CN1286714C - 制造电极的方法和由此制备的电极 - Google Patents

制造电极的方法和由此制备的电极 Download PDF

Info

Publication number
CN1286714C
CN1286714C CNB2004100077067A CN200410007706A CN1286714C CN 1286714 C CN1286714 C CN 1286714C CN B2004100077067 A CNB2004100077067 A CN B2004100077067A CN 200410007706 A CN200410007706 A CN 200410007706A CN 1286714 C CN1286714 C CN 1286714C
Authority
CN
China
Prior art keywords
electrode
carbon
nanotube
make
reversible capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100077067A
Other languages
English (en)
Other versions
CN1532141A (zh
Inventor
O·Z·周
B·高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of North Carolina at Chapel Hill
Original Assignee
University of North Carolina at Chapel Hill
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of North Carolina at Chapel Hill filed Critical University of North Carolina at Chapel Hill
Publication of CN1532141A publication Critical patent/CN1532141A/zh
Application granted granted Critical
Publication of CN1286714C publication Critical patent/CN1286714C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Saccharide Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Fibers (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种含有碳的同素异形体,如单壁碳纳米管的碳基材料,其能够接纳掺入的碱金属。该材料呈现的可逆容量在约650mAh/g-1000mAh/g之间。该材料的高容量使其对许多应用,如电池的电极材料(50)具有吸引力。一种生产单壁碳纳米管的方法,包括提纯回收的纳米管材料和将提纯的材料沉积在一种导电基体(42)上。将该有涂层的基体(42)装入一种电化学电池中,并且测量其接纳掺入的材料,如一种碱金属(例如锂)的能力。

Description

制造电极的方法和由此制备的电极
本申请是基于申请日为2000年2月24日申请号为00806392.3的申请所提交的分案申请。
        有关联邦政府资助的研究或开发的声明
本发明的至少一些方面是在合同号为N00014-98-1-0597的政府资助下进行的。政府对本发明可以有一定的权利。
                      技术领域
在下面的叙述中参考了某些化合物、装置和一些方法。在实际应用的法规规定下,不必将这些参考解释为承认这样的化合物、装置及其方法为现有技术。
                       背景技术
在1990年证明了称之为“富勒烯”碳的第三种方式的存在,其触发了旨在使这种“新”材料发挥最大潜力的研究和开发的巨大浪潮。
“富勒烯”一词通常用于表示具有笼形中空晶格结构的一族碳分子。这些“笼”可以是不同的形状,如球状(“跳格球”)、或管状(“纳米管”)。例如见:Robert F.Curl和Richard E.Smalley所著,Fullerenes(富勒烯),Scientific American,October 1991.
随着电池广泛应用的重要性增加,从携便式电子设备到航天飞机的供电装置,长期以来都需要具有更高能量密度的新材料。通过测量能够与材料进行可逆反应的供电子原子的数量可以定量材料的能量密度。一种获得这样测量值的方法是通过建立一种电化学电池。该电池包括:一个容纳电解质的容器;一个由供电子材料(例如一种碱金属)制成的电极;由容量待测的材料(例如一种碳基材料)制成另一个电极;和连接电极的电路。供电子物质的原子经过氧化反应形成供电子物质的离子和自由电子。这些离子被相反电极吸引并且自由电子通过电路运动。由于供电子物质的每一个原子“给出”电子的数量是已知的,所以测量通过电路移动的电子数量,就可以确定移动到待研究物质的离子的数量。这个数量就是材料的比容量,并且可以表达为毫安-小时/克材料。例如,有报道石墨接纳锂的最大比容量(可逆的)大约372mAh/g。因为因为对于每一个释放的电子,都有一个锂离子移动到石墨电极上,其比容量可以根据电极材料的化学当量来表示。对于石墨,电极材料可以表征为LiC6。例如见:J.R.Dahn等人所著的,Mechanisms for Lithium Insertion in Carbonaceous Materials,Science,卷270,1995年10月27日。
锂掺入石墨和其它含碳材料被商业用作高级锂离子电池的电极。例如见:M.S.Whittingham,editor, Recent Advances in rechargeable  Batteries,Solid State Ionics,卷3和4,number69,1994;和D.W.Murphy等人,editors, Materials for Advanced Batteries,Plenum Press,New York,1980。这些传统电池材料的能量容量部分地被石墨中的LiC6饱和Li浓度所限制(等于372mAh/g)。
碳纳米管用作潜在的电极材料已经引起注意。碳纳米管通常是以紧密的同心多层壳或多壁纳米管(MWNT)存在。纳米管也可以以单壁纳米管(SWNT)形成。该单壁纳米管(SWNT)形成束,这些束具有紧密堆叠的2-D三角晶格结构。
多壁纳米管(MWNT)和单壁纳米管(SWNT)都已经生产出来了,并且通过蒸汽传输反应测出了这些材料的比容量。例如见:O.Zhou等人所著, Defects in Carbon Nanotubes,Science:263,pgs.1744-47,1994;R.S.Lee等人所著, Conductivity Enhancement in Single- Walled Nanotube Bundles Doped with K and Br,Nature:388,页257-59,1997;A.M.Rao等人所著, Raman Scattering Study of Charge Transfer in Doped Carbon Nanotube Bundles,Nature:388,页257-59,1997;和C.Bower等人所著, Synthesis and Structure of Pristine and Cesium Intercalated Single-Walled Carbon Nanotubes,Applied Physics:A67,页47-52,spring 1998。报道称这些纳米管材料的最高碱金属的饱和度为MC8(M=K、Rb、Cs)。这些数值表明并不显著优于现存的普遍商用的材料,如石墨。
因此长期以来,一直需要具有改善性能的材料,但是这一需要至今未能得到满足。对具有能使其用于电池和其它高能量应用的改善性能的材料存在着需求。特别是,需要比目前正用于这些应用的那些材料具有更高能量密度的材料。
                        发明内容
根据本发明的原理可以实现这些和其它目的。
本发明的一个方面包括一种具有掺入了碱金属的碳同素异形体的碳基材料。该材料具有的可逆容量高于900mAh/g。
本发明的另一个方面包括一种具有单壁碳纳米管并掺入了锂金属的材料。该材料具有的可逆容量高于550mAh/g。
在本发明的另一个方面,一种制造的部件,其包括表面上置有一层薄膜的导电基体。该薄膜含有单壁碳纳米管和掺入的锂金属。该部件具有的可逆容量高于550mAh/g。
还有在本发明的另一个方面,一种制造方法,其包括:通过将至少含有大约80%的单壁纳米管的一种碳基材料加入到一种溶剂中而产生一种混合物,将基体浸渍在该混合物中,并将溶剂蒸发,从而在所述基体的至少一个表面上留下碳基材料的薄膜。
还有在本发明的另一个方面,通过产生一种混合物生产具有可逆容量高于550mAh/g的一种电极材料。通过将至少含有大约80%的单壁纳米管的一种碳基材料加入到一种溶剂中产生该混合物,将基体浸渍在该混合物中,并将溶剂蒸发,从而在所述基体的至少一个表面上留下碳基材料的薄膜。
具体地说,本发明涉及以下方面:
1.一种制造电极的方法,其包括:
通过将一种含有至少约80体积%的单壁纳米管的碳基材料加入到一种溶剂中而制备混合物;
将基体浸渍在该混合物中;和
将所述溶剂挥发,从而使所述碳基材料薄膜留在所述基体至少一个表面上。
2.第1项的方法,其还包括:
使用高能激光束轰击靶材,从而产生含有至少50体积%单壁纳米管的融化材料;
通过将所速融化材料加入到一种悬浮介质中而制备悬浮液,并引入超声波能,从而在所述悬浮介质中悬浮所述纳米管;和
使所述悬浮液通过过滤膜并回收含有至少80体积%碳纳米管的所述碳基材料。
3.第2项的方法,其中所述悬浮介质包括乙醇。
4.第2项的方法,其中所述超声波能是通过一种工作在约60W和20kHz的超声波辐射器产生的。
5.第1项的方法,其还包括将所述含有至少80体积%单壁纳米管的碳基材料进行球磨的步骤。
6.第5项的方法,其中所述球磨进行的时间至少为1分钟。
7.第6项的方法,其中所述时间为20分钟或更少。
8.第7项的方法,其中所述时间是约5-10分钟。
9.第1项的方法,其中所述基体包括一种导电材料。
10.第9项的方法,其中所述导电材料包括铜或镍中的一种。
11.第1项的方法,其中所述薄膜基本上不含粘结剂。
12.一种电极,其至少有一部分是通过第1项的方法制成的,该电极具有的可逆容量高于550mAh/g。
13.一种电极,其至少有一部分是通过第6项的方法制成的,该电极具有的可逆容量高于650mAh/g。
14.一种电极,其至少有一部分是通过第8项的方法制成的,该电极具有的可逆容量高于约900mAh/g。
15.一种电极,其至少有一部分是通过第8项的方法制成的,该电极具有的可逆容量高于约1000mAh/g。
16.一种电极,其至少有一部分是通过第1项的方法制成的,其中所述薄膜基本上不含有粘结剂。
                    附图说明
图1是用于生产含有单壁纳米管的一种碳基材料的激光熔化系统的示意说明图;
图2是一种球磨设备的示意说明图;
图3A是本发明的成膜技术的示意说明图;
图3B是本发明的涂敷有纳米管的基体剖视图;
图4是根据本发明形成的纳米管薄膜的扫描电子显微镜(SEM)显微照片;
图5是引入了本发明的电极材料的电化学电池的示意图;
图6是根据本发明原理形成的提纯纳米管材料的充电-放电特征曲线;和
图7是纳米管材料经过球磨处理后的充电-放电特征曲线。
                    具体实施方式
通过许多技术如碳靶的激光熔化、碳氢化合物分解和在两个石墨电极之间形成弧光,可以形成一种含有单壁纳米管(SWNT)的碳基材料。
例如,在C.Bower等人所著, Synthesis and Structure of Pristine and Cesium Intercalated Single-Walled Carbon Nanotubes,Applied Physics:A67,页47-52,spring 1998.文献中叙述了一种用于生产SWNT束的合适技术,将其公开的全部内容在此引入作为参考。
如图1所示,根据该技术将合适的靶2放置在石英管4之中。优选靶2是由石墨制成,并含有Ni/Co催化剂的。在一优选实施方案中,该靶材是由混合有0.6原子%的Ni和0.6原子%的Co的石墨粉和石墨粘结剂形成的。
通过合适的连接器8连接在管4的一端的真空泵6对管4抽真空。通过合适的气源,如罐10向管4通入惰性气流G,如氩气。各种装置如流量控制器和/或压力表可以接入该系统中,用于控制和监测流入管4的情性气体G的气流。将惰性气体的压力保持在合适的水平,如大约800托。适用于收集流出管4的情性气体的收集装置16,如装着水的瓶子可以通过连接器8连接在管4的端部。
通过管式加热器5,优选有程度控制器的,将管4内的靶材加热到约1150℃。
能量源18,如一种Nd:YAG脉冲激光用于在高温下熔化靶材2。优选使用第一和/或第二谐振激光束(即分别为1064nm和532nm)来熔化靶材。合适的装置如水平扫描器20和垂直扫描器22可以与能源相连接。通过合适的透镜部件24使激光束B聚焦在靶材2上。
在管的一端可以用透明窗26如石英窗密封,以便于激光束透过和监控激光熔化过程。在这一端可以使用合适的监控装置。例如,CCD装置可以定向通过窗口26,并且输出量传入监控装置30中,其能够观察和记录熔化过程。
在靶材熔化时,含有纳米管的材料通过情性气流的下流传输并在管4的内壁上形成沉积物D。将这些沉积物移出以回收含有纳米管的材料。
根据上述技术形成的碳基材料,在回收后对其进行分析,发现其含有50-70体积%的SWNT(单壁纳米管),其单个管的直径为1.3-1.6nm(纳米)并且管束直径为10-40nm。该管束是随机取向的。杂质相包括不定形碳的纳米颗粒和金属催化剂,构成总靶材1原子%。
根据本发明,通过合适的提纯方法对回收的材料进行提纯。在一个优选实施方案中,将纳米管材料放置在一种合适的液体介质如乙醇中。使用高能超声波辐射器使纳米管材料在液体介质中悬浮几个小时,然后使悬浮液通过微孔隔膜。任选地,在将其放置在悬浮液中之前,可以用酸对回收的材料进行冲洗。
超声波能量的上述应用也可能在纳米管中造成损害或产生缺陷。正如下面将要进一步详细叙述的,这也许实际上有利于用于增加其容纳掺入材料的能力。
透射和扫描电子显微镜检测表明提纯的材料含有80体积%以上的单壁纳米管(SWNT)束。
任选地,提纯的材料可以用球磨进一步加工。该加工通常如图2所示。将提纯的单壁纳米管试样32和球磨介质36一起放置在合适容器34的里面。密封该容器并将其放在球磨机合适的固定器38上。根据本发明,试样的球磨时间是可变的。例如,试样球磨的时间可以在约1-20分钟之间。
本发明的纳米管材料的一个优点是它们可以相当容易地以薄膜形式沉积在基体材料上。例如,提纯和任选球磨的纳米管材料的试样可以以溶液形式沉积在合适的基体上。这样的方法通常如图3A所示。将合适的基体42放置在容器44的底部。在一优选实施方案中,基体是一种导电材料,如铜或镍。基体42可以形成为平的铜极片。虽然极片的尺寸可以改变,但可以使用面积为1cm×1cm的极片。通过使用超声波能量,单壁纳米管材料和合适的溶剂如乙醇的混合物可以被放入悬浮液46。然后将该悬浮液46放置在容器44中。然后将基体42浸渍在混合物46中。通过被动蒸发或主动去除将溶剂挥发,致使单壁纳米管材料的薄膜48至少涂敷在基体42的上表面上,如图3B所示。然后将有涂层的基体进行适当的热处理以去除任何残留的溶剂并提高薄膜48对基体42的附着力。例如,在真空下将有涂层的基体加热到约130-150℃并保温几个小时或足以去除溶剂的时间。
根据上述技术形成的单壁纳米管薄膜和传统碳基材料薄膜相比,具有许多的优点。例如,石墨通常用作电极材料。但是,很难形成由石墨构成的薄膜。因此必需在石墨中加入粘结剂材料以便促进成膜。但是加入粘结剂材料对电极材料的电性能有负面影响。通过本发明的上述技术,能够不必使用这样的粘结剂材料而将单壁纳米管材料的薄膜沉积在基体上,从而避免了上述的有关缺点。
另外,典型地,将导电剂如炭黑加入到石墨材料中以便增加材料的导电性。炭黑的加入增加了形成产品的成本。但是,本发明的单壁纳米管材料具有很好的导电性,并且不需要加入昂贵的导电剂如炭黑。
在扫描电子显微镜(SEM)下分析了根据本发明形成的薄膜。图4是显示单壁纳米管薄膜的纯度和形态的显微照片。
根据上述原理生产的单壁纳米管材料具有意想不到的能量密度性能,其超过了其它碳基材料所拥有的那些性能。
通过形成类似于上述背景技术部分中所叙述的电化学电池,可以测量本发明的单壁纳米管材料的能量密度或能够接纳掺入金属如碱金属的能力。图5示意说明了一种引入了本发明的单壁纳米管材料的电化学电池。
一种电池是由锂箔电极50和用作第二电极的具有如上述形成的单壁纳米管薄膜48的铜基极片42而构成的。将浸透有电解液的聚丙烯过滤膜52放置在这两个电极之间。在一个优选实施方案中,使用1M(1摩尔)的LiClO4和体积比为1∶1的EC(碳酸亚乙酯)和DMC(碳酸二甲酯)的溶液作为电解液。测得的该液体电解液的离子导电性为10-3S/cm。电接触件是由两个不锈钢活柱54、56压靠在电极上而构成的。电源58连接在该活柱上。使用静电方式在0.0-3.0V之间和以50mAh/g的速率对该电池进行放电和充电。如上述背景技术中所述,从使用的时间和电流可以计算出Li的比容量(单位碳掺入Li的数量)。
与传统的材料相比,本发明提纯的单壁纳米管具有明显更高的容量。本发明的提纯的单壁纳米管材料所展现的可逆容量要高于550mAh/g,并且特别是其容量大约650mAh/g(等于Li1.7C6)。通过上述的球磨工序,可逆容量可以进一步增加到900-1000mAh/g(Li2.4+C6)的水平。
如图6所示的电压-容量的曲线,完全掺入锂的提纯的单壁纳米管试样所显示的总容量大约2000mAh/g(Li5.4C6)。可逆部分定义为在第二次放电后所显示的容量,其大约600mAh/g。这相当于Li1.6C6,比石墨的理论值还高60%。再进行循环仅导致Li容量的少量下降。在同样的条件下对不同批次的几个试样进行了测量,显示其可逆容量在550-650mAh/g之间。当使用不同的电解液时,不可逆容量(定义为在第一次和第二次放电之间的容量差)的大小只有微小的变化。
如图7所示,单壁纳米管的机械球磨导致了其可逆容量的明显增加,并大大降低了其不可逆容量。测量并分析了球磨1-20分钟的单壁纳米管的放电-充电特性。X-光衍射和TEM(透射电子显微镜)的数据表明球磨诱发了无序并且将单壁纳米管束切割得更短并成为开口的片断。也观察到了其形态的变化。球磨后降低了单壁纳米管材料的多孔性。
球磨了5分钟的单壁纳米管试样所显示的可逆容量为830mAh/g,并且其不可逆容量为400mAh/g。
球磨了10分钟的单壁纳米管试样所显示的可逆容量增加到了超过900mAh/g(Li2.4C6)的水平,并且更特别是到了约1000mAh/g。其不可逆容量降低到600mAh/g。再进行循环时观察到其可逆容量几乎没有下降。与没有球磨的提纯单壁纳米管一样,该试样对充电显示出大的滞后。
另一个重要的性能参数是充电和放电速率对材料容量有何影响。有些应用,如电动车辆要求电极材料在高速充电和放电条件下工作。一般地说,材料的容量随着速率的增加而降低。当在50mAh/g速率时测量上述球磨了10分钟的单壁纳米管试样,其呈现的可逆容量为1000mAh/g。50mAh/g是通常的测试速率。当以500mAh/g的速率对同样试样进行测试时,其保持了非常高的容量600mAh/g。
球磨工艺对可逆容量的影响可以进行如下的解释。正常情况下,单壁纳米管的内部核心区是不能接纳掺入的材料,因为它们具有封闭结构,并且在本实验条件下,锂离子是不能通过形成单壁纳米管晶格的碳五边形和六边形而扩散的。因此,这样的掺入的材料通常容纳在形成管束的单壁纳米管之间的空间里。机械球磨增加了缺损密度和降低了单壁纳米管的长度,并因此便于Li+扩散进入纳米管中。例如,可以打破纳米管的端部,从而形成纳米管上的开口。通过这些开口端和也许通过其它缺损位置,相当数量的Li+离子可以容易地扩散进入这些结构受损的单壁纳米管,提高了容量。正如上面所指出的,提纯时将超声波能施加在单壁纳米管上,也能引入这样的缺损,因此其对单壁纳米管材料的容量也有类似的作用。
球磨超过10分钟的试样开始显示其可逆容量下降。这认为是纳米管的晶格结构被过度破坏,其对材料的导电性有负面影响,并且纳米管被转变成石墨片和非晶碳,从而造成了这种下降。
为了说明本发明优异的和意想不到的性能,根据上述技术收集了多壁纳米管(MWNT)薄膜的电压-容量的数据。在第一次放电时获得的总容量为500mAh/g。测量其可逆部分(定义为在第二次放电时所呈现的容量)为250mAh/g,这甚至小于石墨的理论值372mAh/g(LiC6)。再进行循环时其容量仅仅有微量的下降。其它的文献报道多壁纳米管材料的容量在100-400mAh/g之间。例如见:E.Frackowiak等人所著,“ Electrochemical Storage of Lithium Multiwalled Carbon Nanotubes”,Pergamon,Carbon 37(1999),61-69。
根据上述方法也收集了亚稳碳微束(MCMB)薄膜的电压-容量的数据。该试样所显示的可逆容量为300mAh/g。
本发明的单壁纳米管材料的优异的容量,并结合有极好的机械和电性能,以及容易成膜,这些使其应用于高能量密度的电极材料,如锂离子电池,很具有吸引力。
尽管通过参考特别的实施方案说明了本发明,但本发明决不受此限制。相反,对于那些本领域技术人员,下面权利要求中的改进和变化都是显而易见的。

Claims (16)

1.一种制造电极的方法,其包括:
通过将一种含有至少约80体积%的单壁纳米管的碳基材料加入到一种溶剂中而制备混合物;
将基体浸渍在该混合物中;和
将所述溶剂挥发,从而使所述碳基材料薄膜留在所述基体至少一个表面上。
2.权利要求1的方法,其还包括:
使用高能激光束轰击靶材,从而产生含有至少50体积%单壁纳米管的融化材料;
通过将所述融化材料加入到一种悬浮介质中而制备悬浮液,并引入超声波能,从而在所述悬浮介质中悬浮所述纳米管;和
使所述悬浮液通过过滤膜并回收含有至少80体积%碳纳米管的所述碳基材料。
3.权利要求2的方法,其中所述悬浮介质包括乙醇。
4.权利要求2的方法,其中所述超声波能是通过一种工作在约60W和20kHz的超声波辐射器产生的。
5.权利要求1的方法,其还包括将所述含有至少80体积%单壁纳米管的碳基材料进行球磨的步骤。
6.权利要求5的方法,其中所述球磨进行的时间至少为1分钟。
7.权利要求6的方法,其中所述时间为20分钟或更少。
8.权利要求7的方法,其中所述时间是约5-10分钟。
9.权利要求1的方法,其中所述基体包括一种导电材料。
10.权利要求9的方法,其中所述导电材料包括铜或镍中的一种。
11.权利要求1的方法,其中所述薄膜基本上不含粘结剂。
12.一种电极,其至少有一部分是通过权利要求1的方法制成的,该电极具有的可逆容量高于550mAh/g。
13.一种电极,其至少有一部分是通过权利要求6的方法制成的,该电极具有的可逆容量高于650mAh/g。
14.一种电极,其至少有一部分是通过权利要求8的方法制成的,该电极具有的可逆容量高于约900mAh/g。
15.一种电极,其至少有一部分是通过权利要求8的方法制成的,该电极具有的可逆容量高于约1000mAh/g。
16.一种电极,其至少有一部分是通过权利要求1的方法制成的,其中所述薄膜基本上不含有粘结剂。
CNB2004100077067A 1999-03-01 2000-02-24 制造电极的方法和由此制备的电极 Expired - Lifetime CN1286714C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/259,307 US6280697B1 (en) 1999-03-01 1999-03-01 Nanotube-based high energy material and method
US09/259307 1999-03-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008063923A Division CN1183038C (zh) 1999-03-01 2000-02-24 碳基材料及含有其的部件

Publications (2)

Publication Number Publication Date
CN1532141A CN1532141A (zh) 2004-09-29
CN1286714C true CN1286714C (zh) 2006-11-29

Family

ID=22984402

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100077067A Expired - Lifetime CN1286714C (zh) 1999-03-01 2000-02-24 制造电极的方法和由此制备的电极
CNB008063923A Expired - Lifetime CN1183038C (zh) 1999-03-01 2000-02-24 碳基材料及含有其的部件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB008063923A Expired - Lifetime CN1183038C (zh) 1999-03-01 2000-02-24 碳基材料及含有其的部件

Country Status (14)

Country Link
US (2) US6280697B1 (zh)
EP (1) EP1165440B1 (zh)
JP (1) JP3664240B2 (zh)
KR (1) KR20020024574A (zh)
CN (2) CN1286714C (zh)
AT (1) ATE317835T1 (zh)
AU (1) AU5265600A (zh)
CA (1) CA2362738C (zh)
DE (1) DE60026026T2 (zh)
DK (1) DK1165440T3 (zh)
ES (1) ES2256014T3 (zh)
HK (1) HK1046398B (zh)
PT (1) PT1165440E (zh)
WO (1) WO2000051936A2 (zh)

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
SG109408A1 (en) * 1999-06-04 2005-03-30 Univ Singapore Method of reversibly storing h2, and h2-storage system based on metal-doped carbon-based materials
GB9919807D0 (en) * 1999-08-21 1999-10-27 Aea Technology Plc Anode for rechargeable lithium cell
KR100350535B1 (ko) * 1999-12-10 2002-08-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
KR100487069B1 (ko) * 2000-04-12 2005-05-03 일진나노텍 주식회사 새로운 물질로 이루어진 전극을 이용하는 수퍼 커패시터 및 그 제조 방법
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
JP2002025638A (ja) * 2000-07-11 2002-01-25 Nec Corp 電 池
US6874668B2 (en) * 2000-07-25 2005-04-05 The Regents Of The University Of California Telescoped multiwall nanotube and manufacture thereof
US7082182B2 (en) * 2000-10-06 2006-07-25 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US6553096B1 (en) * 2000-10-06 2003-04-22 The University Of North Carolina Chapel Hill X-ray generating mechanism using electron field emission cathode
US7085351B2 (en) * 2000-10-06 2006-08-01 University Of North Carolina At Chapel Hill Method and apparatus for controlling electron beam current
US6876724B2 (en) * 2000-10-06 2005-04-05 The University Of North Carolina - Chapel Hill Large-area individually addressable multi-beam x-ray system and method of forming same
US7227924B2 (en) * 2000-10-06 2007-06-05 The University Of North Carolina At Chapel Hill Computed tomography scanning system and method using a field emission x-ray source
CN100457609C (zh) * 2000-11-13 2009-02-04 国际商业机器公司 单壁碳纳米管的制造方法及应用
KR100444141B1 (ko) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 리튬 이차전지용 음극 활물질, 이를 이용한 음극판 및이차전지
US20050200261A1 (en) * 2000-12-08 2005-09-15 Nano-Proprietary, Inc. Low work function cathode
US6885022B2 (en) * 2000-12-08 2005-04-26 Si Diamond Technology, Inc. Low work function material
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
KR20040030553A (ko) * 2001-03-26 2004-04-09 에이코스 인코포레이티드 탄소 나노튜브를 함유하는 코팅막
US6965199B2 (en) * 2001-03-27 2005-11-15 The University Of North Carolina At Chapel Hill Coated electrode with enhanced electron emission and ignition characteristics
JP2002341060A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 複合電気部品、地板構造体及びこれを用いた電子時計
US6723299B1 (en) 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
US20020182506A1 (en) * 2001-05-29 2002-12-05 Cagle Dawson W. Fullerene-based secondary cell electrodes
US7531273B2 (en) * 2001-05-29 2009-05-12 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
US6787122B2 (en) 2001-06-18 2004-09-07 The University Of North Carolina At Chapel Hill Method of making nanotube-based material with enhanced electron field emission properties
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US20060079623A1 (en) * 2001-08-17 2006-04-13 Chenggang Chen Method of forming nanocomposite materials
US20050245665A1 (en) * 2001-08-17 2005-11-03 Chenggang Chen Method of forming nanocomposite materials
US6680016B2 (en) * 2001-08-17 2004-01-20 University Of Dayton Method of forming conductive polymeric nanocomposite materials
US20050272847A1 (en) * 2001-08-17 2005-12-08 Chyi-Shan Wang Method of forming nanocomposite materials
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US20030152835A1 (en) * 2002-02-08 2003-08-14 Sankar Dasgupta Carbon fibre containing negative electrode for lithium battery
US6764628B2 (en) * 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same
US8156057B2 (en) * 2003-03-27 2012-04-10 Knowm Tech, Llc Adaptive neural network utilizing nanotechnology-based components
US6889216B2 (en) * 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US9269043B2 (en) 2002-03-12 2016-02-23 Knowm Tech, Llc Memristive neural processor utilizing anti-hebbian and hebbian technology
US7392230B2 (en) * 2002-03-12 2008-06-24 Knowmtech, Llc Physical neural network liquid state machine utilizing nanotechnology
US7412428B2 (en) * 2002-03-12 2008-08-12 Knowmtech, Llc. Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks
US7398259B2 (en) * 2002-03-12 2008-07-08 Knowmtech, Llc Training of a physical neural network
US20040039717A1 (en) * 2002-08-22 2004-02-26 Alex Nugent High-density synapse chip using nanoparticles
US7085125B2 (en) * 2002-03-21 2006-08-01 Chien-Min Sung Carbon nanotube devices and uses therefor
US7147894B2 (en) * 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
US6905667B1 (en) 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
US20040034177A1 (en) 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
US7752151B2 (en) * 2002-06-05 2010-07-06 Knowmtech, Llc Multilayer training in a physical neural network formed utilizing nanotechnology
AU2003238250B2 (en) 2002-06-14 2009-06-11 Hyperion Catalysis International, Inc. Electroconductive carbon fibril-based inks and coatings
US7827131B2 (en) * 2002-08-22 2010-11-02 Knowm Tech, Llc High density synapse chip using nanoparticles
US6998103B1 (en) 2002-11-15 2006-02-14 The Regents Of The University Of California Method for producing carbon nanotubes
US7596415B2 (en) * 2002-12-06 2009-09-29 Medtronic, Inc. Medical devices incorporating carbon nanotube material and methods of fabricating same
US7844347B2 (en) * 2002-12-06 2010-11-30 Medtronic, Inc. Medical devices incorporating carbon nanotube material and methods of fabricating same
EP1569733A2 (en) * 2002-12-09 2005-09-07 The University of North Carolina at Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
TWI236778B (en) * 2003-01-06 2005-07-21 Hon Hai Prec Ind Co Ltd Lithium ion battery
US6833201B2 (en) * 2003-01-31 2004-12-21 Clemson University Nanostructured-doped compound for use in an EL element
US6969690B2 (en) * 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
US20040234844A1 (en) * 2003-05-20 2004-11-25 Phoenix Innovation, Inc. Novel carbon nanotube lithium battery
CN1813023A (zh) 2003-05-22 2006-08-02 塞威公司 纳米复合材料和生产方法
US7531267B2 (en) * 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
KR100584671B1 (ko) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 황 또는 금속 나노입자를 접착제로 사용하는 탄소나노튜브또는 탄소나노파이버 전극의 제조방법 및 이에 의해제조된 전극
US7097906B2 (en) * 2003-06-05 2006-08-29 Lockheed Martin Corporation Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon
US6982903B2 (en) * 2003-06-09 2006-01-03 Nantero, Inc. Field effect devices having a source controlled via a nanotube switching element
US20040256975A1 (en) * 2003-06-19 2004-12-23 Applied Nanotechnologies, Inc. Electrode and associated devices and methods
US7123826B2 (en) * 2003-07-16 2006-10-17 Wellstream International Ltd. Temperature controlled pipe and method of manufacturing same
US7426501B2 (en) * 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
US7583526B2 (en) 2003-08-13 2009-09-01 Nantero, Inc. Random access memory including nanotube switching elements
JP2005314204A (ja) * 2003-09-02 2005-11-10 Toray Ind Inc カーボンナノチューブの製造方法及びカーボンナノチューブ含有組成物
WO2005044723A2 (en) * 2003-10-16 2005-05-19 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
WO2005069789A2 (en) * 2003-12-18 2005-08-04 Clemson University Process for separating metallic from semiconducting single-walled carbon nanotubes
US20050221016A1 (en) * 2003-12-31 2005-10-06 Glatkowski Paul J Methods for modifying carbon nanotube structures to enhance coating optical and electronic properties of transparent conductive coatings
US20050170177A1 (en) * 2004-01-29 2005-08-04 Crawford Julian S. Conductive filament
US7253431B2 (en) * 2004-03-02 2007-08-07 International Business Machines Corporation Method and apparatus for solution processed doping of carbon nanotube
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20070014148A1 (en) * 2004-05-10 2007-01-18 The University Of North Carolina At Chapel Hill Methods and systems for attaching a magnetic nanowire to an object and apparatuses formed therefrom
CN100338796C (zh) * 2004-05-26 2007-09-19 中国科学院金属研究所 一种锂离子电池负极材料的改性方法
US7129513B2 (en) * 2004-06-02 2006-10-31 Xintek, Inc. Field emission ion source based on nanostructure-containing material
CN1307093C (zh) * 2004-06-09 2007-03-28 清华大学 碳纳米管的制备方法
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US7296576B2 (en) 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
US7465519B2 (en) * 2004-09-03 2008-12-16 The Hongkong University Of Science And Technology Lithium-ion battery incorporating carbon nanostructure materials
US20060051282A1 (en) * 2004-09-03 2006-03-09 The Hong Kong University Of Science And Technology Synthesis of carbon nanostructures
US20060063005A1 (en) * 2004-09-20 2006-03-23 Gardner Slade H Anisotropic carbon alloy having aligned carbon nanotubes
DE102004049453A1 (de) * 2004-10-11 2006-04-20 Infineon Technologies Ag Elektrischer Schaltkreis mit einer Nanostruktur und Verfahren zum Herstellen einer Kontaktierung einer Nanostruktur
US20080012461A1 (en) * 2004-11-09 2008-01-17 Nano-Proprietary, Inc. Carbon nanotube cold cathode
US7611687B1 (en) * 2004-11-17 2009-11-03 Honda Motor Co., Ltd. Welding of carbon single-walled nanotubes by microwave treatment
US7409375B2 (en) * 2005-05-23 2008-08-05 Knowmtech, Llc Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream
US7502769B2 (en) * 2005-01-31 2009-03-10 Knowmtech, Llc Fractal memory and computational methods and systems based on nanotechnology
US9287356B2 (en) 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8000127B2 (en) 2009-08-12 2011-08-16 Nantero, Inc. Method for resetting a resistive change memory element
US9390790B2 (en) 2005-04-05 2016-07-12 Nantero Inc. Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications
DE112006000713T5 (de) * 2005-04-25 2008-05-29 The University Of North Carolina At Chapel Hill Röntgenstrahl-Bildgebungssysteme und -verfahren unter Verwendung einer zeitlichen digitalen Signalverarbeitung zum Verringern von Rauschen und zum gleichzeitigen Erzeugen mehrfacher Bilder
US8155262B2 (en) * 2005-04-25 2012-04-10 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for multiplexing computed tomography
US8217490B2 (en) * 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7394687B2 (en) * 2005-05-09 2008-07-01 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US9196615B2 (en) * 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
TWI324773B (en) * 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US8008745B2 (en) * 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8102018B2 (en) * 2005-05-09 2012-01-24 Nantero Inc. Nonvolatile resistive memories having scalable two-terminal nanotube switches
US7835170B2 (en) 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US8513768B2 (en) * 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8013363B2 (en) * 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US7575693B2 (en) * 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7867616B2 (en) * 2005-06-17 2011-01-11 Honda Motor Co., Ltd. Carbon single-walled nanotubes as electrodes for electrochromic glasses
US7420396B2 (en) * 2005-06-17 2008-09-02 Knowmtech, Llc Universal logic gate utilizing nanotechnology
US20060292716A1 (en) * 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
CN100340479C (zh) * 2005-06-30 2007-10-03 复旦大学 一种富勒烯衍生物在硅系介孔材料中的组装方法
US7599895B2 (en) 2005-07-07 2009-10-06 Knowm Tech, Llc Methodology for the configuration and repair of unreliable switching elements
RU2282919C1 (ru) 2005-09-30 2006-08-27 Александр Константинович Филиппов Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор
CN100408472C (zh) * 2005-12-15 2008-08-06 兰州理工大学 纳米碳管管束的制备方法及制备装置
US20070190422A1 (en) * 2006-02-15 2007-08-16 Fmc Corporation Carbon nanotube lithium metal powder battery
US8189893B2 (en) * 2006-05-19 2012-05-29 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for binary multiplexing x-ray radiography
US7781635B1 (en) 2006-08-07 2010-08-24 The United States Of America As Represented By The Secretary Of The Navy Surfactant-based purification of nanotubes
US7930257B2 (en) * 2007-01-05 2011-04-19 Knowm Tech, Llc Hierarchical temporal memory utilizing nanotechnology
US8110883B2 (en) 2007-03-12 2012-02-07 Nantero Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
US8021496B2 (en) 2007-05-16 2011-09-20 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
CN101315974B (zh) * 2007-06-01 2010-05-26 清华大学 锂离子电池负极及其制备方法
WO2009002748A1 (en) 2007-06-22 2008-12-31 Nantero, Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
CN103948395A (zh) * 2007-07-19 2014-07-30 北卡罗来纳大学查珀尔希尔分校 固定 x 射线数字化断层合成或断层摄影系统和相关方法
KR100956405B1 (ko) * 2007-08-24 2010-05-06 고려대학교 산학협력단 고분자/탄소나노튜브 복합체용 탄소나노튜브 전처리 방법,이를 이용한 고분자/탄소나노튜브 복합체 제조방법 및고분자/탄소나노튜브 복합체
CN101381071B (zh) * 2007-09-07 2011-05-04 清华大学 碳纳米管复合薄膜及其制备方法
CN101409338A (zh) * 2007-10-10 2009-04-15 清华大学 锂离子电池负极,其制备方法和应用该负极的锂离子电池
US7850874B2 (en) * 2007-09-20 2010-12-14 Xintek, Inc. Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
CN101409961B (zh) * 2007-10-10 2010-06-16 清华大学 面热光源,其制备方法及应用其加热物体的方法
CN101400198B (zh) * 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 面热光源,其制备方法及应用其加热物体的方法
CN101409962B (zh) * 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
EP2062515B1 (en) * 2007-11-20 2012-08-29 So, Kwok Kuen Bowl and basket assembly and salad spinner incorporating such an assembly
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
US8262942B2 (en) * 2008-02-07 2012-09-11 The George Washington University Hollow carbon nanosphere based secondary cell electrodes
US8659940B2 (en) * 2008-03-25 2014-02-25 Nantero Inc. Carbon nanotube-based neural networks and methods of making and using same
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
US20100000669A1 (en) * 2008-06-13 2010-01-07 Tsinghua University Carbon nanotube heater
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
US8541843B2 (en) * 2008-08-14 2013-09-24 Nantero Inc. Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same
KR20110051249A (ko) * 2008-08-15 2011-05-17 메사추세츠 인스티튜트 오브 테크놀로지 탄소 기반 나노구조체의 층상 조립체 및 에너지 저장 및 생산 소자에서의 그의 용도
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US8600003B2 (en) 2009-01-16 2013-12-03 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
JP2012523677A (ja) * 2009-04-13 2012-10-04 アプライド マテリアルズ インコーポレイテッド 金属化カーボンナノチューブおよびナノファイバを含む複合材料
US20100284903A1 (en) 2009-05-11 2010-11-11 Honda Patents & Technologies North America, Llc New Class of Tunable Gas Storage and Sensor Materials
US8093669B2 (en) * 2009-05-11 2012-01-10 Honda Motor Co., Ltd. Magnetic nanotransistor
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110135810A1 (en) * 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
US8222704B2 (en) * 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
US9051216B1 (en) * 2010-04-20 2015-06-09 Oceanit Laboratories, Inc. Highly durable composite and manufacturing thereof
US8358739B2 (en) 2010-09-03 2013-01-22 The University Of North Carolina At Chapel Hill Systems and methods for temporal multiplexing X-ray imaging
US20120088151A1 (en) * 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Positive-electrode active material and power storage device
WO2013072687A2 (en) 2011-11-16 2013-05-23 Nanoridge Materials, Incorporated Conductive metal enhanced with conductive nanomaterial
CN103187575B (zh) * 2011-12-28 2015-11-25 清华大学 薄膜锂离子电池的制备方法
GB2500611A (en) * 2012-03-26 2013-10-02 Cambridge Entpr Ltd Powder comprising carbon nanostructures and method of preparation
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9782136B2 (en) 2014-06-17 2017-10-10 The University Of North Carolina At Chapel Hill Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging
US10980494B2 (en) 2014-10-20 2021-04-20 The University Of North Carolina At Chapel Hill Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
US10511017B2 (en) 2015-05-27 2019-12-17 The George Washington University Hollow carbon nanosphere composite based secondary cell electrodes
KR101736410B1 (ko) 2015-08-07 2017-05-16 부산대학교 산학협력단 저출력 레이저 포인터 빔 조사에 의한 광감응 물질 폭발 기반의 도어 브리칭 제어 방법
US10835199B2 (en) 2016-02-01 2020-11-17 The University Of North Carolina At Chapel Hill Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging
US9947400B2 (en) 2016-04-22 2018-04-17 Nantero, Inc. Methods for enhanced state retention within a resistive change cell
DE102016118404A1 (de) * 2016-09-29 2018-03-29 Aixtron Se Elektrode für einen Lithium-Ionen-Akkumulator bzw. Vorrichtung und Verfahren zu deren Herstellung
US11302967B2 (en) * 2018-01-15 2022-04-12 International Business Machines Corporation Low-voltage microbattery
CN108807916B (zh) * 2018-06-14 2020-10-23 北京航空航天大学 碳纳米管薄膜在锂离子电池负极中的应用、对称电池、半电池及制备方法
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
EP4363642A1 (de) 2021-06-28 2024-05-08 Indorama Ventures Fibers Germany GmbH Elektrisch leitfähiges garn

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452777A (en) * 1981-06-26 1984-06-05 Eic Laboratories, Inc. Electrochemical cells
MA19807A1 (fr) * 1982-06-11 1983-12-31 Compositons Electrolytiques So Anodes en materiaux composites et accumulateurs utilisant lesdites anodes .
US5069683A (en) * 1989-05-11 1991-12-03 Moli Energy Limited Process of making a rechargeable battery
US5147739A (en) * 1990-08-01 1992-09-15 Honeywell Inc. High energy electrochemical cell having composite solid-state anode
US5458784A (en) * 1990-10-23 1995-10-17 Catalytic Materials Limited Removal of contaminants from aqueous and gaseous streams using graphic filaments
DE4108620A1 (de) * 1991-03-16 1992-09-17 Holland Gerhard Verfahren zur erzeugung von allotropen kohlenstoffmodifikationen
US5601949A (en) * 1992-11-19 1997-02-11 Sanyo Electric Co., Ltd. Ion conductive material for secondary battery
US5460905A (en) * 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5370949A (en) * 1993-07-09 1994-12-06 National Research Council Of Canada Materials for use as cathodes in lithium electrochemical cells
JPH0785860A (ja) * 1993-09-10 1995-03-31 Hyperion Catalysis Internatl Inc リチウム電池
US5879836A (en) * 1993-09-10 1999-03-09 Hyperion Catalysis International Inc. Lithium battery with electrodes containing carbon fibrils
JP3298735B2 (ja) * 1994-04-28 2002-07-08 科学技術振興事業団 フラーレン複合体
JP2595903B2 (ja) * 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
FR2724490B1 (fr) * 1994-09-09 1996-10-25 Lorraine Carbone Electrode composite carbone/polymere pour generateur electrochimique rechargeable au lithium
US5716708A (en) * 1995-01-17 1998-02-10 Lagow; Richard J. Acetylenic carbon allotrope
US5512392A (en) * 1995-02-10 1996-04-30 Arthur D. Little, Inc. Electrolytic cell using small particle graphite
US6140045A (en) * 1995-03-10 2000-10-31 Meso Scale Technologies Multi-array, multi-specific electrochemiluminescence testing
NZ306051A (en) * 1995-03-10 1999-11-29 Meso Scale Technologies Llc Testing using electrochemiluminescence
JP3434928B2 (ja) * 1995-04-03 2003-08-11 科学技術振興事業団 グラファイト層間化合物およびその製造方法
JP3262704B2 (ja) * 1995-04-24 2002-03-04 シャープ株式会社 非水系二次電池用炭素電極、その製造方法及びそれを用いた非水系二次電池
US5627140A (en) * 1995-05-19 1997-05-06 Nec Research Institute, Inc. Enhanced flux pinning in superconductors by embedding carbon nanotubes with BSCCO materials
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
US5643695A (en) * 1995-09-26 1997-07-01 Valence Technology, Inc. Carbonaceous electrode and compatible electrolyte
US5712059A (en) * 1995-09-26 1998-01-27 Valence Technology, Inc. Carbonaceous electrode and compatible electrolyte solvent
US5589289A (en) * 1995-09-27 1996-12-31 Motorola, Inc. Carbon electrode materials for electrochemical cells and method of making same
US5635151A (en) * 1995-11-22 1997-06-03 Motorola, Inc. Carbon electrode materials for lithium battery cells and method of making same
US5647963A (en) * 1995-12-20 1997-07-15 Motorola, Inc. Electrode materials for electrochemical cells and method of making same
US5700298A (en) * 1996-03-15 1997-12-23 Valence Technology, Inc. Carbon anode for lithium ion electrochemical cell
ATE336610T1 (de) * 1996-05-15 2006-09-15 Hyperion Catalysis Int Nanofasern mit grossen oberflächen
EP0972292B1 (en) * 1996-05-15 2008-12-31 Hyperion Catalysis International, Inc. Graphitic nanofibers in electrochemical capacitors
US5919587A (en) * 1996-05-22 1999-07-06 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
JPH09320570A (ja) * 1996-05-23 1997-12-12 Hitachi Maxell Ltd リチウムイオン二次電池
US5744264A (en) * 1996-06-13 1998-04-28 Valence Technology, Inc. Lithium ion electrochemical cell
US5744265A (en) * 1996-06-13 1998-04-28 Valence Technology, Inc. Lithium cell having mixed lithium--metal--chalcogenide cathode
US5670277A (en) * 1996-06-13 1997-09-23 Valence Technology, Inc. Lithium copper oxide cathode for lithium cells and batteries
KR100365444B1 (ko) * 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
JP3421549B2 (ja) * 1996-09-18 2003-06-30 株式会社東芝 真空マイクロ装置
US5780182A (en) * 1996-11-04 1998-07-14 Valence Technology, Inc. Propylene carbonate based electrolyte for lithium ion electrochemical cell
US6066413A (en) * 1997-03-06 2000-05-23 Telcordia Technologies, Inc. Method for increasing reversible lithium intercalation capacity in carbon electrode secondary batteries
US5997832A (en) * 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US5861224A (en) * 1997-07-15 1999-01-19 Valence Technology, Inc. Electrolyte solvent for lithium ion electrochemical cell
US5952125A (en) * 1997-07-21 1999-09-14 Nanogram Corporation Batteries with electroactive nanoparticles
US5843393A (en) * 1997-07-28 1998-12-01 Motorola, Inc. Carbon electrode material for electrochemical cells and method of making same
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
JP3077655B2 (ja) * 1997-12-22 2000-08-14 日本電気株式会社 カーボンナノチューブの製造装置及びその製造方法
US6203864B1 (en) * 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
US6146227A (en) * 1998-09-28 2000-11-14 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
US6641793B2 (en) * 1998-10-02 2003-11-04 University Of Kentucky Research Foundation Method of solubilizing single-walled carbon nanotubes in organic solutions
US6146791A (en) * 1998-11-25 2000-11-14 Materials And Electrochemical Research (Mer) Corporation Hydrogenated fullerenes as an additive to carbon anode for rechargeable lithium-ion batteries
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
JP3095013B1 (ja) * 1999-04-07 2000-10-03 日本電気株式会社 カーボンチューブの精製法
US6277318B1 (en) * 1999-08-18 2001-08-21 Agere Systems Guardian Corp. Method for fabrication of patterned carbon nanotube films
US20010016283A1 (en) * 1999-09-09 2001-08-23 Masashi Shiraishi Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same
JP3353768B2 (ja) * 1999-12-17 2002-12-03 日本電気株式会社 ナノチューブの加工方法

Also Published As

Publication number Publication date
DE60026026D1 (de) 2006-04-20
CA2362738A1 (en) 2000-09-08
DE60026026T2 (de) 2006-09-14
KR20020024574A (ko) 2002-03-30
EP1165440A4 (en) 2002-06-26
EP1165440A2 (en) 2002-01-02
US6422450B1 (en) 2002-07-23
JP3664240B2 (ja) 2005-06-22
HK1046398B (zh) 2005-08-19
CN1183038C (zh) 2005-01-05
CN1532141A (zh) 2004-09-29
ATE317835T1 (de) 2006-03-15
WO2000051936A2 (en) 2000-09-08
PT1165440E (pt) 2006-06-30
HK1046398A1 (en) 2003-01-10
ES2256014T3 (es) 2006-07-16
CN1347389A (zh) 2002-05-01
EP1165440B1 (en) 2006-02-15
CA2362738C (en) 2005-08-16
AU5265600A (en) 2000-09-21
DK1165440T3 (da) 2006-06-06
US6280697B1 (en) 2001-08-28
WO2000051936A9 (en) 2001-11-01
JP2002538066A (ja) 2002-11-12
WO2000051936A3 (en) 2001-01-04

Similar Documents

Publication Publication Date Title
CN1286714C (zh) 制造电极的方法和由此制备的电极
Liu et al. Lithiation-induced embrittlement of multiwalled carbon nanotubes
CN105047423B (zh) 一种柔性对称型赝电容超级电容器及其制备方法
Wu et al. Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@ CNT for lithium-ion batteries
Liu et al. Ultrathin nanoribbons of in situ carbon-coated V3O7· H2O for high-energy and long-life Li-ion batteries: synthesis, electrochemical performance, and charge–discharge behavior
CN102208631B (zh) 超长单晶v2o5纳米线/石墨烯正极材料及制备方法
EP2769960A1 (en) Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
Eren et al. Facile and green fabrication of silver nanoparticles on a polyoxometalate for Li-ion battery
CN108735969A (zh) 锂离子电池负极及柔性锂离子电池
CN102502789A (zh) 碱土金属锗酸盐纳米材料及其制备方法与作为锂离子电池负极材料的应用
CN101944596A (zh) 一种硅碳复合微球的制备方法及其应用
CN101931076A (zh) 一种硅碳复合颗粒的制备方法及其作为锂离子电池负极材料的应用
CN110391398B (zh) 黑磷/还原氧化石墨烯复合电极及其制备方法以及包括该复合电极的柔性锂离子电池
CN107317011A (zh) 一种氮掺杂的有序多孔碳包覆硅纳米复合材料的制备方法
CN108172770A (zh) 具有单分散结构特征的碳包覆NiPx纳米复合电极材料及其制备方法
Yoo et al. Interfacial defect engineering via combusted graphene in V2O5 nanochips to develop high‐rate and stable zinc-ion batteries
CN105140461A (zh) 锂硫电池正极材料及其制备方法
Chen et al. Ultrathin carbon-coated Sb 2 Se 3 nanorods embedded in 3D hierarchical carbon matrix as binder-free anode for high-performance sodium-ion batteries
CN109585808B (zh) 一种纳米纤维状具有核壳结构的硅基材料及制备与应用
TW201840041A (zh) 鋰離子電池負極的製備方法
Zhao et al. Electrospun advanced nanomaterials for in situ transmission electron microscopy: Progress and perspectives
CN1312330C (zh) α-MnO2单晶纳米棒的制备方法
CN102502580B (zh) 一种碳纳米管阵列及其制备方法与在制备超级电容器中的应用
CN1309104C (zh) 一种提高碳纳米管电化学储锂容量的方法
CN103553129B (zh) 一种二硫化铋钠纳米颗粒的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20061129