板
TWI781335B (zh) * 2019-07-19 2022-10-21 德商科尼亞克公司 先進工藝控制方法及晶片製造元件
US20220405903A1 (en) * 2021-06-17 2022-12-22 Kla Corporation Image contrast metrics for deriving and improving imaging conditions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US182521A (en) * 1876-09-26 Improvement in hair-curling irons
US100012A (en) * 1870-02-22 Improvement in umbrellas
JP2922715B2 (ja) * 1992-06-02 1999-07-26 三菱電機株式会社 位相シフトパターンの欠陥修正方法
US5300786A (en) 1992-10-28 1994-04-05 International Business Machines Corporation Optical focus phase shift test pattern, monitoring system and process
JP2803963B2 (ja) 1993-03-26 1998-09-24 財団法人鉄道総合技術研究所 トロリ線の高さ・偏位測定方法
KR0164078B1 (ko) 1995-12-29 1998-12-15 김주용 노광 에너지와 포커스를 모니터 하는 오버레이 마크
JP3761357B2 (ja) 1999-02-22 2006-03-29 株式会社東芝 露光量モニタマスク、露光量調整方法及び半導体装置の製造方法
JP3848037B2 (ja) 1999-12-28 2006-11-22 株式会社東芝 フォーカスモニタマスク及びフォーカスモニタ方法
US6440616B1 (en) * 1999-09-28 2002-08-27 Kabushiki Kaisha Toshiba Mask and method for focus monitoring
JP3949853B2 (ja) 1999-09-28 2007-07-25 株式会社東芝 露光装置の制御方法及び半導体製造装置の制御方法
US6562522B1 (en) * 1999-10-29 2003-05-13 Intel Corporation Photomasking
KR100455684B1 (ko) 2001-01-24 2004-11-06 가부시끼가이샤 도시바 포커스 모니터 방법, 노광 장치 및 노광용 마스크
JP3906035B2 (ja) 2001-03-29 2007-04-18 株式会社東芝 半導体製造装置の制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862385B (zh) * 2005-04-15 2011-08-24 三星电子株式会社 使用测试特征检测光刻工艺中的焦点变化的系统和方法
CN101359188B (zh) * 2007-08-02 2012-02-01 优志旺电机株式会社 带状工件的曝光装置及带状工件的曝光装置的聚焦调整方法
CN101923281B (zh) * 2009-06-17 2012-02-15 上海华虹Nec电子有限公司 提高Si/Ge发射极窗口图形保真度的方法
CN102116978B (zh) * 2009-12-31 2014-07-30 北京京东方光电科技有限公司 Tft-lcd阵列基板、多层图形尺寸检测方法和设备
CN102162961A (zh) * 2010-12-20 2011-08-24 友达光电股份有限公司 阵列基板
CN102162961B (zh) * 2010-12-20 2013-10-02 友达光电股份有限公司 阵列基板
CN104914599A (zh) * 2015-06-03 2015-09-16 南京中电熊猫液晶显示科技有限公司 一种液晶阵列基板
CN104914599B (zh) * 2015-06-03 2018-05-04 南京中电熊猫液晶显示科技有限公司 一种液晶阵列基板

Also Published As

Publication number Publication date
US20030219655A1 (en) 2003-11-27
CN1237396C (zh) 2006-01-18
JP2003287870A (ja) 2003-10-10
TW594446B (en) 2004-06-21
KR100498197B1 (ko) 2005-06-29
JP3850746B2 (ja) 2006-11-29
US7108945B2 (en) 2006-09-19
KR20030078014A (ko) 2003-10-04
TW200402611A (en) 2004-02-16

Similar Documents

Publication Publication Date Title
CN1237396C (zh) 光掩模、聚焦监视方法、曝光量监视方法和半导体器件的制造方法
CN1237574C (zh) 半导体器件的制造方法
CN1261823C (zh) 检查曝光装置、补正焦点位置和制造半导体装置的方法
TWI572993B (zh) 用於判定一微影製程之製程窗之方法、相關設備及一電腦程式
KR101430271B1 (ko) 조정 방법, 기판 처리 방법, 기판 처리 장치, 노광 장치, 검사 장치, 측정 검사 시스템, 처리 장치, 컴퓨터 시스템 및 정보 기록 매체
JP4898419B2 (ja) 露光量のおよびフォーカス位置のオフセット量を求める方法、プログラムおよびデバイス製造方法
CN1751378A (zh) 最佳位置检测式的检测方法、对位方法、曝光方法、元器件制造方法及元器件
CN1252543C (zh) 监测及腐蚀方法
CN1910516A (zh) 用于检测标线设计数据中的缺陷的计算机实现方法
JP6013930B2 (ja) 半導体装置の製造方法
CN1479940A (zh) 观察装置及其制造方法、曝光装置和微型器件的制造方法
JP2001060617A (ja) 基板吸着保持装置および該基板吸着保持装置を用いた露光装置ならびにデバイスの製造方法
CN1532891A (zh) 光掩模、光斑测定机构和测定方法及曝光方法
US7483156B2 (en) Method for measuring overlay and overlay mark used therefor
TW200815934A (en) Calculation method and apparatus of exposure condition, and exposure apparatus
TWI649643B (zh) 判定度量衡系統之最佳操作參數設定之方法與設備及判定基板柵格之方法
CN1573548A (zh) 光刻胶灵敏度的评价方法和光刻胶的制造方法
CN1922547A (zh) 投影光学系统
JP2005057222A (ja) マーク検出装置、マーク検出方法、マーク検出プログラム、露光装置、デバイスの製造方法、及び、デバイス
JP2009158720A (ja) 露光装置及びデバイス製造方法
JP2016100590A (ja) フォーカス制御方法、パターン転写装置、および物品の製造方法
JP2001274056A (ja) 露光装置およびデバイス製造装置
CN1732411A (zh) 测量照明系统性能的方法
JP2019090885A (ja) リソグラフィ装置、リソグラフィ方法、決定方法及び物品の製造方法
JPH11265844A (ja) 露光装置及びそれを用いたデバイスの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060118