CN1384983A - 金属空气电化学电池的阴极 - Google Patents

金属空气电化学电池的阴极 Download PDF

Info

Publication number
CN1384983A
CN1384983A CN00814883A CN00814883A CN1384983A CN 1384983 A CN1384983 A CN 1384983A CN 00814883 A CN00814883 A CN 00814883A CN 00814883 A CN00814883 A CN 00814883A CN 1384983 A CN1384983 A CN 1384983A
Authority
CN
China
Prior art keywords
negative electrode
catalyst
layer
anode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00814883A
Other languages
English (en)
Other versions
CN1225046C (zh
Inventor
爱德华·库里鲁浦
沙朗·卢
史蒂芬·麦克戴维特
大卫·L·帕帕斯
约瑟芬·E·桑特罗姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gillette Co LLC
Original Assignee
Gillette Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gillette Co LLC filed Critical Gillette Co LLC
Publication of CN1384983A publication Critical patent/CN1384983A/zh
Application granted granted Critical
Publication of CN1225046C publication Critical patent/CN1225046C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Laminated Bodies (AREA)

Abstract

公开一种起纹理的双层金属空气阴极(4)。此阴极包括一个含有按重量计30%至70%有机聚合物的第一层(104),与一个含有按重量计10%至30%有机聚合物的第二层(102),与一个催化剂。第一层与第二层在一个起纹理的界面(108)互相接触。

Description

金属空气电化学电池的阴极
本发明总体涉及金属空气电化学电池。
电池通常用于电能源。一个电池包括一个典型地称为阴极的负电极,与一个典型地称为阳极的正电极。阳极含有一个能被氧化的活性材料;阴极含有或消耗一个能被还原的活性材料。阳极活性材料能还原阴极活性材料。为了防止阳极材料与阳极材料的直接反应,阳极与阴极由一个典型地称为隔板的片状层互相隔离。
当电池用作装置例如助听器或蜂窝电话中的电能源时,使阳极与阴极电接通,使电子能流过装置而容许发生相应的氧化与还原反应以提供电力。一个同阳极与阴极接触的电解质含有流过两电极之间的隔板的离子以保持放电期间整个电池电荷平衡。
电池的一种结构是钮扣电池,它具有与钮扣相近的尺寸与圆柱体的形状。在钮扣电池中,阳极与阴极的容器包括一个称为阴极壳的下杯形结构,与一个装在阴极壳内的称为阳极壳的上杯状结构。阳极壳与阴极壳由一个例如绝缘衬垫或密封件的绝缘体隔离。阳极与阴极可一起翻边以构成容器。
在金属空气电化学电池中,氧在阳极被还原,而金属在阳极被氧化。通过容器上的空气进口从电池外部的大气向阴极供氧。氧通过阴极结构扩散至反应区。氧还原需要一个由空气、电解质与一个碳催化剂成分组成的三相反应区。阴极必须弄湿以便发生氧的还原。然而,如果出现过湿,阴极会完全湿透。当阴极湿透时,电池极化,即电池的功率输出急剧下降;此外,电解质会泄漏至电池外部。
概括地说,本发明涉及金属空气电化学电池的阴极,与制造这些阴极的方法。用本发明的阴极制造的电化学电池比较能抵抗湿透问题,而且又能产生大的电流。因此本发明的方法与构造能用于制造尤其在高速率应用中具有良好性能特征的金属空气电池。
一方面,本发明以一种金属空气电化学电池的阴极为特征;此阴极包括(a)一个包括按重量计约30%至约70%有机聚合物例如聚四氟乙烯的第一层;(b)一个包括按重量计约10%至30%有机聚合物例如聚四氟乙烯的第二层;与(c)一个催化剂。第一层与第二层在一个起纹理的界面互相接触。
所谓“起纹理的界面”包括至少一个起纹理的表面。起纹理的表面是不平滑的表面,即粗糙的表面,因而具有比有相同尺寸的平滑表面较大的表面积。因此这里提到的是宏观纹理,与观察到的电极中各颗粒上的微观纹理不同。起纹理表面的几何表面积比相同尺寸的平滑表面较好大至少10%,更好大至少25%或50%。本发明的双层起纹理的阴极提供几个优点,与阳极凝胶相邻的层有一个较低浓度的有机聚合物例如聚四氟乙烯(PTFE)。低浓度的PTFE使此层较亲水,而此层的亲水性促进润湿。此层的充分润湿对于氧的还原是重要的。与空气进口相邻的层有较高浓度的PTFE,使此层疏水。此层的疏水性帮助防止阴极湿透。两层在一个界面互相接触,此界面是起纹理的以便为三相(即空气,电解持,与催化剂)反应区提供一个较大的表面积。较大的表面积改善高速率放电期间的电池性能。
此阴极可用于制备一种具有很好放电能力的电化学电池。
另一方面,本发明以一种制造一种电化学电池阴极,包括组合碳与AgMnO4以构成混合物然后用此混合物制备阴极的方法为特征。此阴极可用于制备金属空气电池或碱性空气电池。
使用AgMnO4作为催化剂母体提供多个优点。例如,AgMnO4的分解导致MnO2与Ag的精细分散。Ag促进把O2直接还原为40H-。这是有益的,因为MnO2不能参与4e-把O2还原为40H-。那些在4e-处理中不还原为OH-的氧原子在两个e-处理中可以被还原为过氧化物(HO2 -)。此过氧化物的迅速消除将使阴极能产生较高的工作电压。Ag与MnO2都是有效的消除过氧化物的催化剂。再一个优点是Ag改善阴极的电导率。
另一方面,本发明以一种金属空气电化学电池的阴极为特征;此阴极含有锰与银而基本上不含钾。所谓“基本上不含钾”指的是在阴极接触电池内的电解质之前阴极基本上无钾。此阴极最好含有按重量计少于约7%的银或少于约3%的银。
另一方面,本发明以一种供锌空气电池用的在与Hg/HgO参考电极比较在电压为-0.25v时有至少70mA/cm2电流密度的阴极为特征。优选的阴极在与Hg/Hgo参考电极比较的电压为-0.25v时可有至少80、90、100或150mA/cm2的电流密度。
另一方面,本发明以一种电化学电池的阴极为特征。此阴极包括一个催化剂,而此催化剂使用AgMnO4作为催化剂母体制备。
根据文中对优选实施例的描述与权利要求书,本发明的其它特征与优点将显而易见。
图1是一个金属空气电池的剖视图。
图2a-b与图3a-c是表示双层阴极的示意图。
图4是一个表示用于测量不同阴极的极化曲线的装置的示意图。
图5是一个表示本发明的阴极的极限电流的曲线图。
图6是一个表示使用不同的催化剂母体制造的阴极的极限电流的曲线图。
图7与图8是表示本发明的各种阴极的电流密度的曲线图。
图9是一个表示本发明的一种阴极的极限电流的曲线图。
图10是一个表示单层与双层阴极的极限电流的曲线图。
本发明的阴极可用于电化学电池例如锌空气电池。本发明的阴极能产生高达115mA/cm2的电流。用本发明阴极制造的电化学电池在各种条件下呈现良好的放电性能。
此中描述的阴极也可用于其它的电池形式,例如AAA电池与棱柱形电池。此外,本发明的方法可用于制备空气辅助碱性电池的阴极。
锌空气电池可以是例如钮扣电池。参看图1,钮扣电池包括一个阳极侧2与一个阴极侧4。阳极2包括阳极壳10与阳极凝胶60。阴极4包括阴极壳20与阴极结构40。绝缘体30位于阳极壳10与阴极壳20之间。隔板70位于阴极结构40与阳极凝胶60之间,防止这两部分之间电接通。膜片72帮助防止电解质漏出电池。空气进口80位于阴极壳20上,使空气能交换流入与流出电池。空气扩散器50位于空气进口80与阴极结构40之间。
阳极壳10与阴极壳20一起翻边以构成电池容器,此容器有一个内部容积,或称电池容积。阳极壳10的内表面82与隔板70一起形成阳极容积84。阳极容积84内装有阳极凝胶60。阳极容积84的剩余部分为无效容积90。
阳极壳包括一个三覆层或双覆层材料。双覆层材料通常为带有铜内表面的不锈钢。三覆层材料由有一个在壳内表面上的铜层与一个在壳外表面上的镍层的不锈钢构成。阳极壳可包括在内表面上的锡或其它介质。最好,锡在同锌阳极与电解质接触的阳极壳内表面上。锡可以是一个在壳内表面上的连续层。此锡层可以是厚度在约1至12μm之间,较好在约2至7μm之间,更好为约4μm的镀层。锡可以先镀在金属带上或后镀在阳极壳上。例如,可通过浸镀(例如使用可以从Technics,Rhode Island购得的镀液)沉积锡。镀层可有发亮的光面精整或糙面精整。此覆盖层也可包括银或金的化合物。
阴极壳由带有内、外镍层的冷轧钢构成。有一个绝缘体,例如绝缘衬垫,在阳极壳与阴极壳之间压配合。可弄薄衬垫以增大电池的容量。
壳结构可有其中阳极壳侧壁是直的直壁型,或折叠型。折叠型优先用于较薄壁的壳,例如壁厚为约4μm或以下的壳。在一种折叠型中,冲压壳时产生的阳极壳的翻边位于壳外侧的顶部,离开电池的内部。此折叠型能透过减小锌同在阳极壳翻边处与暴露的不锈钢接触的可能性而减少潜在气体产生。直壁型能用于同J形或L形绝缘体结合。最好是J形,它能把翻边埋在绝缘体底座内。当使用折叠型时,绝缘体可以是L形。
电池的总高度与直径尺寸由国际电工技术协会(IEC)规定。钮扣电池可有各种尺寸:675电池(IEC名称“PR44”)有在约11.25至11.60mm之间的直径与在约5.0至5.4mm之间的高度;13电池(IEC名称“PR48”)有在约7.55至7.9mm之间的直径与在约5.0至5.4mm之间的高度;312电池(IEC名称“PR41”)有在约7.55至7.9mm之间的直径与在约3.3至3.6mm之间的高度;10电池(IEC名称“PR70”)有在约5.55至5.80mm之间的直径与在约3.30至3.60mm之间的高度。5电池有在约5.55至5.80mm之间的直径与在约2.03至2.16mm之间的高度。此电池可有约为0.1016mm的阳极壳厚度。此电池可有约为0.1016mm的阴极壳厚度。
阳极壳可包括一个由锡或它的合金构成的同阳极凝胶接触的表面。阴极结构可包括一个催化剂混合物与一个同阴极壳电接通的电流收集器。催化剂混合物可包括聚四氟乙烯或其它的聚合粘结材料。
锌空气电池使用锌作为电化学活性阳极材料。阳极凝胶含有锌与电解质的混合物。锌与电解质的混合物可包括胶凝剂,它能帮助防止电解质从电池泄漏并帮助使锌颗粒悬浮在阳极内。阴极结构含有一种材料或材料组合(例如一种锰化合物,或一种锰化合物与一种贵金属的组合),它能催化作为经过阴极壳底部的进口进入电池的大气的一个成分的氧气(O2)的还原。电池内的全部电化学反应导致锌金属被氧化为锌离子而来自空气的O2被还原为氢氧离子(OH-)。最后,在阳极内形成锌酸盐或氧化锌。当这些化学反应发生时,电子从阳极传输至阴极,向装置提供电力。
在贮存期间,空气进口典型地由一个通常称为密封片的活动片覆盖,此片提供在阴极壳底部使覆盖空气进口以限止钮扣电池的内部与外部之间的空气流动。使用者在开动电池之前从阴极壳上剥去此密封片。这使来自空气的氧能从外部环境进入钮扣电池的内部。
参看图2a,阴极结构有一个面向阳极凝胶的侧面102与一个面向空气进口的侧面104。在双层阴极中,面向阳极凝胶的面典型地称为催化剂层或活化层,而面向空气进口的面称为空气层或疏水层。阴极结构还包括一个电流收集器106,例如金属丝网,同阴极混合物接触。此电流收集器同阴极壳电接触。
两个阴极层在成纹理的界面108互相接触。成纹理的界面提供比无纹理的界面110较大的两层之间的表面积,如图2b所示。
阴极结构的面向阳极凝胶的侧面被一个隔板覆盖。此隔板可以是一个使电解质能与空气阴极接触的多孔的电绝缘聚合物,例如聚丙烯。阴极结构的面向空气进口的侧面典型地由一个能帮助防止阳极凝胶干燥与电解质从电池泄漏的聚四氟乙烯(PTFE)膜片覆盖。电池还可包括一个空气扩散器,或吸干材料,放置在PTFE膜片与空气进口之间。空气扩散器是一个帮助保持PTFE膜片与阴极壳之间的空气扩散空间的多孔的或纤维的材料。
电流收集器106可布置在阴极的催化剂面上,如图3a所示,或在催化剂层与空气层之间,如图3b所表,或在阴极的空气面上,如图3c所示。
阴极混合物可包括一种或多种供还原氧用的催化剂。这些催化剂包括但不限于锰化合物,贵重金属,金属杂环与钴,及它们的混合物。
阴极可包括按重量计从约0.1%至约20%的催化剂。催化剂混合物含有有机聚合物(例如PTFE)颗粒与碳颗粒的混合物;它还可包括一种或多种催化剂。在双层阴极中,催化剂层含有一种或多种催化剂。空气层也可含有催化剂,它们可以与催化剂层中含有的催化剂相同或不同。此外,催化剂层与空气层之间的界面可用一种催化剂覆盖,它可以与催化剂层和空气层中含有的催化剂相同或不同。此催化剂可用许多方法中的任一种方法施加,例如将催化剂溅射、涂刷、稀浆涂布或喷射到起纹理的界面上。最好,用一例如铂或银催化剂涂覆界面。当使用铂时,阴极通常含有按重量计少于约3%的铂催化剂。
在空气阴极中氧化锰催化剂是有益的,因为它们补救阴极中的过氧化物,从而增高工作电压。例如,制备含氧化锰的催化剂混合物,可通过加热硝酸锰或通过还原高锰酸钾以产生各种氧化锰例如Mn2O3、Mn3O4与MnO2
当使用硝酸锰作为催化剂母体时,必须加热硝酸锰以便使氧化锰沉积在碳颗粒上。由于要求高温的结果,碳载体上会沉积一层不均匀扩散的氧化锰。
可通过还原高锰酸银制备一个解决此问题的双催化剂系统,以产生氧化锰与银的扩散体。AgMnO4在室温上易溶于水并在室温下与碳反应;因此它不用加热就能沉积在碳颗粒上。应用AgMnO4使能以精细分散的形式沉积MnO2颗粒,从而提高阴极性能。
应用AgMnO4作为母体还为细粒的银颗粒沉积在碳上创造条件。Ag便于把O2直接还原为40H-。这是有益的,因为二氧化锰不能参与4e-把O2还原为40H-。还有一个优点是Ag改善阴极的电导率。AgMnO4也可用作空气辅助碱性电池的催化剂母体。
催化剂混合物可制备如下。把碳颗粒(例如Black Pears 2000(Cabot,Billerca,MA),Vulcan  Xc-72(Cabot),Shawinigan Black(SAB)(Chevron,San Francisco,CA),Printex,Ketjenblack carbonparticles(Akzo Nobel,Chicago IL),或 PWA(CalgonCarbon,Bittsburgh,PA))浸入AgMnO4的水溶液。最好使用按重量计为少于约5%的AgMnO4。在某些实施例中,增加一种化学还原剂例如肼或胲把AgMnO4还原为Ag与MnO2。有时使能沉淀粉浆。当上层液体从深紫色变为无色时,使水能慢慢蒸发或倾析,而剩下一块碳饼。在空气中在100-140℃温度范围内热处理碳饼几个小时。在其它实施例中,可通过喷雾干燥或通过把催化剂喷涂在载体上来沉积催化剂。
对于单层阴极,催化剂混合物可包括按重量计约15%至45%之间的有机聚合物,例如聚四氟乙烯。例如,阴极结构可包括约40%的PTFE,这能使结构更防潮,减少电解质从电池泄漏的可能性。阴极结构——没有隔板而带有一层层叠在网上的PTFE膜——对于10cm3空气可有一个在约300至300sec/in2之间最好为约400sec/in2的空气渗透率。空气渗透率可使用Gurley Model 4150测量。阴极结构的空气渗透率能控制电池中氢气的排出,从而释放压力,改善电池性能,并减少泄漏。
最好,本发明阴极有双层结构,且空气层比催化剂层有较高的PTFE含量。空气层与催化剂层之间的界面最好起纹理。一个举例的双层阴极可制备如下。
可用来制备双层阴极的碳包括但不限于Black Pears 2000(Cabot,Billerica,MA),Vulcan  XC-72(Cabot),Monarch1300,Shawinigan Black,Printex,Ketjenblack particles,与PWA。催化剂层可包括这些碳中的任一种,可用催化剂处理它或不处理它。
可使用的催化剂包括但不限于氧化锰,贵金属,金属杂环,银、钴,与锰-钴基的尖晶石,或这些催化剂的混合物。可使用Faradiser(Sedema,Inc.Belgium)化学合成的二氧化锰(CMD)颗粒(例如FARTR或FAR M)。这些颗粒有大的表面积与大的孔隙率。使用这些颗粒导致高速率的能力与高的工作电压。催化剂的装载按重量计可从0.1%至20%变化。催化剂的重量百分比通过催化剂的总量除以碳的总量计算。
碳与/或经催化的碳同T-30 PTFE分散体(按重量计含60%固体)与异丙醇混合以构成一个捏塑体(按重量计含7-15%PTFE固体),辊压于一个不锈钢丝网。通过相对于粗糙表面压辊催化剂层使它具有起纹理的结构,然后使它干燥。粗糙表面可以是一个10至30网眼的网。在10网眼网的情况下,一个1×1in2的网有10×10个方块。在30网眼网的情况下,一个1×1in2的网有30×30个方块。催化剂层典型地为0.24-0.40mm厚。最好把网压入催化剂层一半深度。在如刚才所述构成催化剂层起纹理之后,在层上可看到网痕。
空气层包括上面列出的碳中的任一种,同T-30PTFE分散体(按重量计含60%固体)混合。把碳同PTFE与异丙醇混合以构成一个捏塑体(按重量计含30-50%PTFE固体)。然后辊压在催化剂层上。在干燥与热处理阴极之后,完工的催化剂典型地为0.40-0.50mm厚。
电化学电池还包括一个由阳极凝胶与电解质构成的阳极。阳极凝胶含有锌材料与胶凝剂。
锌材料可以是一种包括少于3%的汞,少于2%的汞,或无汞的锌合金粉末。此锌材料可同铅、铟、铋、锡或铝或这些元素的组合熔成合金。例如,此锌可同约400至600ppm之间(例如500ppm)的铅,约400至600ppm之间(例如500ppm)的铟,或约50至90ppm之间(例如70ppm)的铝熔成合金。最好,此锌材料可包括铅,铟与铝,铅与铟、或铅与铋。另一方案,此锌材料可包括铅而无另外的添加金属。此锌材料可以是气吹锌或旋制锌。合适的锌颗粒描述在例如U.S.S.N.09/156915(1998年9月18日提交),U.S.S.N.08/905254(1997年8月1日提交),与U.S.S.N.09/115867(1998年7月15日提交)的专利中,它们的每个全部被引用作为参考。此锌可以是粉末。锌颗粒可以是球形或非球形。例如,锌颗粒可以是针状(有至少为2的纵横比)。
锌材料包括大多数有在60网眼至325网眼之间尺寸的颗粒。例如,锌材料可有下列颗粒尺寸分布:
0-3wt%在60网眼网上(mesh screen);
40-60在100网眼网上;
30-50wt%在200网眼网上;
0-3wt%在325网眼网上;与
重量百分比0-0.5wt%在盆(pan)上。
适合的锌材料包括可从Union Miniere(Overpelt,比利时)。Duracell(美国),Noranda(美国),Grillo(德国),或TohoZinc(日本)购得的锌。
锌空气阳极材料以下列方式装入电池。混合胶凝剂与锌粉末以构成干燥的阳极混合物。然后把混合物分配到阳极壳内并加入电解质以构成阳极凝胶。
胶凝剂是吸收性的聚丙烯酸脂。此吸收性的聚丙烯酸脂有每克胶凝剂少于约30克含盐的吸收性包络(absorbency envelope),按美国专利No.4541871中描述的方法测量,在此引用该专利作为参考。阳极凝胶按照阳极混合物中锌的干重含有少于3%的胶凝剂。胶凝剂含量按重量计较好在约0.2%至0.8%之间,更好在约0.3%至0.6%之间,最好为约0.33%。吸收性的聚丙烯酸脂可以是由悬浮聚合法制成的聚丙烯酸钠。适合的聚丙烯酸钠有在约105至180μm之间的平均颗粒尺寸与约7.5的PH值。适合的胶凝剂描述在例如美国专利No.4541871、No.4590227或No.4507438中。
在某些实施例中,阳极凝胶可包括一个无离子表面活化剂,与一个铟或铅的化合物,例如氢氧化铟或醋酸铅。此阳极凝胶可包括约在50至500ppm之间,最好在50至200ppm之间的铟或铅的化合物。表面活化剂可以是无离子磷酸盐表面活化剂,例如覆盖在锌表面上的无离子烷基磷酸盐或芳基磷酸盐(例如RA600或PM510,可从Rohm&Haas购得)。此阳极凝胶可包括涂覆在锌材料表面上的约在20至100ppm之间的表面活化剂。表面活化剂可用作放气抑制剂。
电解质可以是氢氧化钾的水溶液。电解质可包括约在30%至40%之间,最好在35%至40%之间的氢氧化钾。电解质还可包括在约1%至2%之间的氧化锌。
本发明进一步描述在下列例子中,这些例子不限制权利要求书中描述的本发明的范围。
例1
Vulcan  XC-72碳从Cabot(Billerica,MA)购得,AgMnO4从AlfaAesar(Ward Hill,MA)购得。将13.05g的AgMnO4溶解在2L的25℃的水中以产生深紫色的溶液。在AgMnO4溶解之后,将100gVulcanXC-72碳搅拌在AgMnO4的水溶液中。盖上溶液并搅拌24小时使催化剂能分布在碳的微孔中。混合浆液直至碳沉淀后上层液体为无色。然后倾析出上层液体。将剩余的混合物倒入不锈钢盆内。将混合物放入炉内在140℃下加热8小时。将得到的碳饼粉碎用于制造成品的电极。
使用AgMnO4作为催化剂母体制备以碳重量为基准含有5%MnO2催化剂的阴极。使用Arbin电化学试验装置测量这些阴极的极化曲线。参看图4,用于测量极化曲线的装置包括一个底部切除的特氟隆瓶120。阴极试样122是一个从阴极片下料的圆形件。一个镍片124焊接在阴极试样网上。一个橡胶盖126与PTFE垫圈(未表示)用来保持装置内的阴极试样。阳极128是由锌粉末与凝胶化的KOH组成的浆液。使用一个Hg/HgO参考电极130。
阳极电流收集器132是一个卷成圆筒并焊接的铜丝网。一个镍片与铜丝网筒连接然后将整个装配镀锡。
电流每90秒跃增4mA在每步之间没有停止时间。跃增电流直至与Hg/HgO参考电极比较的阴极电压达到-0.500V。报告的极限电流是与Hg/HgO相对的阴极电压在-0.25V时的电流值。此电压值相当于与锌相对的阴极电压为1.1V。
参看图5,在与Hg/HgO相对的阴极电压为-0.25V时阴极有一个51mA/cm2的极限电流。含有较高浓度MnO2(例如10%MnO2/C)的阴极性能较差(见图5)。如图中所示,按重量计含有10%MnO2的阴极有26mA/cm2的极限电流。
使用AgMnO4作为催化剂母体的好处也可从图6中看到。使用(a)AgMnO4,(b)Mn(NO3)2,(c)AgNo3与Mn(NO3)2的混合物,与(d)KMnO4作为催化剂母体制备阴极。使用AgMnO4作为催化剂母体制备的阴极显示出最佳的性能;在截止电压下的极限电流约为52mA/cm2。使用AgNo3与Mn(NO3)2的混合物作为催化剂母体制备的阴极性能较差,虽然它含有MnO2与Ag。这些结果证明了AgMnO4作为催化剂母体的优越性。
例2
如例1中所述组合AgMnO4(重量含量5%)与Vulcan XC-72碳。使用按重量计50%的含Vulcan碳催化剂与50%的Monarch1300碳制备阴极。
使用这些阴极制成4个半电池如下。将这些阴极分别放置在小瓶内。每瓶加入1.0g 9N KOH,然后每瓶加入10-10.5g阳极凝胶。在加入电解质2小时后测量两个电池的阴极的电流密度,并且在加入电解质72小时后测量两个电池的阴极的电流密度。
参看图7,阴极在2小时后在与Hg/HgO参考电极相对的电压为-0.25V时有115mA/cm2的电流密度。如上面讨论,进行了对两个不同的半电池的测量;两个值的平均值为115。
在72小时后,阴极有66mA/cm2的电流密度。再次进行了两个单独的测量;两个值的平均值为66。这些结果证明了使用AgMnO4作为催化剂母体制成的阴极能有很高的电流密度。
例3
使用例1中所述的程序组合AgMnO4与Monarch碳。使用如例1中所述的碳制备阴极。制备一凝胶化的电解质如下。Carbopl940胶凝剂与A221存水介质(water-lock agent)加入9N KOH内;最后的混合物含有按重量1.6%的卡巴浦尔与0.71%的存水介质。
将阴极分别放置在三个单独的小瓶(A,B,与C)内。对瓶A与B加入1.0g凝胶化的电解质。对瓶C加入1.0g9N KOH液体电解质。三个小瓶的每个都加入阳极凝胶。使这些小瓶静置1小时或24小时。然后测量各阴极的电流密度。
参看图8,当使用凝胶化电解质而半电池已静置24小时时(A),阴极在与Hg/HgO相对的电压为-0.25V时有91.6mA/cm2的电流密度。进行了三次测量,报告了此三次测量的平均值。
当使用凝胶化电解质而半电池已静置1小时时(B),阴极在与Hg/HgO相对的电压为-0.25V时有103.3mA/cm2的电流密度。进行了三次测量;报告了三次测量的平均值。
当使用液体电解质而半电池已静置1小时时(C),阴极在与Hg/HgO相对的电压为-0.25V时有70.6mA/cm2的电流密度。进行了三次测量;报告了三次测量的平均值。
例4
将40g经AgMnO4(5%MnO2/C)处理的Monarch1300碳同40g未经催化的Monarch1300与22.86g的FaradiserTR  CMD(sedema,Inc.)混合。将约150-200ml异丙醇加入装在行星搅拌器中的碳混合物内以构成一种膏。将此膏彻底搅拌20分钟。将19.05克的T-30 PTFE分散体加入到碳膏并搅拌1-2分钟以构成一个捏塑体(按重量计含10%固体)。使用压力辊在镀镍的不锈钢丝网上滚压此捏塑体直到达到0.30-0.35mm的电极厚度。在使用压力辊子消除大部分醇之后,10网眼的聚乙烯网与电流收集器网对面的电极共同滚压以便把网的纹理压印在碳上。然后使此起纹理的层在环境条件下干燥一夜。
用70克Vulcan XC-72与300-400ml异丙醇制成一个膏。慢慢地加入50克T-30PTFE分散体并搅拌1分钟直至形成一个捏塑体(按重量计含30%固体)。使用压力辊子在起纹理的催化剂层顶面滚压此捏塑体直至电极厚度为0.40-0.55mm。使电极空气干燥一夜。完工的电极在280-300℃下烘焙4-8小时。然后电极在空气侧上PTFE膜片层压,在催化剂侧上与Celgard5550(Hoechst-Celanese)隔板层压。
然后在半电池试验装置内进行电极相对于Zn参考电极与Hg/Hgo参考电极的极化曲线测试,如上面所述。装配这些半电池并使它们在51%相对湿度下静置一夜。
参看图9,双层电极的极化曲线显示极限电流约为70mA/cm2
参看图10,比较相同催化剂成分的双层电极与单层电极的极化曲线。在双层电极中,电流收集器布置在空气侧、催化剂侧或在两层之间(如图3a-c中表示)。图中的X轴代表与Hg/Hgo参考电极相对的电压为-0.25V。如图10中表示,在这些条件下双层电极通常比单层电极(如X所示)性能较好。
在电流收集器布置在催化剂侧(如方块所示)或空气侧上(如菱形所示)的结构中,两层之间的界面起纹理。这些结构给出比电流收集器布置在两层之间而两层之间的界面不起纹理的阴极(如三角形所示)较好的性能。这些结果证明了使界面起纹理与电流收集器放置位置的效果。
此处引用作为参考的本申请中提到的所有出版物与专利,其引用程度与其所处时间所特别与分别引用各个出版物或专利的程度相同。
                    其它实施例
根据前面的描述,可对本文中描述的发明做出变化与修改使它适应于各种用途与条件将是显而易见的。这样的实施例也在下面的 书的范围内。

Claims (28)

1.一种金属空气电化学电池的阴极,此阴极包括:
(a)一个包括按重量计约30%至约70%的有机聚合物的第一层;
(b)一个包括按重量计约10%至约30%的有机聚合物的第二层;与
(c)一个催化剂,
其中第一层与第二层在起纹理的界面互相接触。
2.权利要求1的阴极,其中此阴极包括按重量计从约0.1%至约20%的催化剂。
3.权利要求1的阴极,其中第一层包括一个催化剂。
4.权利要求3的阴极,其中第二层包括一个催化剂。
5.权利要求4的阴极,其中第一层与第二层含有不同的催化剂。
6.权利要求1的阴极,其中催化剂从由氧化锰,贵重金属,金属杂环与钴,及它们的混合物组成的组中选择。
7.权利要求6的阴极,其中催化剂是二氧化锰。
8.权利要求7的阴极,其中此阴极还包括一个银催化剂。
9.权利要求1的阴极,其中起纹理的界面被涂覆催化剂。
10.权利要求9的阴极,其中第一层包括一个与涂覆界面的催化剂不同的催化剂。
11.权利要求10的阴极,其中涂覆界面的催化剂从由铂与银催化剂组成的组中选择。
12.权利要求11的阴极,其中涂覆界面的催化剂是铂催化剂。
13.权利要求12的阴极,其中此阴极含有按重量计少于约3%的铂催化剂。
14.权利要求1的阴极,其中有机聚合物是聚四氟乙烯。
15.一种金属空气电化学电池包括:
一个包括阳极壳与阳极凝胶的阳极;
一个阴极,此阴极包括一个有至少一个空气进口并含有一个阴极结构的阴极壳,阳极壳与阴极壳装配以构成一个电池;与
一个电气隔离阳极与阴极位于阳极凝胶与阴极结构之间的隔板,
其中阴极结构包括(a)一个包括按重量计约30%至约70%有机聚合物的第一层;(b)一个包括按重量计约10%至约30%有机聚合物的第二层;与(c)一个催化剂,其中第一层与第二层在起纹理的界面互相接触。
16.一种制造电化学电池的阴极的方法,此方法包括组合碳与AgMnO4以构成一个混合物,然后用此混合物制造阴极。
17.权利要求16的方法,其中电化学电池是一种金属空气电池。
18.权利要求16的方法,其中电化学电池是一种空气辅助碱性电池。
19.权利要求16的方法,其中还包括组合碳与AgMnO4同PTFE以构成混合物。
20.权利要求16的方法,其中此方法包括组合碳与按重量计少于约5%的AgMnO4以构成混合物。
21.一种电化学电池的阴极,其中此阴极包括锰与银,且其中此阴极基本上不含钾。
22.权利要求21的阴极,其中此阴极包括按重量计少于约7%的银。
23.权利要求21的阴极,其中此阴极包括按重量计少于约3%的银。
24.一种供锌空气电池用的阴极,在与Hg/HgO参考电极相对的电压为-0.25V时有至少为70mA/cm2的电流密度。
25.权利要求24的阴极,其中此阴极在与Hg/HgO参考电极相对的电压为-0.25V时有至少为80mA/cm2的电流密度。
26.权利要求25的阴极,其中此阴极在与Hg/HgO参考电极相对的电压为-0.25V时有至少为90mA/cm2的流密度。
27.权利要求26的阴极,其中此阴极在与Hg/HgO参考电极相对的电压为-0.25V时有至少为100mA/cm2的电流密度。
28.一种电化学电池的阴极,此阴极包括一个催化剂,其中使用AgMnO4作为催化剂母体制备此阴极。
CNB00814883XA 1999-10-26 2000-10-25 金属空气电化学电池的阴极 Expired - Fee Related CN1225046C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/427,371 1999-10-26
US09/427,371 US6632557B1 (en) 1999-10-26 1999-10-26 Cathodes for metal air electrochemical cells

Publications (2)

Publication Number Publication Date
CN1384983A true CN1384983A (zh) 2002-12-11
CN1225046C CN1225046C (zh) 2005-10-26

Family

ID=23694585

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00814883XA Expired - Fee Related CN1225046C (zh) 1999-10-26 2000-10-25 金属空气电化学电池的阴极

Country Status (7)

Country Link
US (2) US6632557B1 (zh)
EP (1) EP1230697A2 (zh)
JP (1) JP2003514367A (zh)
CN (1) CN1225046C (zh)
AU (1) AU4134501A (zh)
HK (1) HK1046065A1 (zh)
WO (1) WO2001037358A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306808A (zh) * 2011-06-24 2012-01-04 北京中航长力能源科技有限公司 一种空气电极用催化剂、空气电极及其制备方法
CN104681788A (zh) * 2013-12-02 2015-06-03 青岛永通电梯工程有限公司 一种电化学电池阴极

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835489B2 (en) * 2002-08-15 2004-12-28 Texaco Ovonic Fuel Cell Llc Double layer oxygen electrode and method of making
US6780347B2 (en) * 2002-02-04 2004-08-24 Rayovac Corporation Manganese oxide based electrode for alkaline electrochemical system and method of its production
US20040023082A1 (en) * 2002-07-31 2004-02-05 Kelly Ronald James Fuel cell having activation mechanism and method for forming same
JP5006522B2 (ja) * 2004-10-21 2012-08-22 パナソニック株式会社 酸素透過膜、酸素透過シート、およびこれらを含む電池
EP1796200A1 (en) * 2005-12-06 2007-06-13 ReVolt Technology AS Bifunctional air electrode
CN101326675B (zh) * 2005-12-06 2012-06-06 雷沃尔特科技有限公司 双功能空气电极
JP2009518795A (ja) * 2005-12-06 2009-05-07 レボルト テクノロジー リミティド 2機能性空気電極
US9941516B2 (en) * 2006-09-22 2018-04-10 Bar Ilan University Porous clusters of silver powder comprising zirconium oxide for use in gas diffusion electrodes, and methods of production thereof
US20080096074A1 (en) * 2006-10-23 2008-04-24 Eveready Battery Company, Inc. Electrochemical air cell batteries with air flow channels
US7976976B2 (en) * 2007-02-07 2011-07-12 Rosecreek Technologies Inc. Composite current collector
US8685575B2 (en) 2009-10-16 2014-04-01 National Research Council Of Canada Air cathode for metal-air fuel cells
KR20120114383A (ko) * 2010-01-29 2012-10-16 에버레디 배터리 컴퍼니, 인크. 이산화망간을 포함하는 촉매 전극을 갖는 전기화학 전지의 제조 방법
CN102476054B (zh) * 2010-11-29 2013-12-04 中国科学院大连化学物理研究所 一种Ag/MnyOx/C催化剂及其制备和应用
FR2991103B1 (fr) * 2012-05-25 2015-08-14 Commissariat Energie Atomique Cathode pour batterie lithium-air, comportant une structure bi-couches de catalyseurs differents et batterie lithium-air comprenant cette cathode
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
CN103326039A (zh) * 2013-06-17 2013-09-25 重庆稳能能源科技有限公司 一种空气电极用催化剂、催化层喷涂剂、空气电极及制备方法
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9511358B2 (en) * 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
CA2971697A1 (en) 2014-12-26 2016-06-30 Nippon Steel & Sumitomo Metal Corporation Electrode for metal-air battery
KR102364845B1 (ko) 2015-05-18 2022-02-18 삼성전자주식회사 리튬공기전지 및 이의 제조방법
EP3185341B1 (fr) * 2015-12-21 2019-09-11 The Swatch Group Research and Development Ltd Cathode de pile métal/air et procédés de fabrication d'une telle cathode
KR20210149465A (ko) * 2020-06-02 2021-12-09 현대자동차주식회사 파우치형 금속공기전지

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392353A (en) * 1972-04-11 1975-04-30 Zlehit Pri Ban Gasdiffusion electrode
US3904432A (en) * 1972-04-19 1975-09-09 Mallory & Co Inc P R Metal permanganate and metal periodate organic electrolyte cells
US3816180A (en) 1972-07-12 1974-06-11 E Curelop Method for preparing texturized cathodes
US3956014A (en) * 1974-12-18 1976-05-11 United Technologies Corporation Precisely-structured electrochemical cell electrode and method of making same
GB2003455B (en) 1977-08-19 1982-02-24 Matsushita Electric Ind Co Ltd Divalent silver oxide for use in primary cells and manufacturing method thereof
NL7714464A (nl) 1977-12-28 1979-07-02 Electrochem Energieconversie Poreuze elektrode.
US4256545A (en) 1978-09-05 1981-03-17 The Dow Chemical Company Method of oxygen electrode preparation and product thereof
US4214970A (en) 1979-01-15 1980-07-29 Diamond Shamrock Technologies, S.A. Novel electrocatalytic electrodes
JPS5644784A (en) 1979-09-21 1981-04-24 Asahi Glass Co Ltd Preparation of cathode for electrolysis of alkali chloride
US4292197A (en) 1979-10-09 1981-09-29 Ppg Industries, Inc. Method of preparing electrocatalyst for an oxygen depolarized cathode electrolytic cell
US4354915A (en) * 1979-12-17 1982-10-19 Hooker Chemicals & Plastics Corp. Low overvoltage hydrogen cathodes
US4518705A (en) 1980-10-31 1985-05-21 Eltech Systems Corporation Three layer laminate
US4357262A (en) 1980-10-31 1982-11-02 Diamond Shamrock Corporation Electrode layer treating process
US4440617A (en) 1980-10-31 1984-04-03 Diamond Shamrock Corporation Non-bleeding electrode
JPS6041103Y2 (ja) * 1982-03-25 1985-12-12 正俊 松浦 獣類捕獲器
US4613552A (en) 1982-06-21 1986-09-23 Samuel Ruben Cell cathode material
US4444852A (en) 1982-08-27 1984-04-24 The United States Of America As Represented By The United States Department Of Energy Size and weight graded multi-ply laminar electrodes
US4435267A (en) 1982-10-08 1984-03-06 Exxon Research And Engineering Co. Gas percolation barrier for gas fed electrode
US4569924A (en) 1982-12-30 1986-02-11 Ozin Geoffrey A Metal carbon catalyst preparation
DE3303779A1 (de) 1983-02-04 1984-08-16 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung eines katalytisch wirksamen elektrodenmaterials fuer sauerstoffverzehr-elektroden
NL8301780A (nl) 1983-05-19 1984-12-17 Electrochem Energieconversie Poreuze elektrode.
US4585711A (en) 1983-12-15 1986-04-29 Communications Satellite Corporation Hydrogen electrode for a fuel cell
JPS60216459A (ja) * 1984-04-11 1985-10-29 Agency Of Ind Science & Technol 燃料電池の空気電極
US4615954A (en) 1984-09-27 1986-10-07 Eltech Systems Corporation Fast response, high rate, gas diffusion electrode and method of making same
US4722773A (en) 1984-10-17 1988-02-02 The Dow Chemical Company Electrochemical cell having gas pressurized contact between laminar, gas diffusion electrode and current collector
DE3576248D1 (de) 1984-10-17 1990-04-05 Hitachi Ltd Verfahren zur herstellung einer flexiblen brennstoffzellenelektrode, ausgehend von kohlepapier.
JPH07118322B2 (ja) * 1986-04-03 1995-12-18 長一 古屋 ガス拡散電極
JPS62232862A (ja) * 1986-04-01 1987-10-13 Tanaka Kikinzoku Kogyo Kk ガス拡散電極
EP0241432B1 (en) 1986-03-07 1993-08-11 Tanaka Kikinzoku Kogyo K.K. Gas permeable electrode
US4816431A (en) 1986-04-03 1989-03-28 Nagakazu Furuya Process for preparing materials for reaction layer of gas permeable electrode
US4908198A (en) * 1986-06-02 1990-03-13 The Electrosynthesis Company, Inc. Fluorinated carbons and methods of manufacture
US4748095A (en) 1987-03-06 1988-05-31 Nagakazu Furuya Halogen cell
US4877694A (en) 1987-05-18 1989-10-31 Eltech Systems Corporation Gas diffusion electrode
CA1306284C (en) 1987-08-24 1992-08-11 Karl V. Kordesch Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same
BE1001029A3 (nl) 1987-10-22 1989-06-13 Bekaert Sa Nv Staalsubstraat met metaaldeklagen ter versterking van vulkaniseerbare elastomeren.
US4894296A (en) * 1987-10-27 1990-01-16 Duracell Inc. Cathode for zinc air cells
EP0332953B1 (en) 1988-03-16 1993-09-15 Texas Instruments Incorporated Spatial light modulator and method
US4927514A (en) 1988-09-01 1990-05-22 Eltech Systems Corporation Platinum black air cathode, method of operating same, and layered gas diffusion electrode of improved inter-layer bonding
US5395842A (en) * 1988-10-31 1995-03-07 Endorecherche Inc. Anti-estrogenic compounds and compositions
EP0370149B1 (en) 1988-11-25 1996-06-26 T And G Corporation Ionic semiconductor materials and applications thereof
CN1048892A (zh) 1989-05-24 1991-01-30 奥本大学 混合纤维复合材料结构及其制法和用途
US5053375A (en) 1990-01-08 1991-10-01 Alupower, Inc. Electrochemical cathode and materials therefor
US5480735A (en) 1990-06-25 1996-01-02 International Fuel Cells Corporation High current alkaline fuel cell electrodes
US5221453A (en) 1990-09-27 1993-06-22 Medtronic, Inc. Silver vanadium oxide cathode material and method of preparation
US5190833A (en) * 1990-12-31 1993-03-02 Luz Electric Fuel Israel Ltd. Electrodes for metal/air batteries and fuel cells and bipolar metal/air batteries incorporating the same
US5846670A (en) 1992-02-21 1998-12-08 Tanaka Kikinzoku Kogyo K.K. Gas diffusion electrode for electrochemical cell and process of preparing same
US5242765A (en) * 1992-06-23 1993-09-07 Luz Electric Fuel Israel Limited Gas diffusion electrodes
JP3291803B2 (ja) 1992-11-06 2002-06-17 ダイキン工業株式会社 フッ化カーボン粒子およびその製法ならびに用途
EP0617441A1 (en) 1993-02-25 1994-09-28 Globe-Union Inc. Capacitive battery
GB9324101D0 (en) * 1993-11-23 1994-01-12 Johnson Matthey Plc Improved manufacture of electrodes
US5587259A (en) * 1994-03-09 1996-12-24 Rayovac Corporation Metal-air cathode and cell having a hardened current collecting substrate
CA2184270C (en) * 1994-03-10 1999-08-17 Daniel Louis Kacian Method for suppressing inhibition of enzyme-mediated reactions by ionic detergents
US5441823A (en) * 1994-07-01 1995-08-15 Electric Fuel (E.F.L.) Ltd. Process for the preparation of gas diffusion electrodes
US5563004A (en) * 1995-03-21 1996-10-08 Aer Energy Resources, Inc. Rechargeable metal-air electrochemical cell with hydrogen recombination and end-of-charge indicator
US5721065A (en) * 1995-05-05 1998-02-24 Rayovac Corporation Low mercury, high discharge rate electrochemical cell
JPH08339836A (ja) * 1995-06-12 1996-12-24 Matsushita Electric Ind Co Ltd 空気亜鉛電池
US5620807A (en) 1995-08-31 1997-04-15 The Dow Chemical Company Flow field assembly for electrochemical fuel cells
US5716664A (en) 1995-12-22 1998-02-10 Marchetti; George A. Method of making a hydrophilic, graphite electrode membrane assembly
US5716422A (en) 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
US5639577A (en) 1996-04-16 1997-06-17 Wilson Greatbatch Ltd. Nonaqueous electrochemical cell having a mixed cathode and method of preparation
JPH09306509A (ja) * 1996-05-14 1997-11-28 Sony Corp 酸素還元電極の製造方法およびこの電極を用いた電池
EP0855752B1 (en) 1997-01-28 2006-11-29 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
CA2307138A1 (en) * 1997-10-24 1999-05-06 Aer Energy Resources, Inc. Primary metal-air power source and ventilation system for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306808A (zh) * 2011-06-24 2012-01-04 北京中航长力能源科技有限公司 一种空气电极用催化剂、空气电极及其制备方法
CN102306808B (zh) * 2011-06-24 2014-10-29 北京中航长力能源科技有限公司 一种空气电极用催化剂、空气电极及其制备方法
CN104681788A (zh) * 2013-12-02 2015-06-03 青岛永通电梯工程有限公司 一种电化学电池阴极

Also Published As

Publication number Publication date
HK1046065A1 (zh) 2002-12-20
WO2001037358A2 (en) 2001-05-25
AU4134501A (en) 2001-05-30
US6632557B1 (en) 2003-10-14
US20040048125A1 (en) 2004-03-11
CN1225046C (zh) 2005-10-26
JP2003514367A (ja) 2003-04-15
EP1230697A2 (en) 2002-08-14
WO2001037358A3 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
CN1225046C (zh) 金属空气电化学电池的阴极
CN1211874C (zh) 用于空气-金属电池组的催化空气阴极
US6780347B2 (en) Manganese oxide based electrode for alkaline electrochemical system and method of its production
CN1290222C (zh) 锌/空气电池
CN1224116C (zh) 锌/空气电池
EP0817299A2 (en) Sealed rechargeable cell comprising a cathode with a hydrogen recombination catalyst
CN1237648C (zh) 镍氢二次电池
CN100367550C (zh) 电池
JP2009140898A (ja) 多層構造を備えた空気負極及びその製造方法
JP2002501287A (ja) 貯蔵安定化亜鉛アノード基電気化学電池
KR20090091734A (ko) 가스 발생이 감소되고 변색이 감소된 알칼리 전기화학 전지
JP2009140898A5 (zh)
CN1221051C (zh) 空气辅助电池的阴极
US7875390B2 (en) Alkaline battery and method for producing the same
WO2011137430A2 (en) Catalysts for oxygen reduction and evolution in metal-air electrochemical cells
EP2824745A1 (en) Rechargeable zinc-air flow battery
JP2004507865A (ja) 水素再結合触媒
JP2009514161A (ja) 亜鉛/空気電池
JP2003520410A (ja) 空気再生電池
JP2004506300A (ja) 電池のカソード
US20020187391A1 (en) Anode cans for electrochemical cells
JP2006179430A (ja) アルカリ電池用亜鉛合金粉体
JP2003086163A (ja) アルカリ乾電池
EP1145361A1 (en) Reduced leakage metal-air electrochemical cell
MXPA01006760A (en) Reduced leakage metal-air electrochemical cell

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051026

Termination date: 20101025