RU2282919C1 - Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор - Google Patents

Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор Download PDF

Info

Publication number
RU2282919C1
RU2282919C1 RU2005131105/09A RU2005131105A RU2282919C1 RU 2282919 C1 RU2282919 C1 RU 2282919C1 RU 2005131105/09 A RU2005131105/09 A RU 2005131105/09A RU 2005131105 A RU2005131105 A RU 2005131105A RU 2282919 C1 RU2282919 C1 RU 2282919C1
Authority
RU
Russia
Prior art keywords
lithium
carbon
containing material
graphite
electric discharge
Prior art date
Application number
RU2005131105/09A
Other languages
English (en)
Inventor
Александр Константинович Филиппов (RU)
Александр Константинович Филиппов
Михаил Анатольевич Федоров (RU)
Михаил Анатольевич Федоров
Роман Александрович Филиппов (RU)
Роман Александрович Филиппов
Original Assignee
Александр Константинович Филиппов
Михаил Анатольевич Федоров
Роман Александрович Филиппов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Константинович Филиппов, Михаил Анатольевич Федоров, Роман Александрович Филиппов filed Critical Александр Константинович Филиппов
Priority to RU2005131105/09A priority Critical patent/RU2282919C1/ru
Priority to EP06747768A priority patent/EP1953852A1/en
Priority to JP2008533284A priority patent/JP2009510689A/ja
Priority to KR1020087010553A priority patent/KR20080057329A/ko
Priority to CNA2006800365184A priority patent/CN101288190A/zh
Priority to PCT/RU2006/000215 priority patent/WO2007037717A1/ru
Application granted granted Critical
Publication of RU2282919C1 publication Critical patent/RU2282919C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к области электротехники, в частности к изготовлению литиевых аккумуляторов. Углеродсодержащий материал для литий-ионного аккумулятора включает диспергированные графит и/или углеродные наноструктуры, обработанные газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с. Литий-ионный аккумулятор включает положительный электрод, отрицательный электрод, электролит и сепаратор, в котором один из электродов выполнен на основе указанного выше углеродсодержащего материала. Материал не требует применения сложной технологии его очистки и изготовления, а при его использовании в электродах литий-ионного аккумулятора обеспечивает значительное повышение их электрической удельной емкости. Техническим результатом изобретения является повышение электрической удельной емкости литий-ионного аккумулятора при незначительном изменении стоимости. 2 н. и 11 з.п. ф-лы, 2 ил.

Description

Заявляемое изобретение относится к электротехнике, а более конкретно к литий-ионным аккумуляторам.
В настоящее время литий-ионные аккумуляторы широко используются в качестве источника энергии не только для портативных электронных устройств, но и для различных средств передвижения. Перезаряжаемые литий-ионные аккумуляторы обеспечивают как достаточное напряжение, так и отличную емкость, и характеризуются выдающейся удельной энергоемкостью по сравнению с другими видами перезаряжаемых батарей.
Появившись в 1980-х годах, первые коммерческие литий-ионные аккумуляторы использовали металлический литий в качестве электрода и были чрезвычайно опасны и ненадежны. В настоящее время для материала катода обычно используют оксиды лития (LiCoO2, LiMn2O4, LiNiO2), для анода применяют углеродные материалы (по преимуществу графит), а в качестве электролита LiPF6 и растворители, состоящие из смеси циклических и линейных карбонатов. Принцип работы литий-ионного аккумулятора заключается в интеркаляции углеродного анода ионами лития при зарядке батареи и деинтеркаляции лития при ее работе (разрядке), при этом нейтральные атомы лития теряют электрон, образуя ионы Li+, которые диффундируют к катоду. Аноды из графита запасают ионы лития надежно и безопасно и имеют теоретический предел удельной емкости в 372 мАч/г, что соответствует интеркаляции одним атомом лития шести атомов углерода, т.е. формуле LiC6. Высокочистый графит (не хуже 99,99%) запасает ионы лития (в первом цикле) надежно и безопасно с удельной емкостью, близкой к теоретическому пределу, и не менее чем 90% эффективностью разрядки для первого цикла. Однако в настоящее время типичные коммерческие батареи имеют удельную емкость в пределах лишь 250-300 мАч/г.
Поэтому спрос на литий-ионные аккумуляторы с повышенной (хотя бы близкой к теоретическому пределу в 372 мАч/г) удельной емкостью постоянно растет, что порождает поиск новых перспективных материалов, особенно углеродных наноматериалов для анода литий-ионного аккумулятора.
Анод играет решающую роль для выходных характеристик литий-ионного аккумулятора, являясь наиболее ответственной его частью, определяющей емкость и жизненный цикл. Все производители литий-ионных аккумуляторов пытаются разработать материал углеродного анода, обеспечивающий значительное улучшение характеристик аккумулятора при оправданной его стоимости.
Аморфные формы углерода позволяют запасать в первом цикле не менее 500 мАч/г и очень перспективны для батарей большого размера (см. H.Fujimoto, N.Chnnasamy, A.Mabuchi, and T.Kasuh. - Anode Materials for Li-ion Battery. - In Proc. Electrochemical Society Meeting, 2003, IMLB 12 Meeting). Однако значительные потери емкости в первом цикле являются значительным барьером в использовании подобных материалов для аккумуляторов малого размера, используемых в портативных электронных приборах.
Известен литий-ионный аккумулятор (см. патент США №6503660, МПК Н 01 М 10/24, опубликован 07.01.2003 г.), включающий катод, электролит из соли лития и анод на основе углеродных нановолокон (УНВ) различной структуры, так называемой пластинчатой (Platelet GNFs), резинчатой (Ribbon GNFs) и типа «селедочной кости» (Herringbone GNFs) с кристалличностью не менее 97% и удельной поверхностью в пределах 20-120 м2/г.
Недостатком известного аккумулятора является низкая эффективность разряда первого цикла.
Новые углеродные наноматериалы, в частности углеродные нанотрубки (УНТ), обладающие комбинацией свойств графита (высокая степень кристаллизации) и аморфоподобного углерода (высокая удельная поверхность), весьма перспективны для усовершенствования материала анода литий-ионного аккумулятора.
По этой причине существенное внимание исследователей обращено на одностенные УНТ (ОСНТ), которые теоретически позволяют достичь больших емкостей.
Известен углеродсодержащий материал для литий-ионного аккумулятора (см. патент США №6280697, МПК С 01 В 031/00, опубликован 28.08.2001), включающий по меньшей мере 80 об.% одностенных углеродных нанотрубок, способный интеркалировать щелочной металл, в частности литий.
Известный углеродсодержащий материал позволяет увеличить электрическую удельную емкость разряда анода в первом цикле до 600 мАч/г (соответствует формуле интеркаляции Li1,6C6) за счет использования очищенных ОСНТ. Однако примененное при изготовлении материала механическое размалывание в шаровой мельнице очищенных ОСНТ приводит к их загрязнению материалом шаров (как правило, нержавеющая сталь), что может потребовать повторения операций очистки уже после размалывания. Другой недостаток - это низкая эффективность разряда в первом цикле (60%), сильное падение емкости в последующих (после первого) циклах и высокая стоимость материала, что приводит к высокой стоимости самого аккумулятора.
Известен литий-ионный аккумулятор (см. заявка США №20030099883, МПК Н 01 М 4/52, опубликована 29.05.2003 г.), включающий множество электродов, таких как анод и катод, а также электролит и сепаратор, в котором по меньшей мере один электрод выполнен из проводящего материала, содержащего одностенные углеродные нанотрубки в количестве не более 1,0 мас. %.
Добавка ОСНТ позволила достичь улучшения электрической удельной емкости с 265 мАч/г (без ОСНТ) до 290 мАч/г (с ОСНТ). Использование малой добавки УНТ облегчает адаптацию технологии изготовления аккумуляторов с УНТ к уже существующим, а также снизить требования к очистке ОСНТ материала, так как можно работать с материалом, содержащим до 1-5 мас.% металла. Однако добавка 1,0 мас.% ОСНТ увеличивает на 10-20% стоимость аккумулятора.
К настоящему времени наиболее доступными являются многостенные УНТ (МСНТ), причем в большинстве своем это МСНТ, выращиваемые на наночастицах катализаторов различными вариациями разложения углеводородов или оксида углерода.
Наиболее близким к заявляемому материалу является углеродсодержащий материал для литий-ионного аккумулятора (см. патент США №5879836, МПК Н 01 М 4/60, опубликован 09.03.1999 г.), включающий углеродные фибриллы в виде агрегатированной или неагрегатированной массы с размером частиц от 0,1 до 100 нм, формируемые в виде полых трубок со стенками толщиной от 2 до 5 нм и внешним диаметром от 3,5 до 75 нм.
К недостаткам известного материала следует отнести использование в нем МСНТ с высокой степенью графитизации и как следствие относительно невысокую удельную разрядную емкость и крайне низкую эффективность первого разряда.
Наиболее близким к заявляемому аккумулятору является литий-ионный аккумулятор (см. заявка США №20040131937, МПК Н 01 М 4/58, опубликована 08.06.2004 г.), включающий анод, катод, электролит и разделяющий анод и катод мембранный сепаратор. При этом анод выполнен в виде подложки с выращенными на ее поверхности многостенными углеродными нанотрубками, имеющими внешний диаметр 10-100 нм. Катод включает множество наночастиц состава LixCOyNizO2 с размером частиц от 10 до 100 нм.
К недостатку известного литий-ионного аккумулятора следует отнести очень сложную технологию изготовления анода и высокую стоимость аккумулятора.
Задачей заявляемого изобретения являлась разработка такого углеродсодержащего материала и литий-ионного аккумулятора на его основе, который бы не требовал применения сложной технологии его очистки и изготовления и при его использовании в электродах литий-ионного аккумулятора обеспечивал повышение их электрической удельной емкости при незначительном изменении стоимости.
Поставленная задача решается группой изобретений, объединенных единым изобретательским замыслом.
В части материала поставленная задача решается тем, что углеродсодержащий материал для литий-ионного аккумулятора включает диспергированные графит и/или углеродные наноструктуры, обработанные газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с.
В качестве диспергированного графита может быть использован сфероидизированный графит или графитовые волокна.
В качестве диспергированных углеродных наноструктур могут быть использованы одностенные или многостенные нанотрубки, а также такие наноструктуры как «нанолуковицы», «нанорога», «наноконусы» и другие.
Поставленная задача решается также тем, что литий-ионный аккумулятор включает положительный электрод, отрицательный электрод, электролит и сепаратор, в котором по меньшей мере один из электродов выполнен на основе углеродсодержащего материала, включающего диспергированный графит и/или углеродные наноструктуры, обработанные газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с.
На основе указанного выше углеродсодержащего материала может быть изготовлен положительный и/или отрицательный электрод литий-ионного аккумулятора.
При изготовлении электродов литий-ионного аккумулятора в качестве диспергированного графита может быть использован сфероидизированный графит или графитовые волокна, а в качестве диспергированных углеродных наноструктур могут быть использованы одностенные или многостенные нанотрубки.
В литий-ионном аккумуляторе может быть также использован сепаратор, обработанный газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с. Такая обработка сепаратора увеличивает поглощение электролита, в результате чего электрическая емкость аккумулятора увеличивается на 20-25%.
Обработка материала может производиться на установке, изображенной на чертеже, где
на фиг.1 показан один из вариантов устройства в продольном разрезе;
на фиг.2 показан другой вариант устройства в продольном разрезе.
Устройство для плазменной обработки (см. фиг.1) включает плазменную камеру 1, снабженную загрузочным бункером 2 и приемным бункером 3 с задвижкой 4. Внутри плазменной камеры 1 размещен транспортирующий механизм 5 в виде надетой на валки 6 транспортерной ленты 7. Один из валков 6 приводится во вращение приводом (на чертеже не показан). Над транспортерной лентой 7 размещен плоский электрод 8, а в качестве второго электрода 9 использован корпус плазменной камеры 1. Электроды 8 и 9 подключены к высокочастотному генератору 10. Держатель 11 электрода 8 пропущен через изолятор 12. Устройство снабжено также несколькими емкостями 13, снабженными вентилями 14 для напуска в плазменную камеру 1 различных неорганических газов, например кислорода, азота, аргона, их смеси, а также воздуха. Камера 1 соединена через вентиль 15 с вакуумной системой 16 для создания заданного давления в камере 1. Электроды 8 и 9 выполняют из любого известного инертного немагнитного электропроводящего материала, например из меди или алюминия. Плазменная камера 1 снабжена распылителем 17, соединенным через вентиль 18 с системой 19 подачи воды, транспортерная лента 7 снабжена вибратором 20, электрод 8 и стенки камеры 1 выполнены полыми для охлаждения их путем циркуляции хладоносителя, подаваемого через вентиль 21 из емкости 22 и возвращаемого через вентиль 23 (трубопроводы подачи хладоносителя в полость стенок камеры 1 и возврата хладоносителя из полости электрода 8 на чертеже не показаны). В качестве вибратора 20 может быть использован любой известный вибратор: механический, звуковой, ультразвуковой.
Второй вариант устройства (см. фиг.2) отличается тем, что транспортирующий механизм 5 выполнен в виде лотка 24 из нержавеющей стали, установленного на эксцентриковом приводе 25, при вращении которого лоток 24 совершает одновременные возвратно-поступательные перемещения в вертикальной и горизонтальной плоскостях, подбрасывая обрабатываемый материал 26 и перемещая его в направлении к приемному бункеру 3. Плазменная камера 1 снабжена также емкостью 27 с водой, а лоток 24, соединенный с высокочастотным генератором 10, выполняет функцию электрода 9.
Заявляемый материал для литий-ионного аккумулятора изготавливают следующим образом.
Исходный материал в виде диспергированного графита (сфероидизированного графита или графитовых волокон) или в виде углеродных наноструктур при необходимости предварительно измельчают в известном измельчительном устройстве, например в шаровой или дисковой мельнице, вибромельнице, дезинтеграторе. Полученные порошки (или гранулы) в случае использования для измельчения металлических шаров или металлических измельчителей промывают кислотой, например HCl или HNO3, для предварительного удаления примесей после измельчения. Затем материал высушивают в сушильной печи или вакуумном сушильном шкафу в инертной атмосфере и помещают равномерным слоем толщиной не более 1 мм на транспортерную ленту 7 (см. фиг.1) или на лоток 24 с приводом 25 (см. фиг.2) плазменной камеры 1 установки. В плазменной камере 1 создают высокочастотный неизотермический неравновесный плазменный разряд, подавая на электроды 8 и 9 напряжение от высокочастотного генератора 10. Обработку материала осуществляют в среде неорганического газа или смеси неорганических газов, подаваемых из емкостей 13 при давлении в диапазоне 0,2-1,13 Торр, при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и в течение 300-500 с. В качестве неорганического газа могут быть использованы: воздух, аргон, азот, гелий, кислород, водород, неон, ксенон, двуокись углерода (CO2), азота (NO2), хлор-, фторсодержащие газы, пары воды и их смеси. При обработке материала менее 300 с свойства материала не изменяются, а при обработке более 500 с теряется (выгорает) значительное количество материала.
Пример 1. Обработке в плазменном разряде подвергался графит марки «formula ВТ SLC 150» фирмы Superior Grafite (США). Плазменный разряд создавался в среде CO2 при остаточном давлении 0,5 Торр, удельной мощности электрического разряда 0,1 Вт/см3 и частоте 13 МГц. Графит помещали слоем толщиной примерно 0,5 мм на поддоне технологической камеры установки. Обработка осуществлялась в течение 400 с. Полученный в результате плазменной обработки материал был использован для изготовления анода литий-ионного аккумулятора. Для изготовления аккумулятора использовались: электролит марки LP-40 MERCK, сепаратор ПОРП (микропористая полипропиленовая пленка), а для катода использовался LiCoO2. Для сравнения был изготовлен аккумулятор с анодом из того же графита, но не обработанного плазменным разрядом. Аккумулятор с анодом из заявляемого материала имел электрическую удельную емкость 400 мАч/г, коэффициент использования активной массы - 98%, в то же время аккумулятор с анодом из необработанного графита имел электрическую удельную емкость 290 мАч/г, коэффициент использования активной массы - 91%.
Пример 2. Одностенные углеродные нанотрубки (ОСНТ) помещались в плазменную камеру плазменной установки (см. фиг.1) тонким слоем 0,1-0,3 мм. В камере создавались следующие условия: газовая среда - аргон, воздух при остаточном давлении 0,2 Торр, удельная мощность электрического разряда 0,01 Вт/см3 и частота 27 МГц. Величина удельной мощности выбиралась в зависимости от массы обрабатываемого материала (10 г). Отдельные партии одностенных углеродных нанотрубок обрабатывались в течение: 250 с, 300 с, 480 с, 600 с, 900 с и 1200 с. При обработке в течение 250 с свойства материала не менялись. При обработке в течение 600 с и 900 с терялась значительная часть материала (70-90 мас.%), а при обработке в течение 1200 с материал терялся полностью. При обработке в течение 300 с и 480 с потери материала не превышали 35-40 мас.%, а свойства ОСНТ менялись значительно и кардинально - исходный материал с гидрофобными свойствами становился гидрофильным, сорбция по четыреххлористому углероду (CCl4) увеличилась на 30-50 мас.%, по метанолу сорбция увеличилась на 40-80 мас.%.
Аккумулятор с анодом из необработанных одностенных углеродных нанотрубок имел электрическую удельную емкость 980 мАч/г, коэффициент использования активной массы 92%. А аккумулятор с анодом из заявляемого материала, обработанного в плазме, имел электрическую удельную емкость 2010 мАч/г, коэффициент использования активной массы 98%.
Пример 3. Многостенные углеродные нанотрубки (МСНТ) помещались в плазменную камеру установки тонким слоем 0,3-0,5 мм. В камере создавались следующие условия: в качестве газовой среды использовались: аргон, кислород, водород, гелий и их смеси при остаточном давлении 1,13 Торр, удельная мощность электрического разряда 0,07 Вт/см3 и частота 40 МГц; время обработки 500 с. Потеря массы нанотрубок не превышала 40 мас.%. В результате плазменной обработки сорбция по метану увеличилась на 30 мас.%, а по водороду на 12 мас.%.
Пример 4. Многостенные углеродные нанотрубки со средними, наиболее распространенными длинами 100-200 нм, наружными диаметрами 5-14 нм и внутренними диаметрами 1,2-3,5 нм предварительно очищали от микропримесей никеля и железа по известной химической методике с использованием кислоты HNO3, высушивали, измельчали в дезинтеграторе без применения металлических материалов и помещали в плазменную камеру установки однородным слоем толщиной 0,4-0,5 мм. Параметры обработки: газовая среда - аргон и кислород при остаточном давлении 0,5 Торр, удельная мощность электрического разряда 0,05 Вт/см3, частота 40 МГц и время обработки 450 с. После обработки обработанный материал наполняли гелием и аргоном в течение 2700 с при атмосферном давлении для исключения возможностей его загрязнения и сохранения полученных свойств. Из прошедшего обработку материала изготовили аноды для литий-ионного аккумуляторов. При изготовлении 5 аккумуляторов использовали электролит марки LP-40 MERCK, сепаратор ПОРП. Для катодов использовали LiCoO2. Аккумуляторы имели следующие параметры: электрическая удельная емкость - 543 мАч/г - 617 мАч/г, коэффициент использования активной массы от 95% до 98%.
Пример 5. Полученный в результате плазменной обработки, как в примере 1, материал - графит марки «formula ВТ SLC 150» фирмы Superior Grafite (США) - был использован для изготовления анода и катода литий-ионного аккумулятора. Катод содержал LiCoO2 с добавкой в количестве 20 мас.% упомянутого выше материала. Для изготовления аккумулятора использовались: электролит марки LP-40 MERCK, сепаратор ПОРП (микропористая полипропиленовая пленка). Для сравнения был изготовлен аккумулятор с катодом из LiCoO2 и анодом из того же графита, но не обработанного плазменным разрядом. Аккумулятор с анодом и катодом, изготовленными с использованием заявляемого материала, имел электрическую удельную емкость 480 мАч/г, коэффициент использования активной массы - 98%, в то же время аккумулятор с анодом из необработанного графита и катодом из LiCoO2 имел электрическую удельную емкость 290 мАч/г, коэффициент использования активной массы - 91%.
Пример 6. Из прошедшего обработку, как в примере 3, материала многостенных углеродных нанотрубок изготовили анод для литий-ионного аккумулятора. Дополнительно сепаратор ПОРП был обработан в плазменном разряде в среде СО2 при остаточном давлении 0,7 Торр, удельной мощности электрического разряда 0,1 Вт/см3 и частоте 27 МГц в течение 400 с.
При изготовлении аккумулятора использовали электролит марки LP-40 MERCK. Для катодов использовали LiCoO2. Аккумулятор имел следующие параметры: электрическая удельная емкость 668 мАч/г, коэффициент использования активной массы 98%. По сравнению с литий-ионным аккумулятором, в котором использовался сепаратор, не прошедший обработку в плазменном разряде, электрическая удельная емкость аккумулятора с обработанным плазменным разрядом сепаратором возросла на 25%.
Использование для изготовления аккумуляторов заявляемого материала увеличивает стоимость аккумуляторов всего на 10%-15%, в то время как электрические параметры аккумулятора улучшаются на 50%-100%.
Следует подчеркнуть и то обстоятельство, что при изготовлении аккумулятора практически не изменяется технология его изготовления.

Claims (13)

1. Углеродсодержащий материал для литий-ионного аккумулятора, включающий диспергированные графит и/или углеродные наноструктуры, обработанные газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с.
2. Углеродсодержащий материал по п.1, отличающийся тем, что в качестве упомянутого диспергированного графита использован сфероидизированный графит.
3. Углеродсодержащий материал по п.1, отличающийся тем, что в качестве упомянутого диспергированного графита использованы графитовые волокна.
4. Углеродсодержащий материал по п.1, отличающийся тем, что в качестве упомянутых диспергированных углеродных наноструктур использованы одностенные нанотрубки.
5. Углеродсодержащий материал по п.1, отличающийся тем, что в качестве упомянутых диспергированных углеродных наноструктур использованы многостенные нанотрубки.
6. Литий-ионный аккумулятор, включающий положительный электрод, отрицательный электрод, электролит и сепаратор, в котором по меньшей мере один из электродов выполнен на основе углеродсодержащего материала, включающего диспергированный графит и/или углеродные наноструктуры, обработанные газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с.
7. Аккумулятор по п.6, отличающийся тем, что положительный электрод выполнен на основе упомянутого углеродсодержащего материала.
8. Аккумулятор по п.6, отличающийся тем, что отрицательный электрод выполнен на основе упомянутого углеродсодержащего материала.
9. Аккумулятор по п.6, отличающийся тем, что в качестве упомянутого диспергированного графита использован сфероидизированный графит.
10. Аккумулятор по п.6, отличающийся тем, что в качестве упомянутого диспергированного графита использованы графитовые волокна.
11. Аккумулятор по п.6, отличающийся тем, что в качестве упомянутых диспергированных углеродных наноструктур использованы одностенные нанотрубки.
12. Аккумулятор по п.6, отличающийся тем, что в качестве упомянутых диспергированных углеродных наноструктур использованы многостенные нанотрубки.
13. Аккумулятор по п.6, отличающийся тем, что в нем использован сепаратор, обработанный газовой плазмой в среде неорганического газа или смеси неорганических газов при частоте электрического разряда в диапазоне 13-40 МГц при мощности электрического разряда 0,01-0,1 Вт/см3 и давлении неорганического газа или смеси неорганических газов в диапазоне 0,2-1,13 Торр в течение 300-500 с.
RU2005131105/09A 2005-09-30 2005-09-30 Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор RU2282919C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2005131105/09A RU2282919C1 (ru) 2005-09-30 2005-09-30 Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор
EP06747768A EP1953852A1 (en) 2005-09-30 2006-04-27 Carbon-containing material for a lithium-ion battery and a lithium-ion battery
JP2008533284A JP2009510689A (ja) 2005-09-30 2006-04-27 リチウムイオン蓄電池用の炭素含有材料およびリチウムイオン蓄電池
KR1020087010553A KR20080057329A (ko) 2005-09-30 2006-04-27 리튬 이온 축전지용 탄소 함유 물질 및 리튬 이온 축전지
CNA2006800365184A CN101288190A (zh) 2005-09-30 2006-04-27 用于锂离子电池的含碳材料以及锂离子电池
PCT/RU2006/000215 WO2007037717A1 (fr) 2005-09-30 2006-04-27 Materiau carbone destine a une batterie a ions de lithium et batterie a ions de lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005131105/09A RU2282919C1 (ru) 2005-09-30 2005-09-30 Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор

Publications (1)

Publication Number Publication Date
RU2282919C1 true RU2282919C1 (ru) 2006-08-27

Family

ID=37061386

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005131105/09A RU2282919C1 (ru) 2005-09-30 2005-09-30 Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор

Country Status (6)

Country Link
EP (1) EP1953852A1 (ru)
JP (1) JP2009510689A (ru)
KR (1) KR20080057329A (ru)
CN (1) CN101288190A (ru)
RU (1) RU2282919C1 (ru)
WO (1) WO2007037717A1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469442C1 (ru) * 2009-01-13 2012-12-10 Нокиа Корпорейшн Система для высокоэффективного преобразования и аккумулирования энергии с использованием углеродных наноструктурированных материалов
RU2501128C2 (ru) * 2009-04-01 2013-12-10 Юниверсити Оф Дзе Вестерн Кэйп Способ получения углеродного композиционного материала
RU2564029C2 (ru) * 2010-03-23 2015-09-27 Аркема Франс Маточная смесь углеродных проводящих наполнителей для жидких композиций, в частности, в литий-ионных батареях
RU2584676C2 (ru) * 2011-06-03 2016-05-20 Каунсел Оф Сайнтифик Энд Индастриал Рисерч Способ получения анодных материалов на основе соединений включения лития в графитную спель для литий-ионных аккумуляторов
RU2611508C2 (ru) * 2011-11-18 2017-02-27 Аркема Франс Способ получения пастообразного состава на основе проводящих углеродных наполнителей
RU2627411C1 (ru) * 2013-12-09 2017-08-08 Ппг Индастриз Огайо, Инк. Дисперсии частиц графенового углерода и способ их получения
RU2676530C2 (ru) * 2014-10-31 2019-01-09 Ппг Индастриз Огайо, Инк. Электроды суперконденсатора, включающие графеновые углеродные частицы
WO2021007183A1 (en) * 2019-07-05 2021-01-14 Nicolo Brambilla Electrodes for energy storage devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038411A (ko) * 2011-04-15 2014-03-28 가부시키가이샤 간쿄우 에네루기 나노 기쥬츠 겡큐쇼 카본 나노 재료 제조 장치 및 그 이용
CN102610804A (zh) * 2012-03-31 2012-07-25 苏州大学 锂离子电池负极材料的制备方法、锂离子电池负极及锂离子电池
KR20190083368A (ko) 2016-12-02 2019-07-11 패스트캡 시스템즈 코포레이션 복합 전극
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610615B2 (ja) * 1987-02-17 1997-05-14 住友電気工業株式会社 リチウム2次電池
JPH01116091A (ja) * 1987-10-28 1989-05-09 Bridgestone Corp 炭素電極
JP2665479B2 (ja) * 1989-01-20 1997-10-22 三菱瓦斯化学株式会社 二次電池
JP3066141B2 (ja) * 1991-11-14 2000-07-17 三洋電機株式会社 リチウム二次電池
US5328782A (en) * 1992-10-13 1994-07-12 The United States Of America As Represented By The Secretary Of The Army Treated porous carbon black cathode and lithium based, nonaqueous electrolyte cell including said treated cathode
US5879836A (en) 1993-09-10 1999-03-09 Hyperion Catalysis International Inc. Lithium battery with electrodes containing carbon fibrils
JP3496265B2 (ja) * 1994-03-02 2004-02-09 ソニー株式会社 半固体電解質二次電池
US5601948A (en) * 1995-04-11 1997-02-11 The United States Of America As Represented By The Secretary Of The Army Gas plasma treatment of cathodes to improve cell performance
JP3359220B2 (ja) * 1996-03-05 2002-12-24 キヤノン株式会社 リチウム二次電池
JPH11255931A (ja) * 1998-01-08 1999-09-21 Mitsubishi Chemical Corp 多孔質膜
US6280697B1 (en) 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
JP2001357845A (ja) * 2000-06-16 2001-12-26 Canon Inc ニッケル系二次電池及び該二次電池の製造方法
US6503660B2 (en) 2000-12-06 2003-01-07 R. Terry K. Baker Lithium ion battery containing an anode comprised of graphitic carbon nanofibers
US20030099883A1 (en) 2001-10-10 2003-05-29 Rosibel Ochoa Lithium-ion battery with electrodes including single wall carbon nanotubes
JP2004164934A (ja) * 2002-11-11 2004-06-10 Mitsui Chemicals Inc 二次電池用負極活物質の表面処理方法およびそれを用いた二次電池
TWI236778B (en) 2003-01-06 2005-07-21 Hon Hai Prec Ind Co Ltd Lithium ion battery
JP3785407B2 (ja) * 2003-08-29 2006-06-14 Tdk株式会社 電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法、並びに、電極用複合粒子製造装置、電極製造装置及び電気化学素子製造装置
JP2007513747A (ja) * 2003-10-16 2007-05-31 ベーアーエム ブンデスアンスタルト フュアー マテリアルフォルシュング ウント −プリューフング 変性された材料の製造方法及び変性された材料を製造するためのプラズマトロン並びに相応する変性された材料
US7276283B2 (en) * 2004-03-24 2007-10-02 Wisconsin Alumni Research Foundation Plasma-enhanced functionalization of carbon-containing substrates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469442C1 (ru) * 2009-01-13 2012-12-10 Нокиа Корпорейшн Система для высокоэффективного преобразования и аккумулирования энергии с использованием углеродных наноструктурированных материалов
RU2501128C2 (ru) * 2009-04-01 2013-12-10 Юниверсити Оф Дзе Вестерн Кэйп Способ получения углеродного композиционного материала
RU2564029C2 (ru) * 2010-03-23 2015-09-27 Аркема Франс Маточная смесь углеродных проводящих наполнителей для жидких композиций, в частности, в литий-ионных батареях
RU2584676C2 (ru) * 2011-06-03 2016-05-20 Каунсел Оф Сайнтифик Энд Индастриал Рисерч Способ получения анодных материалов на основе соединений включения лития в графитную спель для литий-ионных аккумуляторов
RU2611508C2 (ru) * 2011-11-18 2017-02-27 Аркема Франс Способ получения пастообразного состава на основе проводящих углеродных наполнителей
RU2627411C1 (ru) * 2013-12-09 2017-08-08 Ппг Индастриз Огайо, Инк. Дисперсии частиц графенового углерода и способ их получения
RU2676530C2 (ru) * 2014-10-31 2019-01-09 Ппг Индастриз Огайо, Инк. Электроды суперконденсатора, включающие графеновые углеродные частицы
WO2021007183A1 (en) * 2019-07-05 2021-01-14 Nicolo Brambilla Electrodes for energy storage devices

Also Published As

Publication number Publication date
KR20080057329A (ko) 2008-06-24
EP1953852A1 (en) 2008-08-06
WO2007037717A1 (fr) 2007-04-05
CN101288190A (zh) 2008-10-15
JP2009510689A (ja) 2009-03-12

Similar Documents

Publication Publication Date Title
RU2282919C1 (ru) Углеродсодержащий материал для литий-ионного аккумулятора и литий-ионный аккумулятор
Gong et al. An iodine quantum dots based rechargeable sodium–iodine battery
Shu et al. N-doped onion-like carbon as an efficient oxygen electrode for long-life Li–O 2 battery
Chang et al. Synthesis of 3D nitrogen-doped graphene/Fe 3 O 4 by a metal ion induced self-assembly process for high-performance Li-ion batteries
US9406985B2 (en) High efficiency energy conversion and storage systems using carbon nanostructured materials
Hu et al. The fast filling of nano-SnO 2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries
JP5594656B2 (ja) リチウムイオン二次電池の正極材の製造方法
Shu et al. Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium–oxygen batteries
Li et al. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries
KR20150143767A (ko) 리튬-이온 이차 전지용 캐소드 활물질 및 그것의 제조 방법, 리튬-이온 이차 전지용 캐소드 폴피스, 및 리튬-이온 이차 전지
Geng et al. Preparation of porous and hollow Fe 3 O 4@ C spheres as an efficient anode material for a high-performance Li-ion battery
CN107634224B (zh) 一种含氟化铁插层物的外壁氟化多壁碳纳米管的制备方法
KR20140070417A (ko) 다공성 규소 산화물―탄소재 복합체를 포함하는 음극 활물질 및 이의 제조방법
Zang et al. Recent advances of 2D nanomaterials in the electrode materials of lithium-ion batteries
Luo et al. Spherical CoS2@ carbon core–shell nanoparticles: one-pot synthesis and Li storage property
Li et al. Graphene-like 2D carbon wrapped porous carbon embedded SnO2/CoSn hybrid nanoparticles with enhanced lithium storage performance
Thomas et al. Enhanced electrochemical performance of graphene nanosheet thin film anode decorated with tin nanoparticles
CN111370656A (zh) 一种硅碳复合材料及其制备方法和应用
CN115172714B (zh) 一种硅纳米线/硅纳米颗粒二元团簇材料及其制备方法和应用
Zhang et al. Ultrafine SnO 2 nanoparticles decorated onto graphene for high performance lithium storage
Zheng et al. Puffed rice inspired porous carbon Co-MOFs derived composite electrode for lithium ion batteries
CN114361420A (zh) 一种螺旋纳米碳纤维复合材料及其制备方法、一种锂电池
KR20230024384A (ko) 황 캐소드, 황 캐소드 재료, 및 이를 제조하는 장치 및 방법
Lv et al. One-Step Synthesisof Highly Uniform Fe3O4@ C Nanospheres as Anode Materials for LIBs
He et al. Three-dimensional nanocomposites of graphene/carbon nanotube matrix-embedded Si nanoparticles for superior lithium ion batteries

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091001