CN1289973C - 调色剂 - Google Patents

调色剂 Download PDF

Info

Publication number
CN1289973C
CN1289973C CNB021542570A CN02154257A CN1289973C CN 1289973 C CN1289973 C CN 1289973C CN B021542570 A CNB021542570 A CN B021542570A CN 02154257 A CN02154257 A CN 02154257A CN 1289973 C CN1289973 C CN 1289973C
Authority
CN
China
Prior art keywords
toner
image
particulate
particle
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021542570A
Other languages
English (en)
Other versions
CN1432877A (zh
Inventor
沟江希克
瀧口刚
荒平文弘
伊藤雅教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001299292A external-priority patent/JP3880354B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1432877A publication Critical patent/CN1432877A/zh
Application granted granted Critical
Publication of CN1289973C publication Critical patent/CN1289973C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/02Arrangements for laying down a uniform charge
    • G03G2215/021Arrangements for laying down a uniform charge by contact, friction or induction

Abstract

本发明的目的在于提供一种调色剂,该调色剂具有调色剂粒子和微粒子,该调色剂粒子至少含有粘接树脂和着色剂,上述微粒子具有在母体粒子上覆盖含有钨元素的锡化合物的结构,锡元素(Sn)相对于母体粒子(B)的质量比(Sn/B)在0.01~2.0的范围内,钨元素(W)相对于锡元素(Sn)的摩尔比(W/Sn)在0.001~0.3的范围内。该调色剂耐环境变化、并可获得高画质的图像。本发明还提供一种图像形成方法,该方法在采用接触带电机构时,抑制在针孔的过剩电流,具有即使在高湿的条件下仍稳定的带电性,即使在长时间的使用的情况下,图像再现性仍优良。

Description

调色剂
技术领域
本发明涉及在电子照相法、静电记录法、磁记录法、调色剂喷射法等中为显影静电潜像的调色剂,以及使用该调色剂的图像形成方法。
背景技术
以前,作为图像形成方法,已知有静电记录法、磁记录法、调色剂喷射法等的多种方法。例如,电子照相法,一般是在采用光导电性物质的感光体等的图像载体上通过各种方式形成电潜像,接着通过调色剂对该潜像进行显影处理,形成可视图像的调色剂像,根据需要在纸等的记录介质上转印调色剂像后,通过热、压力等在记录介质上定影调色剂像来影获得图像。
通常,在图像形成方法中,此时,转印后在图像载体上未转印到记录介质上而残留的调色剂,经过清洁工序后,该清洁工序是通过各种方法将作为被清除的废调色剂储备在废调色剂容器中,上述工序被反复进行。
与此相对,作为没有废调色剂的系统,人们还提出有显影兼清洁、或无清洁器的技术。但是,以前关于显影兼清洁或无清洁器技术的公开主要是如特开平5-2287号公报那样,针对在图像上由转印残余调色剂的影响造成的正记忆、负记忆等的技术。在电子照相的使用不断发展的当今,相对于各种记录介质,都必须转印调色剂像,在该意义上,该系统无法满足各种记录介质。
与无清洁器有关的技术的公开包括有,特开昭59-133573号公报,特开昭62-203182号公报,特开昭63-133179号公报,特开昭64-20587号公报,特开平2-302772号公报,特开平5-2289号公报,特开平5-53482号公报,特开平5-61383号公报等,但是,这些文献均未提及详细且具体的系统总体的构成。
作为非常适合用于显影兼清洁、或无清洁器的显影方法,在实质上没有清洁装置的显影兼清洁系统中,由于认为必须是调色剂和调色剂载体擦过图像载体表面的构成,因此人们一直以来对于调色剂或调色剂与图像载体接触的接触显影方法进行了很多研究。这是因为,为了在显影装置中回收转印残留调色剂,人们认为调色剂或调色剂与图像载体接触,实现摩擦的构成是有利的。但是,在适合采用接触显影方法的显影兼清洁、或无清洁器系统中,长期使用造成调色剂劣化、调色剂载体表面劣化、图像载体表面劣化或磨损等,没有充分地解决耐久特性问题。因此,人们期望采用非接触显影方法的显影兼清洁方法。
另外,在用于电子照相装置、静电记录装置等的图像形成方法中,对于在电子照相感光体、静电记录电介质等图像载体上形成潜像的方法,人们已知有各种方法。
近年来,作为图像载体等被带电体的带电装置,由于与电晕带电器相比,具有低臭氧、低电力等优点,故人们提出了多种接触带电装置,并且被实用化。
在接触带电的带电机构(带电的机理、带电原理)中,存在有(1)放电带电机构和(2)直接注入带电机构2种带电机构,根据哪种机理占主要地位,表现各种相应的特性。
(1)放电带电机构
该放电带电机构为通过在接触带电部件与被带电体之间的微小间隙产生的放电现象使被带电体表面带电的机构。放电带电机构由于在接触带电部件和被带电体中具有一定的放电阈值,故必须对接触带电部件外加大于带电电位的电压。另外,虽然与电晕带电器相比较,发生量格外小,但是从原理上无法避免产生放电生成物的情况,故无法避免臭氧等活性离子造成的弊病。
(2)直接注入带电机构
该机构是通过从接触带电部件直接向被带电体注入电荷使被带电表面带电的体系。该方式也称为直接带电、或注入带电或电荷注入带电。更具体地说,中等电阻的接触带电部件与被带电体表面接触,不通过放电现象,即,基本上不采用放电而是对被带电体表面进行直接电荷注入。因此,即使在对接触带电部件的外加电压为放电阈值或以下的外加电压的情况下,仍可使被带电体带电为相当于外加电压的电位。由于该带电系统不伴随有臭氧的发生,故不产生放电生成物引起的弊病。但是,由于是直接注入带电,故接触带电部件与被带电体的接触性对于带电性有很大作用。因此,由于采用以较高的频率与被带电体接触的构成,故必须要求接触带电部件具有更加紧密的接触点,具有较大的与被带电体的速度差等的构成。
在接触带电装置中,作为接触带电部件,采用导电辊(带电辊)的辊带电方式在带电的稳定性方面来说是优选的,并被广泛地使用。
在过去的辊带电的带电机构中,上述(1)的放电带电机构占主导地位。带电辊采用导电、中等电阻的橡胶材料或发泡体制成。将进一步将它们层压,可获得所需的特性。
为了获得与带电体的一定的接触状态,使带电辊具有弹性,但是,在因此导致的摩擦阻力较大、较多的场合,带电辊从动于被带电体,或具有一定的速度差被驱动。因此,即使想进行直接注入带电,也无法避免绝对的带电能力的降低,或接触性的不足,或辊形状造成的接触不均匀,或被带电体的附着物造成的带电不均匀。
图7是表示电子照相法中的接触带电的带电效率实施例的曲线图。横轴表示施加于接触带电部件上的偏压,纵轴表示此时获得的被带电体(下面称为“感光体”)的带电电位。辊带电时的带电特性由A表示。即,从超过约-500V的放电阈值后开始带电。
因此,在带电-500V的场合,一般采用外加-1000V的直流电压的方法,或除了-500V的直流的带电电压外,还外加峰间电压为1200V的交流电压以保持放电阈值或以上的电位差,并因此使感光体的电位收敛于带电电位的方法。
如果更具体地说明,在通过加压使带电辊与厚度为25μm的OPC感光体邻接的场合,如果外加约640V或以上的电压,则感光体的表面电位开始上升,然后,相对于该外加电压,感光体表面电位按照斜率1线性地增加。将该阈值电压定义为“带电开始电压”。
即,为了获得电子照相所必需的感光体表面电位Vd,在带电辊中必须要求Vd+Vth的必要值或以上的DC电压。将这样对接触带电部件仅仅外加DC电压进行带电处理的方法称为“DC带电方式”。
但是,在DC带电中,由于因环境变化等因素,接触带电部件的电阻值改变,另外,由于当感光体受到磨削,膜厚度发生变化时,Vth改变,故难于使感光体的电位达到所需的值。
因此,为了进行更加均匀的带电处理,如特开昭63-149669号公报所公开的那样,采用对接触带电部件施加在相当于所需Vd的DC电压上叠加了具有2×Vth或以上的峰间电压的AC成分的电压的“AC带电方式”。该方式以AC造成的电位的平均效果为目的,被带电体的电位收敛于作为AC电压的峰值的中间处的Vd,不受到环境等的干扰。但是,即使在这样的接触带电装置中,由于其核心的带电机构采用从接触带电部件向感光体的放电现象,故象前面已描述的那样,必须要求外加于接触带电部件上的电压是感光体表面电位或以上的值,并产生一定程度的臭氧。
另外,在为了进行带电均匀化处理而进行AC带电的场合,进一步的臭氧产生、AC电压的电场造成的接触带电部件与感光体的振动噪音(AC带电声音)的发生,以及,放电造成的感光体表面的性能退化等显著,造成新的问题。
此外,在毛刷带电中,作为接触带电部件采用具有导电性纤维的刷部的部件(毛刷带电器),使该导电性纤维刷部与作为被带电体的感光体接触,外加规定的带电偏压,使感光体面带电为规定的极性、电位。同样,对于该毛刷带电,其带电机构也是上述(1)的放电带电机构占主导地位。该毛刷带电的外加直流电压时的带电特性为图7的B所示的特性。因此,在毛刷带电的场合也是外加较高的带电偏压,采用放电现象进行带电处理的。
与这些情况相对,磁性刷带电是,作为接触带电部件采用具有通过磁性辊等磁性约束导电性磁性粒子形成刷状的磁性刷部的部件(磁性刷带电器),使该磁性刷部与作为被带电体的感光体接触,外加规定的带电偏压,使感光体面带有规定的极性、电位。
在该磁性刷带电的场合,带电机构是上述(2)的直接注入带电机构占主导地位。作为构成磁性刷部的导电性磁性粒子采用粒径在5~50μm的粒子,通过设置与感光体的足够的速度差,可均匀地进行直接注入带电处理。如图7的带电特性曲线图中的C那样,可获得与外加偏压基本上成比例的带电电位。但是,也具有装置结构复杂,形成磁性刷部的导电性磁性粒子脱落,附着于感光体上等的弊病。
在这里,将考虑将这些接触带电方法用于显影兼清洁的方法,无清洁器的图像形成方法的情况。
在显影兼清洁方法、无清洁器的图像形成方法中,因没有清洁部件,故残留在感光体上的转印残留调色剂直接与接触带电部件接触,附着于其上或混入到其中。另外,在放电带电机构占主导地位的带电方法的情况下,还产生放电能量造成的调色剂劣化而引起的带电部件的附着性的恶化。如果一般所采用的绝缘性调色剂附着或混入接触带电部件,则发生带电性降低。
在放电带电机构占主导地位的带电方法的场合,当附着于接触带电部件表面的调色剂层形成妨碍放电电压的电阻时,该被带电体的带电性的降低便急剧地发生。
与此相对,在直接注入带电机构占主导地位的带电方法的情况下,附着或混入的转印残留调色剂使接触带电部件表面与被带电体之间的接触概率降低,由此,被带电体的带电性降低。
该被带电体的均匀带电性的降低使图像曝光后的静电潜像的对比度和均匀性降低,使图像浓度的不均匀幅度加大,或使翳影增加。
此外,在显影兼清洁方法、无清洁器的图像形成方法中,重要的是对感光体上的转印残留调色剂的带电极性和带电量进行控制,在显影工序中,稳定地回收转印残留调色剂,防止回收的调色剂使显影特性变差,因此通过带电部件进行转印残留调色剂的带电极性和带电量控制。
下面以一般的激光打印机为例,对此情况进行具体说明。
在使用施加负极性电压的带电部件、带负电的感光体和带负电的调色剂的反转显影的场合,在其转印工序中,通过正极性的转印部件将被可视化的图像转印到记录介质上,但由于记录介质的种类(厚度、电阻、介电常数等不同)和图像面积等的关系,转印残留调色剂的带电极性发生从正性到负性的改变。但是,即使转印残留调色剂在转印工序中偏向正极性,通过在使带负电的感光体带电时的负极性的带电部件,也可以使转印残留调色剂的带电极性与感光体表面一起同样转向负侧。因此,作为显影方法使用反转显影的场合,在调色剂应当显影的明部电位部残留带负电的转印残留调色剂,在调色剂不应当显影的暗部电位部,由于显影电场的关系,调色剂被拉向调色剂载体一方,转印残留调色剂粒子没有残留在具有暗部电位的感光体上而被回收。即,在利用带电部件使感光体带电的同时,通过控制转印残留调色剂的带电极性,可以实现显影兼清洁、无清洁器的图像形成方法。
但是,当转印残留调色剂超过接触带电部件的调色剂带电极性控制能力而附着或混入接触带电部件时,不能使转印残留调色剂的带电极性一致,通过调色剂载体回收调色剂变得困难。另外,即使在调色剂载体上借助于摩擦等机械力来回收,如果转印残留调色剂的带电不均匀一致,也会对调色剂载体上的调色剂的带电性产生不利的影响,致使显影特性降低。
即,在显影兼清洁、无清洁器图像形成方法中,转印残留调色剂通过带电部件时的带电控制特性和附着、混入带电部件的特性与耐久性和图像品质特性密切相关。
为了防止带电不均一、进行稳定的均一带电,在特公平7-99442号公报中公开了一种在接触带电部件中与被带电体面的接触面上涂布粉末的方案。但是,接触带电部件(带电辊)是随被带电体(感光体)从动旋转(没有速度差驱动),与栅控式等电晕带电器相比,虽然臭氧生成物大为减少,但与上述辊带电的场合同样,带电原理仍然是以放电带电机构为主。特别是,为了获得更稳定的带电均一性,由于施加在DC电压上重叠了AC电压的电压,因而因放电而产生的臭氧生成物增多。因此,长期使用该装置时,容易出现因臭氧生成物而引起的图像漂动等弊端。另外,将上述结构用于无清洁器的图像形成装置时,由于转印残留调色剂的混入,涂布的粉末难以均一地附着在带电部件上,进行均一带电的效果被削弱。
另外,在特开平5-150539号公报中公开了一种技术方案,在使用接触带电的图像形成方法中,长时间反复进行图像形成时,为了防止没有被刮板清除的调色剂粒子或二氧化硅微粒子附着、蓄积在带电装置的表面而引起的带电障碍,在显影剂中至少含有显像粒子和平均粒径比显像粒子小的导电性粒子。但是,由于这里使用的接触带电或邻近带电是采用放电带电机构,不是直接注入带电机构,因而仍然存在因放电带电而引起的上述问题。此外,将该结构用于无清洁器的图像形成装置上时,与具有清洁机构的场合相比,对于大量导电性粒子和转印残留调色剂通过带电工序而引起的对于带电性的影响、这些大量导电性粒子和转印残留调色剂在显影工序中的回收性、被回收的导电性粒子和转印残留调色剂对于调色剂的显影特性的影响等都丝毫没有加以考虑。此外,将直接注入带电装置用于接触带电时,没有向接触带电部件供给必要量的导电性微粒子,由于转印残留调色剂的影响而产生带电不良。
另外,在邻近带电中,由于通过大量的导电性粒子和转印残留调色剂难以使感光体均一带电,不能获得使转印残留调色剂的图案均匀的效果,因而转印残留调色剂遮住图案图像曝光,产生重影。另外,图像形成过程中电源瞬间中断或卡纸时,由于调色剂而造成的机内污染更严重。
另外,在显影兼清洁图像形成方法中,作为通过提高转印残留调色剂通过带电部件时的带电控制特性而改善显影兼清洁性能的技术,在特开平11-15206号公报中提出了使用具有含有特定的碳黑和特定的偶氮系铁化合物的调色剂粒子和无机微粉末的调色剂的图像形成方法。此外,还有人提出,在显影兼清洁的图像形成方法中,采用规定了调色剂的形状系数的转印效率良好的调色剂,减少转印残留调色剂量,提高显影兼清洁性能的方案。但是,由于这里所使用的接触带电还是采用放电带电机构,不是直接注入带电机构,因而存在上述由放电带电引起的问题。另外,这些技术方案虽然具有抑制接触带电部件的由于转印残留调色剂引起的带电性低下的效果,但不能期待积极提高带电性的效果。
另外,在市售的电子照相打印机中,还有一种显影兼清洁的图像形成装置,它在转印工序和带电工序之间使用与感光体当接的辊部件,帮助或控制显影时的转印残留调色剂回收性。这样的图像形成装置显示出良好的显影兼清洁性,可以大幅度减少废调色剂的量,但其成本变高,在小型化方面损害了显影兼清洁的优点。
针对这一问题,在特开平10-307456号公报中公开了一种将含有调色剂粒子和具有调色剂粒径的1/2以下粒径的导电性带电促进粒子的调色剂用于使用直接注入带电机构的显影兼清洁图像形成方法中的图像形成装置。按照该方案,可以得到不产生放电生成物、能大幅度减少废调色剂量、成本低而且有利于小型化的显影兼清洁图像形成装置,可以获得不发生带电不良、图像曝光的遮光或扩散的良好图像。
另外,在特开平10-307421号公报中公开了一种在使用直接注入带电装置的显影兼清洁图像形成方法中使用含有具有调色剂粒径的1/50~1/2的粒径的导电性粒子的调色剂、使导电性粒子具有促进转印效果的图像形成装置。
另外,在特开平10-307455号公报中记载了,将导电性微粒子的粒径设定为构成像素的1像素的大小以下,并且,为了得到更好带电均一性,将导电性微粒子的粒径设定为10nm~50μm。在特开平10-307457号公报中记载了,考虑到人的视觉特点为了使带电不良部对图像的影响成为视觉上不易察觉的状态,将导电性粒子设定为约5μm或以下,优选的是20nm~5μm。
另外,在特开平10-307458号公报中记载了通过将微粒子的粒径设定为调色剂粒径以下,可以防止显影时阻碍调色剂的显影或显影偏压通过导电性微粒子而漏电,使图像不产生缺陷,同时,记载了一种使用直接注入带电装置的显影兼清洁图像形成方法,通过将上述导电性微粒子的粒径设定为大于0.1μm,将微粒子埋置在像载体中,解决了遮住曝光光线的问题,实现良好的图像记录。
特开平10-307456号公报中公开了一种显影兼清洁图像形成装置,通过在调色剂中外部添加微粒子,至少在挠性的接触带电部件与像载体的接触部中,上述调色剂中含有的微粒子在显影工序中附着在像载体上,在转印工序后仍残留在像载体上并搬运存在,从而得到不产生带电不良和图像曝光遮光的良好图像。
如果根据这些方案,确实可实现显影兼清洁的图像形成方法,使无清洁器系统成为可能。
但是,在上述方案中,上述无清洁器的系统是以下述前提而实现的,该前提是作为带电促进粒子采用导电性较高的细微粉末,并且感光体表面具有一定范围内的电阻特性。但是,一般的感光体表面的电阻特性是某种程度不均匀的,不可避免地存在低电阻的微小点,即所谓针孔。如果将具有这样的具有针孔的感光体与导电性微粒子组合,采用接触带电机构,则在针孔部分流过过剩的电流,产生图像缺陷。例如,产生下述问题,即,作为轻度缺陷,出现黑点,在重度的场合,带电所必需的电流集中于针孔,不使感光体带电,对应于带电部件接触部分,同样使非图像部分显影。
与此相对,即使在转印工序后设有清洁工序的图像形成方法中,由于必然存在逃过清洁工序的微粒子,其残留于像载体上,被搬运到接触带电部件与像载体之间的接触部上,故可以说上述的问题是不可避免的。
在部件的电阻容易降低的高湿条件下,这样的问题特别显著。在已有技术中,没有考虑这样的实际方面的问题。
另外,为了抑制环境发生改变的场合,长期耐久的场合的调色剂的摩擦带电量的变化,抑制图像浓度的降低,人们还知道将金属氧化物微粒子添加于调色剂中的技术。
例如,在特开平6-175392号公报中,公开了在形成调色剂的粘接树脂中,添加体积电阻值在1×105~1×108Ωcm的公知的金属氧化物(氧化铝,氧化锌,氧化锡等)。另外,还公开有在调色剂中,添加金属氧化物的还原物(日本特公平7-113781号公报),含锑的氧化锡(特开平6-118693号公报),炭黑粉末,金属粒子等的低电阻粒子。
氧化铝,氧化锌,氧化锡等的公知的金属氧化物,大多情况是在常温常湿的环境下,因表面的羟基的影响,呈现在1×106~1×107Ωcm左右的电阻值。但是,由于该电阻值依赖于湿度,电阻经常发生变化,故即使在调色剂中包含上述金属氧化物的情况下,其物理性质仍是不稳定的。
由于通过在大气气氛下焙烧,可容易使包含锑的氧化锡呈现导电性,故虽然可防止湿度造成的电阻变化,但是,焙烧件呈青色到黑青色的颜色。在调色剂中外添而使用的场合,如果在图像形成工序中,将从调色剂游离开的氧化锡转印到转印纸上,则产生有色造成的图像质量的降低。另外,添加到彩色调色剂中,成为使颜色再现性降低的主更原因。
对于通过在氢气等的还原性气氛下对氧化锡、氧化钛等的金属氧化物进行焙烧,还原锡成分的一部分而呈现导电性的氧化物或炭黑等,通过还原处理,焙烧件带黑色,与上述的含有锑的氧化锡相同,造成调色剂的颜色再现性,图像质量的降低。
另外,由于金属粒子这样的低电阻物质在必须要求高电场的显影工序中,有时成为造成泄漏现象的主要原因,故缺乏长期稳定性。
此外,大多情况是,上述微粒子为单一粒子组成,其凝聚性高,粒度分布为较宽。为了实现所需粒径、粒度分布,显然要求造粒管理技术,但是机械性粉碎、破碎、分级等的后续工序要求花费较多的时间。对于粒径,在造粒管理中有时有难于应对的情况,在较小粒径的粒子生产中,有因粒子的凝聚性,粉碎,分级的效率降低的情况,此外,还要指出,在公知的制造方法中,在改良凝聚性方面具有限制性。对于具有这样的粒子的调色剂,具有下述课题,即,其流动性是不均匀的,在图像形成时,容易产生浓度的变化、容易发生图像翳影等。
另外,在特开平8-109341号公报、特开平6-192592号公报、特开平5-17622号公报中,公开有在芯材上具有氧化锡层的导电性颜料或填料,该氧化锡层分别被掺杂了磷元素、氟元素、锑元素。但是,在所有这些文献中,完全没有提到将这些物质添加于显影剂中的内容。
再有,就钨来说,在特开平9-278445号公报中公开了涉及掺杂有钨的氧化锡的技术。该技术以分散于粘接剂中而获得的涂料组合物用作导电性涂敷膜,其电阻值随时间的变化的稳定性优良为基本概念,不涉及本发明通过使微粒子存在于调色剂的表面作为显影剂呈现的效果。
发明内容
本发明的目的在于提供一种调色剂,该调色剂耐环境变化、并可获得高画质的图像。
本发明的目的在于提供一种调色剂,该调色剂的耐久性优良、并可获得高画质的图像。
本发明的目的在于提供一种图像形成方法,该方法在采用接触带电机构时,抑制在针孔的过剩电流,具有即使在高湿的条件下仍稳定的带电性,即使在长时间的使用的情况下,图像再现性仍优良。
另外,本发明的目的在于提供一种图像形成方法,其中转印残留调色剂的回收性优良,可进行良好的显影兼清洁的图像形成。
此外,本发明的目的在于提供一种图像形成方法,该方法通过将稳定的带电性和显影兼清洁性组合,可进行无清洁器的图像形成。
本发明的目的在于提供一种无清洁器的图像形成方法,该方法即使在为提高图像解析度采用粒径更小的调色剂粒子时,仍可稳定地获得良好的图像。
本发明的另一目的在于提供一种无清洁器的图像形成方法,该方法即使在高湿的条件下,仍可长期稳定地获得良好的图像。
本发明如下所述。
本发明涉及一种调色剂,该调色剂包括调色剂粒子和微粒子,该调色剂粒子至少包含粘接树脂和着色剂,该微粒子具有在母体粒子上覆盖含钨元素的锡化合物的构成,锡元素(Sn)相对于母体粒子(B)的质量比(Sn/B)在0.01~2.0的范围内,钨元素(W)相对于锡元素(Sn)的摩尔比(W/Sn)在0.001~0.3的范围内。
另外,本发明涉及一种调色剂,该调色剂包括调色剂粒子和微粒子,该调色剂粒子至少包含粘接树脂和着色剂,该微粒子是含钨元素的氧化锡微粒子,钨元素(W)相对于锡元素(Sn)的摩尔比(W/Sn)在0.001~0.3的范围内。
此外,本发明涉及一种图像形成方法,该方法至少包括在带电部件上外加电压,使其与像载体相接触,使图像载体带电的带电工序;和在被带电的上述像载体上形成静电潜像的静电潜像形成工序;和将携带于调色剂载体上的调色剂转移到保持于上述像载体表面上的上述静电潜像上,形成调色剂像的显影工序;和,将形成于上述图像载体上的调色剂像静电转印到转印材料上的转印工序,其特征在于,作为上述调色剂,使用上述的任一种调色剂。
附图说明
图1是显示用于实施本发明方法的图像形成装置的概略构成图;
图2是显示用于实施本发明方法的单组分显影用显影装置的概略构成图;
图3是显示用于实施本发明方法的感光体的概略构成图;
图4是显示用于实施本发明方法的接触转印部件的概略构成图;
图5是显示本发明的一个实施方案的图像形成装置的概略构成图;
图6是显示本发明的一个实施方案的图像形成装置的概略构成图;
图7是显示接触带电部件的带电特性曲线图;
图8是显示用于实施本发明方法的感光体的层结构的示意图。
具体实施方式
首先对本发明的调色剂中含有的微粒子进行说明。
(1)第1调色剂中含有的微粒子
在本发明的第1调色剂中含有的微粒子,具有在母体粒子上覆盖了含钨元素的锡化合物的结构,锡元素(Sn)相对于母体粒子(B)的质量比(Sn/B)在0.01~2.0,钨元素(W)相对于锡元素(Sn)的摩尔比(W/Sn)在0.001~0.3的范围内。这样的微粒子具有白色或接近白色的色调,另外,由于含有该微粒子的调色剂可长期地获得均匀地摩擦带电性,故可得到良好的图像质量。特别是,防止低湿度条件下的异常的摩擦带电造成的充电,防止在高湿度条件下,调色剂的吸湿造成的摩擦带电量的降低,可提供稳定的摩擦带电性。在不损害这样的摩擦带电性的提供效果的范围内,还可同时采用其它的元素。
第1调色剂的微粒子是在母体粒子上保持有氧化锡的双层结构,由于含有该微粒子的本发明的调色剂的流动性优良,并且可均匀地调制,因此即使在急剧的环境变化或长期放置后,仍可高效地获得摩擦带电性,其结果是可送续地获得较高的画质。
在第1调色剂的微粒子中,氧化锡被良好地保持在母体粒子上,即使在长期使用的情况下,也难于剥离,伴随时间而产生的粒子特性的变化较小。
另外,在本发明的第1调色剂中含有的微粒子,通过以锡元素(Sn)相对于母体粒子(B)的质量比(Sn/B)在0.01~2.0的比例含有的锡化合物,成为具有适度导电性的物质。在带电工序中外加电压时,在带电部件与图像载体之间存在微粒子的场合,电流在锡化合物中传递而流动,但是,由于限制了锡化合物相对于母体粒子的量,故大电流难于流动,因此,即使在图像载体表面上存在针孔的情况下,仍可抑制过剩电流流动,同时还抑制图像缺陷的发生。另外,由于含有锡化合物,故作为微粒子电阻较低,在通常的电流值的范围内进行带电工序的场合,可大大地提高调色剂的带电均匀性。
另外,在使锡化合物保持在母体粒子上的场合,如果Sn/B不足0.01,则有时发生摩擦带电性的环境变化。另外,从制造容易性方面来说,优选Sn/B在2.0或以下。另外,如果Sn/B超过2.0,则使流动性提高的效果降低。
此外,在微粒子具有相对于锡元素,摩尔比(W/Sn)在0.001~0.3的范围内的钨元素(W)的场合,大电流更加难于流动,过剩的电流的抑制效果更加显著。
如果W/Sn不足0.001,则有时发生摩擦带电性的环境变化,如果超过0.3,则氧化锡的机械强度降低,无法获得充分的耐久性。
微粒子中的锡元素和钨元素可按照ICP、BSCA等进行定性定量。
具体来说,在母体粒子上覆盖有含钨元素的锡化合物的微粒子的场合,按照下述方式求出。
在母体粒子不溶于酸和碱的场合:
首先,通过ESCA分析求出锡元素和钨元素的摩尔比。接着,在用盐酸对微粒子进行处理后,用碱溶液对其进行处理,去除覆盖层,求出母体的质量。然后,根据预先测定的处理前的微粒子的质量与母体质量之间的差值,求出覆盖层的质量,根据该质量和ESCA计算出的锡元素与钨元素的摩尔比,计算出锡元素相对于母体粒子的质量比(Sn/B)。
在母体粒子溶于酸和碱的场合:
首先,通过ESCA分析,求出锡元素与钨元素的摩尔比。接着,调整pH,将微粒子与锡元素或钨元素同时溶解,通过感应偶合等离子体发光分光分析装置(ICP-AES),求出锡元素或钨元素和母体粒子中的其它元素的摩尔比。根据这些摩尔比,求出锡元素相对于母体粒子的质量比(Sn/B)。
另外,在微粒子的ESCA分析中,在调整蚀刻时间的同时,对锡元素、钨元素、以及含在母体粒子中的这些元素以外的元素的比进行分析,可确认钨元素与锡元素是否一起存在,进一步可确认是否其仅仅存在于母体粒子的表面上。
另一方面,在含有钨元素的氧化锡微粒子的场合,在使微粒子溶解之后,通过感应偶合等离子体发光分光分析装置,计算各元素的含量。
作为锡化合物,从使微粒子具有导电性的方面来说,最好采用低电阻的氧化锡。作为钨元素,从控制在低电阻的锡化合物中流动的电流量的方面来说,最好包含于锡化合物中。
此外,如果将锡化合物保持在母体粒子的表面上的粒子用作微粒子,则通过少量的锡化合物便呈现导电性,获得均匀的带电性,另一方面,由于电流仅仅在微粒子的表面传递而流动,故过剩的电流的控制容易,容易抑制针孔造成的图像缺陷,是优选的使用形式。
这样的微粒子可通过湿法制造。
可列举例如,将锡的盐类化合物溶液、钨的盐类化合物溶液与悬浮有母体粒子的溶液混合后,对其进行水解然后进行焙烧的方法;通过前述方法,仅仅将锡成分保持在母体粒子上,使之焙烧后,通过湿法使钨成分浸渍于其中再次对其进行焙烧的方法等。在焙烧后,通过破碎、分级等方式,得到微粒子。
作为在微粒子的制造中所采用的含锡元素的化合物,可列举氯化锡(第1,第2),二氯氧化锡,锡酸,锡酸钾,锡酸钠,有机锡化合物(例如,烷氧基锡)。
作为在微粒子的制造中所采用的含钨元素的化合物,可列举,氯化钨,氯氧化钨,钨酸,钨酸钠,钨酸钾,钨酸钙,有机钨化合物。
焙烧可采用隧道窑,回转窑,电炉,烘炉,减压干燥机等。对于焙烧氛围气,除了大气气氛以外,还可根据需要,采用对氧分压进行了调整的氧化氛围气,导入氢气等的还原性氛围气,导入惰性气体的惰性氛围气等。
另外,作为将锡化合物保持在其表面的母体粒子,可采用树脂形成的有机粒子、金属或金属氧化物那样的无机粒子等公知的粒子,但是考虑到在带电部件与图像载体之间的临接部处的应力的强度以及母体粒子表面与锡化合物之间的紧密贴合性,其中优选无机粒子,更优选采用金属氧化物那样的含氧的金属化合物。作为具体的化合物,可列举例如,氧化硅,氧化钛,氧化铝,硅酸铝,氧化镁,硫酸钡,钛氧化物。
(2)第2调色剂中含有的微粒子
第2调色剂中含有的微粒子是含有钨元素的氧化锡微粒子。
该氧化锡微粒子是具有白色或接近白色色调的粒子,可不妨碍调色剂的色调,防止图像质量降低。由于同时防止吸湿性的效果较高,可抑制电阻的湿度依赖性,故即使在环境变化的情况下,仍可呈现稳定的电阻值、摩擦带电提供能力。通过这样的作用,本发明的含有氧化锡微粒子的调色剂,更加清晰地调整摩擦带电的分布,长期地获得均匀的摩擦带电性。特别是,可防止低湿度条件下的异常的摩擦带电造成的充电,防止高湿度条件下的调色剂的吸湿引起的摩擦带电量的降低,可提供稳定的摩擦带电性。在不损害这样的摩擦带电性的提供效果的范围内,也可同时采用其它的元素。
在氧化锡微粒子中,钨元素(W)与锡元素(Sn)的摩尔比(W/Sn)在0.001~0.3的范围内。如果上述摩尔比(W/Sn)不足0.001,则相对于急剧的环境变化,摩擦带电提供能力降低,如果该摩尔比超过0.3,则氧化锡微粒子的机械强度变化,耐久性改变,因此不优选。
微粒子中的锡元素和钨元素可按照与第1调色剂的微粒子的情况同样地进行定量。
本发明涉及的氧化锡微粒子的制造,可列举例如,将锡的盐类化合物溶液、钨的盐类化合物溶液混合后,进行加水分解,然后进行焙烧的方法;将钨的盐类化合物溶液添加于氧化锡的水性浆液中,在加水使其分解的同时进行老化后进行焙烧的方法。在焙烧后,通过破碎、分级等获得微粒子。
作为氧化锡微粒子的制造中所采用的含锡元素的化合物,可列举,氯化锡(第1,第2),二氯氧化锡,锡酸,锡酸钾,锡酸钠,有机锡化合物(例如,烷氧基锡化合物)。
作为氧化锡微粒子的制造中所采用的含钨元素的化合物,可列举,氯化钨,氯氧化钨,钨酸,钨酸钠,钨酸钾,钨酸钙,有机钨化合物。
焙烧可采用隧道窑,回转窑,电炉,烘炉,减压干燥机等。对于焙烧氛围气,除了大气氛围气以外,还可根据需要,采用对氧分压进行了调整的氧化氛围气,导入氢气等的还原性氛围气,导入惰性气体的惰性氛围气等。
下面对本发明的微粒子的共同特征进行描述。
微粒子的电阻值优选在1×109Ωcm或以下。如果微粒子的电阻值大于1×109Ωcm,则在用于采用显影兼清洁的图像形成方法时,即使微粒子存在于带电部件与图像载体的接触部,或其附近的带电区域,通过接触带电部件的微粒子保持与图像载体的紧密接触性的情况下,仍无法获得用于获得良好的带电性的带电促进效果。另外,为了充分地提高微粒子的带电促进效果,稳定地获得良好的带电性,微粒子的电阻值优选小于接触带电部件的表面部或与图像载体的接触部的电阻。另外,在该电阻值大于1×109Ωcm的场合,具有湿度造成的电阻变化增加的倾向,故不优选。作为微粒子的电阻值,更优选在1×102~1×109Ωcm的范围内,进一步优选在1×102~1×107Ωcm的范围内。当该电阻值不足1×102时,从制造上说,白色化受到损害。
作为将电阻控制在上述范围内的方法,可通过根据氧化锡的金属的酸价(在氧化锡的场合,锡的价数为4价),适当量地含有选择了价数的不同种类的元素来控制。即,相对于作为4价金属氧化物的氧化锡,优选使用的各种不同的元素是价数为5价的元素,在本发明中,作为这样的不同种类的元素采用钨。
微粒子的电阻的测定按照下述方式进行。将试样填充于圆筒形的绝缘小室中,在上下设置电极以使其与试样接触,在上部电极上施加7kgf/cm2的荷载。在此状态下,在电极之间外加电压(在本发明中为50V),根据此时流过的电流I(A),测定本发明的微粒子的电阻(体积电阻值RV)。此时,如果由S表示电极面积(cm2)、由M(cm)表示试样厚度,则电阻由下述公式表示。
数学公式1
RV(Ωcm)=V×S/I/M
作为微粒子,优选采用体积平均粒径在0.05μm或以上的粒子。如果微粒子的体积平均粒径小于0.05μm,为了防止高湿条件下的显影性的降低,必须使微粒子相对调色剂整体的含量较小。如果这样,无法确保微粒子的有效量,在带电工序中,无法使带电部件与图像载体的接触部或其附近的带电区域存在足够量的下述微粒子,容易产生带电不良,而该足够量的微粒子是足以克服向接触带电部件的绝缘性的转印残留调色剂的附着,混入造成的带电妨碍,良好地进行图像载体的带电的量。
此外,如果微粒子的体积平均粒径较大,由于除了容易从带电部件游离开以外,单位重量的粒子数量也减少,因此考虑到从带电部件的微粒子的脱落等造成的减少,性能变差,为了将微粒子逐渐地、连续地供给到带电部件与图像载体的接触部或其附近的带电区域,使其存在于该处,或者为了接触带电部件通过微粒子保持与图像载体的紧密的接触性,获得良好的带电性,必须增加微粒子相对于调色剂整体的含量。但是,如果使微粒子的含量过大,则使特别是在高湿环境下的摩擦带电能力、显影性降低,产生图像浓度降低,调色剂飞散等。从这样的观点出发,微粒子的平均粒径最好在5μm或以下。另外,微粒子的体积平均粒径优选在0.1~5μm的范围内,特别优选在0.5~3μm的范围内,如果还考虑图像载体的磨耗性,则更优选粒径在5μm或以上的粒子在3个数%或以下。
另外,优选微粒子的体积平均粒径(S)(μm)与调色剂粒子的重量平均粒径(T)(μm)之间的比(S/T)在0.5或以下(更优选在0.01~0.3的范围内),如果该比值大于0.5,则在将微粒子与调色剂粒子混合时,该微粒子容易从调色剂游离开,在显影工序,从显影容器向图像载体的供给量不足,难于获得足够的带电性。另外,从带电部件脱落的微粒子遮挡写入静电潜像的曝光光线或将其扩散,产生静电潜像的缺陷,使图像质量降低。
重量平均粒径与体积平均粒径不是按照相同的尺度比较,但是由于微粒子小于调色剂粒子,故在本发明中,作为比较调色剂粒子与微粒子的大小的一个指标,采用这些参数。
微粒子的粒径测定,是在コ-ルタ-社生产的LS-230型激光衍射式粒度分布测定装置中安装液体组件,将0.04~2000μm的粒径作为测定范围,通过所获得的体积基准的粒度分布,计算粒子的体积平均粒径(体积50%粒径)、5μm或以上的个数%。测定是在10ml的水中添加微量的表面活性剂,在其中添加10mg的粒子,在用超声波分散机中分散10分钟后,在测定时间90秒、测定次数1次的条件下进行测定的。
优选微粒子从调色剂粒子的游离的游离率在10.0~95.0%的范围内,更优选在20.0~95.0%的范围内。微粒子的游离率小于10.0%时,则对图像载体的供给量不足,难于获得足够的带电性,如果该游离率大于95.0%,由于通过显影兼清洁而回收的微粒子的量变多,容易产生显影装置内的微粒子的蓄积造成的调色剂的摩擦带电性和显影性的降低,因此不优选。
微粒子从调色剂粒子游离的游离率是指通过パ-テイクルアナライザ-(PT1000:横河电机(株)生产)测定的,该测定是按照Japan Hardcopy97论文集的65-68页中描述的原理进行的。具体来说,该装置是将调色剂等的粉体逐个导入等离子体使其发光,从粉体的发光频谱,可知发光物质的元素、粒子数量、粒子的粒径。
另外,上述“游离率”是指,根据作为调色剂粒子用粘接树脂的构成元素的碳原子的发光,以及微粒子中的锡原子的发光的同时性,按照下述公式定义的值。
微粒子的游离率(%)=100×(仅仅锡原子的发光次数/与碳原子同时发光的锡原子的发光次数+仅仅锡原子的发光次数)
在这里,“碳原子与锡原子的同时发光”是指,将从碳原子的发光开始2.6msec以内发光的锡原子的发光作为同时发光,以后的锡原子的发光作为仅仅锡原子的发光。
具体的测定方法如下所述。采用含有0.1%氧的氦气,在温度为23℃,湿度为60%的环境下进行测定,将调色剂试样在相同的环境下放置1夜,将经调湿的试样用于测定。另外,在通道1测定碳原子,在通道2测定锡原子(测定波长和K因数采用推荐值),按照通过一次的扫描碳原子的发光数量在1000~1400个的范围内的方式进行取样,反复进行扫描,直至碳原子的发光数量的总数在10000或以上,对发光数量进行累加计算。此时,取样以使在碳元素的发光个数为纵轴,碳元素的立方根电压为横轴的分布中,具有一个极大值,而且不存在谷,进行测定。然后,根据该数据,使全部元素的杂波切割水平为1.50V,采用上述计算公式,计算微粒子的游离率。
另外,为了使转印于转印材料上的微粒子作为翳影是模糊的、不显眼的,微粒子优选为透明、白色、或淡色的微粒子。同样从不造成静电潜像形成工序的曝光光线的妨碍的意义方面来说,微粒子可为透明、白色、淡色的微粒子,更优选微粒子相对于曝充光线的透射率在30%或以上。
在本发明中,通过以下的工序,对微粒子的透光性进行测定。在于一面上具有粘接层的透明的薄膜上固定一层的微粒子,在此状态下,测定透过率。光从该片材的垂直方向照射,将透过薄膜背面的光会聚,测定其光量。根据仅仅有薄膜和附着于了微粒子时的光量算出的值作为净光量,计算粒子的透射率。实际上,采用X-Rite株式会社生产的310T透射型浓度仪进行测定。
在本发明中,作为使微粒子包含于调色剂中的方法,有内部添加和外部添加的方法。为了更加快速地、有效地实现前述那样的本发明的作用效果,优选微粒子存在于调色剂表面,作为这样的实现措施,最好采用容易控制的外部添加,但是除此以外,还可列举在内部添加后,通过粉碎、研磨等的机械的方法使其曝露于表面上的措施等。
此外,存在于调色剂粒子表面上的微粒子优选为在每个调色剂粒子中存在0.3个或以上的比例,更优选每个调色剂粒子中存在1.0~50.0个,特别优选1.0~10个。如果存在于调色剂粒子表面的微粒子不足0.3个,由于使调色剂的流动性提高的效果降低,故最好不采用该方式。
可根据调色剂粒子表面的直接观察,获得存在于调色剂粒子表面上的微粒子的存在的有无、以及存在的比例。即,采用扫描型电子显微镜(SEM),将含有微粒子的调色剂,10个调色剂粒子作为一个集合体捕获,计算存在于各调色剂粒子表面上的微粒子的个数。微粒子的定性可采用同时设置于SEM上的定性分析装置,通过针对锡元素绘制图形的方式进行。通过该方法,对10个集合体(调色剂粒子共计100个)进行测定,计算每个调色剂粒子的微粒子的存在比例。
另外,如上所述,在特开平9-278445号公报中,公开了与作为掺杂剂含有钨元素的导电性氧化锡的制造方法和使用形式相关的技术。但是,该文献中的使用形式是作为导电性涂料或带电防止剂的形式,其着眼点在于导电性。与此相对,在本发明中,通过与在所谓电子照相的特殊领域中,适当地将各种材料和使用条件相组合,涉及不仅是微粒子的导电性,而且抑制过剩的电流的特殊使用方式,因此,本发明的构思和技术内容是很难从特开平9-278445号公报容易地类推的。
此外,在特开平6-183733号公报中,公开了以锑元素作为必需的成分,同时采用钨元素的氧化锡形成的导电性粉末,但是在本发明中,锡元素的含有比例是不同的,本发明的构思和技术内容与上述文献的内容是不同的。此外,由于以锑元素作为必需成分的氧化锡粒子难于对过剩电流进行控制,故在特开平6-183733号公报中描述的技术难于直接用于本发明。
(3)调色剂
就本发明的调色剂粒子的粒径来说,一般为了形成较高的图像质量,忠实地对微小的潜像点进行显影,优选重量平均粒径在3~10μm的范围内。在重量平均粒径不足3μm的调色剂粒子中,由于调色剂的转印效率降低,图像载体上的转印残留调色剂变多,在用于接触带电工序的情况,容易将带电部件污染。另外,在微粒子存在于带电部件与图像载体的接触部这样的场合,有微粒子造成的带电促进效果降低的倾向。此外,由于整个调色剂的表面积增加,并且作为粉体的流动性和搅拌性降低,难于均匀地使每个调色剂粒子摩擦带电,导致翳影增加或转印性变差,容易形成带电性以外的原因造成的图像缺陷,因此,作为本发明所采用的调色剂粒子不是优选的。另外,在调色剂粒子的重量平均粒径超过10μm的场合,容易产生文字,行图像飞散,难于获得较高的图像解析度。另外,对于较高的图像解析度的装置,该调色剂形成1点的再现性变差的倾向。此外,还具有在低湿度环境下凝聚的情况,故最好不采用该方式。
本发明的调色剂粒子的重量平均粒径和数量平均粒径可通过库尔特粒度仪TA-II型或コ-ルタ-マルチサイザ-(コ-ルタ-株式会社生产)等各种的方法测定。具体来说,可如下述这样测定。采用コ-ルタ-マルチサイザ-(コ-ルタ-株式会社生产),连接输出个数分布、体积分布的接口(日科机生产)和PC9801个人计算机(NEC生产),电解液采用1级氯化钠,调制1%的NaCl水溶良。例如,可采用ISOTON R-II(コ-ルタ-サイエンテイフイツクジヤパン株式会社生产)。测定工序如下进行。添加100~150ml的上述的电解水溶液,另外添加2~20mg的测定试样,在超声波分散器中,对悬浮有试样的电解液进行分散处理约达1~3分钟,通过上述コ-ルタ-マルチサイザ-,采用100μm的开口,测定2μm或以上的调色剂的体积、个数,计算体积分布和个数分布。由此,从本发明的体积分布计算出了体积基准的重量平均粒径(D4),并从个数分布计算出了个数基准求出长度平均粒径,即,数平均粒径(D1)。
作为通道,采用在2.00~2.52μm(不足);2.52~3.17μm(不足);3.17~4.00μm(不足);4.00~5.04μm(不足);5.04~6.35μm(不足);6.35~8.00μm(不足);8.00~10.08μm(不足);10.08~12.70μm(不足);12.70~16.00μm(不足);16.00~20.20μm(不足);20.20~25.40μm(不足);25.40~32.00μm(不足);32.00~40.30μm(不足)的13个通道(将通道中间值作为每个通道的代表值)。
本发明的调色剂,除了前述的微粒子,优选还包含下面说明的无机微粒子。
本发明的调色剂,优选添加有作为流动性提高剂和转印辅助剂的平均原始粒径在4~80nm的无机细微粉末。添加该无机微粉末的目的在于改进调色剂的流动性,使调色剂粒子的摩擦带电量均匀,以及提高转印性,但是,也优选通过对无机微粉末进行疏水化处理等的处理,提供调色剂的摩擦带电量的调整、环境稳定性的提高等的性能。
在无机微粒子的平均原始粒径大于80nm的场合、或在未添加该粒径为80nm或以下的无机微粒子的场合,转印残留调色剂变多,难于稳定地获得良好的带电特性。另外,得不到良好的调色剂的流动性,调色剂粒子的带电容易产生不均匀,无法避免翳影的增加、图像浓度降低、调色剂飞散等的问题。在无机微粉末的平均原始粒径小于4nm的场合,无机微粉末的凝聚性较强,容易作为不是原始粒子、具有即使通过破碎处理仍难于分解的牢固的凝聚性的粒度分布较宽的凝聚体而动作,容易产生损伤凝聚体的显影、图像载体或调色剂载体等造成的图像缺陷。为了使调色剂粒子的摩擦带电量分布更加均匀,无机细微粉末的平均原始粒径更优选为6~70nm。
在本发明中,无机细微粉末的平均原始粒径的测定法,可用通过扫描型电子显微镜进行放大拍摄的调色剂的照片,与通过进一步附着于扫描型电子显微镜的XMA等的元素分析装置对无机细微粉末所包含的元素绘图了的调色剂的照片进行对照,同时测定100个或以上地附着于调色剂表面上或以游离方式存在的无机细微粉末的原始粒子,求出个数平均粒径。
作为本发明所采用的无机细微粉未,可采用二氧化硅,氧化钛,氧化铝,或它们的复合氧化物等。
例如,作为二氧化硅,所谓的硅酸细微粉末,可采用通过硅卤化物的蒸气相氧化处理所生成的所谓的干式法或称为煅制二氧化硅的干式二氧化硅以及通过水玻璃等制造的所谓的湿式二氧化硅这两者,但是,优选采用存在于表面和二氧化硅的细微粉未的内部的硅烷醇基团很少、而且Na2O,SO3 -等的制造残渣很少的干式二氧化硅。此外,作为复合氧化物,例如,在干式二氧化硅的制造工序中,通过将例如氯化铝、氯化钛等的其它的金属卤化物与硅卤化物一起使用,可获得二氧化硅和其它的金属氧化物的复合细微粉末。
平均原始粒径在4~80nm范围内的无机细微粉末的添加量,相对于100质量份的调色剂粒子,优选在0.01~8质量份,更优选在0.1~3.0质量份。如果添加量不足0.01质量份,则其效果不够,如果超过8.0质量份,则定影性变差。
从高温高湿环境下的特性方面来说,优选无机细微粉末为经过疏水化处理的物质,优选通过甲醇滴定试验测定的疏水化度在30~80的范围内这样的物质。如果与调色剂粒子混合的无机细微粉末是吸湿的,则调色剂的摩擦带电量显著降低,容易产生调色剂飞散。
作为疏水化处理的处理剂,可单独地或同时地使用聚硅氧烷清漆,各种改性聚硅氧烷清漆,硅油,各种改性硅油,硅烷化台物,硅烷偶合剂,其它的有机硅化合物,有机钛化合物这样的处理剂,对其进行处理。作为具体的处理剂,可列举,六甲基二硅氮烷,三甲基硅烷,三甲基氯硅烷,三甲基乙氧基硅烷,二甲基二氯硅烷,甲基三氯硅烷,烯丙基二甲基氯硅烷,烯丙基苯基二氯硅烷,苄基二甲基氯硅烷,溴甲基二甲基氯硅烷,α-氯乙基三氯硅烷,β-氯乙基三氯硅烷,氯乙基二甲基氯硅烷,三甲硅烷基硫醇,三甲基甲硅烷基硫醇,三甲硅烷基丙烯酸酯,乙烯基二甲基乙酰氧基硅烷,二甲基乙氧基硅烷,二甲基二甲氧基硅烷,二苯基二乙氧基硅烷,六甲基二硅氧烷,1,3-二乙烯基四甲基二硅氧烷,1,3-二苯基四甲基二硅氧烷,每个分子具有2~12个硅氧烷单元并且在位于末端的单元分别有1个与Si键合的羟基的二甲基聚硅氧烷,二甲基硅油,甲基苯基硅油,α-甲基苯乙烯改性的硅油,氯苯基硅油,氟改性的硅油。这些成分可以使用1种,或使用2种或以上的混合物。
其中,优选用硅油处理的物质,更优选在借助硅烷化合物等对无机细微粉末进行疏水处理的同时,或在该处理之后,通过硅油对其进行处理的物质,该物质即使在高湿环境下也可保持较高的调色剂的摩擦带电量,防止调色剂飞散。
作为无机细微粉末的处理条件,例如作为第1级反应,可通过硅烷化合物等进行硅烷化反应,通过化学键使硅烷醇基团消失,然后,作为第2级反应,可通过硅油在表面上形成疏水性薄膜。
上述的硅油,优选在25℃时的粘度为10~200,000mm2/s的硅油,但是,更优选在25℃时的粘度为3,000~80,000mm2/s硅油。如果上述粘度不足10mm2/s,则在无机细微粉末中没有稳定性,因热量和机械的应力,有图像质量变差的倾向。在上述粘度超过200,000mm2/s的场合,则具有难于进行均匀的处理的倾向。
作为硅油处理的方法,可采用亨舍尔混合机等的混合机,将例如通过硅烷化合物处理的无机细微粉末与硅油直接混合,也可以将硅油直接喷雾到无机粉末。或者,在适合的溶剂中将硅油溶解或分散后,加入二氧化硅粉末进行混合然后除去溶剂的方法。从无机细微粉末的凝聚体的生成较少的方面来说,更优选采用喷雾器的方法。
硅油的处理量,相对于100质量份的无机细微粉末,优选1~23质量份,更优选5~20质量份。如果硅油的量过少,则无法获得良好的疏水性,如果硅油的量过多,则产生模糊等的不利情况。
在本发明所采用的无机细微粉未中,优选通过BET法测定的通过氮气吸附的比表面积为30m2/g或以上的物质,更优选在50m2/g或以上,特别优选在50~250m2/g范围内的物质。
对于比表面积,按照BET法,采用比表面积测定装置オ-トソ-ブ1(汤浅アイオニクス株式会社生产),使氮气吸附于试样表面上,采用BET多点法,计算比表面积。
在本发明中,可采用磁性或非磁性中的任何一种调色剂粒子,但是在采用磁性调色剂的场合,优选调色剂的平均圆形度在0.97或以上,调色剂的磁场为79.6kA/m(1000奥斯特)的磁化的强度在10~50Am2/g(emu/g)的范围内,这样可保持良好的带电性,减少转印残留调色剂量和翳影。
在本发明的图像形成方法中采用磁性调色剂粒子的场合,由于微粒子在显影时,应与调色剂一起飞到图像载体上,故最好采用非磁性的粒子。其原因在于:如果具有磁性,其难于从磁性单成分显影方法中所采用的调色剂载体飞出。
本发明的平均圆形度是作为定量地表示粒子的形状的简便的方法而使用的指标,在本发明中,其采用东亚医用电子生产的流动式粒子图像分析仪“FPIA-1000”进行测定。通过下述公式(1),分别求出针对3μm或以上的圆相当直径的粒子组测定的各粒子的圆径度(ai),进一步,如下述公式(2)所示的那样,将测定的全部粒子的圆形度的总和除以全部粒子数量(m)得到的值,定义为“平均圆形度(a)”。
另外,作为本发明所采用的测定装置“FPIA-1000”采用下述计算方法,其中,在计算出各粒子的圆形度后,每当平均圆形度算出后,根据粒子获得的圆形度,将圆形度0.40~1.00的范围分为61个分割等级,采用分割点的中心值和频率,进行平均圆形度的计算。但是,通过该计算公式计算的平均圆形度的各值之间的误差非常小,实质上为可忽略的程度,在本发明中,由于计算时间的缩短或计算运算公式的简化等数据处理方面的原因,也可利用直接采用上述各粒子的圆形度的计算公式的概念,采用一部分改变的这样的计算公式。
测定方式如下所述。在溶解有约0.1mg的表面活性剂的10ml的水中,分散5mg的调色剂,调制分散液,通过超声波(20kHz,50W)对该分散液进行辐射达5分钟,使分散液浓度在5000~2万个/μl的范围内,通过前述装置进行测定,求出3μm或以上的圆相当径的粒子组的平均圆形度。
本发明的平均圆形度是调色剂凹凸程度的指标,在调色剂为完全的球形的场合,其平均圆形度为1.000,表面形状越复杂,圆形度越小。
另外,在该测定中,仅仅测定3μm或以上的圆相当径的粒子组的原因在于:在不足3μm的圆相当径的粒子组中也包含大量的独立于调色剂粒子而存在的外部添加剂的粒子组,故因其影响,调色剂粒子组的圆形度无法正确地估计。
此外,在本发明中,磁性调色剂的磁化的强度是采用振动型磁力计VSMP-1-10(东英工业株式会社生产),在25℃的室温下,在79.6kA/m的外部磁场下测定的。
本发明的调色剂可通过粉碎法、聚合法制造。
首先,例示粉碎法。
可通过亨舍尔搅拌机、球磨机等混合器,将粘接树脂、着色剂(根据情况为磁性体),以及根据需要,将脱模剂、电荷控制剂等其它的添加剂(也可添加上述的微粒子)等进行充分地混合,然后采用加热辊、捏合机、挤压机等的加热混炼机对其进行熔融混炼,冷却固化,粉碎后,进行分级,根据需要,进行表面处理,获得调色剂粒子。将上述微粒子、无机细微粉末等与所获得的调色剂粒子混合,形成调色剂。分级和表面处理的顺序哪个在先均可以。在分级工序中,从生产效率方面来说,优选采用多分割分级机。粉碎工序可通过采用机械冲击式、喷射式等的公知的粉碎装置的方法进行。
作为在通过粉碎法制造调色剂粒子时所采用的粘接树脂,可列举例如,聚苯乙烯,聚对氯苯乙烯,聚乙烯基甲苯等苯乙烯及其取代体的均聚物;苯乙烯-对氯苯乙烯共聚物,苯乙烯-乙烯基甲苯共聚物,苯乙烯-乙烯基萘共聚物,苯乙烯-丙烯酸脂共聚物,苯乙烯-甲基丙烯酸脂共聚物,苯乙烯-α-氯甲基丙烯酸酯共聚物,苯乙烯-丙烯睛共聚物,苯乙烯-乙烯基甲基醚共聚物,苯乙烯-乙烯基乙基醚共聚物,苯乙烯-乙烯基甲基酮共聚物,苯乙烯-丁二烯共聚物,苯乙烯-异戊二烯共聚物,苯乙烯-丙烯腈-茚共聚物等苯乙烯系共聚物;聚氯乙烯,酚醛树脂,天然树脂改性的酚醛树脂,天然树脂改性的马来酸树脂,丙烯酸树脂,甲基丙烯酸树脂,聚酯酸乙烯酯,有机硅树脂,聚酯树脂,聚氨脂,聚酰胺树脂,呋喃树脂,环氧树脂,二甲苯树脂,聚乙烯醇缩丁醛,萜烯树脂,香豆酮-茚树脂,石油系树脂。
另外,在粘接树脂采用苯乙烯系共聚物的场合,也可通过交联性单体进行交联。作为芳香族二乙烯化合物,可列举例如,二乙烯基苯,二乙烯基萘;作为通过烷基链连接的二丙烯酸酯化台物类,可列举例如,乙二醇二丙烯酸酯,1,3-丁二醇二丙烯酸酯,1,4-丁二醇二丙烯酸酯,1,5-戊二醇二丙烯酸酯,1,6-己二醇二丙烯酸酯,新戊二醇二丙烯酸酯以及以上的化合物中的丙烯酸酯用甲基丙烯酸酯代替而形成的化合物;作为通过含有醚键的烷基链连接的二丙烯酸酯化合物类,可列举例如,二甘醇二丙烯酸酯,三甘醇二丙烯酸酯,四甘醇二丙烯酸酯,聚乙二醇#400二丙烯酸酯,聚乙二醇#600二丙烯酸酯和以上化合物中的丙烯酸酯用甲基丙烯酸酯代替而形成的化合物;作为通过含有芳香基和醚键的链连接的二丙烯酸酯化合物类,可列举例如,聚氧化乙烯(2)-2,2-双(4-羟基苯基)丙烷二丙烯酸酯,聚氧化乙烯(4)-2,2-双((4-羟基苯基)丙烷二丙烯酸酯以及以上化合物中的丙烯酸酯被甲基丙烯酸酯取代而形成的化合物;作为聚酯型二丙烯酸酯类,可列举例如,商品名称MANDA的商品(日本化药)。
另外,作为交联剂,可例举,季戊四醇三丙烯酸酯,三羟甲基乙烷三丙烯酸酯,三羟甲基丙烷三丙烯酸酯,四羟甲基甲烷四丙烯酸酯,低聚酯丙烯酸酯和以上的化合物中的丙烯酸酯被甲基丙烯酸酯取代而形成的化合物;氰尿酸三烯丙酯,偏苯三酸三烯丙酯。
相对于其它单体成分100质量份,这些交联剂优选使用0.01~10质量份,更优选使用0.03~5质量份。在交联性单体中,从定影性、耐偏移性的方面来说,适合用于调色剂用树脂的材料,可例举,芳香族二乙烯基化合物(特别是二乙烯基苯),通过含有芳香族基和醚键的链连接的二丙烯酸酯化合物类。
苯乙烯系共聚物,例如可通过以下的方法合成。作为合成方法,可采用块状聚合法,溶液聚合法,悬浮聚合法,乳化聚合法。
此外,在粘接树脂采用聚酯树脂的场合,优选构成树脂的全部成分的45~55mol%是醇,55~45mol%是酸成分。
作为醇成分,可列举,乙二醇,丙二醇,1,3-丁二醇,1,4-丁二醇,2,3-丁二醇,二甘醇,三甘醇,1,5-戊二醇,1,6-已二醇,新戊二醇,2-乙基-1,3-已二醇,氢化双酚A,双酚衍生物,二醇类,丙三醇,山梨糖醇等多价醇类。
作为全酸成分中含有的50mol%或以上的2价羧酸,可列举,邻苯二甲酸,对苯二甲酸,间苯二甲酸等苯二羧酸类或其酸酐;丁二酸,己二酸,癸二酸、壬二酸等烷基二羧酸类或其酸酐,以及被碳数在6~18的范围内的烷基,或烯基取代的丁二酸或其酸酐;富马酸,马来酸,柠康酸,衣康酸等不饱和二羧酸或其酸酐;另外,作为3价或以上的羧酸,可列举,偏苯三酸,均苯四甲酸,二苯甲酮四羧酸或其酸酐。
作为特别优选采用的聚酯树脂的醇成分,是双酚衍生物,作为酸成分,可列举,邻苯二甲酸,对苯二甲酸,间苯二甲酸或其酸酐,丁二酸,正十二碳烯基丁二酸或其酸酐,富马酸,马来酸,马来酸酐等二羧酸类;偏苯三酸或其酸酐等三羧酸类。
下面对通过聚合法制造调色剂粒子的情况进行描述。在这里,对通过悬浮聚合法制造调色剂粒子的情况进行说明。
在含有分散稳定剂的水系溶剂中,悬浮通过均化器、球磨机、胶体磨、超声波分散机等分散机均匀地溶解或分散有形成粘接树脂的聚合性单体和着色剂,以及根据需要溶解或分散有聚合引发剂,交联剂,电荷控制剂,脱模剂,增塑剂,磁性体,其它的添加剂等的单体组合物。聚合引发剂既可在聚合性单体中添加其它的添加剂的同时进行添加,也可在悬浮于水系溶剂中之前混合。另外,还可在造粒之后,开始聚合反应之前,添加溶解于聚合性单体或溶剂中的聚合引发剂。
聚合温度设定在40℃或以上,一般设定在50~90℃的温度范围内进行聚合反应。如果在该温度范围内进行聚合反应,则应密封于内部的脱模剂通过相分离而析出,内部包含处理更加完全。为了消耗残留的聚合性单体,如果到达聚合反应终期,则可使反应温度上升到90~150℃的温度范围内。在反应结束后,对悬浮液进行冷却,过滤,水洗,干燥等处理,获得调色剂粒子。在所获得的调色剂粒子中,混合上述微粒子、无机细微粉末等外加剂,形成调色剂。
作为聚合性单体,可列举,苯乙烯,邻甲基苯乙烯,间甲基苯乙烯,对甲基苯乙烯,对甲氧基苯乙烯,对乙基苯乙烯等苯乙烯系单体,丙烯酸甲酯,丙烯酸乙酯,丙烯酸正丁酯,丙烯酸异丁酯,丙烯酸正丙酯,丙烯酸正辛酯,丙烯酸十二烷基酯,丙烯酸2-乙基己酯,丙烯酸十八烷基酯,丙烯酸2-氯乙基酯,丙烯酸苯基酯等丙烯酸酯类,甲基丙烯酸甲酯,甲基丙烯酸乙酯,甲基丙烯酸正丙酯,甲基丙烯酸正丁酯,甲基丙烯酸异丁酯,甲基丙烯酸正辛酯,甲基丙烯酸十二烷基酯,甲基丙烯酸2-乙基己酯,甲基丙烯酸十八烷基酯,甲基丙烯酸苯基酯,甲基丙烯酸二甲基氨基乙基酯,甲基丙烯酸二乙基氨基乙基酯等甲基丙烯酸酯类和其它的丙烯腈,甲基丙烯腈,丙烯酰胺。
这些单体可以单蚀或混合使用。从调色剂的显影特性和耐久性的方面来说,优选上述的单体中,单独使用苯乙烯或苯乙烯的衍生物,或与其它的单体混合使用。
也可在单体组合物中添加树脂然后进行聚合。例如,在打算在调色剂中添加具有氨基,羧酸基,羟基,磺酸基,缩水甘油基,氰基等亲水性官能基的单体成分,而因为这些单体是水溶性的,在水性悬浮液中溶解引起因乳化聚合而无法使用时,这些成分可以与苯乙烯或乙烯等乙烯基化合物形成无规共聚物,嵌段共聚物,或接枝共聚物等共聚物的形式使用。或者,还可采用聚酯,聚酰胺等缩聚物,聚乙醚,聚亚胺等加成聚合物。如果在调色剂中同时含有具有这样的极性官能基的高分子聚合物的树脂,则使脱模剂产生相分离,内部包含处理更加牢固,可得到耐蹭脏性、耐粘连性、低温定影性良好的调色剂。在使用含有这样的极性官能基的高分子聚合物的场合,其平均分子量优选5000或以上。如果该平均分子量不足5000,特别是在4000或以下的情况下,则该聚合物容易集中于表面附近,由此,容易对显影性、耐粘连性造成不利影响,因此不优选。另外,作为极性聚合物,特别优选采用聚酯树脂。
另外,在以改进材料的分散性、定影性或图像特性为目的时,也可在单体系中添加上述以外的树脂,作为所采用的树脂,可单独地或混合地采用例如,聚苯乙烯,聚乙烯基甲苯等的苯乙烯及其取代物的均聚物;苯乙烯-丙烯共聚物,苯乙烯-乙烯基甲苯共聚物,苯乙烯-乙烯基萘共聚物,苯乙烯-丙烯酸甲酯共聚物,苯乙烯-丙烯酸乙酯共聚物,苯乙烯-丙烯酸丁酯共聚物,苯乙烯-丙烯酸辛酯共聚物,苯乙烯-丙烯酸二甲基氨基乙基酯共聚物,苯乙烯-甲基丙烯酸甲酯共聚物,苯乙烯-甲基丙烯酸乙酯共聚物,苯乙烯-甲基丙烯酸丁酯共聚物,苯乙烯-甲基丙烯酸二甲基氨基乙基酯共聚物,苯乙烯-乙烯基甲基醚共聚物,苯乙烯-乙烯基乙基醚共聚物,苯乙烯-乙烯基甲基酮共聚物,苯乙烯-丁二烯共聚物,苯乙烯-异戊二烯共聚物,苯乙烯-马来酸共聚物,苯乙烯-马来酸酯共聚物等苯乙烯系共聚物;聚甲基丙烯酸甲酯,聚甲基丙烯酸丁酯,聚乙酸乙烯酯,聚乙烯,聚丙烯,聚乙烯醇缩丁醛,有机硅树脂,聚酯树脂,聚酰胺树脂,环氧树脂,聚丙烯酸树脂,松香,改性松香,萜烯树脂,酚醛树脂,脂肪族或脂环族烃树脂,芳香族系石油树脂等。作为这些树脂的添加量,相对于100质量份的聚合性单体,优选在1~20质量份的范围内。如果不足1质量份,则添加效果较小,另一方面,如果超过20质量份,则具有难于实现聚合调色剂的各种物理性质设计的倾向。
作为聚合引发剂,可列举,2,2’-偶氮双(2,4-二甲基戊睛)),2,2’-偶氮双异丁腈,1,1’-偶氮双(环己烷-1-腈),2,2’-偶氮双-4-甲氧-2,4-二甲基戊腈,偶氮双异丁腈等偶氮系或重氮系聚合引发剂,过氧化苯甲酰,过氧化甲基乙基甲酮,过氧化碳酸二异丙酯,氢过氧化枯烯,2,4-二氯过氧化苯甲酰,过氧化月桂酰,叔丁基过氧化-2-乙基己酸酯等过氧化物系聚合引发剂。
还可添加交联剂,优选的添加量为整个单体的0.001~15质量%。作为交联剂,主要采用具有2个或以上可聚合的双键的化合物,例如,单独或混合地采用二乙烯基苯,二乙烯基萘等芳香族二乙烯基化合物;乙二醇二丙烯酸酯,乙二醇二甲基丙烯酸酯,1,3-丁二醇二甲基丙烯酸酯等具有2个双键的羧酸酯;二乙烯基苯胺,二乙烯醚,二乙烯基硫醚,二乙烯砜等二乙烯基化合物;以及具有3个或以上的乙烯基的化合物。
分散稳定剂可采用表面活性剂,有机分散剂,或无机分散剂,其中,从分散稳定性方面来说,优选无机分散剂。作为无机分散剂,可列举,磷酸钙,磷酸镁,磷酸铝,磷酸锌等的磷酸多价金属盐,碳酸钙,碳酸镁等碳酸盐,偏硅酸钙,硫酸钙,硫酸钡等无机盐,氢氧化钙,氢氧化镁,氢氧化铝,二氧化硅,膨润土,氧化铝等无机氧化物。该无机分散剂优选以相对于100质量份的聚合性单体单独使用0.2~20质量份,但是由于该量不足以对难于产生超微粒子的单体组合物进行微粒子处理,故也可同时采用0.001~0.1质量份的表面活性剂。作为表面活性剂,可列举例如,十二烷基苯硫酸钠,十四烷基硫酸钠,十五烷基硫酸钠,辛基硫酸钠,油酸钠,月桂酸钠,硬脂酸钠,硬脂酸钾。
在本发明的调色剂中,优选在调色剂中配合使用电荷控制剂。通过电荷控制剂,可实现对应于显影系统的最适合的电荷量控制,特别是在本发明中,可使粒度分布与电荷的平衡更加稳定,采用电荷控制剂,可使在每个前面描述的粒径范围造成的高画质形成用的功能分离和相互补偿性更加明确。
作为正电荷控制剂,可按照单独或2种或以上组合的方式采用例如苯胺黑和脂肪酸金属盐的改性物;1-羟基-4-萘磺酸三丁基苄基铵,三丁基苄基四氟硼酸铵那样的季铵盐;咪唑化合物。其中,特别优选采用苯胺黑系化合物和季铵盐那样的电荷控制剂。另外,也可将单体的均聚物或与前述那样的苯乙烯,丙烯酸酯和甲基丙烯酸酯那样的聚合性单体的共聚物作为正电荷控制剂,在此场合,这些电荷控制剂还具有粘接树脂(的全部或一部分)的作用。
另外,作为带负电性的控制剂可以举出下列物质。例如,有机金属配合物、螯合物是有效的、单偶氮金属配合物、乙酰丙酮金属配合物、芳香族羟基羧酸、芳香族二羧酸系的金属配合物。除此之外还有芳香族羟基羧酸、芳香族一元羧酸和多元羧酸及其金属盐、酸酐、酯类、双酚等酚衍生物类。
上述的电荷控制剂(不具有作为粘接树脂的作用的类型)最好呈微粒子状。在此场合,具体来说,最好该电荷控制剂的个数平均粒径在4μm或以下(更优选在3μm或以下)。在内添于调色剂中时,这样的电荷控制剂相对于100质量份的粘接树脂,在0.1~20质量份的范围内(更优选在0.1~10质量份的范围内,进一步优选在0.1~5质量份的范围内)使用。
在本发明的调色剂为磁性调色剂的场合,作为磁性材料,可列举磁铁矿,磁赤铁矿,铁氧体那样的氧化铁,以及包括其它的金属氧化物的氧化铁;Fe,Co,Ni这样的金属,或这些金属与Al,Co,Cu,Pb,Mg,Ni,Sn,Zn,Sb,Be,Bi,Cd,Ca,Mn,Se,Ti,W,V这样金属的合金,以及它们的混合物。
具体来说,作为磁性材料,可列举四氧化三铁(Fe3O4),三氧化二铁(γ-Fe2O3),氧化铁锌(ZnFe2O4),氧化铁钇(Y3Fe5O12),氧化铁镉(CdFe2O4),氧化铁钆(Gd3Fe5O12),氧化铁铜(CuFe2O4),氧化铁铅(PbFe12O19),氧化铁摄(NiFe2O4),氧化铁钕(NdFe2O3),氧化铁钡(BaFe12O19),氧化铁镁(MgFe2O4),氧化铁锰(MnFe2O4),氧化铁镧(LaFeO3),铁粉(Fe),钴粉(Co)和镊粉(Ni)。按照单独,或2种或以上组合的方式使用上述的磁性材料。特别优选的磁性材料为四氧化三铁,或γ-三氧化二铁的细微粉末。对于磁性体的含量,相对于100质量份的粘接树脂,磁性体可在10~200质量份的范围内,最好在20~150质量份的范围内。
作为调色剂所使用的着色剂,可采用过去已知的染料和/或颜料。作为着色剂,可列举炭黑,酞菁蓝,孔雀蓝,永久红,色淀红,若丹明色淀,汉萨黄,永久黄,联苯胺黄。作为着色剂的含量,相对于100质量份的粘接树脂,可在0.1~20质量份的范围内,优选在0.5~20质量份的范围内,特别是最好小于12质量份,以便使调色剂定影的OHP膜的透过性良好,进一步优选在0.5~9质量份的范围内。
根据需要,最好使调色剂粒子中包含脱模剂。
作为脱模剂可例举,费-托(Fischer-Tropsch)蜡、低分子量聚乙烯、低分子量聚丙烯、微晶蜡、石蜡等脂肪族烃系蜡;聚环氧乙烷蜡等脂肪族烃系蜡的氧化物;或者它们的嵌段共聚物;巴西棕榈蜡、沙索蜡、褐煤酸酯蜡等以脂肪酸酯为主要成分的蜡类;脱氧巴西棕榈蜡等将脂肪酸酯类部分或全部脱氧的蜡等。另外,还可以举出:棕榈酸、硬脂酸、褐煤酸等饱和直链脂肪酸类;巴西烯酸、桐酸、十八碳四烯酸等不饱和脂肪酸类;硬脂醇、芳烷基醇、山嵛醇、巴西棕榈醇、鲸蜡醇、蜂花醇等饱和醇类;长链烷基醇类;山梨糖醇等多元醇类;亚油酸酰胺、油酸酰胺、月桂酸酰胺等脂肪酸酰胺类;亚甲基双硬脂酸酰胺、亚乙基双癸酸酰胺、亚乙基双月桂酸酰胺、六亚甲基双硬脂酸酰胺等饱和脂肪酸双酰胺类;亚乙基双油酸酰胺、六亚甲基双油酸酰胺、N,N’-二油基己二酸酰胺、N,N’-二油基癸二酸酰胺等不饱和脂肪酸酰胺类;间二甲苯双硬脂酸酰胺、N,N’-二硬脂基间苯二甲酸酰胺等芳香族系双酰胺类;硬脂酸钙、月桂酸钙、硬脂酸锌、硬脂酸镁等脂肪族金属盐(一般称为金属皂);用苯乙烯或丙烯酸等乙烯基单体在脂肪族烃类蜡上接枝的蜡类;嵛酸单甘油酯等脂肪酸与多元醇的部分酯化物;通过植物性油脂加氢得到的具有羟基的甲基酯化合物等。脱模剂最好相对于100质量份的粘接树脂,在0.1~20质量份的范围内,特别优选在0.5~10质量份的范围内。
在通过调色剂中含有的蜡的差示扫描热量仪(DSC)测定的DSC曲线中,升温时的吸热主峰值温度优选在60~140℃的范围内,更优选在60~120℃的范围内,但是在具有上述的特定的粒度分布的调色剂中,特别优选,降温时的放热主峰值温度优选在60~150℃的范围内,更优选在60~130℃的范围内。
本发明的调色剂的玻璃转移温度最好在45~80℃的范围内,更优选在50~70℃的范围内。另外,在通过调色剂的差示扫描热量仪(DSC)测定的DSC曲线中,升温是的吸热主峰值温度优选在60~140℃的范围内,更优选在60~120℃的范围内,降温时的放热主峰值温度最好在60~150℃的范围内,更优选60~130℃的范围内。另外,在用GPC测定的分子分布,优选数平均分子量(Mn)在1000~50000的范围内,重量平均分子量(Mw)在6000~1000000的范围内。酸价最好在90mgKOH/g或以下,更优选在50mgKOH/g或以下。
在采用差示热分析仪(DSC测定仪DSC-7(パ-キンエルマ-株式会社生产)),在下述的条件下,测定显影剂的玻璃转移点(Tg)的吸热放热峰(peak)温度。
试样:在5~20mg的范围内,最好为10mg
温度曲线:升温I(20℃→180℃,升温速度10℃/min.)
降温I(180℃→10℃,降温速度10℃/min.)
升温II(10℃→180℃,升温速度10℃/min.)
将通过升温II测定的Tg作为测定值。
测定法:将试样放入到铝盘中,作为起始条件,采用空的铝盘。呈现吸热最大值之前和之后的基线的中心点的线与差示热曲线的交点作为玻璃转移点Tg。
(4)图像形成方法
本发明的图像形成方法的特征在于带电工序采用接触带电工序,调色剂采用上述的调色剂。另外,本发明的图像形成方法优选具有显影兼清洁工序,在该工序中,通过调色剂载体时在转印后残留在图像载体上的转印残留调色剂进行回收。
作为带电工序,采用下述接触带电工序,在该工序中,通过形成与图像载体的接触部,对所接触的带电部件外加电压,使图像载体带电,由此,获得低臭氧低电力等的多项优点。
另外,通过采用混合有上述微粒子的调色剂,该调色剂中的微粒子在显影工序中,附着于接触带电部件和图像载体的接触部上,在转印工序后,按照残留在图像载体上的方式移动,介于上述两者之间,由此,获得带电均匀,良好的图像。该效果无论清洁工序的有无,都可看到。
具体来说,本发明中优选采用的显影兼清洁的图像形成方法为下述图像形成方法(或无清洁器的图像形成方法),该图像形成方法包括下述工序:带电工序,在该带电工序,对静电荷图像载体进行带电处理;静电潜像成形工序,在该静电潜像成形工序,在图像载体的带电面上写入作为静电潜像的图像信息;显影工序,在该显影工序,通过保持在调色剂载体上的调色剂,使该静电潜像以调色剂像形式进行可视化处理;转印工序,在该转印工序,将该调色剂像转印到转印材料上,上述的显影工序同时用作下述清洁工序,在该下述清洁工序,在将调色剂像转印到转印材料上后,将残留在图像载体上的调色剂回收,反复地在图像载体上形成图像。上述带电工序为下述工序,在该工序,形成与图像载体的接触部,对所接触的带电部件外加电压,由此使图像载体带电,并且至少在带电部件与图像载体的接触和/或其附近,调色剂中包含的上述微粒子在显影工序附着于图像载体上,在转印工序后,按照还残留于图像载体上的方式移动,介于上述两者之间。显影工序指下述工序,在该工序,通过上述调色剂显影图像载体的静电潜像。
首先,对在显影兼清洁的图像形成方法中,采用从外部向调色剂中添加导电性微粒子的调色剂的场合的图像形成工艺中的调色剂和微粒子的动作进行描述。
在显影工序的图像载体侧的静电潜像的显影时,调色剂中包含的微粒子按照适当量与调色剂一起移动到图像载体侧。图像载体上的调色剂像在转印工序中,转移到转印材料上。图像载体上的微粒子的一部分附着于转印材料上,而残留的部分以附着方式保持在图像载体上,残留于其上。在外加与调色剂相反极性均转印偏压进行转印处理的场合,调色剂被吸引到转印材料侧进行积极的转移,但是,由于图像载体上的微粒子是导电性的,故其不积极地朝向转移材料侧转移,其一部分附着于转移材料上,而残留的部分按照附着方式保持在图像载体上,残留于其上。
在不采用清洁器的图像形成方法中,残留于转印后的图像载体面上的转印残留调色剂和上述的残留微粒子,在作为图像载体与接触带电部件的接触部的带电部,由于图像载体的旋转,照原样运动附着混入到接触带电部件上。因此,在微粒子介于图像载体与接触带电部件的接触部上的状态下,进行图像载体的接触带电。
通过存在该微粒子,虽然由于转印残留调色剂附着混入到接触带电部件上而造成污染,但是可保持接触带电部件与图像载体的紧密接触性和接触阻力,故可良好地进行利用该接触带电部件的图像载体的带电处理。
另外,通过从带电部件外加于图像载体上的带电偏压,附着混入到接触带电部件上的转印残留调色剂按照与带电偏压相同的极性进行带电,从接触带电部件,慢慢地排出到图像载体上,伴随图像载体面的移动,到达显影部,在显影工序,同时进行显影和清洁处理(回收)。
此外,通过反复进行图像形成,调色剂中包含的微粒子在显影部转移到图像载体面上,通过该图像载体面的移动,经过转印部,搬运到带电部上,逐渐连续地将微粒子供给到带电部上,故即使在带电部处,微粒子因脱落等情况而减少,或性能变差等的情况下,仍可防止产生带电性的降低,可稳定地保持良好的带电性。
但是,一般在含有微粒子的调色剂用于显影兼清洁的图像形成方法的场合,微粒子的局部化对图像特性造成更大的影响。即,如前述那样,在调色剂中包含的微粒子适量在显影工序中与调色剂粒子一起转移到图像载体侧后,在转印工序中,图像载体上的微粒子的一部分附着于转印材料上,残留的部分按照附着方式保持在图像载体上,残留于其上。在通过外加转印偏压进行转印处理的场合,调色剂粒子被吸引到转印材料侧积极地转移,但是图像载体上的微粒子由于具有导电性,故其不积极地转移到转印材料侧,微粒子的一部分附着于转印材料上,而残留的部分按照附着方式保持在图像载体上,残留于其上。
在不具有清洁机构的图像形成方法中,由于不采用清洁器,故残留于转印后的图像载体上的转印残留调色剂和上述的残留微粒子附着混入到接触带电部件上。此时,由于微粒子与调色剂粒子的转印性的差别,附着混入到接触带电部件中的微粒子的量与转印残留调色剂的量的比例明显地大于原始的调色剂中的微粒子的量的相应比例。在该状态,附着混入到接触带电部件上的微粒子,与转印残留调色剂一起,从接触带电部件慢慢地排到图像载体上,伴随图像载体的移动,到达显影部,在显影工序进行显影兼清洁处理(回收)处理。即,通过显影兼清洁处理,含有微粒子的比例显著增加的调色剂被回收,因此大幅度地加速微粒子的局部化,如前述那样,在高湿环境下,摩擦带电性能大大降低,导致显著的图像浓度降低等造成的图像性能的下降。
与此相对,如果与过去的具有清洁机构的图像形成装置的场合相同,如果打算将微粒子固定于调色剂粒子上,减小微粒子的局部化,则即使在转印工序微粒子与调色剂粒子一起动作,由此,该微粒子与调色剂粒子一起转移到转印材料侧,其无法附着混入到接触带电部件上而介于带电部,另外即使在介于带电部的情况下,相对转印残留调色剂量,微粒子的存在也不够,无法胜过转印残留调色剂引起的带电阻碍而保持带电性,还有,无法保持接触带电部件与图像载体的紧密接触性和接触电阻,借助接触带电部件的图像载体的带电性降低,产生翳影和图像污染。当将含有微粒子的调色剂用于采用了接触带电部件的显影兼清洁的图像形成方法时,具有上述这样的困难。
与此相对,本发明人阐明,通过采用含有如上所述具有钨元素和锡元素的微粒子的调色剂,使用可减小臭氧发生的接触带电部件,即使在不产生废调色剂的无清洁器的图像形成方法中,仍可保持良好的带电性,同时大幅度地缓解微粒子的局部化(偏析),将图像浓度降低等的图像性能的下降改善到在实际使用中没有问题的程度。可认为该情况的原因在于:通过微粒子所具有的特异的电阻特性或摩擦带电特性,在转印工序中,适量的微粒子与调色剂一起转移到转印材料侧,转印残留调色剂中的微粒子所占的比例适合,即使在没有清洁器的情况下,仍将其回收,可大幅度地抑制显影装置内的微粒子的偏析。
下面参照附图,对本发明的图像形成方法进行描述。图1为可实施本发明的图像形成方法的图像形成装置的示意图。
在作为图像载体的感光鼓100的周围,设置有作为带电部件的一次带电辊117,作为显影手段的显影装置140,作为转印部件的转印带电辊114,清洁器116,套准调节辊等。通过上述的一次带电辊117使上述感光鼓100带有例如-700V的电(外加电压:交流电压为-2.0kVpp,直流电压为-700Vdc)。并且,通过激光发生装置121对感光鼓100照射激光123实现曝光。感光鼓100上的静电潜像,通过保持在设置于显影装置140上的调色剂载体102上的调色剂被显影,通过转印材料,借助于与上述感光鼓100相接触的转印辊114被转印到转印材料上。载有调色剂像的转印材料通过传送带125等运送到定影装置126处,在转印材料上进行定影。另外,标号141表示向调色剂载体102供给调色剂的调色剂供给辊。
此外,通过清洁器116对残留在感光鼓100上的一部分调色剂进行清洁处理。还有,清洁器116,如上述那样,在显影工序同时用作将调色剂像转印到转印材料上后回收残留于图像载体上的转印残留调色剂的清洁工序的场合,不是必要的。在此场合,也优选采用通过磁性辊的磁力,转印残留调色剂容易向显影装置回收的磁性调色剂。
另外,图2为用于采用这样的磁性调色剂的场合的显影装置的一个实施例的示意图。
在该显影装置140中,设置有圆筒状的调色剂载体102(在下面,也将其称为“显影套筒”),该调色剂载体102接近上述感光鼓100,其由铝、不锈钢那样的非磁性金属制成,上述感光鼓100与显影套筒102之间的间隙借助图中未示出的套筒/感光鼓间隙保持部件等,保持在例如300μm。在显影套筒内部,磁性辊104按照与显影套筒102同轴的方式固定、设置。但是,显影套筒102可旋转。在磁性辊104上具备多个磁极,S1对显影造成影响,N1对调色剂涂敷量限制造成影响,S2对调色剂的获取/搬送造成影响,N2对防止调色剂的吹出造成影响。作为限制附着于显影套筒102上而被搬送的磁性调色剂量的调色剂层厚限制部件,设置有弹性刮板103,借助该弹性刮板103对显影套筒102的接触压力,对传送给显影部的调色剂量进行控制。
在显影部,在上述感光鼓100与上述显影套筒102之间外加直流和交流的显影偏压,上述显影套筒上的调色剂对应于静电潜像飞散于上述感光鼓100上,形成调色剂像。
首先,对本发明的图像形成方法中的带电工序进行如下描述。
在该带电工序中,通过形成与图像载体的接触部,在所接触的带电部件上外加电压,使图像载体带电。
在本发明的图像形成方法中,设置有使微粒子介于带电部件与图像载体之间的接触部。因此,带电部件最好具有弹性,为了通过对带电部件外加电压使图像载体带电,最好该带电部件具有导电性。因此,最好上述带电部件为弹性导电性辊部件、具有使磁性粒子磁性约束的磁性刷部并使该磁性刷部与被带电体接触的磁性刷接触带电部件或导电性纤维构成的刷部件。
另外,为了与暂时回收图像载体上的转印残留调色剂的同时,担载微粒子有利地进行直接注入带电,接触带电部件最好采用作为柔性部件的具有弹性导电性的辊部件,或可旋转的带电刷辊。
如果接触带电部件具有柔性,则使在接触带电部件与图像载体的接触部和/或附近,粒子与图像载体接触的机会增加,可获得较高的接触性,可使直接注入带电性提高。即,接触带电部件借助微粒子,与图像载体接触,存在于接触带电部件与图像载体的接触部的微粒子在没有间隙的情况下与图像载体表面摩擦,由此,在该接触带电部件造成的图像载体的带电中,由于存在微粒子,不采用放电现象的稳定并且安全的直接注入带电占主导地位,可获得通过过去的辊带电等无法获得的较高的带电效率,可使图像载体获得基本上与外加于接触带电部件上的电压相同的电位。
此外,如果在形成接触部的带电部件表面的移动速度与图像载体表面的移动速度之间,设定相对的速度差,则使在接触带电部件与图像载体的接触部的微粒子与图像载体接触的机会进一步增加,可获得更高的接触性,因此,使直接注入带电性提高,从该方面上优选采用上述设定方式。
通过使微粒子介于微触带电部件与图像载体的接触部,由于微粒子的润滑效果(摩擦减小效果),可在不伴随有接触带电部件与图像载体之间大幅度的转矩的增加、接触带电部件和图像载体表面的显著磨损的情况下,设定速度差。
作为用于设定速度差的方案,可列举旋转驱动接触带电部件、在图像载体与该接触带电部件之间设定速度差的方式。
为了临时地将运送到带电部的图像载体上的转印残留调色剂均匀回收到接触带电部件上,最好使接触带电部件与图像载体按照相互相反的方向移动。例如,优选旋转驱动接触带电部件,另外,该旋转方向构成为与图像载体表面的移动方向相反的方向旋转。即,通过相反方向的旋转,暂时将图像载体上的转印残留调色剂拉离进行带电处理,由此,可优先地进行直接注入带电处理。
虽然可以使带电部件按照与图像载体表面的移动方向相同的方向移动的方式,使其具有速度差,但是由于直接注入带电的带电性依赖于图像载体的圆周速度与带电部件的圆周速度的比,故为了获得与相反方向相同的相对速度比,沿顺时针方向的带电部件的旋转次数大于反向时的相应次数,由此从旋转次数方面来说,使带电部件沿反方向移动是有利的。
作为表示相对速度差的指标,有由下述公式(3)表示的相对移动速度比。
数学公式5
相对移动速度比(%)=|(Vc-Vp)/Vp|×100           (3)
(在上述公式中,Vc表示带电部件表面的移动速度,Vp表示图像载体表面的移动速度,在接触部中带电部件表面沿与图像载体表面相同的方向移动时,Vc是与Vp相同符号的值)。
相对移动速度比通常在10~500%的范围内。
作为带电方法,包括有利用使用带电辊都件、带电刮板部件、带电刷部件等的带电部件的接触带电装置的方法。这些接触带电装置,具有不需要高电压、臭氧的发生减小的效果。
作为接触带电装置所采用的带电辊部件和带电刮板部件的材质,最好采用导电性橡胶,还可在其表面上设置脱模性膜。作为脱模性膜,可采用尼龙系树脂,PVdF(聚偏二氟乙烯),PVdC(聚偏二氯乙烯),氟丙烯酸树脂等。
具体来说,例如带电辊部件通过在金属芯上形成作为柔性部件的橡胶或发泡体等的中等电阻层做成。也可在其表面上设置上述脱模性膜。该中等电阻层通过树脂(例如,聚氨酯),导电性物质(例如,炭黑),硫化剂,发泡剂等配制成,其呈辊状而形成于金属芯上。然后,可根据需要,对其进行切削,表面研磨,进行整形,制作带电辊部件。
作为带电辊部件的材质,不限于橡胶或发泡体,其可为弹性体,作为弹性体的材料可以举出,在乙烯-丙烯-二烯聚乙烯(EPDM)、尿烷、丁二烯丙烯腈橡胶(NBR)、硅橡胶和异戊二烯橡胶等橡胶材料中,为了调整电阻,分散了碳黑或金属氧化物等导电性物质的橡胶材料,或使它们发泡形成的物质。另外,还可以不分散导电性物质或者与导电性物质并用,使用离子导电性的材料来调整电阻。
带电辊部件的阿斯卡(アスカ-)C硬度优选在50度或以下,进一步优选在25~50度的范围内。如果上述硬度过低,则由于形状不稳定,与图像载体的接触性变差,另外,在微粒子介于带电辊部件与图像载体之间的接触部的场合,容易磨削,损伤带电辊都件的表层,难于获得稳定的带电性。另外,如果上述硬度过高,则不仅无法在该带电辊部件与图像载体之间确保带电接触部,而且与图像载体表面的精细的接触性变差。作为上述阿斯卡(アスカ-)C硬度的具体的测定方法,采用高分子计器株式会社生产的阿斯卡(アスカ-)C硬度仪C型,在荷载为500g的条件下测定。
重要的是,带电辊部件具有弹性,获得与图像载体的充分的接触状态的同时,其用作具有对于移动的图像载体进行充电来说足够低的电阻的电极。另一方面,在图像载体上具有针孔等的缺陷部位的场合,必须防止电压的泄漏。为了获得足够的带电性和耐泄漏性,体积固有电阻值最好为在103~108Ωcm的范围内的电阻值,更优选在104~107Ωcm的范围内的电阻值。
按照下述这样,测定带电辊部件的体积固有电阻值。在将带电辊部件压靠于直径为30mm的圆筒状的铝筒上,以便对带电辊部件的金属芯施加1kg的总压力的状态,在金属芯和铝筒之间外加100V的电压,根据测定的电阻值、测定时的夹区宽度和弹性体的厚度进行计算。
最好,带电辊部件表面具有微小腔或凹凸部,以便在其中介在微粒子。即,最好在带电辊部件中,至少表面具有通过球形换算的平均腔直径在5~300μm的范围内的凹部,以该凹部作为空隙部的辊部件的表面的空隙率最好在15~90%的范围内。
如果上述平均腔直径不足5μm,空隙率大于90%,则将氧化锡微粒子保持在辊部件表面上的能力减小,氧化锡微粒子介在于上述接触部中的量减少,由此,具有一次带电性变差的倾向。进一步,由于与感光体的摩擦力变大,对图像载体的磨削增加,故该方式是不好的。如果平均腔直径超过300μm,空隙率小于15%,则带电辊部件与感光体的接触均匀性减少,一次带电性的带电均匀性,带电电位降低,使网目图像等,产生带电不均匀的图像不良,故该方式是不好的。
将带电辊部件按照抵抗弹性以规定的按压力相对于图像载体实现压力接触的方式设置,形成作为带电辊部件与图像载体的接触部的带电接触部。该带电接触部的宽度不受到特别限制,但是,为了使带电辊部件与图像载体之间获得稳定的紧密的密接性,上述宽度可大于等于1mm,优选大于等于2mm。
作为接触带电部件的带电刷材料,可使用在一般采用的纤维中分散导电材料进行电阻调整后的材料。作为纤维,可采用一般人们知道的纤维,例如尼龙、丙烯酸、人造丝、聚碳酸酯和聚酯等。作为导电材料可以使用一般公知的导电材料,例如镍、铁、铝、金、银等导电性金属,或者氧化铁、氧化锌、氧化锡、氧化锑、氧化钛等导电性金属氧化物,此外还可以举出碳黑等导电粉末。这些导电材料可以根据需要进行疏水化、根据调整电阻等目进行表面处理。在使用时,考虑到与纤维的分散性和生产率可以适当选择使用。
作为带电刷部件的材质,具体来说,包括ユニチカ(株式会社)生产的导电性人造纤维REC-B,REC-C,REC-M1,REC-M10,以及東レ(株式会社)生产的SA-7,日本蚕毛(株式会社)生产的サンダ-ロン,カネボウ生产的ベルトロン,クラレ(株式会社)生产的クラカ-ボ,在人造丝中分散有碳的材料,三菱人造丝(株式会社)生产的ロ-バル等,但是从环境稳定性方面来说,特别优选采用REC-B,REC-C,REC-M1,REC-M10。
作为接触带电部件采用导电性的带电刷部件的场合,包括有固定型与可旋转的辊状的类型。作为辊状带电刷部件,可在金属制的金属芯上,呈螺旋状卷绕例如,将导电性纤维制成起绒织物的带,由此形成滚筒刷。导电性纤维最好采用纤维的粗细在1~20旦尼尔(denier)的范围内(纤维直径在10~500μm左右),纤维的长度在1~15mm的范围内,刷的密度为每1平方英寸在1~30万根(每平方米,在1.5×107~4.5×108根的范围内)。
从一次带电均匀性的观点来说,带电刷部件优选采用刷密度更高的类型,优选由数根~数百根细微的纤维制作1根纤维。例如,还可按照300旦尼尔/50丝的方式,将50根300旦尼尔的细微的纤维绑扎在一起形成1根纤维,进行植毛。
但是,在本发明中,由于直接注入带电的带电程度主要依赖于带电部件与图像载体的带电接触部和其附近的微粒子的存在密度,故带电刷部件的选择范围较宽,即使该刷密度比单独地采用带电刷部件的场合小也没关系。
下面对图像载体与接触带电部件之间的接触部处的微粒子的存在量进行说明。
图像载体与接触带电部件之间的接触部处的微粒子的介在量如果过少,则无法充分地获得微粒子产生的润滑效果,图像载体与接触带电部件之间的摩擦变大,难于按照与图像载体保持速度差的方式使接触带电部件旋转驱动。即,如果驱动转矩过大,强制地使其旋转,则接触带电部件或图像载体的表面受到磨削。另外,还具有无法获得微粒子造成的接触机会增加的效果,无法获得足够的带电性能。另一方面,如果存在量过多,则微粒子从接触带电部件的脱落显著增加,对成像造成不利影响。
微粒子的存在量最好大于102个/mm2。如果上述量小于102个/mm2,则无法获得足够的润滑效果与接触机会增加的效果,带电性能降低,另外,在转印残留调色剂较多的场合,带电性能容易降低。
微粒子的涂敷密度范围还由下述情况确定,该情况指是按照哪种密度,将微粒子涂敷于图像载体上涂布,可获得均匀带电性的效果。在带电时,至少从其记录解析度的方面来说,必须要求均匀的接触带电。但是,就人眼的视觉特性来说,当空间频率在10cycles/mm或以上时,图像上的识别灰度数量是无限接近于1,即,无法识别浓度的不均匀。如果积极地利用该特性,则在使微粒子附着于图像载体上的场合,至少按照10cycles/mm或以上的密度,使微粒子存在于图像载体上,可进行直接注入带电。即使在例如不具有微粒子的地方产生微小的带电不良的情况下,由于因该带电不良而产生的图像上的浓度不均匀,由于发生在超过人的视觉特性的空间频率区域,故在图像方面不成为问题。
当微粒子的涂敷密度变化时,就在图像上是否可辨认作为浓度不均匀的带电不良的情况来说,如果涂敷微量的微粒子(例如10个/mm2),确认有对带电不均匀发生的抑制效果,但是,就图像上的浓度不均匀对于人体来说是否允许的方面来说,尚不够。
但是,如果其涂敷量为102个/mm2或以上,则性能得以改进,从而在图像的客观评价方面获得极好的结果。
在采用直接注入带电方式的带电中,与放电带电方式根本不同,按照带电部件确实与图像载体接触的方式实现带电,但是,同样在将微粒子过量地涂敷于图像载体上的情况下,必然具有无法接触的部分。然而,通过进行积极地利用人体的视觉特性的微粒子的涂敷,从实际应用上解决该问题。
但是,在直接注入带电方式用作显影兼清洁的图像形成中的图像载体的均匀带电处理的场合,发生转印残留调色剂的带电部件的附着,混入造成的带电特性降低。为了抑制转印残留调色剂向带电部件的附着和混入,或克服转印残留调色剂向带电部件的附着或混入造成对带电特性的不利影响,进行良好的直接注入带电,最好,图像载体与接触带电部件之间的接触部的微粒子的存在量大于等于102个/mm2
还有,微粒子的涂敷量的最大值为微粒子在图像载体上均匀地涂敷1层的程度,即使按照在其以上的量涂敷的情况下,并非效果提高,与此相反,产生将曝光光源遮挡或使其散射的弊端。
由于涂敷密度最大值伴随微粒子的粒径而变化,故无法一概而论,而是以微粒子在图像载体上均匀地涂敷1层的量为最大值。
如果微粒子的量超过5×105个/mm2,则微粒子相对图像载体的脱落显著增加,无论微粒子本身的透光性无,都具有产生对图像载体的曝光量不足的倾向。当微粒子的量小于等于5×105个/mm2时,可将脱落的微粒子的量抑制在较小值,可改善曝光的妨碍情况。微粒子的存在量在102~5×105个/mm2的范围内,进行图像形成,当测定在图像载体上脱落的微粒子的量时,该量在102~5×105个/mm2的范围内,没有成像上的弊端。因此,微粒子的优选的存在量的上限为5×105个/mm2
下面对带电接触部的微粒子的存在量和潜像成形工序的图像载体上的微粒子存在量的测定方法进行描述。最好在接触带电部件与图像载体的接触面部,对微粒子的存在量进行直接测定,但是在形成接触部的接触带电部件的表面与图像载体的表面之间设定速度差的场合,在与接触带电部件之前,存在于图像载体上的大量的微粒子沿反向移动的同时,与所接触的带电部件剥离,由此,按照本发明,以到达接触面部之前的接触带电部件的表面的微粒子量为存在量。
具体来说,在未外加带电偏压的状态,停止图像载体和带电辊部件的旋转,通过视频显微镜(OLYMPUS生产的OVM1000N)和数字静态记录器(DELTIS生产的SR-3100),拍摄图像载体和带电辊的表面。对于带电辊部件,按照与图像载体接触相同的条件,使该带电辊部件与玻璃载片接触,从该玻璃载片的背面,通过视频显微镜,借助1000倍的物镜,对接触面的10个部位进行拍摄。为了根据所获得的数字图像,对相应的微粒子进行区域分离,故按照具有某个阈值的方式进行2值化处理,采用所需的图像处理软件,测定微粒子存在区域的数量。另外,同样对于图像载体的存在量,借助同样的视频显微镜,在图像载体上进行拍摄,进行同样的处理而测定。
在本发明的图像形成方法中的带电工序中,使接触带电部件与图像载体(被带电体)接触,对该接触带电部件外加规定的带电偏压,使被带电体面带电为规定的极性,电位。相对于接触带电部件的外加带电偏压也可仅仅为直流电压,可获得良好的带电性,但是,也可在直流电压上叠加交流电压。
作为交流电压的波形,可适当地采用正弦波,矩形波,三角形波等。另外,也可为通过周期性地接通/断开直流电源的方式形成的脉冲波。象这样,作为交流电压的波形,可采用其电压值周期性地变化的脉冲。
在本发明中,优选使带电部件与图像载体接触,其为不产生臭氧、确保环保的优选形式。另外,在带电工序中,优选通过对带电部件外加直流电压,使图像载体带电或在带电部件上外加在直流电压上叠加具有小于外加直流的放电起始电压Vth(V)的2倍的峰间电压的交流电压而形成的电压,还可在带电部件上叠加在直流电压上叠加具有小于外加直流的放电起始电压Vth(V)的峰间电压的交流电压而形成的电压,由此,使图像载体带电。
作为当采用一个形式的辊部件时的优选的工艺条件,采用下述条件,即,辊部件相对于图像载体的接触压力在4.9~490N/m(5~500g/cm)的范围内,使用直流电压或在直流电压上叠加了交流电压的电压。在采用在直流电压上叠加交流电压的电压的场合,最好采用下述条件,即,交流电压在0.5~5kVpp的范围内,交流频率在50~5kHz的范围内,直流电压在±0.2~±5kV的范围内。
下面对图像载体进行描述。作为图像载体,例如可采用感光体。在本发明的图像形成方法中,最好,图像载体的最外面层的体积固有电阻值在1×109~1×1014Ωcm的范围内,由此,可赋予更加良好的带电性。在采用电荷直接注入的带电方式中,通过降低故带电体侧的电阻,可效率良好地进行电荷的接收。为此,作为最外面层的体积固有电阻值优选1×1014Ωcm或以下。另一方面,由于图像载体必须按照一定时间保持静电潜像,故最外面层的体积固有电阻值优选在1×109Ωcm或以上。
另外,由于图像载体为电子照相感光体,该电子照相感光体的最外面层的体积固有电阻值在1×109~1×1014Ωcm的范围内,故即使在工艺速度较高的装置中,也可提高足够的带电性。
此外,本发明的图像载体的最外面层的体积固有电阻值的测定通过下述方式进行,该方式为:在表面上进行了金蒸镀处理的聚对苯二甲酸乙二醇酯(PET)膜上制作由与图像载体的最外面层相同组分构成的层,采用体积固有电阻测定仪(ヒユ-レツトパツカ-ド株式会社生产的4140B pA MATER),在23℃、65%的环境下,外加100V的电压对其进行测定。
另外,优选图像载体为感光鼓或感光带等的感光体,其采用非晶质硒,CdS,ZnO2,非晶质硅或有机系感光物质那样的光导电性物质,特别优选具有非晶质硅感光层,有机感光层的感光体。
作为有机感光层,感光层既可为在同一层中包含电荷发生物质和电荷输送物质的单一层的类型,也可为具有电荷输送层和电荷发生层的功能分离型感光层。优选的一个实例为在导电性基体上,依次层压电荷发生层,电荷输送层的叠层型感光层。
通过将图像载体的最外面层的体积固有电阻值调整到1×109~1×1014Ωcm的范围内,可更加稳定、均匀地进行带电处理。
为了通过将图像载体的表面电阻调整到上述范围内,使电荷注入更加有效,或促进该电荷注入,特别优选电荷注入层作为图像载体的电子照相感光体的最外面层而设置。
作为设置电荷注入层的形式,例如:有
(i)硒、非晶质硅等的无机感光体,或在单一层型有机感光体上设置电荷注入层的场合;
(ii)作为功能分离型有机感光体的电荷输送层,使由电荷输送物质和树脂构成的外面层同时具有作为电荷注入层的功能的场合(例如作为电荷输送层,使电荷输送物质和导电性微粒子分散于树脂中的或根据电荷输送物质本身或其存在状态,使电荷输送层具有作为电荷注入层的功能的场合);
(iii)进一步在功能分离型有机感光体上,设置作为最外面层的电荷注入层的场合等。
但是优选,最外面层的体积固有电阻值在1×109~1×1014Ωcm的范围内。
作为电荷注入层,例如通过金属蒸镀膜等的无机层或使导电性微粒子分散于粘接树脂中的导电性微粒子分散树脂层等构成,蒸镀膜通过蒸镀、导电性微粒子分散树脂层通过浸渍涂敷法,喷射涂敷法,辊筒涂布的涂敷法和光束涂敷法等的适合的涂敷法进行涂敷而形成。
再有,也可采用在绝缘性的粘接树脂中,混合具有透光性的高离子导电性的树脂,或使其定生共聚反应而形成的层,或在中等电阻中通过具有光导电性的某种树脂单体形成的层。
其中,优选图像载体的最外面层为分散有至少由金属氧化物形成的导电性微粒子的树脂层。采用的该层的原因在于:通过使电子照相感光体的表面的电阻降低,以更高的效率接收电荷,并且在图像载体保持静电潜像的期间,使表面电阻降低,由此可抑制静电潜像电荷扩散而造成的潜像的模糊或流动。
在图像载体的最外面层为导电性微粒子分散层的场合,为了防止已分散的导电性微粒子造成的入射光的散射,导电性微粒子的粒径必须小于入射光的波长,作为所分散的导电性微粒子的粒径优选小于等于0.5μm。导电性微粒子的含量相对于最外面层的总质量,最好在2~90质量%的范围内,更优选在5~70质量%的范围内。在小于2质量%的场合,难于获得所需的固有电阻值,另外,在大于90质量%的场合,容易发生膜强度降低、电荷注入层磨削的情况,具有感光体的使用期限变短的倾向,另外,容易产生电阻降低、静电潜像电位变动造成的图像不良的情况。
最外面层的层厚最好在0.1~10μm的范围内,从获得静电潜像的轮廓的清晰度的方面来说,特别优选上述层厚度小于等于5μm,从电荷注入层的耐久性方面来说,上述层厚度更优选大于等于1μm。
另外,电荷注入层的粘接树脂也可与用于电荷注入层下方的层的粘接树脂相同,但是在此场合,由于在电荷注入层的涂敷时,具有将下方的层(例如电荷输送层)的涂敷面损坏的可能性,故必须对成形方法进行特别选择。
此外,在本发明中,优选使图像载体的最外面层具有脱模性,优选图像载体表面相对于水的接触角度在85度或以上,更优选该接触角度在90度或以上。
作为使最外面层具有脱模性的方式,可列举:
(1)构最外面层的树脂本身采用表面能量较低的类型;
(2)在最外面层中,添加赋予憎水、亲油性这样的添加剂;
(3)在最外面层中,分散具有较高的脱模性的润滑剂微粒子;等等。作为(1)的实例,可通过在树脂结构中,导入含氟基、含硅基等方式实现。作为(2)的方式,可将表面活性剂等作为添加剂。作为(3)的方式,可例举从氟系树脂,有机硅树脂,或聚烯烃系树脂中选择出的至少1种或以上的润滑剂微粒子。
作为氟系树脂,可列举例如聚四氟乙烯,聚偏二氟乙烯,氟化碳等。
通过这些方式,可使感光体表面相对于水的接触角度在85度或以上,可使调色剂的转印性和感光体的耐久性进一步提高。最好,上述接触角度在90度或以上。其中,最好采用将聚四氟乙烯树脂粒子作为润滑剂微粒子的分散的方式。
为了使表面包含这些润滑剂微粒子,如果是在最外面层的粘接树脂中分散有润滑剂微粒子,或以原始树脂为主体而形成的有机感光体,则可不设置新的外面层,使润滑剂微粒子分散于最外面层中。润滑剂微粒子的添加量相对于最外面层的总质量在1~60质量%的范围内,更优选在2~50质量%的范围内。如果小于1质量%,则调色剂的转印性和感光体的耐久性改善的效果不充分,如果超过60质量%,则膜的强度降低,或感光体的入射光量显著降低,故最好不采用这些方式。
图8表示作为最外面层设置有电荷注入层的感光体的层结构的一个实例。即,在导电性基体(铝基体)11上,依次叠置涂敷导电层12,正电荷注入防止层13,电荷发生层14,电荷输送层15,在由此形成的一般的有机感光鼓上涂敷电荷注入层16,由此提高带电性能。
电荷注入层16的体积固有电阻值在1×109~1×1014Ωcm的范围内。即使在如本方案那样不设置电荷注入层16的情况下,例如,在电荷输送层15在上述电阻值的范围内的场合,仍可获得同等的效果。例如,即使在采用最外面层的固有电阻值约为1×1013Ωcm的非晶质硅感光体的情况下,仍可同样地获得良好的带电性。也可使导电性微粒子分散于电荷注入层中,根据需要采用上述方式。
下面对本发明所采用的感光体的一个优选形式进行描述。
作为导电性基体,可采用铝、不锈钢那样的金属;具有铝合金、氧化铟-氧化锡合金的被覆膜层的塑料;浸渍有导电性粒子的纸、塑料、具有导电性聚合物的塑料的圆筒状柱面和膜。
在这些导电性基体上,还可设置下伸层,以便提高感光层的粘接性,改善涂敷性,保护基体,覆盖基体上的缺陷,改善基体的电荷注入性,防止感光层受到电破坏等。该下伸层由聚乙烯醇,聚-N-乙烯咪唑,聚氧化乙烯,乙基纤维素,甲基纤维素,硝化纤维素,乙烯-丙烯酸共聚物,聚乙烯醇缩丁醛,酚醛树脂,酪蛋白,聚酰胺,共聚尼龙,骨胶,明胶,聚氨酯,氧化铝那样的材料形成。该膜厚通常在0.1~10μm的范围内,最好在0.1~3μm的范围内。
电荷发生层可通过将偶氮系颜料、酞菁系颜料、靛蓝系颜料、二萘嵌苯系颜料、多环醌系颜料、squarilium染料、吡喃盐类、噻喃盐类、三苯基甲烷系色素或者硒或非晶态硅等的无机物质等的电荷发生物质分散于适当的粘结树脂中进行涂布或者通过蒸镀来形成的。作为粘结树脂,可在较广范围的树脂中选择,可举出例如聚碳酸酯树脂、聚酯树脂、聚乙烯醇缩丁醛树脂、聚苯乙烯树脂、丙烯酸树脂、甲基丙烯酸树脂、酚醛树脂、有机硅树脂、环氧树脂、乙酸乙烯酯树脂。在电荷发生层中含有的粘接树脂量为80质量%或以下,优选为0~40质量%。另外,电荷发生层的膜厚优选5μm或以下,特别优选0.05~2μm。
电荷输送层具有在电场存在下接收来自电荷发生层的电荷载体,输送该电荷载体的机能。电荷输送层通过根据需要使电荷输送物质和粘结树脂一起溶解于溶剂中,进行涂布来形成,其膜厚一般是5~40μm。作为电荷输送物质,可举出在主链或者侧链具有联苯、蒽、芘和菲等结构的多环芳香族化合物;像吲哚、咔唑、二唑和吡唑啉等的含氮环式化合物;腙化合物;苯乙烯基化合物;硒;硒-碲;非晶态硅;硫化镉。
作为使这些电荷输送物质分散的粘结树脂,可举出聚碳酸酯、聚酯树脂、聚甲基丙烯酸酯、聚苯乙烯树脂、丙烯酸酯树脂和聚酰胺树脂等的树脂;聚N-乙烯基咔唑和聚乙烯基蒽等有机光导电性聚合物。
也可将上述的导电性微粒子分散层和/或接触角度大于等于85度的层作为最外面层,但是还可独立于它们,将保护层作为最外面层。
作为保护层的树脂,按照单独或2种或以上组合的方式可采用聚酯,聚碳酸酯,丙烯酸树脂,环氧树脂,酚醛树脂,或这些树脂的硬化剂。
此外,也可将导电性微粒子分散于保护层的树脂中。作为导电性微粒子的实施例,可列举金属,金属氧化物,最好为氧化锌,氧化钛,氧化锡,氧化锑,氧化铟,氧化铋,覆盖有氧化锡的膜氧化钛,覆盖有锡膜的氧化铟,覆盖有锑膜的氧化锡,氧化锆的超微粒子。这些粒子既可单独地使用,也可按照2种或以上混合的方式使用。
在一般将导电性微粒子分散于保护层中的场合,为了防止导电性微粒子的入射光的散射,导电性微粒子的粒径必须较小,本发明中的分散于保护层中的导电性微粒子的粒径最好小于0.5μm。另外,该微粒子在保护层中的含量相对保护层的总质量,最好在2~90质量%的范围内,特别是最好在5~80质量%的范围内。保护层的膜厚最好在0.1~10μm的范围内,最好在1~7μm的范围内。
本发明的图像形成方法对于采用表面为有机化合物的感光体,进行接触转印方法的场合特别有效。其原因在于:在有机化合物形成感光体的外面层的场合,具有与采用无机材料的其它的感光体相比较,与调色剂粒子中包含的粘接树脂的粘接性较强,转印性更低的倾向。
另外,在本发明的图像形成方法采用接触转印方法的场合,作为所采用的感光体的外面物质,可列举例如有机硅树脂,聚偏二氯乙烯,苯乙烯-氯乙烯,苯乙烯-丙烯腈,苯乙烯-甲基丙烯酸甲酯,苯乙烯,聚对苯二甲酸乙二醇酯和聚碳酸酯,但是并不限于这些成分,还可采用其它的单体,上述粘接树脂之间的共聚物和共混物。
此外,适合采用接触转印方法的本发明的图像形成方法,可特别有效地用于具有直径小于等于50mm的较小直径的感光体的图像形成装置。即,在较小直径的感光体的场合,相对于同一线压的曲率较大,容易产生接触部的压力集中。人们认为同样在带式感光体中具有同一现象,但是本发明对于转印区域的曲率半径在25mm或以下的图像形成装置也有效。
下面对静电潜像成形工序进行描述。按照本发明的图像形成方法,最好采用通过图像曝光,在图像载体的带电面上写入作为静电潜像的图像信息的曝光工序。即,在图像载体的带电面上,形成静电潜像的静电潜像成形装置,优选为图像曝光装置。作为形成静电潜像用的图像曝光装置,不限于形成数字潜像的激光扫描曝光装置,可列举通常的模拟的图像曝光,或LED等的其它的发光元件,或荧光灯等的发光元件与液晶快门等的组合形式,只要是能形成与图像信息相对应的静电潜像的形式都可以。
图像载体也可为静电记录电介质等,在此场合,在均匀地按照规定的极性、电位使该电介质面一次性带电后,通过除电针头、电子枪等的除电装置,有选择地进行除电处理,以写入方式形成所需的静电潜像。
接着,对显影工序进行描述。在本发明的图像形成方法的显影工序中,通过本发明的调色剂,对图像载体的静电潜像进行显影。首先,对在显影中所使用的调色剂载体进行描述。
本发明所采用的调色剂载体最好采用由铝、不锈钢那样的金属,或合金形成的导电性圆筒(显影辊)。另外,既可通过具有充分的机械强度和导电性的树脂组合物形成导电性圆筒,也可采用导电性橡胶辊。此外,不限于上述那样的圆筒状,也可具有旋转驱动的循环皮带的形式。
在本发明中,最好在调色剂载体上形成用量在5~50g/m2的范围内的调色剂层。如果调色剂载体上的调色剂量小于5g/m2,则无法获得足够的图像浓度,产生调色剂的带电过多造成的调色剂层的不均匀,如果调色剂载体上的调色剂量大于50g/m2,则容易产生调色剂飞散。
还有,对于本发明所采用的调色剂载体的表面粗糙度,JIS中心线平均粗糙度(Ra)最好在0.2~3.5μm的范围内。当Ra小于0.2μm时,则具有调色剂载体上的带电量变高,显影性不充分的倾向。如果Ra超过3.5μm,则具有调色剂载体上的调色剂涂敷层产生不均匀,造成图像的浓度不均匀的倾向。进一步优选上述Ra在0.5~3.0μm的范围内。
在本发明中,调色剂载体的表面粗糙度Ra相当于根据JIS表面粗糙度“JISB0601”,采用表面粗糙度测定仪(サ-フコ-ダSE-30H,株式会社小坂研究所社生产)测定的中心线平均粗糙度。具体来说,从粗糙度曲线,沿中心线的方向,抽取作为测定长度a的2.5mm的部分,当由X轴表示该抽取部分的中心线,由Y轴表示纵倍率的方向,粗糙度曲线由y=f(x)表示时,则通过下述公式(4)求出的值由微米(μm)表示。
(数学公式6)
Ra = 1 / a ∫ 0 a | f ( x ) | dx - - - ( 4 )
为了使本发明的调色剂具有较高的带电能力,最好在显影时,对调色剂的总带电量进行控制,本发明的调色剂载体的表面,优选由分散有导电性微粒子和/或润滑剂的树脂层覆盖。
在调色剂载体的树脂层中,树脂材料中包含的导电性微粒子,按照120kg/cm2的压力进行加压后的体积固有电阻值优选在0.5Ωcm或以下。
作为调色剂载体的树脂层中所采用的导电性微粒子,优选碳微粒子,碳微粒子与结晶性石墨粒子的混合物,或结晶性石墨粒子。调色剂载体中所采用的导电性微粒子的粒径优选在0.005~10μm的范围内。
调色剂载体的树脂层中所采用的树脂,可采用例如,苯乙烯系树脂、乙烯基系树脂、聚醚砜树脂、聚碳酸酯树脂、聚苯醚树脂、聚酰胺树脂、氟树脂、纤维素系树脂、丙烯酸系树脂等热塑性树脂,环氧树脂、聚酯树脂、醇酸树脂、酚醛树脂、三聚氰胺树脂、聚氨酯树脂、尿素树脂、有机硅树脂、聚酰亚胺树脂等热固性或者光固化性树脂等。
其中,更优选使用有机硅树脂、氟树脂等具有脱模性,或者聚醚砜树脂、聚碳酸酯树脂、聚苯醚树脂、聚酰胺树脂、酚醛树脂、聚酯树脂、聚氨酯树脂、苯乙烯系树脂等的机械性能优良的树脂。特别优选酚醛树脂。
调色剂载体的树脂层中所采用的导电性微粒子,相对于100质量份的树脂成分,最好在10~200质量份的范围内使用。在将碳微粒子与结晶性石墨粒子组合使用的场合,最好相对100质量份的结晶性石墨粒子,碳微粒子在10~500质量份的范围内使用。优选分散有导电性微粒子的调色剂载体的树脂层的体积固有电阻值在10-6~106Ωcm的范围内,更优选在10-1~106Ωcm的范围内。
另外,在本发明的图像形成方法的显影工序中,由于通过使保持调色剂、将其传送到显影部的调色剂载体的移动速度,相对于图像载体的移动速度具有速度差,可充分地将调色剂粒子和微粒子从调色剂载体侧供给到图像载体侧,故可获得良好的图像。
保持调色剂的调色剂载体表面,既可沿与图像载体表面的移动方向相同的方向移动,也可沿相反的方向移动。在该移动方向为相同方向的场合,优选其相对图像载体的移动速度的比在1.05倍或以上。如果小于1.05倍,则有图像品质差的情况。移动速度比越高,供给显影部的调色剂的量越多,相对于静电潜像,调色剂的脱离频率越大,通过反复地进行将不需要的部分刮落,将其提供给必要的部分的操作,获得忠实于静电潜像的图像。速度比是通过下述公式求出的值。
(数学公式7)
速度比(倍)=调色剂载体速度/图像载体速度
具体来说,调色剂载体表面的移动速度相对于图像载体表面的移动速度优选为1.05~3.0倍的速度。如果超过3.0倍,则容易促使耐久时的调色剂的性能变差。
为了使非接触显影方法适合用于本发明,优选按照一定的间隙设置调色剂载体和图像载体,调色剂载体上的调色剂层的厚度小于上述间隙。显影工序适合采用下述非接触显影方法,在该方法中,使调色剂层与图像载体进行非接触,使图像载体的静电潜像以调色剂像的形式进行可视化,由此,即使在将电阻值较小的微粒子添加于调色剂中的情况下,也不发生显影偏压注入到图像载体上造成的显影翳影。由此,可获得良好的图像。
另外,在本发明的图像形成方法的显影工序中,为了获得无翳影的高画质,优选通过下述显影工序进行显影,在该显影工序中,在调色剂载体上,按照小于调色剂载体与图像载体(例如感光体)之间的最近距离(S-D之间)的层厚度,涂敷调色剂,外加交流偏压,进行显影处理。通过限制调色剂载体上的调色剂的调色剂层厚限制部件,按照感光体与调色剂载体的最近间隙大于调色剂载体上的调色剂层厚的方式设定,但是,从使调色剂均匀地带电的观点来说,特别优选调色剂载体上的调色剂层厚限制部件是通过调色剂与调色剂载体接触的弹性部件。
此外,最好调色剂载体按照具有100~1000μm的间隙的方式与图像载体相对地设置,更优选按照具有120~500μm的间隙的方式与图像载体相对地设置。
如果调色剂载体与图像载体之间的间隙小于100μm,由于相对于间隙的振动的调色剂的显影特性的变化加大,故难于批量生产满足稳定的图像性的图像形成装置。如果调色剂载体与图像载体之间的间隙大于1000μm,则转印残留调色剂朝向显影装置的回收性降低,容易产生回收不良造成的翳影。另外,由于相对于图像载体上的静电潜像的调色剂的跟踪性降低,故容易导致图像解析度降低,图像浓度降低等的画质降低。
在本发明中,优选通过对调色剂载体外加交替电场进行显影的显影工序显影,外加显影偏压也可为将交流电压叠加于直流电压上而形成的偏压。
交流电压的波形可适当地使用正弦波,矩形波,三角形波等。另外,也可为通过使直流电源周期性地通/断而形成的脉冲。这样,交流电压的波形可采用其电压值周期性地变化的这样的脉冲。
最好在调色剂载体和图像载体之间,峰到峰之间的电场强度在3×106~10×106V/m的范围内,频率在100~5000Hz的范围内的交替电场作为显影偏压而施加。如果外加于调色剂载体与图像载体之间的显影偏压的电场强度小于3×106V/m,则朝向显影装置的转印残留调色剂的回收性降低,容易产生回收不良造成的翳影。另外,由于显影力较小,故容易造成图像浓度降低的图像。另一方面,如果显影偏压的电场强度大于10×106V/m,则容易产生显影力过大造成的细线的破坏而产生的解象度降低,翳影增加造成的画质的降低,容易产生显影偏压朝向图像载体的泄漏造成的图像缺陷。另外,如果外加于调色剂载体与图像载体之间的显影偏压的交流成分的频率小于100Hz,则调色剂相对静电潜像的脱离附着率减小,转印残留调色剂朝向显影装置的回收性容易降低,图像品质也容易下降。如果显影偏压的交流成分的频率大于5000Hz,则由于可伴随电场的变化的调色剂变少,转印残留调色剂的回收性降低,故显影性容易下降。
通过将交替电场作为显影偏压而施加等方式,则由于即使在调色剂载体与图像载体之间具有高电位差的情况下,仍不产生通过显影部的向图像载体的电荷注入,故容易使添加于调色剂载体侧的调色剂中的微粒子均匀地转移到图像载体侧,均匀地将微粒子涂敷于图像载体上,在带电部进行均匀的接触,可获得良好的带电性。
下面对本发明的图像形成方法中的接触转印工序进行具体描述。在本发明中,从图像载体接收调色剂像的转印的转印材料,也可为转印鼓等的中间转印体。在转印材料为中间转印体的场合,通过从中间转印体向纸等进行再次转印,便获得调色剂像。
“接触转印工序”指下述工序,在该工序中,感光体在通过转印材料与转印部件接触的同时,以静电方式将调色剂像转印到转印材料上,作为转印部件的接触压力,优选线压大于等于2.9N/m(3g/cm),更优选大于19.6N/m(20g/cm)。如果作为接触压力的线压小于2.9N/m(3g/cm),则容易产生转印材料的传送发生偏离、发生转印不良的情况,故最好不采用该方式。
另外,作为进行接触转印工序用的转印装置,可采用具有转印辊或转印带等的接触转印部件的装置。图4表示转印辊的结构的一个实例。该转印辊34至少由金属芯34a与导电性弹性层34b构成,导电性弹性层通过下述弹性体制成,该弹性体为分散有碳等的导电材料的聚氨酯,乙烯-丙烯-二烯聚乙烯(EPDM)等,其体积固有电阻值在106~1010Ωcm的范围内,通过转印偏压电源35,外加转印偏压。
下面参照图5,对作为本发明的一种形式的显影兼清洁处理(无清洁器的系统)的图像形成方法进行具体描述。
图5为采用本发明的图像形成方法的图像形成装置的一个实施例的示意性组成图。该图像形成装置是为采用转印式电子照相工艺的显影兼清洁处理(无清洁器的系统)的激光打印机(记录装置)。该图给出了下述非接触显影的实施例,其包括处理盒,在该盒中去除了具有清洁刮板等的清洁部件的清洁装置,显影剂采用磁性单成分系调色剂,调色剂载体上的调色剂层与图像载体按照非接触的方式设置。
作为图像载体的旋转筒型OPC感光体21,沿箭头X的方向按照一定速度的圆周速度(处理速度)被旋转驱动。作为接触带电部件的带电辊22按照以规定的按压力,抵抗弹性实现压力接触的方式设置于感光体21上。符号n表示感光体21与带电辊22之间的带电接触部。带电辊22在作为感光体21的接触面的带电接触部n处,沿相反方向(与感光体表面的移动方向相反的方向)被旋转驱动。即,作为接触带电部件的带电辊22的表面相对于感光体21的表面具有速度差。
在带电辊22的表面上,按照涂敷量均匀的方式,涂敷前述的微粒子。
从带电偏压外加电源将直流电压作为带电偏压外加于带电辊22的金属芯22a上。在这里,按照基本上与带电辊22的外加电压相等的电位,以直接注入带电方式,对感光体21的表面进行带电处理。
通过作为曝光装置的曝光器23,在感光体21的表面上,形成与所需的图像信息相对应的静电潜像。通过显影装置24将感光体21的表面上的静电潜像作为调色剂像进行显影处理。
显影装置24为非接触型的反转显影装置。作为调色剂载体的显影套筒24a,在作为感光体21的相对部的显影部a(显影区域)处,沿与感光体21的旋转方向相同的方向,以一定速度的圆周速度旋转。通过作为调色剂层厚限制部件的弹性刮板24c,以较薄的层将调色剂涂敷于显影套筒24a上,提供电荷。涂敷于显影套筒24a上的调色剂通过显影套筒24a的旋转,被传送到感光体21与作为显影套筒24a的相对部的显影部a处。另外,通过显影偏压外加电源(图中未示出),在显影套筒24a上,外加显影偏压。此外,在显影套筒24a与感光体21之间的a处进行单成分跳动显影。另外,标号24b表示向显影套筒24a供给调色剂的同时,对调色剂进行搅拌的部件。
作为接触带电部件的转印辊25,按照一定的线压与感光体21压力接触,形成转印接触部b。从图中未示出的供纸部,在规定的时刻,将转印材料P供给到该转印接触部b上,并且在转印辊25上,从转印偏压外加电源,外加规定的转印偏压,由此,依次将感光体21侧的调色剂像转印到供给到转印接触部b处的转印材料P的面上。
接着,采用一定的辊电阻值的材料,外加直流电压进行转印处理。即,以夹持方式传送被导入到转印接触部b处的转印材料P,在其表面侧,以静电力和按压力转印保持形成于感光体21的表面上的调色剂像。
供给到转印接触部b处、接受了感光体21侧的调色剂像的转印的转印材料P,与感光体1的表面分离,将其导入热定影方式的定影器26中,接受调色剂像的定影处理,然后,作为图像形成物(照片、复印件),排到图像形成装置之外。
在该打印机中,已去除了清洁装置,相对于转印材料P的调色剂像转印后的感光体21的表面上转印残留的调色剂,未通过清洁器去除,其通过不伴随感光体1的旋转而动作的带电部n,到达显影部a处,在显影装置24处,对其进行显影兼清洁处理(回收)。
在图5中,形成有处理盒27,该处理盒27同时具有感光体21、带电辊22和显影装置24,该处理盒27可相时打印机主体自由装卸。形成处理盒的处理装置的组合等不限于上述的形式,其是任意的。例如,可考虑采用显影装置与感光体的组合,显影装置与带电辊的组合,显影装置与感光体和带电辊的组合等。标号28表示处理盒的装卸导向保持部件。
[实施例]
下面通过制造例和实施例,对本发明进行更加具体的描述,但是该描述不构成对本发明的限定。另外,以下的配比中的份数全部是质量份。
(A-1)微粒子的制造
①微粒子A-1的制造
按照钨(W)与锡(Sn)的摩尔比(W/Sn)为0.05的方式,混合氧化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液。按照锡元素∶氧化钛的质量比为2.2∶1的比例,在90℃的温度下对上述混合水溶液进行搅拌的同时,将该混合水溶液滴入使200质量份的形成母体粒子的氧化钛分散于2000质量份的水中而形成的悬浮溶液中,然后,添加盐酸,对所生成的共沉淀物进行过滤、干燥处理。
在氮气氛的电炉中(600℃),对该干燥品进行焙烧,进行破碎、分级处理,将体积平均粒径调整到0.8μm。所获得的微粒子,Sn/B(质量比)=2.0,W/Sn(摩尔比)=0.045,体积电阻=9×103Ωcm。将其作为微粒子A-1。
②微粒子A-2的制造
在微粒子A-1的制造中,按照摩尔比(W/Sn)为0.015的方式,改变氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合比例,另外,改变混合溶液相对于氧化钛的比例以及焙烧条件,除此以外,按照相同的方法制造,获得体积平均粒径为0.9μm、体积电阻为3×103Ωcm的微粒子A-2。另外,在所获得的微粒子A-2中,Sn/B(质量比)=0.01,W/Sn(摩尔比)=0.01。
③微粒子A-3的制造
在微粒子A-1的制造中,按照摩尔比(W/Sn)为0.10的方式,改变氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合比例,另外,改变混合水溶液相对于氧化钛的比例以及焙烧条件,除此以外,按照相同的方法制造,获得体积平均粒径为0.8μm、体积电阻为1×104Ωcm的微粒子A-3。另外,在所获得的微粒子A-3中,Sn/B(质量比)=1.6,W/Sn(摩尔比)=0.10。
④微粒子A-4的制造
在微粒子A-1的制造中,采用球状二氧化硅代替氧化钛,按照摩尔比(W/Sn)为0.10的方式,改变氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合比例,另外,改变混合水溶液相对于球状二氧化硅的比例以及焙烧条件,除此以外,按照相同的方法制造,获得体积平均粒径为2.1μm,体积电阻为3×104Ωcm的微粒子A-4。另外,在所获得的微粒子A-4中,Sn/B(质量比)=0.8,W/Sn(摩尔比)=0.10。
⑤微粒子A-5的制造
在微粒子A-1的制造中,采用粒径不同的氧化钛,将W/Sn改为0.075,另外改变相对于氧化钛的混合水溶液的比例,对其进行焙烧。对该焙烧品进行破碎、分级,获得体积平均粒径为0.4μm,体积电阻为2×104Ωcm的微粒子A-5。另外,所获得的微粒子A-5,Sn/B(质量比)=1.8,W/Sn(摩尔比)=0.075。
(A-2)调色剂粒子的制造
①调色剂粒子A-1的制造
通过亨舍尔混合机,将聚酯树脂(Tg:63℃,分子量:Mp7800,Mn3500,Mw61000)100质量份,炭黑5质量份,单偶氮金属配合物(负电荷控制剂)2质量份,低分子量乙烯-丙烯的共聚物(吸热主峰温度:84℃,放热主峰值温度:86℃)3.5质量份进行混合后,在设定在135℃的温度下的双轴混炼机中对其进行混炼。混炼物冷却后,通过锤式粉碎机对其进行粗级粉碎,然后,通过机械式粉碎机对其进行粉碎,接着通过气流式分级机,对其进行分级处理,获得重量平均粒径为6.8μm的非磁性的调色剂粒子A-1。
②调色剂粒子A-2的制造
在调色剂粒子A-1的制造中,将聚酯树脂改为苯乙烯-丙烯酸丁酯的共聚物(Tg:59℃,分子量:Mp18000,Mn13000,Mw315000),除此以外,按照相同方法进行制造,获得重量平均粒径为7.9μm的非磁性的调色剂粒子A-2。
③调色剂粒子A-3的制造
按照与调色剂粒子A-1的制造例相同的方法,采用苯乙烯-丙烯酸丁酯-马来酸丁半酯的共聚物(Tg:63℃,分子量:Mp15500,Mn6800,Mw240000)100质量份,磁性氧化铁(平均粒径:0.22μm,σs:83.8Am2/kg)90质量份,单偶氮金属配合物(负电荷控制剂)2.5质量份,低分子量乙烯-丙烯的共聚物3质量份,进行制造,获得重量平均粒径为7.1μm,具有磁性的调色剂粒子A-3。
[实施例A-1]
(1)调色剂A-1的制造
在调色剂粒子A-1(100质量份)中,添加通过微粒子A-1(1.5质量份)与二甲基硅油处理的疏水性二氧化硅细微粉末(1.2质量份),将其添加于亨舍尔混合机中,调制调色剂A-1。微粒子存在于调色剂表面的比例为每个调色剂粒子5.0个,微粒子与调色剂的平均直径的粒径比为0.09。
(2)载体A-1的制造
作为双组分显影剂用显影载体,制作下述显影载体A-1,其中,相对于45μm的铁氧体粒子100质量份,涂敷丙烯酸树脂0.8质量份。
(3)双组分系显影剂A-1的调制
相对显影载体A-1:100质量份,混合7质量份调色剂A-1,获得双组分系显影剂A-1。
采用所获得的显影剂,通过或以下的方法进行评价。
评价方法
作为图像形成装置,将具有a-Si感光体的数字复印机(佳能生产:GP405)的显影部改造为本研究用后使用。显影器将单组分跳跃显影器改造为二组分显影用显影器,显影套筒,按照表面粗糙度Ra为1.0μm的方式用玻璃殊对显影套筒进行喷砂处理。对显影套筒中,在300V的直流电压上叠加1kVpp、2kHz的交流电压,另外,在显影部,将其圆周速度调整到为与感光体相同的方向的,感光体圆周速度的150%。
在23℃/60%的环境下,采用打印比例为6%的测试图,连续进行2万张图画,对耐久后的图像的图像翳影、细线再现性、以及耐久后的感光体的磨耗度情况进行评价。
对于图像翳影,通过翳影测定用反射测定机REFLECTMETER(东京电色(株式会社)),测定图像空白部和未使用纸的反射率,将其差(未使用纸反射率-图像空白部的反射率)作为翳影(%)。
图像翳影评价按照以下的基准。
A:翳影小于0.5%
B:翳影0.5~1.0%(不足)
C:翳影1.0~2.0%(不足)
D:翳影大于等于2.0%
细线再现性的评价按照以下的基准。
A:再现性良好
B:产生细微的细线的变细、重合,但是实用方面没有问题
C:在一部分,产生细线的变细、重合
D:细线的变细、重合显著
感光体磨耗,通过磨耗造成的图像浓度变化和图像翳影的发生评价。
A:无磨耗造成的图像恶化
B:产生轻微的浓度变化,但是实用方面没有问题
C:在一部分,发生浓度变化和图像翳影
D:浓度变化、图像翳影显著
在实施例A-1中,获得了高画质的图像。与上述项目有关的评价结果在表1中给出。
[实施例A-2]
在调色剂A-1的制造中,按照采用调色剂粒子A-2和微粒子A-2的方式进行变更,并且将微粒子的添加量改为1.0质量份,除此以外,按照相同的方式,调制调色剂A-2。微粒子存在于调色剂的表面的比例为每个调色剂粒子2.2个,微粒子与调色剂平均直径的粒径比为0.07。
除了采用调色剂A-2以外,按照与实施例A-1相同的方式,调制双组分系显影剂A-2,同样地进行评价。在实施例A-2中,获得了高画质的图像。与上述项目有关的评价结果在表1中给出。
[实施例A-3]
在调色剂A-1的制造中,按照采用调色剂粒子A-3和微粒子A-3的方式进行变更,并且将微粒子的添加量改为3.0质量份,除此以外,按照相同的方式,调制调色剂A-3。微粒子存在于调色剂的表面的比例为每个调色剂粒子10.5个,微粒子与调色剂平均直径的粒径比为0.08。
将实施例A-1中所采用的显影器改用为单组分跳跃显影用显影器,除此之外,通过相同的方法,采用调色剂A-3,进行图像评价。作为显影套筒,采用下述类型,其中按照Ra为0.6μm的方式,通过玻璃珠对SUS制的套筒进行喷砂处理。在实施例A-3中,获得了高画质的图像。与上述项目有关的评价结果在表1中给出。
[实施例A-4]
在调色剂A-1的制造中,按照采用调色剂粒子A-3和微粒子A-4的方式进行变更,并且将微粒子的添加量改为1.0质量份,除此以外,按照相同的方式,调制调色剂A-4。微粒子存在于调色剂的表面的比例为每个调色剂粒子1.1个,微粒子与调色剂平均直径的粒径比为0.21。
除了采用调色剂A-4以外,按照与实施例A-3相同的方式进行评价。在实施例A-4中,获得了高画质的图像。与上述项目有关的评价结果在表1中给出。
[实施例A-5]
将通过实施例A-1结束了评价的图像形成装置移动到30℃/80%的环境中,使其适应环境达24小时,然后进行与实施例A-1相同的评价。
其结果是,耐久初期,图像翳影和细线再现性优良,确认实现良好的摩擦带电。在耐久中,保持良好的画质,同样在最终保持与实施例1相同的画质。
另外,将图像形成装置移动到15℃/5%的环境中,使其适应环境达24小时,然后,进行与实施例A-1相同的评价。
其结果是,确认从耐久初抑制充电、不均匀的带电,可获得良好的摩擦带电性。同样在耐久中,保持良好的画质,在最终也保持与实施例1相同的画质。
此外,未确认有显影套筒的磨耗造成的画质降低。
[比较例A-1]
使摩尔比(Sb/Sn)为0.02的氯化锑与氯化锡的水溶性混合物共沉淀于二氧化硅粒子上,然后对其进行焙烧,由此,在二氧化硅粒子表面上形成导电性的掺杂有Sb的氧化锡层,采用由此形成的粒子(电阻5×102Ωcm,体积平均粒径为1.5μm,Sn/B=1.0,W/Sn=0),以代替实施例A-1的微粒子A-1,进行与实施例A-1相同的评价。该评价结果列于表1中。
[比较例A-2]
通过对由SnO2覆盖的硫酸钡粒子与SnF2的混合体进行焙烧,由此获得在SnO2层中掺杂有氟的导电性粒子(电阻为3×104Ωcm,粒径为1.1μm,Sn/B=2.5,W/Sn=0)。采用该粒子以代替实施例A-1的微粒子A-1,进行与实施例A-1相同的评价。该评价结果列于表1中。
[比较例A-3]
采用氧化钛粒子的表面由ZnO覆盖的粒子(粒径为5.5μm,Zn/B=1.9),以代替实施例A-1的微粒子A-1,进行与实施例A-1相同的评价。该评价结果列于表1中。
表1
  图像翳影   细线再现性   感光体的磨耗
  实施例A-1   A   A   A
  实施例A-2   A   A   A
  实施例A-3   A   A   A
  实施例A-4   A   A   A
  比较例A-1   D   B   C
  比较例A-2   D   B   C
  比较例A-3   D   C   D
(具有锡化合物和钨元素的微粒子的制造例)
(微粒子的制造例B-1)
按照钨(W)与锡(Sn)的摩尔比(W/Sn)为0.05的方式,混合氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液。按照锡元素∶氧化钛的质量比为0.6∶1的比例,在90℃的温度下对上述混合水溶液进行搅拌的同时,将该混合水溶液滴入使200质量份的形成母体粒子的氧化钛分散于2000质量份的水中而形成的悬浮溶液中,然后,添加盐酸,对所生成的共沉淀物进行过滤、干燥处理。
在氮气氛的电炉中(600℃),对该干燥品进行焙烧,进行破碎、分级处理,将体积平均粒径调整到0.8μm。所获得的微粒子,Sn/B(质量比)=0.59,W/Sn(摩尔比)=0.045,体积电阻=9×103Ωcm。将其作为微粒子B-1。该微粒子的物理特性列于表2中。
(微粒子的制造例B-2)
在微粒子B-1的制造中,改变W/Sn的摩尔比(0.10)和焙烧条件,除此以外,按照相同的方法制造,获得体积平均粒径为0.8μm的微粒子。另外,所获得的微粒子,Sn/B=0.59,W/Sn=0.092,体积电阻=1×104Ωcm。将其作为微粒子B-2。该微粒子的物理特性列于表2中。
(微粒子的制造例B-3)
在微粒子B-1的制造中,采用球状二氧化硅代替氧化钛,改变氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合水溶液量,获得体积平均粒径=7.9μm的粒子。在所获得的微粒子中,Sn/B=0.52,W/Sn=0.093,体积电阻=1×104Ωcm。将其作为微粒子B-3。该微粒子的物理特性列于表2中。
(微粒子的制造例B-4)
在微粒子B-1的制造中,采用粒径不同的氧化钛,将W/Sn改变为0.075进行焙烧。对焙烧件进行粉碎/分级,调整到体积平均粒径=0.03μm。所获得的微粒子中,Sn/B=0.58,W/Sn=0.069,体积电阻=2×105Ωcm.将其作为微粒子B-4。该微粒子的物理特性列于表2中。
(微粒子的制造例B-5)
在微粒子B-1的制造中,按照W与Sn的摩尔比(W/Sn)为0.10的方式,混合氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液,采用球状二氧化硅代替氧化钛,并且将添加于悬浮溶液的混合水溶液的量设定为制造例B-1的1/20,在90℃的温度下对其进行加热混合,加入盐酸,对所生成共沉淀物进行过滤、干燥。
在氮气氛的电炉中(600℃),对该干燥品进行焙烧,进行破碎、分级处理,将体积平均粒径调整到0.3μm。所获得的微粒子,Sn/B=0.04,W/Sn=0.092,体积电阻=4×108Ωcm。将其作为微粒子B-5。该微粒子的物理特性列于表2中。
(微粒子的制造例B-6)
在微粒子B-1的制造中,不添加钨酸,按照Sb与Sn的摩尔比(Sb/Sn)为0.07的方式添加三氯化锑以代替钨酸。所获得的微粒子,体积平均粒径=1.2μm,Sn/B=0.68,Sb/Sn=5.9,体积电阻=6×106Ωcm。将其作为微粒子B-6。该微粒子的物理特性列于表2中。
(微粒子的制造例B-7)
按照W与Sn的摩尔比(W/Sn)为0.0007,Sb/Sn的摩尔比(Sb/Sn)为0.07的方式,混合氯化锡(SnCl4·5H2O)与钨酸(H2WO4)和三氯化锑的水溶液。将其添加于氧化钛的悬浮溶液中,在90℃的温度下,对其进行加热混合,然后添加盐酸,对所生成共沉淀物进行过滤、干燥。
在氮气氛的电炉中(600℃),对该干燥品进行焙烧,进行破碎、分级处理,将体积平均粒径调整到0.6μm。所获得的微粒子,Sn/B=0.90,W/Sn=0.0005,体积电阻=9×107Ωcm。将其作为微粒子B-7。该微粒子的物理特性列于表2中。
(微粒子的制造例B-8)
按照W与Sn的摩尔比(W/Sn)为0.0015的方式,混合氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液。将其添加于氧化钛的悬浮溶液中,在90℃的温度下,对其进行加热混合,然后添加盐酸,对所生成共沉淀物进行过滤、干燥。
在氮气氛的电炉中(600℃),对该干燥品进行焙烧,进行破碎、分级处理,将体积平均粒径调整到0.7μm。所获得的微粒子,Sn/B=0.70,W/Sn=0.001,体积电阻=1×109Ωcm。将其作为微粒子B-8。该微粒子的物理特性列于表2中。
(微粒子的制造例B-9)
在微粒子B-1的制造中,按照摩尔比(Sb/Sn)为0.29的方式,改变氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合比,并且改变焙烧条件,除此以外,按照相同的方法进行制造。获得体积平均粒径=1.2μm的微粒子。获得的微粒子,Sn/B =0.60,W/Sn=0.26,体积电阻=3×108Ωcm。将其作为微粒子B-9。该微粒子的物理特性列于表2中。
(微粒子的制造例B-10)
在微粒子B-1的制造中,按照摩尔比(W/Sn)为0.35的方式,改变氯化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合比,并且改变焙烧条件,除此以外,按照相同的方法进行制造。获得体积平均粒径=1.5μm的微粒子。获得的微粒子,Sn/B=0.48,W/Sn=0.32,体积电阻=1×109Ωcm。将其作为微粒子B-10。该微粒子的物理特性列于表2中。
(微粒子的制造例B-11)
在微粒子B-1的制造中,按照W和Sn的摩尔比(W/Sn)为0.10的方式,混合氧化锡(SnCl4·5H2O)与钨酸(H2WO4)的水溶液的混合比,采用所制作的球状的二氧化硅代替氧化钛,且添加于悬浮溶液中的混合水溶液量定为制造例B-1的1/40,在90℃的温度下,对其进行加热混合,然后添加盐酸,对所生成共沉淀物进行过滤、干燥。
在氮气氛的电炉中(600℃),对该干燥品进行焙烤,进行破碎、分级处理,将体积平均粒径调整到0.3μm。对于所获得的微粒子,Sn/B=0.02,W/Sn=0.092,体积电阻=3×109Ωcm。将其作为微粒子B-11。该微粒子的物理特性列于表2中。
通过氩离子,对已获得的上述微粒子B-1~5,7~11的表面进行蚀刻处理,然后,借助ESCA进行表面分析,此时,锡元素和钨元素这两者的原子比不依赖于蚀刻处理时间而基本上保持一定。另外,可知道,伴随处理时间,相对于硅元素或钛元素,两者的原子比例按照基本上相同的比例减少,同样通过该方法,锡元素和钨元素这两个元素均存在于主要是母体粒子中的表面上。
表2
  微粒子No.   锡元素含量/摩尔比vs.母体   钨元素含量/摩尔比vs.Sn   体积平均粒径/μm   5μm或以上的微粒子/个数%   体积电阻/Ωcm   相对曝光光线的光透射率/%
  微粒子1   0.59   4.5   0.8   0   9×103   35
  微粒子2   0.59   9.2   0.8   0   1×104   35
  微粒子3   0.52   9.3   7.9   61   1×104   20
  微粒子4   0.58   6.9   0.03   0   2×105   45
  微粒子5   0.04   9.2   0.3   0   4×108   40
  微粒子6   0.68   0   1.2   3   6×106   35
  微粒子7   0.90   0.05   0.6   0   9×107   35
  微粒子8   0.70   0.1   0.7   0   1×109   35
  微粒子9   0.60   26.0   1.2   2   3×108   35
  微粒子10   0.48   32.0   1.5   3   1×109   30
  微粒子11   0.02   9.2   0.3   0   3×109   40
[调色剂的制造例]
(调色剂的制造例B-1)
·苯乙烯/丙烯酸正丁酯的共聚物                   20份
(单体比80/20)
·负电荷性控制剂                                4份
(下述通式(1)所示的单偶氮染料系的Fe化合物)
(化1)
偶氮系铁配合物(1)
P70图
·磁铁                    80份
·低分子量聚乙烯          5份
通过搅拌机将上述材料混合,在加热到110℃的双轴挤压机中进行熔融混炼,通过锤式粉碎机对冷却的混炼物进行粗级粉碎,通过喷射磨对粗级粉碎物进行细微粉碎后,通过风力对所获得的细微粉碎物进行分级,获得重量平均粒径为7.3μm的调色剂粒子。通过亨舍尔混合机,对相对于100份的该调色剂粒子,添加有1.2份的BET值为120m2/g的疏水性二氧化硅细微粉末,2.0份的微粒子B-1的混合物进行混合,该二氧化硅细微粉未是采用原始粒径为12nm的二氧化硅,通过六甲基二硅氮烷进行处理,然后通过硅油进行处理而形成的,由此,调制调色剂B-1。将该调色剂B-1的物理特性与以下的调色剂的物理特性一起列于表3中。
(调色剂的制造例B-2~7)
在调色剂的制造例B-1中,采用微粒子B-2~5、8、9以代替微粒子B-1,除此以外,按照相同的方法,调制调色剂B-2~7。其物理特性列于表3中。
(调色剂的制造例B-8)
按照与调色剂的制造例B-1相同的方式,获得重量平均粒径为7.3μm的调色剂粒子。通过冲击式表面处理装置ハイブリダイザ-(奈良机械(株式会社),对混合物进行表面改质处理,在该混合物中,相对100份的该调色剂粒子,添加有2.0份的微粒子B-1,然后添加调色剂的制造例B-1中所采用的疏水性二氧化硅微粒子1.2份,通过亨舍尔混合机,对其混合,调制调色剂B-8。其物理特性列于表3中。
(调色剂的制造例B-9)
在调色剂的制造例B-1中,改变细微粉碎的条件和风力分级的条件,获得重量平均粒子直径为2.9μm的调色剂粒子。通过亨舍尔混合机,对下述混合物进行混合,在该混合物中,相对于100份的上述调色剂粒子,添加有2.5份的通过调色剂的制造例B-1所采用的疏水性二氧化硅微粒子,以及2.0份的微粒子B-1,调制调色剂B-9。其物理特性列于表3中。
(调色剂的制造例B-10)
在调色剂的制造例B-1中,改变细微粉碎的条件和风力分级的条件,获得重量平均粒子直径为10.2μm的调色剂粒子。通过亨舍尔混合机,对下述混合物进行混合,在该混合物中,相对于100份的上述调色剂粒子,添加0.9份的在制造例B-1中所采用的疏水性二氧化硅微粉,以及2.0份的微粒子B-1,调制调色剂B-10。其物理特性列于表3中。
(调色剂的制造例B-11)
在硫酸亚铁水溶液中,混合苛性钠溶液,调制含有硫酸亚铁的水溶液。在吹入空气的同时,进行氧化反应,调制用于生成晶种的浆液。
接着,按照相对最初的碱量、该浆液的当量在0.9~1.05的范围内的方式,调整硫酸亚铁浓度,进一步在吹入空气的同时进行氧化反应,对所生成的磁性氧化铁粒子进行清洗,过滤,将其暂时取出。接着,在不干燥的情况下,再次将该含水试样分散于另一水系介质中后,在进行充分搅拌的同时,添加硅烷偶合剂(n-C10H21Si(OCH3)3),进行偶合处理。通过常规方法,对所生成的疏水性氧化铁粒子进行清洗、过滤、干燥,获得表面处理磁性体。
然后,在710份的离子交换水中,添加450份的0.1mol/升-Na3PO4水溶液,将其加热到60℃,然后,慢慢地添加67份的1.0mol/升-CaCl2水溶液,获得包含Ca3(PO4)2的水系介质。
采用アトライタ-(三井三池化工机(株式会社)),均匀地使下述的组分分散混合,调制单体组合物。
·苯乙烯                             80份
·丙烯酸正丁酯                       20份
·聚酯树脂                           5份
·负电荷性控制剂                     1份
(上述通式(1)所示的单偶氮染料系的Fe化合物)
·上述表面处理磁性体                 80份
将上述单体组合物加热到60℃,在其中,添加5份的在调色剂的制造例B-1中所采用的低分子量聚乙烯,然后使其分散,使3份的聚合引发剂2,2’-偶氮双(2,4-二甲基戊腈)溶解于其中。
在含有上述Ca3(PO4)2的水系介质中,添加上述聚合性单体系,在N2气氛下,采用TK式均相混合机(特殊机化工业(株式会社)),按照10000rpm的转速,搅拌20分钟,进行造粒处理。然后,在通过叶轮搅拌翼进行搅拌的同时,在60℃的温度下使其反应6个小时。然后,使液体温度为80℃,接着对其连续搅拌4个小时。在反应结束后,在80℃的温度下,对其蒸馏处理达2个小时。然后,对悬浮液进行冷却,添加盐酸,溶解Ca3(PO4)2、过滤、水洗、干燥,获得重量平均粒径为6.8μm的调色剂粒子。
通过亨舍尔混合机,对下述混合物进行混合,在该混合物中,相对于100份的调色剂粒子,添加1.2份在调色剂的制造例B-1中所采用的疏水性二氧化硅微粉,2.0份的微粒子B-1,调制调色剂B-11。其物理特性列于表3中。
(调色剂的制造例B-12~14)
按照与调色剂的制造例B-1相同的方式,获得重量平均粒径为7.3μm的调色剂粒子。通过亨舍尔混合机(三井三池化工机(株式会社))对下述混合物进行混合,该混合物包括相对于100份的上述的调色剂,2.0份的微粒子B-1,1.2份的疏水性二氧化硅微粉,或1.2份的疏水性氧化钛微粉,或者1.2份的疏水性氧化铝微粉,上述疏水性二氧化硅微粉是通过六甲基二硅氮烷进行表面处理而形成的,处理后的BET值为200m2/g,该疏水性氧化钛微粉是通过异丁基三甲氧基硅烷进行表面处理而形成的,其处理后的BET值为100m2/g,上述疏水性氧化铝微粉是通过异丁基三甲氧基硅烷进行表面处理而形成的,其处理后的BET值为15om2/g,由此,调制调色剂B-12~14。其物理特性列于表3中。
(调色剂的比较制造例B-1)
在调色剂的制造例B-1中,不采用微粒子B-1,除此以外,按照相同的方式,调制比较调色剂B-1。其物理特性列于表3中。
(调色剂的比较例B-2~6)
在调色剂的制造例B-1中,采用微粒子B-6、7、10~12代替微粒子B-1,除此以外,按照相同的方式,调制比较调色剂B-2~6。其物理特性列于表3中。
另外,调色剂B-1~13和比较调色剂B-1~6的磁场79.6kA/m中的磁场强度均在26~30Am2/kg的范围内。
表3
调色剂No.   平均粒径/μm   平均圆形度   使用的微粒子/份数   微粒子的游离率/% 使用的无机微粉/份数
  调色剂B-1   7.3   0.921   微粒子B-1/2份   81   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-2   7.3   0.921   微粒子B-2/2份   78   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-3   7.3   0.921   微粒子B-3/2份   96   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-4   7.3   0.921   微粒子B-4/2份   10   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-5   7.3   0.921   微粒子B-5/2份   56   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-6   7.3   0.921   微粒子B-8/2份   79   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-7   7.3   0.921   微粒子B-9/2份   84   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-8   7.3   0.936   微粒子B-1/2份   8   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-9   2.9   0.933   微粒子B-1/2份   31   HMDS+硅油处理二氧化硅/2.5份
  调色剂B-10   10.2   0.919   微粒子B-1/2份   86   HMDS+硅油处理二氧化硅/0.9份
  调色剂B-11   6.8   0.971   微粒子B-1/2份   83   HMDS+硅油处理二氧化硅/1.2份
  调色剂B-12   7.3   0.921   微粒子B-1/2份   82   HMD处理二氧化硅/1.2份
  调色剂B-13   7.3   0.921   微粒子B-1/2份   73   HMDS处理氧化钛/1.2份
  调色剂B-14   7.3   0.921   微粒子B-1/2份   75   HMDS处理氧化铝/1.2份
  比较调色剂B-1 7.3 0.921 未使用 - HMDS+硅油处理二氧化硅/1.2份
  比较调色剂B-2 7.3 0.921 微粒子B-6/2份 85 HMDS+硅油处理二氧化硅/1.2份
  比较调色剂B-3 7.3 0.921 微粒子B-7/2份 68 HMDS+硅油处理二氧化硅/1.2份
  比较调色剂B-4 7.3 0.921 微粒子B-10/2份 87 HMDS+硅油处理二氧化硅/1.2份
  比较调色剂B-5 7.3 0.921 微粒子B-11/2份 59 HMDS+硅油处理二氧化硅/1.2份
  比较调色剂B-6 7.3 0.921 微粒子B-12/2份 95 HMDS+硅油处理二氧化硅/1.2份
[感光体的制造例]
(感光体的制造例1)
以直径为30mm的铝筒体为基体。通过浸渍涂敷方式,在其上依次层积如图3所示的结构的层,制作采用有机光导电性物质的负带电用的感光体1。
(1)第1层为导电层,将氧化锡和氧化钛的粉末分散于酚醛树脂中,将由此形成的材料作为主体。膜厚为15μm。
(2)第2层为下伸层,以改性尼龙和共聚尼龙为主体。膜厚为0.6μm。
(3)第3层为电荷发生层,将在长波长区域具有吸收性的偶氮颜料分散于丁缩醛树脂中,将由此形成的材料作为主体。膜厚为0.6μm。
(4)第4层为电荷输送层,在该层中,按照8∶10的质量比,将空穴传送性三苯基胺化合物分散于聚碳酸酯树脂(奥斯特瓦尔德(Ostwald)粘度法的分子量为2万)中,将由此形成的材料作为主体,另外,相对于总固体量(胺化合物与聚碳酸酯树脂的总量),添加10质量%的聚四氟乙烯树脂粒子(体积平均粒径为0.2μm),使其均匀分散。膜厚为25μm。
所获得的感光体(1)相对于水的接触角度为95度。另外,接触角度的测定采用纯水,测定装置采用协和界面科学(株式会社),接触角仪CA-X型。感光体(1)的最外面层的体积固有电阻值为2×1015Ωcm。
(感光体的制造例2)
以直径为30mm的铝筒体为基体。通过浸渍涂敷方式,在其上依次层积如图8所示的结构的层,制作采用有机光导电性物质的负带电用的感光体(2)。
(1)第1层为导电层,其是为了平整铝筒体的缺陷等,而且为了防止发生激光曝光的反射造成的波纹的发生而设置的厚度约为20μm的导电性粒子分散树脂层(以氧化锡和氧化钛的粉末分散于酚醛树脂中而形成的材料作为主体)。
(2)第2层为正电荷注入防止层(下伸层),其为中等电阻层,其中通过借助甲氧基甲基化的尼龙,将其电阻调整到106Ωcm左右,其厚度约为1μm,其实现防止从铝基体注入的正电荷与在感光体表面上带有的负电荷相抵消的功能。
(3)第3层为电荷发生层,其中,使双偶氮系颜料分散于丁缩醛树脂中,其厚度约为0.3μm,通过接受激光曝光,产生正负的电荷对。
(4)第4层为电荷输送层,在该层中,在聚碳酸酯树脂中,分散有腙化合物,其厚度约为25μm,其为P型半导体。因此,感光体表面带有的负电荷无法在该层移动,可仅仅将在电荷发生层产生的正电荷输送到感光体表面。
(5)第5层为电荷注入层,其中,在光固化性的丙烯酸树脂中,分散有导电性氧化锡超微粒子和粒径约为0.25μm的聚四氟乙烯树脂粒子。具体来说,相对于树脂,分散有100份的掺杂锑,实现低电阻处理的,粒径约为0.03μm氧化锡粒子,另外分散有20份的聚四氟乙烯树脂粒子,1.2份的分散剂。通过喷射涂敷法,按照约2.5μm的厚度,涂敷象这样调制的涂敷液,接着,通过光照射,使其硬化,形成电荷注入层。
所获得的感光体(2)的表面的体积固有电阻值为5×1012Ωcm,感光体表面相对于水的接触角度为102度。
(感光体的制造例3)
在感光体(2)的第5层中,未分散有聚四氟乙烯树脂粒子和分散剂,除此以外,按照与感光体制造例2相同的方式,制作感光体(3)。由此,感光体表面层的体积固有电阻值为2×1012Ωcm,感光体表面相对于水的接触角度为78度。
(感光体的制造例4)
在感光体(2)的第5层中,添加下述材料,其中,相对于100份的光固化性的丙烯酸树脂,分散300份的下述氧化锡粒子,该粒子的粒径约为0.03μm,通过掺杂锑,实现低电阻处理,除此以外,与感光体的制造例2相同,制作感光体(4)。在此场合,感光体表面层的体积固有电阻值为2×107Ωcm,感光体表面相对于水的接触角度为88度。
(感光体的制造例5)
形成未设置感光体(2)的第5层(电荷注入层),而将电荷输送层作为最外面层的4层结构的感光体,除此以外,与感光体的制造例2相同,制作感光体(5)。在此场合,感光体表面层的体积固有电阻值为1×1015Ωcm,感光体表面相对水的接触角度为73度。
为了进行下述的评价,相对于所有的感光体,在最后通过针使表面突出,将极微小面积的表面层剥离掉。
[带电部件的制造例]
(带电部件的制造例1)
将直径为6mm、长度为264mm的SUS辊作为金属芯,在该金属芯上,呈辊状形成中等电阻的发泡聚氨酯层,其组分为:聚氨酯树脂,作为导电性物质的炭黑,硫化剂,发泡剂等,另外对其进行切削研磨,对其形状和表面性进行调整,制作作为柔性部件的,直径为12mm,长度为234mm的带电辊部件(1)。
所获得的带电辊部件(1),体积固有电阻值为105Ωcm,阿斯卡(アスカ-)C硬度为30度。另外,当通过扫描型电子显微镜观察该带电辊表面时,平均腔直径约为100μm,空隙率为60%。
(带电部件的制造例2)
将直径为6mm、长度为264mm的SUS辊作为金属芯,在金属制的金属芯上,呈螺旋状卷绕以导电性尼龙纤维为起绒织物的带,制作辊状的带电刷部件(2)。在该带电刷部件(2)中的刷中,在尼龙纤维中,分散有炭黑,从而调整其电阻,纤维的粗度为6旦尼尔(300旦尼尔/50根),刷的纤维的长度为3mm,刷密度为10万根/m2,进行植绒处理。
[实施例B-1]
作为图像形成装置,对佳能生产的打印机:LBP-1760进行改造,采用上述实施例给出的与图1相同的类型。作为图像载体的感光体采用上述感光体(1)。使下述作为带电部件的带电辊与该感光体接触,在该带电辊中,分散有导电性碳,其上覆盖有尼龙树脂(接触压力为60g/cm),施加下述偏压,该偏压是在-700Vdc的直流电压上叠加了2.0kVpp的交流电压而形成的,使感光体上均匀地带电。在带电处理之后,通过激光,对图像部分进行曝光,由此,形成静电潜像。此时,暗部电位Vd=-700V,明部电位VL=-150V。
作为调色剂载体,在对表面进行喷砂处理的直径为16mm的铝圆筒上,形成显影套筒,该显影套筒形成有下述组分的,层厚约为7μm,JIS表面粗糙度(Ra)为1.0μm的树脂层,在该显影套筒中,包含有显影磁极为85mT(850高斯)的磁铁。
·酚醛树脂                                               100份
·结晶性石墨粒子(体积平均粒径:约7μm)                   90份
·炭黑微粒子                                             10份
作为调色剂层厚限制部件,采用厚度为1.0mm、自由长度为1.0mm的硅橡胶制刮板,按照29.4N/m(30g/cm)的线压力,使该刮板与显影套筒接触。感光体与显影套筒之间的间隙为290μm。
作为外加于显影套筒上的显影偏压,采用下述偏压,该偏压是在-500V的直流电压上叠加频率为2000Hz、峰间电压为1600V的交流电压而形成的。另外,显影套筒的圆周速度为相对于感光体圆周速度(94mm/sec),在显影部沿相同方向、1.1倍的速度(103mm/sec)。
另外,作为转印装置,采用图4那样的转印辊,该辊具有将分散有导电性碳的乙烯-丙烯橡胶层作为导电性弹性层。该转印辊34,体积固有电阻值为1×108Ωcm,表面橡胶硬度为24度,直径为20mm,其按照59N/m(60g/cm)的接触压力与感光体接触。在图4中,相对于箭头A方向的感光体100的圆周速度(94mm/sec),在接触部沿相同方向为等速,转印偏压为1.5kV的直流电压。
作为定影装置,采用下述方式的定影器,其不具有LBP-1760的油涂敷功能,通过加压辊使保持有未定影的图像的转印材料,隔着膜与加热器接触,进行加热加压定影。此时,加压辊采用具有氟系树脂的表面层的类型,辊的直径为30mm。另外,定影温度为180℃,夹区宽度设定在7mm。
作为调色剂,采用调色剂B-1,在温度为25℃,湿度为80%的环境下,进行绘画试验。作为转印材料,采用90g/m2的纸。其结果是,在初期,获得呈现较高的转印性、没有向非图像部的翳影的良好的图像。另外,进行以下这样的评价。
在温度为25℃、湿度为5%的环境下,通过打印面积比率为5%的横线形成的图像图案,进行耐久性的评价。
由于调色剂中的微粒子的一部分逃脱清洁器的处理而到达带电辊处,故伴随耐久的进程,向带电辊的微粒子的附着量增加。伴随该附着量的增加,容易产生带电工序的电荷的泄漏。在通过针使感光体(1)上的表面突出而将极微小面积的膜剥离掉之后的部分,产生电荷泄漏。对是否发生由此产生的图像不良,以及在耐久第几张产生该不良进行评价。这就是说,发生该不良时的耐久的张数越多,图像形成方法的耐久性越好。
还有,在即使在不产生泄漏的情况下,带电性仍不良的场合,由于在网目图像上,产生图像不良(潜像电位不均匀造成的浓度不均匀),故还通过目视,对网目图像的带电性进行评价。
转印效率是在下述场合,按照下述公式进行计算的,在该场合,通过聚酯胶带,对全黑色图像转印后的感光体上的转印残留调色剂进行粘取剥离,贴于纸上的麦克贝思(MacBeth)浓度的值由C表示,在携带有转印后定影前的调色剂的纸上,贴有聚酯胶带的麦克贝思(MacBeth)浓度由D表示,在未使用的纸上的贴有聚酯胶带的麦克贝思(MacBeth)浓度由E表示。如果转印效率大于等于90%,则是没有问题的图像。
[数学公式8]
转印效率(%)=(D-C/D-E)×100
另外,耐久初期的图像解析度通过下述再现性评价,该再现性是指由于静电潜像电场,电场容易关闭,难于再现的600dpi中的小直径的孤立单点的再现性。
A:100个中的缺损小于等于5个
B:100个中的缺损在6~10个的范围内
C:100个中的缺损在11~20个的范围内
D:100个中的缺损大于20个
纸上的翳影的测定通过东京电色株式会社生产的REFLECTMETER MODEL TC-6DS进行测定。过滤器采用清洁过滤器,翳影的数值通过全白色图像,由下述公式计算。如果纸上的翳影小于等于2.0%,则为良好的图像。
[数学公式9]
翳影(反射率)(%)=标准纸上的反射率(%)-试样非图像部的反射率(%)
图像浓度通过麦克贝思(MacBeth)浓度仪RD918(麦克贝思(MacBeth)株式会社生产)测定。初始浓度为绘制第20张的浓度。
这些测定的结果列于表4中。
[实施例B-2]
采用调色剂B-2代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,获得良好的结果。
[实施例B-3,4]
采用调色剂B-3,4代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,获得没有特别问题的结果。但是,在采用调色剂B-3的场合,OHP纸张上的非图像部稍有不透明。
[实施例B-5]
采用调色剂B-5代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,获得良好的结果。
[实施例B-6]
采用调色剂B-6代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,在1300张以后,产生轻微的漏电,在1600张以后,带电性稍有不稳定,但是获得没有特别问题的结果。
[实施例B-7]
采用调色剂B-7代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,获得良好的结果。
[实施例B-8,9]
采用调色剂B-8,9代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,在采用包含电阻较高的微粒子的调色剂B-8的场合,在1000张以后,带电性稍有不稳定,在采用重量平均粒径小于3μm的调色剂B-9的场合,转印残留量增多,在1800张以后,带电性稍有不稳定,但是获得没有特别问题的结果。
[实施例B-10]
采用重量平均粒径大于10μm的调色剂B-10代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,虽然图像解析度稍差,但是其它方面获得良好的结果。
[实施例B-11]
采用调色剂B-11代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,获得非常良好的结果。
[实施例B-12~14]
采用调色剂B-12~14代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,如表4所示的那样,获得基本良好的结果。
[比较例B-1]
采用比较调色剂B-1代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,由于在耐久试验约为400张时,在网目图像上产生浓度不均匀,伴随耐久,该性能变差,故在800张时,终止打印输出。另外,看不到漏电的痕迹。其结果列于表4中。
[比较例B-2]
采用比较调色剂B-2代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,由于在耐久性试验约为600张时在图像上发生漏电的痕迹,故中断绘制试验。带电性没有特别的问题。其结果列于表4中。
[比较例B-3]
采用比较调色剂B-3代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,由于在耐久性试验约为800张时,在图像上发生漏电的痕迹,故中断绘制试验。带电性没有特别的问题。其结果列于表4中。
[比较例B-4]
采用比较调色剂B-4代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,由于在耐久性试验约为1100张时,在网目图像上产生浓度不均匀,然后在1200张的时刻,发现漏电的痕迹,故中断绘制试验。其结果列于表4中。
[比较例B-5]
采用比较调色剂B-5代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,由于在耐久性试验约为500张时,在网目图像上产生浓度不均匀,伴随耐久不断恶化,故在1000张时,中断打印输出。另外,未发现有漏电的痕迹。其结果列于表4中。
[比较例B-6]
采用比较调色剂B-6代替调色剂B-1,按照与实施例B-1相同的图像形成方法进行绘制试验。其结果是,由于在耐久性试验约为300张时,发生漏电,故中断绘制试验。到300张为止,带电性没有特别的问题。但是,OHP纸张上的非图像部稍有不透明。其结果列于表4中。
表4
  实验No.   使用调色剂   初期图像特性   耐久性
  图像浓度   翳影模糊   转印效率   图像解析度   漏电发生状况   带电性
实施例B-1 调色剂B-1 1.48 0.8 89% B   到2000张为止未发生 到2000张为止良好
  实施例B-2   调色剂B-2   1.47   0.7   88   B   ↑   ↑
实施例B-3 调色剂B-3 1.41 1.4 81 C   1400张以后,在网目上稍稍有浓度不均匀
实施例B-4 调色剂B-4 1.39 1.3 83 B   1100张以后,在网目上稍稍有浓度不均匀
  实施例B-5   调色剂B-5   1.45   0.9   85   B   ↑   到2000张为止良好
实施例B-6 调色剂B-6 1.46 1.1 86 B   1300张以后轻微发生   1600张以后,在网目上稍稍有浓度不均匀
实施例B-7 调色剂B-7 1.44 0.9 82 B   到2000张为止未发生 到2000张为止良好
实施例B-8 调色剂B-8 1.38 1.5 82 B   1000张以后,在网目上稍稍具有浓度不均匀
实施例B-9 调色剂B-9 1.37 1.8 79 A   1800张以后,在网目上稍稍有浓度不均匀
  实施例B-10   调色剂B-10   1.42   0.6   90   C   ↑   到2000张为止良好
  实施例B-11   调色剂B-11   1.53   0.4   95   A   ↑   ↑
  实施例B-12   调色剂B-12   1.42   1.1   84   B   ↑   ↑
  实施例B-13   调色剂B-13   1.41   1.2   83   B   ↑   ↑
  实施例B-14   调色剂B-14   1.40   1.3   82   B   ↑   ↑
比较例B-1   比较调色剂B-1 1.34 1.5 79 C   到800张为止未发生   400张以后发生浓度不均匀
比较例B-2   比较调色剂B-2 1.42 1.1 84 B   在约600张时发生漏电 到600张为止良好
比较例B-3   比较调色剂B-3 1.44 1.0 85 B   在约800张时发生漏电 到800张为止良好
比较例B-4   比较调色剂B-4 1.41 1.4 80 B   在约1200张耐发生漏电   1100张以后发生浓度不均匀
比较例B-5   比较调色剂B-5 1.47 1.7 82 B   到1000张为止未发生   500张以后发生浓度不均匀
比较例B-6   比较调色剂B-6 1.35 2.1 76 C   在约300张时发生漏电 到300张为止良好
[实施例B-15]
本发明的调色剂也可适合于无清洁器的图像形成方法或显影兼清洁的图像形成方法。作为图像形成装置,采用上述实施方案给出的与图5相同的类型。
该装置为具有采用转印式电子照相处理的显影兼清洁处理(无清洁器系统)的激光打印机(记录设备)。包括去除了具有清洁刮板等的清洁部件的清洁装置的处理盒,作为调色剂采用调色剂B-1,采用调色剂载体上的调色剂层与图像载体以非接触方式设置的非接触显影法。
(1)本实施例的图像形成装置的整体示意性构成
作为图像载体的由上述感光体的制造例2获得的感光体(2)为旋转鼓型OPC感光体,沿箭头X方向,按照94mm/sec的圆周速度(处理速度),使其旋转驱动。
接触带电部件采用由上述带电部件的制造例1获得的带电辊部件(1),如图5所示的那样,带电辊22按照抵抗弹性,以规定的按压力与感光体21压力接触的方式设置于其上。符号n表示作为感光体21和带电辊22的接触部的带电接触部。在本实施例中,带电辊22在作为与感光体21的接触面的带电接触部n处,沿相对方向(箭头Y方向),以100%的圆周速度旋转驱动。即,带电辊22的表面相对于感光体21的表面具有相对移动速度比为200%的相对速度差。另外,上述微粒子1按照涂敷量约为1×104个/mm2的方式均匀地涂敷于带电辊22的表面上。
另外,从带电偏压外加电源,将-650V的直流电压作为带电偏压而外加于带电辊22的金属芯22a上。在本实施例中,按照直接注入带电方式,以与带电辊22的外加电压基本相同的电位(-630V),对感光体21的表面进行均匀地带电处理。有关这些情况下面进行描述。
作为曝光机构的包括激光二极管·多角镜等的激光束扫描仪(曝光器)23对应于所需的图像信息的时间系列电子数字像素信号,输出经强度变调的激光,通过该激光,对上述感光体21的均匀带电面进行扫描曝光处理。通过该扫描曝光,在旋转感光体21的面上形成与所需的图像信息相对应的静电潜像。通过作为显影机构的显影装置24,感光体21的表面的静电潜像作为调色剂像而显影。
本实例的显影装置24为具有作为调色剂的调色剂B-1的非接触型的反转显影装置。
调色剂载体采用下述显影套筒24a,其中下述组成的层厚为7μm,JIS表面粗糙度(Ra)为1.0μm的树脂层,形成于对表面进行了喷砂处理的直径为16mm的铝圆筒上,其内部设置有显影磁极90mT(900高斯)的磁性辊,按照29.4N/m(30g/cm)的线压使作为调色剂层厚限制部件的厚度为1.0mm、自由长度为1.5mm的聚氨酯制的弹性刮板24c实现压力接触,感光体21与显影套筒24a之间的间隙为290μm。
·酚醛树脂                                 100份
·石墨(体积平均粒径:约7μm)               90份
·炭黑                                     10份
另外,在作为与感光体21的相对部的显影部a(显影区域),沿与感光体21的旋转方向相同的方向(箭头W方向),按照感光体21的圆周速度120%的圆周速度,使显影套筒24a旋转。
在该显影套筒24a上,通过弹性刮板24c,以较薄的层涂敷调色剂。通过弹性刮板24c,限制调色剂相对于显影套筒24a的层厚,另外,提供电荷。此时,涂敷于显影套筒24a上的调色剂量为15g/m2
涂敷于显影套筒24a上的调色剂通过显影套筒24a的旋转,传送到作为感光体21与显影套筒24a的相对部的显影部a处。另外,通过显影偏压外加电源,在显影套筒24a上外加显影偏压。显影偏压为将-420V的直流电压、和频率为1600Hz、峰间的电压为1500V(电场强度为5×106V/m)的矩形的交流电压叠加而成的电压,在显影套筒24a与感光体21之间,通过显影部a进行单成分跳跃显影。
作为接触带电部件的中等电阻的转印辊25,按照98N/m(100g/cm)的线压,与感光体21压力接触,形成转印接触部b。从图中未示出的供纸部,在规定的时刻,向该转印接触部b供转印材料P,并且从转印偏压外加电源,在转印辊25上外加规定的转印偏压,由此,感光体21一侧的调色剂像依次地转印于供给到转印接触部b上的转印材料P的面上。
在本实施例中,采用其体积固有电阻值为5×106Ωcm的转印辊25,外加+3000V的直流电压,进行转印处理。即,对送入转印接触部b的转印材料P进行夹持传送,在其表面侧,依次按照静电力和按压力的方式,转印保持形成于感光体21的表面上的调色剂像。供给到转印接触部b,接收感光体21侧的调色剂像的转印的转印材料P与感光体的表面分离,将其送入作为定影装置的热定影方式等的定影器26,接受调色剂像的定影处理,将其作为图像形成品(打印、复印)而排到装置之外。
(b)评价
在本实施例中,在调色剂盒内,填充120g的调色剂B-1,按照仅仅由打印面积比为2%的横线形成的图像图案,在调色剂盒内使用调色剂量,直至达到很少。转印材料采用75g/m2的A4复印纸,按照间歇模式,进行2000张的打印,但是未看到有显影性降低。
另外,在2000张的间歇打印后,在带电辊22上,用胶带对与和感光体21的带电接触部n对应的部分进行粘脱处理,观察,此时,确认有微量的转印残留调色剂,但是,基本上由微粒子B-1覆盖,该残留调色剂的存在量约为3×104个/mm2。在通过扫描型显微镜对介于带电部件与图像载体的接触部之间的转印残留调色剂进行观察时,未观察到有下述转印残留调色剂,该转印残留调色剂按照表面由粒径非常细小的微粒子固定的方式覆盖。
此外,由于在感光体21与带电辊22之间的带电接触部n处存在微粒子B-1的状态,并且在微粒子的电阻值足够低而为9×103Ωcm,故在从初期,到2000张的间歇打印后为止,不产生带电不良造成的图像缺陷,获得了良好的直接注入带电性。
另外,由于采用将含有钨元素的氧化锡保持在母体粒子表面上的特殊构成的微粒子,故也不发生漏电造成的图像不良。
由于图像载体采用下述感光体,其中感光体的制造例2的最外面层的体积固有电阻值为5×1012Ωcm,故通过保持静电潜像,获得清晰的轮廓的文字图像,即使在2000张的间歇打印之后的情况下,仍可实现获得足够的带电性的直接注入带电。2000张的间歇打印后的直接注入带电后的感光体电位相对于外加带电偏压-650V,为-580V,相对初始的带电性的降低是轻微的,为50V,未确认有带电性的降低造成的图像品质的降低。
还有,再加上采用图像载体的表面相对于水的接触角度为120度的感光体制造例2的感光体(2)的作用,即使在初期和2000张的间歇打印之后的情况下,转印效率仍是非常优良的。即使在观察到在转印后的感光体上有少量的转印残留调色剂,由于2000张的间歇打印后的带电辊22上的转印残留调色剂是微量的,并且非图像部的翳影很小,由此知道,显影的转印残留调色剂的回收性良好。此外,即使在2000张的间歇打印之后,感光体的损伤仍是轻微的,对应于该损伤,将在图像上的产生的图像缺陷被抑制在实用上可允许的程度。
在打印图像的评价法中,图像浓度、图像翳影和转印效率按照与实施例B-1相同的方式进行,带电性和微粒子存在量按照以下的方式评价。其结果列于表5中。
(1)带电性
在初期和打印输出试验结束后,在显影装置位置设置传感器,测定均匀带电后的感光体表面电位,通过其差分对带电性进行评价。该差分负值越大,表明带电性的降低幅度越大。
(2)图像载体与接触带电部件的带电接触部的微粒子的存在量
通过前述的方法测定感光体与接触带电部件的带电接触部的微粒子的存在量。优选存在量在1×102~5×105个/mm2的范围内。
[实施例B-16~19]
采用通过感光体的制造例1、3~5获得的感光体(1)、(3)~(5)中的任何一个代替实施例B-15所采用的由感光体的制造例2获得的感光体(2),除此以外,与实施例B-15相同,进行绘制试验。其结果列于表5中。
在采用感光体(3)的实施例B-17中,与实施例B-15相比较,获得转印性稍差,但是没有问题的图像。
在采用感光体(4)的实施例B-18中,与实施例B-15相比较,获得调色剂像的轮廓的清晰性稍差,但是其它方面基本上良好的图像。
在采用感光体(5)的实施例B-19中,与实施例B-15相比较,初始的带电效率较差,相对于外加带电偏压电源-650V,带电后的感光体表面电位相对初期为-620V,稍差,2000张后的带电性降低到-560V。
[实施.例B-20]
采用通过带电部件的制造例2获得的带电刷部件(2)代替实施例B-16所采用的带电辊部件(1),除此以外,与实施例B-16相同,进行绘画试验。图6给出将带电刷部件(2)用作带电部件的图像形成装置的示意图。其结果列于表5中。
如果与实施例B-16相比较,获得下述图像,感光体21与带电刷部件22的带电接触部n处的微粒子的存在量稍少,带电均匀性差,但是没有特别的问题。
[实施例B-21~33]
采用表3给出的调色剂B-2~14,以便代替实施例B-16所采用的调色剂B-1,除此以外,与实施例B-16相同,进行绘画试验。其结果列于表5中。
[比较例-7,8]
采用比较例调色剂B-2,3,以便代替实施例B-16所采用的调色剂B-1,除此以外,按照与实施例B-16相同的方式进行。其结果列于表5中。在任何的调色剂中,从耐久试验的较早阶段,便发生漏电。
[比较例-9,10]
采用比较例调色剂B-4,5,以便代替实施例B-16所采用的调色剂B-1,除此以外,按照与实施例B-16相同的方式进行。其结果列于表5中。在任何的调色剂中,从耐久试验的较早阶段,便发生带电不良,中断了耐久试验。
[比较例-11]
采用比较例调色剂B-6,以便代替实施例B-16所采用的调色剂B-1,除此以外,按照与实施例B-16相同的方式进行。其结果列于表5中。从耐久试验的较早阶段,便发生漏电。
[表5]
  图像载体No.   带电部件No. 调色剂No.   初期   2000张后   漏电痕迹
  图像浓度 翳影   转印效率   图像浓度 翳影   转印效率   带电性ΔV   微粒子存在量
  实施例B-15   2   1   B-1   1.51   1.1   89%   1.50   1.4   87%   -50   3×104   未发生
  实施例B-16   1   1   ↑   1.51   1.7   89   1.50   2.1   87   -60   3×104   未发生
  实施例B-17   3   1   ↑   1.46   1.3   81   1.44   1.5   79   -40   1×104   未发生
  实施例B-18   4   1   ↑   1.47   1.0   86   1.46   1.1   84   -30   2×104   未发生
  实施例B-9   5   1   ↑   1.51   2.1   81   1.50   2.5   78   -60   4×104   未发生
  实施例B-20   1   2   ↑   1.53   1.7   88   1.52   2.7   86   -70   3×102   未发生
  实施例B-21   1   1   B-2   1.50   1.6   88   1.49   1.9   86   -60   4×104   未发生
  实施例B-22   1   1   B-3   1.44   2.3   80   1.41   2.8   78   -70   6×104   未发生
  实施例B-23   1   1   B-4   1.41   2.3   81   1.38   2.9   79   -80   110   未发生
  实施例B-24   1   1   B-5   1.50   1.8   86   1.49   2.0   84   -60   3×104   未发生
实施例B-25 1 1 B-6 1.46 2.1 82 1.45 2.9 80 -80 4×104   在1100张时轻微发生
  实施例B-26   1   1   B-7   1.49   1.7   87   1.47   1.9   85   -60   3×104   未发生
  实施例B-27   1   1   B-8   1.40   2.0   80   1.39   3.1   79   -90   90   未发生
  实施例B-28   1   1   B-9   1.54   2.2   79   1.50   2.8   77   -70   2×104   未发生
  实施例B-29   1   1   B-10   1.47   1.5   90   1.46   1.6   88   -50   6×104   未发生
  实施例B-30   1   1   B-11   1.55   1.2   94   1.54   1.3   93   -40   5×104   未发生
  实施例B-31   1   1   B-12   1.47   2.3   80   1.45   2.7   78   -80   3×104   未发生
  实施例B-32   1   1   B-13   1.47   2.4   79   1.44   2.8   77   -80   3×104   未发生
  实施例B-33   1   1   B-14   1.46   2.4   78   1.44   2.8   77   -80   2×104   未发生
比较例B-7 1 1 比B-2 1.47 2.2 84 未评价   约在300张时发生漏电
比较例B-8 1 1 比B-3 1.48 2.1 84 未评价   约在400张时发生漏电
  比较例B-9   1   1   比B-4   1.46   2.3   79   未评价(因带电不良,在500张时耐久中断)   未发生
  比较例B-10   1   1   比B-5   1.50   2.9   81   未评价(因带电不良,在200张时耐久中断)   未发生
比较例B-11 1 1 比B-6 1.40 3.9 75 未评价   约在200张时发生漏电
(C-1)氧化锡微粒子的制造
①氧化锡微粒子C-1的制造
按照W/Sn的摩尔比(W/Sn)为0.04的方式,混合氯化锡(SnCl4·5H2O)的水溶液与钨酸(H2WO4)的水溶液,在使pH保持在6.5~7.5的同时,在90℃的温度下对上述混合水溶液进行加热混合,然后加入盐酸,对所生成的共沉淀物进行过滤、干燥处理。
在氮气氛的电炉中(600℃),对该干燥品进行焙烧,进行破碎、分级处理,将体积平均粒径调整到1.0μm。
对于所获得的氧化锡微粒子,W/Sn=0.036,体积电阻=1×104Ωcm。将其作为氧化锡微粒子C-1。
②氧化锡微粒子C-2的制造
在氧化锡微粒子C-1的制造中,将W/Sn改为W/Sn=0.08,在大气气氛下进行焙烧。对该干燥品进行破碎、分级处理,将体积平均粒径调整到1.5μm。
所获得的微粒子,W/Sn=0.073,体积电阻=1×106Ωcm。将其作为氧化锡微粒子C-2。
③氧化锡微粒子C-3的制造
在氧化锡微粒子C-1的制造中,将W/Sn改为W/Sn=0.01,进行焙烤。对该该干燥品进行破碎、分级处理,将体积平均粒径调整到0.5μm。
所获得的微粒子,W/Sn=0.008,体积电阻=7×105Ωcm。将其作为氧化锡微粒子C-3。
④氧化锡微粒子C-4的制造
在氧化锡微粒子C-1的制造中,改变破碎、分级的条件,将体积平均粒径调整到0.3μm。将其作为氧化锡微粒子C-4。
(C-2)调色剂粒子的制造
①调色剂粒子C-1的制造
通过亨舍尔混合机,对聚酯树脂(Tg:62℃,分子量:Mp7600,Mn3300,Mw60000)100质量份,炭黑5质量份,单偶氮金属配合物(负电荷控制剂)2.5质量份,低分子量乙烯-丙烯的共聚物(吸热温度主峰温度:84℃,放热主峰温度:86℃)3质量份进行混合,然后,通过设定在130℃的双轴混炼机进行混炼。混炼物通过锤式粉碎机,进行粗级粉碎,然后通过机械式粉碎机,对其进行粉碎。进一步通过气流式分级机,对其进行分级,获得重量平均粒径为7.0μm的非磁性的调色剂粒子C-1。
②调色剂粒子C-2的制造
通过与调色剂粒子C-1的制造相同的方法,用苯乙烯-丙烯酸丁酯-马来酸丁基半酯的共聚物(Tg:60℃,分子量:Mp12000,Mn6300,Mw221000)100质量份,磁性氧化铁(平均粒子径:0.22μm,σs:83.8Am2/kg)100质量份,单偶氮金属配合物(负电荷控制剂)2质量份,低分子量乙烯-丙烯的共聚物(吸热温度主峰值温度:85℃,放热主峰值温度:86℃)3质量份进行混合,获得重量平均粒径为6.5μm的具有磁性的调色剂粒子C-2。
③调色剂粒子C-3的制造
针对调色剂粒子C-1的制造,将聚酯树脂改为苯乙烯-丙烯酸丁酯的共聚物(Tg:58℃,分子量:Mp16800,Mn10100,Mw303000),除此以外,按照相同的方法进行制造,获得重量平均粒径为7.5μm的非磁性的调色剂粒子C-3。
[实施例C-1]
(1)调色剂C-1的制造
在调色剂分级品C-1(100质量份)中,添加氧化锡微粒子C-1(1.5质量份)与通过二甲基硅油处理的疏水性二氧化硅微粉(1.2质量份),将其加入到亨舍尔混合机中,获得调色剂C-1。氧化锡微粒子C-1存在于调色剂表面的比例为每个调色剂粒子3.5个。另外,微粒子(S)与调色剂(T)的粒径比(S/T)为0.11。
(2)载体C-1的制造
作为双组分显影剂用显影载体,制作下述显影载体C-1,其中,相对于45μm的100质量份的铁氧体粒子,涂敷有0.7质量份的丙烯酸树酯。
(3)双组分系显影剂C-1的调制
相对于显影载体C-1:100质量份,混合调色剂C-1:7质量份,获得双组分系显影剂C-1。
采用所获得的显影剂,通过以下的方法进行评价。
(4)评价方法
作为图像形成装置按照下述方式使用,该方式为:对采用激光束的数字复印机(佳能生产:GP55)的带电器、转印器、显影器进行改造。GP55包括OPC感光体,电晕带电器,单组分跳跃方式显影器,电晕转印器,刮板式清洁容器,曝光装置等,其是处理速度是150mm/s的反转显影方式的数字复印机。
对于带电器,将电晕带电器取出,装载接触式的带电辊,使其相对于感光体的旋转从动旋转。通过外部电源,外加在DC-700V上叠加有AC1500Vpp(800Hz)的交流电压。
对于转印器,将电晕转印器取出,安装接触辊转印器。辊与感光体的一端通过齿轮连接,可对辊进行驱动。该驱动按照可沿与感光体的旋转相同的圆周速度(相同方向)旋转的方式调整,转印电流进行采用直流电源的恒定电流控制。
对于显影装置,将单组分显影器取下,安装双组分方式的显影器。作为显影套筒采用下述类型,其中,按照Ra达到1.0μm的方式,通过玻璃珠对SUS制的套筒进行喷砂处理。显影套筒可通过外部驱动马达,以150%的圆周速度差进行驱动。在显影套筒上,通过外部电源,叠加DC-500V、AC1000Vpp的矩形波。
在23℃/60%的环境下,采用打印比率为6%的试验图案,连续地进行1000张的绘图,作为画质评价,对图像翳影,细线再现性进行评价。在图像翳影评价中,还同时对氧化锡微粒子的飞散状态进行评价。
对于图像翳影,通过翳影测定用反射测定仪REFLECTMETER(东京电色(株式会社)),测定图像空白部和未使用纸的反射率,将其差(未使用纸反射率-图像空白部的反射率)作为翳影(%)。
图像翳影评价按照以下的基准。
A:翳影小于0.5%
B:翳影0.5~1.0%(不足)
C:翳影110~1.5%(不足)
D:翳影1.5~2.0%(不足)
E:翳影大于等于2.0%
飞散的评价按照以下的基准。
A:未发生。
B:发生轻微的飞散,可看到若干的图像的混乱。
C:发生显著的飞散,可看到画质的变差。
接着,细线再现性的评价按照以下的基准。
A:再现性良好
B:在局部,发生轻微的细线的变细、重合。
C:细线的变细或重合显著。
在实施例C-1中,获得了高画质的图像。与上述的项目有关的评价结果列于表6中。
[实施例C-2]
在调色剂C-1的制造中,按照采用调色剂粒子C-2的方式进行变更,另外,相对于调色剂粒子100质量份,将氧化锡微粒子的添加量改为2.0质量份,除此以外,按照相同的方式,调制调色剂C-2。微粒子存在于调色剂表面的比例是每个调色剂粒子为7.5个,微粒子相对于调色剂平均粒径的粒径比(S/T)为0.08。
除了将实施例C-1所采用的显影器改用为单组分跳跃显影用显影器以外,按照相同的方法,采用调色剂C-2进行图像评价。作为显影套筒,采用按照Ra达到0.6μm的方式,通过玻璃珠对SUS制的套筒进行了喷砂处理的套筒。在实施例C-2中,获得了高画质的图像。与上述的项目有关的评价结果列于表6中。
[实施例C-3]
在调色剂C-1的制造中,按照采用调色剂粒子C-3的方式进行变更,另外,相对于调色剂粒子100质量份,将氧化锡微粒子的添加量改为1.0质量份,除此以外,按照相同的方式,调制调色剂C-3。微粒子存在于调色剂表面的比例是每个调色剂粒子为1.5个,微粒子相对于调色剂平均粒径的粒径比(S/T)为0.07。
相对于显影载体1(100质量份),混合6.5质量份的调色剂C-3,得到双组分系显影剂C-3。
采用该显影剂,进行与实施例C-1相同的评价。将该评价结果列于表6中。
[实施例C-4]
在调色剂C-1的制造中,按照采用调色剂粒子C-2和氧化锡微粒子的方式进行变更,另外,相对于调色剂粒子100质量份,将氧化锡微粒子的添加量改为0.8质量份,除此以外,按照相同的方式,调制调色剂C-4。微粒子存在于调色剂表面的比例是每个调色剂粒子为2.1个,微粒子相对于调色剂平均粒径的粒径比(S/T)为0.20。
采用单组分跳跃显影器,其中通过外部驱动,将显影套筒的圆周速度调整到170%,将调色剂4补充到其中,进行与实施例1相同的图像评价。其评价结果列于表6中。
[实施例C-5]
在调色剂C-1的制造中,按照采用调色剂粒子C-3和氧化锡微粒子C-3的方式进行变更,另外,相对于调色剂粒子100质量份,将氧化锡微粒子的添加量改为0.4质量份,除此以外,按照相同的方式,调制调色剂C-5。微粒子相对于存在于调色剂表面的比例为每个调色剂粒子为1.1个,微粒子调色剂平均粒径的粒径比(S/T)为0.04。
相对于显影载体C-1(100质量份),混合7.0质量份的上述调色剂C-5,获得双组分系显影剂C-3。
采用该调色剂C-5,进行与实施例C-1相同的图像评价。该评价结果列于表6中。
[实施例C-6]
在调色剂C-5的制造,从外部添加通过正丁基三甲氧基硅烷处理的疏水性氧化钛微粒子,以便代替二氧化硅微粉,进行同样的评价。其评价结果列于表6中。
另外,将环境改为23℃/5%的低湿环境,进行同样的评价,此时,图像翳影、细线再现性降低,可获得良好的效果。
[实施例C-7]
在实施例C-1,将环境改为23℃/5%的低湿环境,进行同样的评价,除此以外,通过同样的方法进行评价。其结果是,获得与实施例C-1相同的高质量。
[比较例C-1]
将Sb与Sn的摩尔比(Sb/Sn)为0.02的氯化锡与氯化锑在热水中进行加水分解,在电炉中对共沉淀物进行焙烧,获得包含锑的氧化锡微粒子。所获得的氧化锡微粒子呈黑青色。
相对于调色剂粒子C-2(100质量份),从外部将上述氧化锡微粒子(电阻为3×103Ωcm)1.3质量份与疏水性二氧化硅微粉1.2质量份添加于亨舍尔混合机中,得到调色剂C-6。氧化锡存在于调色剂表面上的比例是每个调色剂粒子为5.0个,微粒子相对于调色剂的平均粒径的粒径比(S/T)为0.25。
将该调色剂C-6放入到实施例C-2所采用的单组分跳跃显影器中,进行与实施例C-1相同的评价。其评价结果列于表6中。
[比较例C-2]
将不包含钨元素的氧化锡微粒子(SnO2)1.1质量份和疏水性二氧化硅微粉1.2质量份添加于调色剂粒子C-1(100质量份),调制调色剂C-7。氧化锡存在于调色剂表面上的比例为每个调色剂粒子为2.5个,微粒子相对于调色剂的平均粒径的粒径比(S/T)为0.18。
相对显影载体C-1(100质量份),混合7.0质量份的调色剂C-7,获得双组分系显影剂C-7。
采用该显影剂进行与实施例C-1相同的评价。其评价结果列于表6中。
[比较例C-3]
在氢气气氛下,将在比较例C-2中所采用的氧化锡微粒子进行焙烧,获得使SnO2部分还原的氧化锡微粒子。所获得的氧化锡微粒子呈黑色,电阻为2×105Ωcm。
除了采用1.1质量份的该氧化锡微粒子以外,按照与比较例C-2相同的方式,调制调色剂C-8,另外获得双组分系显影剂C-8。
采用该显影剂,进行与实施例C-1相同的评价。其评价结果列于表6中。
[表6]
  图像翳影   飞散   细线再现性
  实施例C-1   A   A   A
  实施例C-2   A   A   A
  实施例C-3   A   A   A
  实施例C-4   A   A   A
  实施例C-5   A   A   A
  实施例C-6   A   A   A
  比较例C-1   D   C   B
  比较例C-2   D   B   B
  比较例C-3   D   C   B
[实施例C-8]
在具有实施例B-15所采用的显影兼清洁处理的图像形成装置中,采用调色剂C-2,与实施例B-15相同,进行图像形成。
在本实施例中,作为转印材料采用75g/m2的A4复印纸,按照间歇模式进行2000张的打印,但是没有看到显影性的降低。
此外,在2000张的间歇打印后,用胶带粘住带电辊22中的与感光体21的带电接触部n相对应的部分,进行观察,此时,确认有微量的转印残留调色剂,但是,基本上由氧化锡微粒子C-1覆盖,存在量约为2.5×104个/mm2。在通过扫描型显微镜对存在于带电部件与图像载体之间的接触部的转印残留调色剂进行观察时,未观察到下述微粒子,在该微粒子中,其表面按照固定有粒径非常小的微粒子的方式被覆盖。
还有,在感光体21与带电辊22的带电接触部n处,存在氧化锡微粒子C-1的状态,由于微粒子的电阻值足够低,为1×104Ωcm,故从初期到2000张的间歇打印后,不产生带电不良造成的图像缺陷,获得了良好的直接注入带电性。
由于作为图像载体采用感光体的制造例2的最外面层的体积固有电阻值为5×1012Ωcm的感光体,故通过保持静电潜像,获得清晰的轮廓的文字图像,即使在2000张的间歇打印后,仍可实现可获得足够的带电性的直接注入带电。2000张的间歇打印后的直接注入带电后的感光体的电位相对于外加带电偏压-650V为-570V,相对于初期的带电性的降低为60V是轻微的,未确认带电性的降低造成的图像品质的降低。
再有,再加上采用图像载体的表面相对于水的接触角度为102度的感光体实施例2的感光体(2),故即使在初期和2000张的间歇打印之后的情况下,转印效率仍非常优良。即使在观察到在转印后的感光体上转印残留色调量很少的情况下,2000张的间歇打印后的带电辊22上的转印残留调色剂是微量的,非图像部的翳影很小,由此知道,显影的转印残留调色剂的回收性良好。另外,即使在2000张的间歇打印后的情况下,感光体上的损伤是轻微的,与该损伤相对应、在图像上产生的图像缺陷被抑制在实用上可允许的程度。
[实施例C-9]
具有本方案的调色剂即使在与具有a-Si感光体的图像形成装量相组合的情况下,仍可实现良好的图像形成。
在实施例C-8中,通过以下的方法制造的a-Si的感光体代替感光体,除此以外,同样进行图像形成。
采用等离子CVD装置,通过以下的条件,制造在圆筒状导电性基体上叠置有阻挡层、光导电层以及堆积表面层的a-Si感光体。另外,所获得的感光体的表面层的硅原子含量小于0.01原子%、氢含量为49原子%。
下部阻挡层......SiH4        100ml/min(正常)
H2                          300ml/min(正常)
PH                           3800ppm(相对SiH4)
NO                           5ml/min(正常)
功率                         150W(13.56MHz)
内压                         80Pa
基体温度                     280℃
膜厚                         3μm
光导电层......SiH4          350ml/min(正常)
H2                          600ml/min(正常)
B2H6                       0.5ppm(相对SiH4)
功率                         400W(13.56MHz)
内压                         73Pa
基体温度                     280℃
膜厚                         20μm
表面层...... CH4            500ml/min(正常)
功率                         1000W(13.56MHz)
内压                         66.7Pa
基板温度                     200℃
膜厚                         0.5μm
在本实施例中,外加作为带电偏压的-500V的直流电压,作为显影偏压,在-250V的直流电压上,外加频率为1800Hz、峰间的电压为800V的交流电压。
在本实施例中,作为转印材料采用75g/m2的A4复印纸,按照间隙模式,进行2000张的打印,但是没有看到显影性的降低。
另外,在2000张的间歇打印后,用胶带粘住在带电辊22中的与感光体21的带电接触部n相对应的部分,进行观察,此时,确认有微量的转印残留调色剂,但是基本上由氧化锡微粒子C-1覆盖,存在量约为2.0×104个/mm2。在通过扫描型显微镜、对存在于带电部件与图像载体的接触部的转印残留调色剂进行观察时,未观察到下述转印残留调色剂,其表面按照通过粒径非常小的微粒子固定的方式被覆盖。
此外,在感光体21与带电辊22的带电接触部n处,存在氧化锡微粒子C-1的状态,由于微粒子的电阻值足够低,为1×104Ωcm,故从初期到2000张的间歇打印后,不产生带电不良造成的图像缺陷,获得了良好的直接注入带电性。
还有,即使在初期和2000张的间歇打印后,转印效率仍是良好的,直至2000张的间歇打印之后,还可进行良好的无清洁处理的图像形成。另外,即使在2000张的间歇打印后,仍不发生感光体上的损伤。

Claims (11)

1.一种调色剂,其特征在于,该调色剂具有调色剂粒子和微粒子,在调色剂粒子的表面存在有该微粒子,该调色剂粒子至少含有粘接树脂和着色剂,上述微粒子具有在母体粒子上覆盖了含钨元素的锡化合物的结构,锡元素Sn相对于母体粒子B的质量比Sn/B在0.01~2.0的范围内,钨元素W相对于锡元素Sn的摩尔比W/Sn在0.001~0.3的范围内。
2.根据权利要求1所述的调色剂,其特征在于,上述母体粒子为无机粒子。
3.根据权利要求2所述的调色剂,其特征在于,上述无机粒子是从二氧化硅、氧化钛和氧化铝中选择出的。
4.根据权利要求1所述的调色剂,其特征在于,上述微粒子按照每个调色剂粒子0.3个或以上的比例存在于上述调色剂粒子表面上。
5.根据权利要求1所述的调色剂,其特征在于,上述调色剂粒子的重量平均粒径在3~10μm的范围内。
6.根据权利要求1所述的调色剂,其特征在于,上述微粒子的体积平均粒径在0.1~5μm的范围内。
7.根据权利更求6所述的调色剂,其特征在于,上述微粒子含有3个数%或以下的5μm或以上的粒子。
8.根据权利要求1所述的调色剂,其特征在于,上述微粒子的平均粒径S与该调色剂粒子的平均粒径T的比S/T在0.5或以下。
9.根据权利要求1所述的调色剂,其特征在于,该微粒子的电阻在1×109Ωcm或以下。
10.根据权利要求1所述的调色剂,其特征在于,上述调色剂除了具有上述微粒子以外,还含有下述无机细微粉体,该无机细微粉体至少由二氧化硅、氧化钛、氧化铝、以及它们的复合氧化物中选择出,该无机细微粉体的平均原始粒径在4~80nm的范围内。
11.根据权利要求10所述的调色剂,其特征在于,上述无机细微粉体至少用硅油处理过。
CNB021542570A 2001-09-28 2002-09-27 调色剂 Expired - Fee Related CN1289973C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001299292A JP3880354B2 (ja) 2001-09-28 2001-09-28 現像剤
JP2001299293 2001-09-28
JP299293/2001 2001-09-28
JP299292/2001 2001-09-28
JP2002009816 2002-01-18
JP009816/2002 2002-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100074833A Division CN100520608C (zh) 2001-09-28 2002-09-27 调色剂

Publications (2)

Publication Number Publication Date
CN1432877A CN1432877A (zh) 2003-07-30
CN1289973C true CN1289973C (zh) 2006-12-13

Family

ID=27347603

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021542570A Expired - Fee Related CN1289973C (zh) 2001-09-28 2002-09-27 调色剂

Country Status (5)

Country Link
US (1) US6897001B2 (zh)
EP (1) EP1298498B1 (zh)
KR (1) KR100469598B1 (zh)
CN (1) CN1289973C (zh)
DE (1) DE60204932T2 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4149998B2 (ja) * 2002-10-30 2008-09-17 松下電器産業株式会社 二成分現像剤及びこれを用いた画像形成方法
JP4023305B2 (ja) * 2002-11-28 2007-12-19 日本ゼオン株式会社 トナー
CN100365511C (zh) * 2003-01-17 2008-01-30 松下电器产业株式会社 制备调色剂的方法
US20040223789A1 (en) * 2003-02-28 2004-11-11 Canon Kabushiki Kaisha Developing apparatus
US7162187B2 (en) * 2003-06-30 2007-01-09 Ricoh Company, Ltd. Image forming apparatus and image forming method
US20070009824A1 (en) * 2003-09-12 2007-01-11 Aeon Corporation Electrostatic charge image developing toner
US7459254B2 (en) * 2003-11-20 2008-12-02 Panasonic Corporation Toner and two-component developer
US20050136352A1 (en) * 2003-12-23 2005-06-23 Xerox Corporation Emulsion aggregation toner having novel rheolgical and flow properties
US7400759B2 (en) * 2003-12-23 2008-07-15 Eastman Kodak Company Method for testing a plastic sleeve for an image cylinder or a blanket cylinder
KR100692544B1 (ko) * 2004-12-21 2007-03-13 주식회사 대우일렉트로닉스 디스플레이장치용 음극선관 조립체
US7494758B2 (en) * 2005-01-24 2009-02-24 Canon Kabushiki Kaisha Process for producing toner particles
WO2006135892A2 (en) * 2005-06-13 2006-12-21 Sun Drilling Products Corporation Thermoset particles with enhanced crosslinking, processing for their production, and their use in oil and natural gas drilling applications
EP1762907B1 (en) * 2005-09-13 2010-06-30 Ricoh Company, Ltd. Development roller and surface treatment device
KR101033070B1 (ko) * 2006-01-06 2011-05-06 캐논 가부시끼가이샤 현상제 및 화상 형성 방법
JP5224157B2 (ja) * 2006-12-22 2013-07-03 株式会社リコー 画像形成装置
US8206879B2 (en) * 2007-03-19 2012-06-26 Ricoh Company, Ltd. Image forming method
US8235879B2 (en) * 2007-06-25 2012-08-07 Tokai Rubber Industries, Ltd. Charging roll
JP2009042257A (ja) * 2007-08-06 2009-02-26 Ricoh Co Ltd 一成分現像装置、プロセスカートリッジ及び一成分現像トナーの製造方法
JP2009040882A (ja) * 2007-08-08 2009-02-26 Merck Patent Gmbh 透明導電性粉体およびその製造方法
US8101330B2 (en) * 2008-03-14 2012-01-24 Konica Minolta Business Technologies, Inc. Two component developer and image forming method
JP2009258681A (ja) * 2008-03-21 2009-11-05 Konica Minolta Business Technologies Inc トナー
US20110183250A1 (en) * 2010-01-28 2011-07-28 Kabushiki Kaisha Toshiba Developing agent
CN103733142B (zh) 2011-08-03 2016-08-17 佳能株式会社 显影剂承载构件及其生产方法和显影组件
MA34789B1 (fr) * 2012-06-28 2014-01-02 Mascir Morrocan Foundation For Advanced Science Innovation & Res Nanoferrites (nanoparticules et nanotiges) à base de nd1-xmxfe204 (n=co,ni,mn et sn)
US8971764B2 (en) * 2013-03-29 2015-03-03 Xerox Corporation Image forming system comprising effective imaging apparatus and toner pairing
WO2017159333A1 (ja) * 2016-03-17 2017-09-21 株式会社リコー 静電潜像現像剤用キャリア、二成分現像剤、補給用現像剤、画像形成装置、及びトナー収容ユニット
JP6784079B2 (ja) * 2016-07-07 2020-11-11 富士ゼロックス株式会社 帯電部材、帯電装置、プロセスカートリッジ及び画像形成装置
US10372067B2 (en) * 2017-05-30 2019-08-06 Canon Kabushiki Kaisha Electrophotographic belt and electrophotographic image forming apparatus
CN111268907A (zh) * 2018-12-05 2020-06-12 福建省佳圣轩工艺品有限公司 一种瓷餐具高温色釉及其制造方法
CN110255917A (zh) * 2019-03-29 2019-09-20 彩虹(合肥)光伏有限公司 一种有效提高光伏玻璃镀膜板面质量的洗辊方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664504A (en) 1983-01-20 1987-05-12 Tokyo Shibaura Denki Kabushiki Kaisha Image forming apparatus
JPH0677166B2 (ja) 1983-01-20 1994-09-28 株式会社東芝 画像形成装置
US4769676A (en) 1986-03-04 1988-09-06 Kabushiki Kaisha Toshiba Image forming apparatus including means for removing residual toner
JPS62203182A (ja) 1986-03-04 1987-09-07 Toshiba Corp 画像形成装置
US4965162A (en) 1986-07-31 1990-10-23 Fuji Xerox Co., Ltd. Electrophotographic developer containing tin oxide
JPH07113781B2 (ja) 1986-07-31 1995-12-06 富士ゼロックス株式会社 電子写真用現像剤
JPS63133179A (ja) 1986-11-26 1988-06-04 Toshiba Corp 記録装置
JPH0654395B2 (ja) * 1986-12-10 1994-07-20 三菱化成株式会社 電子写真用現像剤
USRE35581E (en) 1986-12-15 1997-08-12 Canon Kabushiki Kaisha Charging device
JPS63149699A (ja) 1986-12-15 1988-06-22 富士通株式会社 音声入出力装置
JPS63254465A (ja) * 1987-04-13 1988-10-21 Fuji Xerox Co Ltd 電子写真用現像剤
JP2637104B2 (ja) 1987-07-16 1997-08-06 株式会社東芝 画像形成装置
JPH02302772A (ja) 1989-05-18 1990-12-14 Koichi Kinoshita 電子写真プリンターのプリンティング方法
JPH0368957A (ja) * 1989-08-08 1991-03-25 Sharp Corp 電子写真用トナー
JPH0799442B2 (ja) 1989-09-19 1995-10-25 キヤノン株式会社 接触帯電装置
JP2738162B2 (ja) * 1991-05-13 1998-04-08 三菱化学株式会社 静電荷像現像用トナー
JPH0750337B2 (ja) 1991-06-25 1995-05-31 村田機械株式会社 クリーナレス画像形成方法
JPH0517622A (ja) 1991-07-11 1993-01-26 Nippon Chem Ind Co Ltd 白色導電性粉末およびその製造方法
JP3154757B2 (ja) 1991-08-27 2001-04-09 株式会社東芝 カラー画像形成装置
JPH0561383A (ja) 1991-08-30 1993-03-12 Murata Mach Ltd クリーナレス画像形成方法
JP3320756B2 (ja) 1991-11-28 2002-09-03 三菱化学株式会社 画像形成方法
EP0586003A3 (en) 1992-09-04 1994-06-15 Metallgesellschaft Ag Electrically-conductive filler and process for manufacturing the same
DE4303385B4 (de) 1992-09-04 2005-05-12 Mitsui Mining & Smelting Co., Ltd. Verfahren zur Herstellung eines transparenten, elektrisch leitfähigen Füllstoffs
JP2887719B2 (ja) 1992-10-07 1999-04-26 株式会社巴川製紙所 非磁性一成分現像方法
JPH06175392A (ja) 1992-11-19 1994-06-24 Toyo Ink Mfg Co Ltd 1成分現像剤の現像方法
JPH06183733A (ja) 1992-12-15 1994-07-05 Mitsubishi Materials Corp 導電性白色粉末とその製造方法
DE4435301A1 (de) 1994-10-01 1996-04-04 Merck Patent Gmbh Leitfähige Pigmente
DE69603380T2 (de) * 1995-02-01 2000-04-06 Canon Kk Entwickler zur Entwicklung eines elektrostatischen Bildes und Bilderzeugungsverfahren
JPH0954461A (ja) * 1995-08-16 1997-02-25 Konica Corp カラー画像形成用現像剤およびカラー画像形成方法
JPH09278445A (ja) 1996-04-10 1997-10-28 Ishihara Sangyo Kaisha Ltd 導電性酸化スズおよびその製造方法ならびにそれを用いてなる導電性懸濁組成物、導電性塗料組成物、帯電防止材
DE69832747T2 (de) 1997-03-05 2006-08-03 Canon K.K. Bilderzeugungsgerät
JP3715780B2 (ja) 1997-03-05 2005-11-16 キヤノン株式会社 画像形成装置
US6081681A (en) 1997-03-05 2000-06-27 Canon Kabushiki Kaisha Charging device, charging method, process cartridge and image forming apparatus
JP3387815B2 (ja) 1997-03-05 2003-03-17 キヤノン株式会社 帯電装置及び画像形成装置
JP3825908B2 (ja) 1997-03-05 2006-09-27 キヤノン株式会社 画像形成装置
JPH10307458A (ja) 1997-03-05 1998-11-17 Canon Inc 画像形成装置
JP3715779B2 (ja) 1997-03-05 2005-11-16 キヤノン株式会社 画像形成装置
JP3639718B2 (ja) 1997-04-30 2005-04-20 キヤノン株式会社 画像形成方法
DE69804046T2 (de) 1997-04-30 2002-08-01 Canon Kk Bildherstellungsverfahren führend zu einer Kontrolle der Restladung als Resultat einer ausgewählten Tonerzusammensetzung
US5948584A (en) * 1997-05-20 1999-09-07 Canon Kabushiki Kaisha Toner for developing electrostatic images and image forming method
US6104903A (en) * 1997-10-08 2000-08-15 Canon Kabushiki Kaisha Developing device
JP3761724B2 (ja) * 1998-10-06 2006-03-29 富士ゼロックス株式会社 画像形成方法
US6156471A (en) * 1999-01-21 2000-12-05 Canon Kabushiki Kaisha Toner and image forming method
JP2001034006A (ja) * 1999-07-19 2001-02-09 Fujitsu Ltd トナー及びこのトナーを使用する画像形成装置
EP1128224B1 (en) * 2000-02-21 2005-06-15 Canon Kabushiki Kaisha Developer, image-forming method, and process cartridge
DE60115737T2 (de) * 2000-02-21 2006-07-27 Canon K.K. Magnetischer Toner und Bildherstellungsverfahren unter Verwendung desselben
CA2337087C (en) * 2000-03-08 2006-06-06 Canon Kabushiki Kaisha Magnetic toner, process for production thereof, and image forming method, apparatus and process cartridge using the toner
JP4778139B2 (ja) * 2000-12-15 2011-09-21 チタン工業株式会社 白色導電性粉末及びその応用
JP3885556B2 (ja) * 2001-10-31 2007-02-21 富士ゼロックス株式会社 画像形成方法、該方法に用いる補給用トナーおよびその製造方法、並びにキャリア含有トナーカートリッジ

Also Published As

Publication number Publication date
EP1298498A2 (en) 2003-04-02
DE60204932D1 (de) 2005-08-11
DE60204932T2 (de) 2006-05-18
CN1432877A (zh) 2003-07-30
EP1298498B1 (en) 2005-07-06
US6897001B2 (en) 2005-05-24
US20030152856A1 (en) 2003-08-14
EP1298498A3 (en) 2004-03-17
KR20030027868A (ko) 2003-04-07
KR100469598B1 (ko) 2005-02-02

Similar Documents

Publication Publication Date Title
CN1289973C (zh) 调色剂
CN1204461C (zh) 显影装置、处理卡盒和图像形成方法
CN1187656C (zh) 磁性色调剂以及利用其的成像方法
CN1207635C (zh) 显影装置、处理盒以及图像形成方法
CN1231818C (zh) 调色剂和成像方法
CN1144097C (zh) 色调剂、双组分显影剂和成像方法
CN1181401C (zh) 磁性调色剂
CN1181403C (zh) 磁性调色剂及其生产方法和成象方法,设备和处理盒
CN100342285C (zh) 显影剂承载体及使用所述显影剂承载体的显影装置和成像处理盒
CN1119705C (zh) 磁性色粉与成像方法
CN1324408C (zh) 调色剂
CN1086233C (zh) 磁性调色剂、磁性显影剂、设备装置、影象形成设备和传真设备
CN1940754A (zh) 成像设备、成像方法及处理盒
CN1577120A (zh) 非磁性调色剂
CN101061439A (zh) 正带电性显影剂
CN1456942A (zh) 电子照相调色剂、其外部添加剂、电子照相显影剂及成像设备
CN1384401A (zh) 补充显影剂和显影方法
CN1755531A (zh) 静电图像显影用调色剂、其制法、显影剂、图像形成装置、处理盒及图像形成方法
CN1237723A (zh) 色粉,双组分显影剂,成象方法及成象设备
CN1495550A (zh) 对静电图像进行显影的显影剂,成像装置及成像方法
CN1107586A (zh) 静电影像显像用调色剂和显像剂制备它们的方法及成像方法
CN1550918A (zh) 载体、显影剂、成像设备和处理模块
CN1416027A (zh) 图像形成方法,补给用墨粉及其制造方法,含载体墨粉匣
CN1301447C (zh) 图像形成方法
CN1189795C (zh) 显影剂携带元件、其再生方法和显影装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20130927