EP4363642A1 - Elektrisch leitfähiges garn - Google Patents

Elektrisch leitfähiges garn

Info

Publication number
EP4363642A1
EP4363642A1 EP22735413.1A EP22735413A EP4363642A1 EP 4363642 A1 EP4363642 A1 EP 4363642A1 EP 22735413 A EP22735413 A EP 22735413A EP 4363642 A1 EP4363642 A1 EP 4363642A1
Authority
EP
European Patent Office
Prior art keywords
yarn
electrically conductive
sheath
yarn according
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22735413.1A
Other languages
English (en)
French (fr)
Inventor
Pascal FREUND
Tim Biemelt
Thomas Rademacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indorama Ventures Fibers Germany GmbH
Original Assignee
Indorama Ventures Fibers Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indorama Ventures Fibers Germany GmbH filed Critical Indorama Ventures Fibers Germany GmbH
Publication of EP4363642A1 publication Critical patent/EP4363642A1/de
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/404Yarns or threads coated with polymeric solutions

Definitions

  • the invention relates to an electrically conductive yarn with good physical and mechanical properties, a method for its production, and its use.
  • thermoplastic polymers in which an electrically conductive material is incorporated into the thermoplastic polymer or a yarn made from thermoplastic polymer is provided with an electrically conductive sheath, for example in the form of a bi-component fiber. Examples of this can be found inter alia in EP-A-1559815 and EP-A-3502327.
  • thermoplastic polymers e.g. graphite or carbon black
  • electrically conductive materials e.g. graphite or carbon black
  • the subject matter of the present invention is an electrically conductive yarn with a core-sheath structure comprising:
  • thermoplastic elastomer (iia) thermoplastic elastomer
  • (iiia) has a tenacity of 40 to 300 cN/tex
  • (iiic) has thermal shrinkage of at most 6%
  • (iiid) has a linear density of 100 to 1200 dtex for a multifilament yarn made from organic polymers or has a diameter in the range from 200 to 600 pm for a multifilament yarn made from non-organic materials
  • (ivb) has a thickness of at least 10 ⁇ m
  • the electrically conductive material has an electrical conductivity of at least 3x10 2 S/m
  • thermoplastic elastomer 99 to 55% by weight thermoplastic elastomer
  • the jacket material has a maximum thermal shrinkage of 6%.
  • the multifilament yarn present in the yarn according to the invention preferably has a tenacity of 40 to 300 cN/tex. Strengths related to the tenacity of from 50 to 280 cN/tex, in particular from 60 to 260 cN/tex, are particularly preferred.
  • the multifilament yarn present in the yarn according to the invention preferably has an elongation at break of at most 25%, preferably at most 20%.
  • the multifilament yarn present in the yarn according to the invention preferably has a thermal shrinkage of at most 6%, preferably at most 3%.
  • the multifilament yarn according to the invention preferably has a linear density in the range from 100 to 1200 dtex, particularly preferably 250 to 500 dtex.
  • the dtex specification refers to fibers made of organic polymers, in particular thermoplastic polymers, particularly preferably made of polyester.
  • the multifilament yarn according to the invention preferably has 10 to 500 individual filaments.
  • the multifilament yarn according to the invention is electrically non-conductive.
  • electrically non-conductive means that the yarn has an electrical conductivity of ⁇ 10 8 S/m.
  • the multifilament yarn according to the invention is preferably a multifilament yarn made from aramids, preferably so-called high-modulus aramids, polyesters, preferably so-called high-strength polyester multifilaments, polyamides, preferably so-called high-strength polyamide multifilaments, carbon, glass, mineral fibers (basalt), and based on so-called hybrid multifilament yarns that have two or more of the aforementioned materials.
  • the term high-strength stands for a tenacity-related strength of at least 50 cN/tex, in particular of at least 60 cN/tex, particularly preferably of at least 70 cN/tex,
  • the multifilament yarn present in the yarn according to the invention preferably has a Young's modulus of at least 0.3 GPa, particularly preferably at least 0.5 GPa, in particular at least 0.8 GPa, particularly preferably at least 2 GPa or at least 2.5 GPa.
  • the multifilament yarn according to the invention is particularly preferably a multifilament yarn made from a thermoplastic polymer
  • thermoplastic polymer designates a plastic which can be (thermoplastically) deformed in a specific temperature range, preferably in the range from 25° C. to 350° C. This process is reversible, i.e. it can be repeated as often as you like by cooling and reheating until it is molten, as long as the material has not been damaged too much by overheating, so-called thermal decomposition, or by mechanical stress during shaping. This is where thermoplastic polymers differ from duroplastics and elastomers.
  • thermoplastic polymers used according to the invention are polymers from the group consisting of acrylonitrile-ethylene-propylene(diene)styrene copolymer, acrylonitrile-methacrylate copolymer, acrylonitrile-methyl methacrylate copolymer, chlorinated acrylonitrile, polyethylene-styrene copolymer and acrylonitrile-butadiene -styrene copolymer, acrylonitrile-ethylene-propylene-styrene copolymer cellulose acetobutyrate, cellulose acetopropionate, hydrated cellulose, carboxymethyl cellulose, cellulose nitrate, cellulose propionate, cellulose triacetate, polyvinyl chloride, ethylene acrylic acid copolymer, ethylene butyl acrylate copolymer, ethylene - chlorotrifluoroethylene copolymer, ethylene ethyl acrylate copolymer, ethylene methacrylate cop
  • thermoplastic polymers melt-spinnable synthetic polycondensates are preferred. Also suitable thermoplastic polymers are melt-spinnable synthetic biopolymers.
  • synthetic biopolymer designates a material that consists at least predominantly of biogenic raw materials (renewable raw materials). This is a differentiation from the conventional, petroleum-based materials or plastics, such as e.g. B. polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC).
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • melt-spinnable synthetic polycondensates are preferred. These are aliphatic polyesters, arylaliphatic polyesters, aromatic polyesters and their co-/ter-polymers, which are produced from polyols and aliphatic and/or aromatic dicarboxylic acids or their derivatives (anhydrides, esters) by polycondensation, with the polyols being substituted or may be unsubstituted, the polyols may be linear or branched polyols.
  • Preferred polyols are polyols having 2 to 8 carbon atoms, polyalkylene ether glycols having 2 to 8 carbon atoms, and cycloaliphatic diols having 4 to 12 carbon atoms.
  • Examples of polyols that can be used include, but are not limited to, ethylene glycol,
  • Preferred polyols include 1,4-butanediol, 1,3-propanediol, ethylene glycol, 1,6-hexanediol, diethylene glycol, isosorbitol and 1,4-cyclohexanedimethanol.
  • Preferred aliphatic dicarboxylic acids include substituted or unsubstituted, linear or branched, non-aromatic dicarboxylic acids selected from the group consisting of aliphatic dicarboxylic acids having 2 to 12 carbon atoms and cycloaliphatic dicarboxylic acids having 5 to 10 carbon atoms, where the cycloaliphatic dicarboxylic acids can also have heteroatoms in the ring.
  • the substituted non-aromatic dicarboxylic acids typically contain 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy.
  • Non-limiting examples of aliphatic and cycloaliphatic dicarboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, fumaric acid, 2,2-dimethylglutaric acid, suberic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid. 3-cyclohexanedicarboxylic acid, diglycolic acid, itaconic acid, maleic acid, 2,5-norbornanedicarboxylic acid.
  • Preferred aromatic dicarboxylic acids include substituted or unsubstituted aromatic dicarboxylic acids selected from the group of aromatic dicarboxylic acids having 6 to 12 carbon atoms, it also being possible for these dicarboxylic acids to have heteroatoms in the aromatic ring and/or in the substituent.
  • the substituted aromatic dicarboxylic acids can typically have 1 to 4 substituents selected from halogen, C6-C10 aryl and C1-C4 alkoxy.
  • aromatic dicarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid,
  • the multifilament yarn according to the invention has a diameter in the range from 200 ⁇ m to 600 ⁇ m, this information relating to a multifilament yarn made from non-organic fibers, in particular from carbon, glass and mineral fibers (basalt).
  • the multifilament yarn according to the invention is very particularly preferably a multifilament yarn made from a polyester, preferably a polyester based on aromatic dicarboxylic acids, which preferably:
  • (i) have a tenacity of 40 to 300 cN/tex, in particular 60 to 100 cN/tex, and
  • (ii) have a titre in the range from 100 to 1200 dtex, particularly preferably 250 to 500 dtex, and
  • PET Polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PEN polyethylene naphthalate
  • polyesters are PET and PEN with a glass transition temperature of at least 70°C.
  • polyesters which contain at least 95 mol % polyethylene terephthalate (PET).
  • polyesters in particular polyethylene terephthalate, have a molecular weight corresponding to a specific viscosity (pspec) of at least 0.8 dl/g, in particular at least 0.9 dl/g, measured in each case on solutions with 1 g/l of polymer in dichloroacetic acid at 25 °C
  • polyester multifilament yarns are known in principle, for example, from EP-A-0173221 and the places cited therein.
  • Such high-strength polyester multifilament yarns are also referred to as tire cord and are used in technical products that require high strength.
  • the production on an industrial scale takes place via a melt spinning process.
  • the thermoplastic, polymeric material is melted and fed into a spinning beam in the liquid state by means of an extruder.
  • the molten material is fed from this spinning beam to so-called spinnerets.
  • the spinneret usually has a spinneret plate with a plurality of bores from which the individual capillaries (filaments) of the fiber are extruded.
  • wet or solvent spinning processes are also used to produce staple fibers.
  • a highly viscous solution of a synthetic polymer is extruded through nozzles with fine bores. Both processes are referred to by those skilled in the art as so-called multi-station spinning processes.
  • the polymer fibers produced in this way are subjected to fiber post-processing in order to set the desired mechanical strength.
  • a modification or finishing of polymer fibers for each end use or for the necessary intermediate treatment steps, for example drawing and/or crimping usually by applying suitable finishes or sizings, which are applied to the surface of the finished polymer fiber or the polymer fiber to be treated.
  • Additives such as antistatic agents or colored pigments may be added to the thermoplastic polymer, usually by incorporation into the molten thermoplastic polymer during the multi-spin process of the polymer fiber.
  • thermoplastic multifilament yarn in particular the polyester multifilament yarn
  • the thermoplastic multifilament yarn is finished with a commercially available spinning oil which decouples the multifilament yarn core from the thermoplastic sheath.
  • spinning oil is applied to the multifilament yarn before it is sheathed.
  • the spinning oil used is commercially available spinning oil.
  • spinning oils examples include distillates (petroleum) consisting of dewaxed heavy paraffinic solvents (50-70%), mineral oils (25-50%), ethoxylated fatty alcohol (2.5-30%), C8-18 even amides (2.5 -10%) and C18-unsaturated, N,Nbis(hydroxyethyl) C9-C11 alcohol ethoxylate ( ⁇ 2.5%) Alternatively, ethylene glycol (2.5-10%), diisooctyl sodium sulfosuccinate (1-2.5%) and/or sodium alkane sulfonate (1 - ⁇ 2.5%) must be included.
  • the sheath present in the yarn according to the invention is in contact with the multifilament yarn. This means that at least 90% of the surface of the multifilament yarn is in direct contact with the sheath or at least 90% of the surface of the multifilament yarn is in indirect contact with the sheath, insofar as the spinning oil finish described above has taken place.
  • the sheath usually has a thickness of at least 10 ⁇ m, preferably at least 20 ⁇ m, particularly preferably at least 50 ⁇ m.
  • the thickness is not limited as to the upper limit.
  • the maximum thickness is usually 300 ⁇ m, so that the thickness is in the range from 10 ⁇ m to 300 ⁇ m, preferably from 50 ⁇ m to 300 m, especially in the range of 100 pm to 150 pm..
  • the sheath usually has an electrical conductivity of at least 150 S/m.
  • the electrically conductive material used in the casing usually has an electrical conductivity of at least 3 ⁇ 10 2 S/m, preferably at least 1 ⁇ 10 6 S/m.
  • the sheathing comprises 55 to 99% by weight of thermoplastic elastomer and 1 to 45% by weight of electrically conductive material, preferably 85 to 99% by weight of thermoplastic elastomer and 1 to 15% by weight of electrically conductive material, particularly preferably 90 to 99% by weight thermoplastic elastomer and 1 to 10% by weight electrically conductive material, in particular 94 to 99% by weight thermoplastic elastomer and 1 to 6% by weight electrically conductive material.
  • the casing can also have the usual additives, in particular those that make it easier to process the casing compound.
  • the compound described above is hereinafter referred to as the sheath component.
  • thermoplastic elastomer refers to a thermoplastic elastomer according to DIN ES ISO 18064:2021-04 (replaces DIN EN ISO 18064:2015-03)
  • thermoplastic elastomer used according to the invention can be (thermoplastically) deformed in a specific temperature range, preferably in the range from 25° C. to 350° C. This process is reversible, i.e. it can be repeated as often as you like by cooling and reheating until it is molten, as long as the material has not been damaged too much by overheating, so-called thermal decomposition, or by mechanical stress during shaping.
  • thermoplastic elastomer is usually obtained by combining thermoplastic with an elastomer, this can usually be done in two different ways, block polymers or polymer blends
  • Suitable block polymers as a thermoplastic elastomer are TPS, TPU, TPA and TPC.
  • TPS stands for styrene block copolymers, specifically styrene/butadiene/styrene (SBS), or styrene/ethylene-butylene/styrene (SEBS) or styrene/ethylene-propylene/styrene (SEPS) or styrene/isoprene/styrene (SIS) based styrene block copolymers.
  • SBS styrene/butadiene/styrene
  • SEBS styrene/ethylene-butylene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • SIS styrene/isoprene/styrene block copolymers.
  • These block copolymers have hard and soft segments, with the styrenic group forming the hard segment and the aliphatic groups, particularly aliphatic
  • TPS are characterized by a hardness of 10 Shore A to 70 Shore D.
  • Preferred within the TPS are styrene/butadiene/styrene (SBS), styrene/ethylene butylene/styrene (SEBS), styrene/ethylene propylene/styrene (SEPS) or styrene/isoprene/styrene (SIS) with a hardness of 75 Shore A up to 40 shore D
  • TPS styrene/butadiene/styrene
  • SEBS styrene/ethylene butylene/styrene
  • SEPS styrene/ethylene propylene/styrene
  • SIS styrene/isoprene/styrene
  • styrene/butadiene/styrene SBS
  • SEBS styrene/ethylene-butylene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • SIS styrene/isoprene/styrene
  • SBS styrene/butadiene/styrene
  • SEBS styrene/ethylene-butylene/styrene
  • SEPS styrene/ethylene-propylene/styrene
  • SIS styrene/isoprene/styrene
  • TPS's include Elastron® G and Elastron® D, Kraton® (Kraton Polymers), Septon® (Kuraray), Styroflex® (BASF), Thermolast® (Kraiburg TPE) ALLRUNA® (ALLOD Material GmbH & Co.KG) or Saxomer® TPE-S (PCW), as well as Pre-Elect® TPE (Premix).
  • the TPS elastomers mentioned above have particularly good conductivity and are also advantageous in processing.
  • yarns according to the invention with this sheath component have a particularly smooth surface.
  • TPU stands for thermoplastic polyurethane, i.e. a thermoplastic elastomer based on polyurethane. Such TPUs are characterized by a hardness of about 60 Shore A and above. Commercially available TPUs include Elastollan® (BASF) or Desmopan®, Texin®, Utechllan® (Covestro).
  • BASF Elastollan®
  • Desmopan® Texin®
  • Utechllan® Covestro
  • TPA stands for Thermoplastic Polyether Polyamide, ie a block polymer based on polyamide. Such TPAs are characterized by a hardness of 60 Shore A to 70 Shore D. Commercially available TPA's include PEBAX® (Arkema), VESTAMID® E (Evonik Industries) TPC stands for thermoplastic polyester elastomer, ie a block copolymer on a copolyester basis. Such TPCs are distinguished by a flatness of 80 Shore A to 70 Shore D. Commercially available TPC's include Hytrel® (Du Pont), Keyflex® (LG Chem), Skypel® (SK Chemicals)
  • thermoplastic elastomers examples include TPO and TPV
  • TPO stands for thermoplastic polyolefins, a mixture of a polyolefin-based plastic (usually PP or PE) and an elastomer such as EPDM. In contrast to TPV, TPO is not or only partially crosslinked. TPOs are polymer mixtures that are made hard or soft depending on their composition. Such TPOs are characterized by a hardness of 55 Shore A to 70 Shore D. Commercially available TPO's include Elastron® TPO, Saxomer® TPE-0 (PCW)
  • TPV stands for thermoplastic polyolefin vulcanizate, a mixture of a polyolefin-based plastic (primarily PP) and an elastomer such as EPDM. In contrast to TPO, the elastomer in TPV is cross-linked or vulcanized. TPV are characterized by a hardness of 35 Shore A to 50 Shore D. Commercially available TPV's include Elastron® V, Sariink® (DSM), Santoprene® (Exxon)
  • thermoplastic elastomer is characterized by a Vicat softening point VST (50°C/10N) of at least 50°C, preferably at least 60°C, in particular at least 100°C.
  • VST Vicat softening point
  • thermoplastic elastomer is distinguished by a melting temperature in the range from 140 to 190.degree. C., in particular in the range from 150 to 175.degree.
  • thermoplastic elastomer is characterized by a thermal shrinkage of at most 3%, preferably at most 2%, particularly preferably at most 1%.
  • the thermoplastic elastomer in the form of the sheath component has a melt flow rate of at most 13 g/10 min (190° C.), in particular of at most 11 g/10 min (190° C.), particularly preferably of a maximum of 10g/10 min (190°C).
  • the thermoplastic elastomer in the form of the sheath component has a melt flow rate of not more than 50 g/10 min (230° C.), in particular not more than 30 g/10 min (230° C.), particularly preferably not more than 20 g/10 min. 10 min (230°C).
  • the thermoplastic elastomer is a TPS and stands for styrene block copolymers, in particular styrene/butadiene/styrene (SBS), or styrene/ethylene butylene/styrene (SEBS) or styrene/ethylene propylene/styrene (SEPS) or styrene/isoprene/styrene (SIS)-based styrene block copolymers which, in the form of the shell component, have a melt flow rate of not more than 30 g/10 min (230°C), in particular not more than 20 g/10 min (230°C), particularly preferably not more than 13 g/10 min (230° C.).
  • SBS styrene/butadiene/styrene
  • SEBS styrene/ethylene butylene/styrene
  • SEPS styrene/ethylene propylene/styren
  • thermoplastic elastomer has a hardness of 75 Shore A to 40 Shore D.
  • thermoplastic elastomer has a water absorption (23° C.) of at most 0.8%.
  • the thermoplastic elastomer has a tensile stress at break (tensile stress at break) of at least 10 MPa and at most 28 MPa.
  • a TPS styrene block copolymer is selected as the thermoplastic elastomer from the group of styrene/butadiene/styrene (SBS), styrene/ethylene butylene/styrene (SEBS), styrene/ethylene propylene/styrene (SEPS) or styrene/ Isoprene/styrene (SIS) is used, with the thermoplastic elastomer styrene/ethylene-butylene/styrene (SEBS) being particularly preferred, or a TPC thermoplastic polyester elastomer, i.e. a block copolymer on a copolyester basis, is used as the thermoplastic elastomer. deployed..
  • SBS styrene/butadiene/styrene
  • SEBS styrene/ethylene butylene/styrene
  • SEPS st
  • the electrically conductive material present in the casing usually has an electrical conductivity of at least 3 ⁇ 10 2 S/m, preferably at least 1 ⁇ 10 6 S/m.
  • the electrically conductive material is preferably a particulate material, for example a powder or granules.
  • a particulate material for example a powder or granules.
  • non-spherical particles up to rod, fibrous, platelet-shaped or branched particles possible.
  • the introduction of the electrically conductive material into the jacket makes it possible for larger particles to be added, which usually interfere with the production of spun filaments in the extrusion process.
  • the electrically conductive material can also have particles larger than 2 ⁇ m, preferably larger than 3 ⁇ m, in particular particles with a spherical size of more than 2 ⁇ m, preferably larger than 3 ⁇ m.
  • Particle sizes of this type cannot be used in conventional thread spinning processes, since a filter is usually used in front of the spinning beam.
  • the presence of such large particles of electrically conductive material allows the electrical percolation threshold to be overcome more easily. With the help of the present invention, it is thus also possible to introduce large particles of electrically conductive material into the yarn according to the invention.
  • the electrically conductive material is usually mixed with the thermoplastic polymer for the sheath, and this can be done in the melt, for example in an extruder, or by metering in in some other way. So-called masterbatches are also advantageous for better distribution of the electrically conductive material in the thermoplastic elastomer of the sheath.
  • thermoplastic sheath Preferred electrically conductive materials for the thermoplastic sheath are disclosed, for example, in US-A-6,228,492; US-A-6,528,572; US-A-2003/158,323; US-A-6,621,970; CN-A-1431342; US-A-2003/236,588 and US-A-5,840,425. These are also part of this description and disclosure by reference.
  • thermoplastic sheath are suitable carbon nanotubes, such as those described in US Pat. Nos. 6,099,960; US-A-6,280,697; US-A-2002/172,639; US-A-2003/102,222; US-A-2002/113,335 and US-A-2003/102,444. These are also part of this description and disclosure by reference.
  • thermoplastic jacket Particularly preferred electrically conductive materials for the thermoplastic jacket are so-called CNTs (Carbon Nano Tubes) with an average diameter in the range from 8 to 12 nm, preferably in the range from 9 to 10 nm, determined by means of transmission electron microscopy (TEM),
  • CNTs Carbon Nano Tubes
  • TEM transmission electron microscopy
  • Particularly preferred electrically conductive materials for the thermoplastic jacket are so-called CNTs (Carbon Nano Tubes) with an average diameter in the range from 8 to 12 nm, preferably in the range from 9 to 10 nm, and an average length in the range 1 to 3 gm, preferably in the range 1 to 2 gm, as determined by transmission electron microscopy (TEM).
  • CNTs Carbon Nano Tubes
  • TEM transmission electron microscopy
  • thermoplastic sheath Particularly preferred electrically conductive materials for the thermoplastic sheath are so-called graphene, in particular graphene with a height of ⁇ 10nm and a lateral extent of 1.5pm, determined by transmission electron microscopy (TEM). have a BET specific surface area of more than 600m 2 /g.
  • graphene in particular graphene with a height of ⁇ 10nm and a lateral extent of 1.5pm, determined by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the enclosing application of the sheath to the multifilament yarn is carried out by extrusion from the melt.
  • the multifilament yarn is pulled through a ring-shaped extrusion nozzle around which another, larger extrusion nozzle is installed, which applies the melted sheath component to the multifilament yarn.
  • the yarn thickness is determined by the thickness of the core yarn, the difference in diameter of the extrusion nozzles and the take-off speed of the yarn.
  • the multi-component yarn is then cooled in a water bath and wound up.
  • the introduced (electrically conductive) materials can have sizes of >3 pm in one or more dimensions, contrary to conventional spinning methods, without lastingly disturbing the production process.
  • the electrically conductive material used according to the invention can also form aggregates in the jacket.
  • These aggregates of the particulate material for example a powder or granules, can be determined using optical methods.
  • a film is formed from the cladding component and the size of the aggregate is determined using optical methods. The determination can be made, for example, using an FSA100 analyzer from OCS Optical Control Systems GmbH, Witten, Germany.
  • the individual defect size can, in individual cases, be up to 500 pm and usually 90% of the defects are smaller than 100 pm.
  • the average numerical defect size is typically up to 50pm.
  • thermoplastic polymers described above have customary additives. These are typically antioxidants, pigments, stabilizers, surfactants, waxes, flow promoters, solid solvents, plasticizers and other materials such as nucleating agents that are added to improve the processability of the thermoplastic composition.
  • the additives mentioned above are not the electrically conductive material used according to the invention.
  • the electrically conductive yarn according to the invention with a core-sheath structure made of a multifilament yarn core and an electrically conductive sheath has good mechanical properties on the one hand and good electrical conductivity on the other.
  • the yarn according to the invention preferably has a diameter in the range from 0.1 mm to 2.5 mm.
  • the yarn according to the invention preferably has 10 to 500 individual filaments in the multifilament yarn core.
  • the yarn according to the invention is electrically non-conductive in the multifilament yarn core.
  • the yarn according to the invention preferably has a maximum tensile strength in the range from 1500 to 3600 cN, in particular 1700 to 3600 cN, particularly preferably 2000 to 3600 cN.
  • the yarn according to the invention preferably has a tenacity in the range from 35 to 100 cN/tex, in particular from 50 to 100 cN/tex.
  • the tenacity of the yarn according to the invention is thus lower than the tenacity of the core, since the sheath material is included in the determination of the tenacity, but makes no appreciable contribution to the tenacity.
  • the yarn according to the invention preferably has a maximum bending force in the range from 0.5 to 20 cN, in particular 1 to 20 cN, particularly preferably from 2 to 20 cN, particularly preferably 5 to 20 cN.
  • the yarn according to the invention preferably has a flexural modulus in the range from 5 to 200 daN/mm 2 , in particular from 10 to 200 daN/mm 2 , particularly preferably 50 to 200 daN/mm 2 , particularly preferably 100 to 200 daN/mm 2 in the range from 120 to 180 daN/mm 2 .
  • the yarn according to the invention preferably has a thermal shrinkage of at most 6%, preferably at most 5%.
  • the yarn according to the invention is electrically non-conductive in the multifilament yarn core.
  • electrically non-conductive means an electrical conductivity of ⁇ 10 8 S/m.
  • the yarn according to the invention is electrically conductive in the sheath and has an electrical conductivity of at least 150 S/m.
  • the sheathing of the yarn according to the invention usually has a thickness of at least 10 ⁇ m, preferably at least 20 ⁇ m, particularly preferably at least 50 ⁇ m.
  • the thickness is not limited as to the upper limit.
  • the maximum thickness is usually 300 ⁇ m, so that the thickness is in the range from 10 ⁇ m to 300 ⁇ m, preferably from 50 ⁇ m to 300 ⁇ m, in particular in the range from 100 ⁇ m to 150 ⁇ m.
  • the sheath of the yarn according to the invention comprises 55 to 99% by weight thermoplastic elastomer and 1 to 45% by weight electrically conductive material, preferably 85 to 99% by weight thermoplastic elastomer and 1 to 15% by weight electrically conductive material, especially preferably 90 to 99% by weight thermoplastic elastomer and 1 to 10% by weight electrically conductive material, in particular 94 to 99% by weight thermoplastic elastomer and 1 to 6% by weight electrically conductive material.
  • the casing can also have the usual additives, in particular those that make it easier to process the casing compound.
  • Another subject of the present invention are textile fabrics, in particular nonwovens, woven fabrics, knitted fabrics, knitted fabrics, grids, cables containing the yarn according to the invention.
  • the yarns according to the invention can be used in sensory applications, for example as pressure sensors in tires, and in biosensors in textiles. Furthermore, the yarns according to the invention can be used as an antistatic material, for example in assembly and conveyor belts and screens. Another application can be as a cable in data transmission or the yarn can be used in flexible electronic applications, for example as intelligent clothing or as a textile fleece material.
  • Another object of the present invention is a method for producing the electrically conductive yarn according to the invention.
  • the process for producing the electrically conductive yarn according to the invention comprises the steps: a) supplying a multifilament yarn with
  • step a) a linear density of 100 to 1200 dtex for a multifilament yarn made from organic polymers or a diameter in the range from 200 to 600pm for a multifilament yarn made from non-organic materials, into the orifice of a round extrusion die, b) sheathing of the multifilament yarn supplied according to step a) by means of a round extrusion nozzle by extrusion of a mixture
  • thermoplastic elastomer (v) 55 to 99% by weight thermoplastic elastomer
  • (x) has an electrically conductive coating with a thickness of at least 10 pm, d) winding the yarn onto a suitable support, preferably in the form of a spool.
  • the sheathing consisting essentially of thermoplastic elastomer and electrically conductive material, is usually extruded at temperatures in the range from 180 to 250° C., but at least 30° C. above the melting temperature of the thermoplastic elastomer of the sheath.
  • the sheathing is extruded in such a way that the sheathing material has little or no orientation, i.e. has predominantly amorphous structures and only small crystalline portions.
  • the lower orientation can be determined by DSC or wide-angle diffraction. Further methods can be found in the dissertation by S. Bogner (2002) Institute for Textile and Fiber Research Stuttgart.
  • the multifilament yarn to be sheathed is kept under tension. Depending on the viscosity of the molten casing, this is also built up - at least in part - by the braking effect of the molten component.
  • a typical tensile stress is 5-15 cN, for example.
  • the difference in the melting points of core and shell is at least 15°C, preferably at least 25°C, in particular at least 30-80°C.
  • the material forming the casing is usually dried beforehand and then fed to the extruder, with the extruder having a plurality of heating zones and cooling in the intake.
  • further fleiz zones can also be present outside in the direction of the spinning head.
  • the melted jacket material is directed laterally through a combination of nozzles onto the yarn (multifilament thread). This is followed by cooling, preferably in a water bath, and relaxation in a “chili unit”, with the covered yarn usually running over several godets without tension and then being wound up.
  • the resulting weight of the sheathed yarn can lead to unsteady running, which can be corrected by applying a slight tension.
  • a low voltage is usually applied across two godets, with the different speeds of the two godets being in the range of ⁇ 0.5% lie.
  • the electrically conductive yarn according to the invention has the properties according to the invention without further stretching, so that damage by breaking up the percolating additive network does not occur.
  • the special properties of the multifilament core in particular the high specific strength, the low elongation at break and the high Young's modulus allow mechanical tension to be applied that can be maintained during the sheathing.
  • the other special properties of the multifilament core in particular the orientation and the low thermal shrinkage, mean that no thermal shrinkage is triggered during the sheathing and thus forces that occur that damage the percolating additive network in the sheathing are avoided.
  • a very uniform thickness of the cladding is obtained.
  • the titre is determined in accordance with DIN EN IS01973 for fibers made from organic polymers
  • the diameter is determined by optical methods using a microscope. Suitable microscopes are SEM, digital microscope, light microscope.
  • the Young's modulus is determined together with the determination of the maximum tensile force or the maximum tensile force elongation.
  • the elongation at break is determined in accordance with DIN EN ISO 2062:04/2010. heat shrink
  • the thermal shrinkage of the multifilament yarn (core) and the sheath is determined at 180° C. in accordance with the historical DIN 53866 T3 (03/1987). thickness
  • the thickness of the jacket material is determined using optical methods, i.e. examining the cross section using a microscope. Suitable microscopes are SEM, digital microscope, light microscope.
  • the electrical conductivity of the electrically conductive material is determined using a powder conductivity measuring stand, in which the powdery material is filled into a cylinder and compressed using a piston with a pressure of 30 MPa.
  • the electrical resistance is continuously measured between two gold electrodes located on the top of the piston and on the bottom of the cylinder.
  • the resistance measurements are carried out using 4-point technology (resistance less than 1000 ohms) or 2-point technology (resistance greater than 1000 ohms), with switching being carried out programmatically on the basis of the measurement data determined.
  • the device is controlled as well as the data acquisition and evaluation is carried out by a tailor-made software based on Agilent VEE Version 9.3.
  • the electrical conductivity of the electrically conductive jacket material is determined in accordance with DIN 54345-5:07/1985
  • the fineness-related strength is determined in accordance with DIN EN ISO 2062:04/2010
  • the final temperature is always around 50 °C above the highest melting point to be expected.
  • the hardness Shore A and Shore D is determined according to ISO 868 (DIN EN ISO 868:2003-10)
  • the Vicat softening point (A50) is determined according to ISO 306 at 50°C/10N (DIN EN ISO 306:2014-03)
  • the melting temperature is determined according to ISO 11357-1/-3 at 10°C/min. (DIN EN ISO 11357-1:2017-02 and DIN EN ISO 11357-3:2018-07)
  • the melt mass flow rate is determined in accordance with DIN EN ISO 1133 (2012) at 190° C. and 230° C. (21.6 kg).
  • the water absorption is determined at 23°C according to DIN EN ISO 62 (2008)
  • the maximum tensile force is determined in accordance with DIN EN ISO 2062:04/2010 maximum bending force
  • the yarn is placed on a suitable measuring head on 2 supports.
  • the natural curvature points downwards.
  • the bending pin moves downwards and pushes the yarn through.
  • the bending pin moves up again.
  • the force is recorded, the maximum bending force and possibly the force at 10° deflection are evaluated.
  • the flexural modulus is determined according to the bending force.
  • the present invention is illustrated by the following examples without being restricted thereby.
  • the compound used for the jacket is a SEBS TPS with 20-40% by weight carbon black as an electrically conductive additive.
  • the compound has relatively large agglomerates of up to 90 pm in diameter, is black and in the form of granules. Its melting point is 152.2 °C.
  • the compound Before processing, the compound is dried at 60 °C for at least 4 hours and fed to the extruder without contact with air.
  • a 280 dtex f 48 high-tenacity yarn with an elongation at break of 17.6%, a maximum tensile strength of 18.3 N and a maximum relative tensile strength of 683 mN/tex is used as the core yarn.
  • the yarn is twisted /60.
  • a spinneret combination with a 0.3 mm inner and 0.65 mm outer nozzle is used to produce a conductive yarn with a thickness of 0.65 mm from a conductive SEBS/additive compound.
  • the yarn presented is fed through the inner of the two spinnerets and the spinning head and through the water bath and via the gallettes to the winding unit.
  • the spinnerets are firmly screwed into the spinning head and the winding process is started.
  • the previously dried electrically conductive compound is fed into the extruder and heated there in 3 heating zones to approx. 210 °C until the appropriate viscosity is reached.
  • the melt is fed to the running yarn via the extruder, with the start of the coating process being clearly indicated by the color change of the yarn from white to black recognizable.
  • the extruder speed is adjusted so that the yarn reaches the maximum diameter of 0.65 mm and then no longer increases.
  • the figures show the force/elongation diagram of the yarn described in Example 1, as well as microscopic photographs of the same yarn.
  • FIG. 2 shows a micrograph of a yarn according to the invention from example 1.
  • FIG. 3 shows a micrograph of a yarn according to the invention from Example 1.
  • FIG. 4 shows a microscopic photograph of the cross section of a yarn according to the invention according to example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Die Erfindung betrifft ein elektrisch leitfähiges Garn mit guten physikalischen und mechanischen Eigenschaften, ein Verfahren zu dessen Herstellung, sowie dessen Verwendung.

Description

Elektrisch leitfähiges Garn
Beschreibung
Die Erfindung betrifft ein elektrisch leitfähiges Garn mit guten physikalischen und mechanischen Eigenschaften, ein Verfahren zu dessen Herstellung, sowie dessen Verwendung.
Es ist seit langem bekannt elektrisch leitfähige Garne aus thermoplastischen Polymeren herzustellen, bei denen ein elektrisch leitendes Material in das thermoplastische Polymer eingearbeitet wird oder ein Garn aus thermoplastischem Polymer mit einer elektrisch leitfähigen Ummantelung, beispielsweise in Form einer Bi-Komponentenfaser, versehen wird. Beispiele hierfür finden sich unter anderem in EP-A-1559815 und EP-A-3502327.
Die Kombination von thermoplastischen Polymeren und elektrisch leitfähigen Materialien, z.B. Grafit oder Ruß, ist allerdings nicht trivial, da insbesondere Kohlenstoff oder kohlenstoffbeladenes Polymerharz nicht gut haftet, was zu Abplatzungen oder Abblättern der Ummantelung führt.
Ein weiteres Problem ist die Masse an elektrisch leitfähigen Materialien, insbesondere Kohlenstoff, die erforderlich ist, um ein ausreichendes Maß an elektrischer Leitfähigkeit zu erzeugen. Historisch gesehen beträgt der Kohlenstoffgehalt, der zur Bereitstellung einer angemessenen elektrischen Leitfähigkeit erforderlich ist, mehr als 25 Gew.-% bezogen auf das thermoplastische Polymer. Ein derartig hoher Kohlenstoffgehalt beeinträchtigt die technischen Eigenschaften von Garnen sehr stark.
In jüngster Zeit hat die Verfügbarkeit von elektrisch hochleitfähigen Materialien wie Kohlenstoff-Nano-Röhrchen (Carbon Nano Tubes CNT) sowie Graphen und Fullerenen dazu geführt, die notwendige Masse an elektrisch leitfähigen Materialien zu reduzieren und damit die genannten Nachteile zumindest teilweise zu beheben, wie in EP-A-1559815 beschrieben.
Dennoch weisen die bekannten elektrisch leitfähigen Garne und deren Herstellung starke Defizite auf. Einerseits besteht das Problem genügend elektrisch leitfähiges Additiv in der Fadenmatrix einzubetten, um über die elektrische Perkolationsschwelle zu kommen und gleichzeitig die Stabilität des Garnes während der Herstellung im Spinnprozess aufrecht zu erhalten und andererseits den beim Spinnverzug auftretenden Kräften Rechnung zu tragen, da diese bei der notwendigen Nachbehandlung, beispielsweise Verstrecken, zu einem Aufbrechen des perkolierenden Additiv-Netzwerkes führen, wodurch die elektrische Leitfähigkeit verloren geht.
Eine Realisierung von elektrisch leitfähigen Garnen in einem herkömmlichen Spinnprozess, sowie einem Bi-Komponentenfaser-Spinnprozess, führt zu Garnen die entweder nicht mehr ausreichend elektrisch leitfähig oder mechanisch nicht stabil genug waren, um aufgewickelt werden zu können.
Somit bestand weiterhin ein Bedarf an elektrisch leitfähigen Garnen, die einerseits eine gute elektrische Leitfähigkeit aufweisen und andererseits gute mechanische Eigenschaften aufweisen. Insbesondere sollen diese guten Eigenschaften auch bei der späteren Verwendung erhalten bleiben, beispielsweise bei der Einwirkung von mechanischem Stress und thermischer Belastung.
Gegenstand der vorliegenden Erfindung ist ein elektrisch leitfähiges Garn mit einer Kern-Mantel Struktur umfassend:
(i) einen Kern aus mindestens einem Multifilament-Garn,
(ii) einem Mantel umfassend eine Mischung aus
(iia) thermoplastischem Elastomer und
(iib) mindestens einem elektrisch leitfähigen Material, dadurch gekennzeichnet, dass
(iii) das als Kern vorliegende Multifilament-Garn
(iiia) eine feinheitsbezogene Festigkeit von 40 bis 300 cN/tex aufweist,
(iiib) eine Reißdehnung von maximal 25 % aufweist,
(iiic) Thermoschrumpf von maximal 6 % aufweist (iiid) einen Titer von 100 bis 1200 dtex aufweist für ein Multifilament-Garn aus organischen Polymeren oder einen Durchmesser im Bereich von 200 bis 600pm aufweist für ein Multifilament-Garn aus nicht-organischen Materialien
(iv) der Mantel
(iva) in Kontakt zum Kern steht und diesen vollständig umschließt,
(ivb) eine Dicke von min. 10 pm aufweist,
(ivc) eine elektrische Leitfähigkeit von min. 150 S/m aufweist,
(ivd) das elektrisch leitfähige Material eine elektrische Leitfähigkeit von min. 3x102 S/m aufweist,
(ive) 1 bis 45 Gew.-% elektrisch leitfähiges Material aufweist.
(ivf) 99 bis 55 Gew.-% thermoplastisches Elastomer aufweist,
(ivg) das Mantelmaterial einen Thermoschrumpf von maximal 6 % aufweist. Kern-Komponente
Das im erfindungsgemäßen Garn vorliegende Multifilament-Garn weist vorzugsweise eine feinheitsbezogene Festigkeit von 40 bis 300 cN/tex auf. Besonders bevorzugt sind feinheitsbezogene Festigkeiten von 50 bis 280 cN/tex, insbesondere von 60 bis 260 cN/tex.
Das im erfindungsgemäßen Garn vorliegende Multifilament-Garn weist vorzugsweise eine Reißdehnung von maximal 25% auf, bevorzugt von maximal 20%.
Das im erfindungsgemäßen Garn vorliegende Multifilament-Garn weist vorzugsweise einen Thermoschrumpf von maximal 6 % auf, bevorzugt von maximal 3%.
Das erfindungsgemäß vorliegende Multifilament-Garn weist vorzugsweise einen Titer im Bereich von 100 bis 1200 dtex, besonders bevorzugt 250 bis 500 dtex, auf. Die Angabe dtex bezieht sich auf Fasern aus organischen Polymeren, insbesondere thermoplastischen Polymeren, besonders bevorzugt aus Polyester.
Das erfindungsgemäß vorliegende Multifilament-Garn weist vorzugsweise 10 bis 500 Einzelfilamente auf.
Das erfindungsgemäß vorliegende Multifilament-Garn ist elektrisch nicht-leitend. Der Begriff elektrisch nicht-leitend bedeutet, dass das Garn eine elektrische Leitfähigkeit mit < 108 S/m aufweist.
Das erfindungsgemäß vorliegende Multifilament-Garn ist vorzugsweise ein Multifilament-Garn aus Aramiden, vorzugsweise sogenannte Hoch-Modul- Aramide, Polyestern, vorzugsweise sogenannte hochfeste Polyester- Multifilamente, Polyamiden, vorzugsweise sogenannte hochfeste Polyamid- Multifilamente, Kohlenstoff, Glas, Mineralfasern (Basalt), sowie auf Basis von sogenannten hybriden Multifilamentgarnen die zwei oder mehr der zuvor genannten Materialien aufweisen. Der Begriff hochfest steht dabei für eine feinheitsbezogene Festigkeit von min 50 cN/tex, insbesondere von min 60 cN/tex, besonders bevorzugt von min 70 cN/tex,
Das im erfindungsgemäßen Garn vorliegende Multifilament-Garn weist vorzugsweise Young-Modul mindestens 0,3 GPa, besonders bevorzugt mindestens 0,5 GPa, insbesondere mindestens 0,8 GPa, insbesondere bevorzugt mindestens 2 GPa bzw. min. 2,5 GPa, auf. Besonders bevorzugt handelt es sich bei dem erfindungsgemäßen Multifilament- Garn um ein Multifilament-Garn aus einem thermoplastischen Polymer
Der Begriff „thermoplastisches Polymer“ bezeichnet bei der vorliegenden Erfindung einen Kunststoff, der sich in einem bestimmten Temperaturbereich, bevorzugt im Bereich von 25°C bis 350°C, (thermoplastisch) verformen lässt. Dieser Vorgang ist reversibel, das heißt er kann durch Abkühlung und Wiedererwärmung bis in den schmelzflüssigen Zustand beliebig oft wiederholt werden, solange nicht durch Überhitzung die sogenannte thermische Zersetzung oder durch mechanische Belastung bei der Formgebung das Material zu sehr geschädigt wurde. Darin unterscheiden sich thermoplastische Polymere von den Duroplasten und Elastomeren.
Bei den erfindungsgemäß eingesetzten thermoplastischen Polymeren handelt es sich um Polymere aus der Gruppe Acrylnitril-ethylen-propylen (dien) styrol- copolymer, Acrylnitril-methacrylat-copolymer, Acrylnitril-methylmethacrylat- copolymer, chloriertes Acrylnitril, Polyethylen-styrol-copolymer, Acrylnitril- butadien-styrol-copolymer, Acrylnitril-ethylen-propylen-styrol-copolymer Cellulose- acetobutyrat, Cellulose-acetopropionat, hydratisierte Cellulose, Carboxymethyl- Cellulose, Cellulosenitrat, Cellulosepropionat, Cellulosetriacetat, Polyvinylchlorid, Ethylen-acrylsäure-copolymer, Ethylen-butylacrylat-copolymer, Ethylen- chlorotriflouro-ethylen-copolymer, Ethylen-ethlyacrylat-copolymer, Ethylen- methacrylat-copolymer, Ethylen-methacrylsäure-copolymer, Ethylen- Tetrafluorethylen-Copolymer, Ethylen-Vinylalkohol-Copolymer, Ethylen-Buten- Copolymer, Ethylcellulose, Polystyrol, Polyfluorethylen-Propylen, Methylmethacrylat-Acrylnitril-Butadienstyrol-copolymer, Methyl-methacrylat- butadienstyrol-copolymer, Methylcellulose, Polyamid 11, Polyamid 12, Polyamid 46, Polyamid 6, Polyamid 6-3-T, Polyamid 6-Terephthalsäurecopolymer, Polyamid 66, Polyamid 69, Polyamid 610, Polyamid 612, Polyamid 6I, Polyamid MXD 6, Polyamid PDA-T, Polyamid, Polyarylether, Polyaryletherketon, Polyamidimid, Polyarylamid, Polyamino-bis-maleimid, Polyarylat, Polybuten-1, Polybutylacrylat, Polybenzimidazol, Poly-bis-maleimid, Polyoxadiazobenzimidazol, Polybutylterephthalat, Polycarbonat, Polychlorotrifluorethylen, Polyethylen, Polyestercarbonat, Polyaryletherketon, Polyetheretherketon, Polyetherimid, Polyetherketon, Polyethylenoxid, Polyarylethersulfon, Polyethylenterephthalat, Polyimid, Polyisobutylen, Polyisocyanurat, Polyimidsulfon, Polymethacrylimid, Polymethacrylat, Poly-4-methlypenten, Polyacetal, Polypropylen, Polyphenyloxid, Polypropylenoxid, Polyphenylensulfid, Polyphenylensulfon, Polystyrol, Polysulfon, Polytetrafluorethylen, Polyurethan, Polyvinylacetat, Polyvinylalkohol, Polyvinylbutyral, Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylidenfluorid, Polyvinylfluorid, Polyvinyl-methyl-ether, Polyvinylpyrrolidon, Styrol-butadien- copolymer, Styrol-isopren-copolymer, Styrol-Maleinsäuresanhydrid-copolymer, Styrol-Maleinsäureanhydrid-butadien-copolymer, Styrol-methymethacrylat- copolymer, Styrol-methlystyrol-copolymer, Styrol-acrylonitril-copolymer, Vinylchlorid-ethylen-copolymer, Vinylchlorid-methacrylat-copolymer, Vinylchlorid- maleinsäureanhydrid-copolymer, Vinylchlorid-maleinimid-copolymer, Vinylchlorid- methylmethacrylat-copolymer, Vinylchlorid-octlyacrylat-copolymer, Vinylchlorid- vinylacetat-copolymer, Vinylchlorid-vinylidenchlorid-copolymer, Vinylchlorid- vinylidenchlorid-acrylonitril-copolymer.
Innerhalb der thermoplastischen Polymere sind schmelzspinnbare synthetische Polykondensate bevorzugt. Weiterhin geeignete thermoplastischen Polymere sind schmelzspinnbare synthetische Biopolymere.
Der Begriff „synthetisches Biopolymer“ bezeichnet bei der vorliegenden Erfindung einen Werkstoff, der zumindest zu überwiegenden Anteilen aus biogenen Rohstoffen (nachwachsenden Rohstoffen) besteht. Damit erfolgt eine Abgrenzung von den konventionellen, erdölbasierten Werkstoffen bzw. Kunststoffen, wie z. B. Polyethylen (PE), Polypropylen (PP) und Polyvinylchlorid (PVC).
Innerhalb der thermoplastischen Polymere sind schmelzspinnbare synthetische Polykondensate bevorzugt. Hierbei handelt es sich um aliphatische Polyester, arylaliphatische Polyester, aromatische Polyester sowie deren Co-/Ter-Polymere, die aus Polyolen und aliphatischen und/oder aromatischen Dicarbonsäuren oder deren Derivate (Anhydride, Ester) durch Polykondensation hergestellt werden, wobei die Polyole substituiert oder unsubstituiert sein können, die Polyole lineare oder verzweigte Polyole sein können.
Bevorzugte Polyole sind Polyole mit 2 bis 8 Kohlenstoffatomen, Polyalkylenetherglykole mit 2 bis 8 Kohlenstoffatomen und cycloaliphatische Diole mit 4 bis 12 Kohlenstoffatomen. Beispiele für Polyole, die verwendet werden können, umfassen, ohne darauf beschränkt zu sein, Ethylenglykol,
Diethylenglykol, Propylenglykol, 1 ,3-Propandiol, 2,2-Dimethyl-1 ,3-propandiol, 2- Methyl-1 ,3-propandiol, 1 ,3-Butandiol, 1, 4-Butandiol, 1 ,5-Pentandiol, 1,6- Hexandiol, Polyethylenglykol, Diethylenglykol, 2,2,4-TrimethyM ,6-hexandiol, Thiodiethanol, 1,3-Cyclohexandimethanol, 1,4-Cyclohexandimethanol, 2, 2,4,4- Tetramethyl-1 ,3-cyclobutandiol, Triethylenglykol und Tetraethylenglykol. Bevorzugte Polyole umfassen 1 ,4-Butandiol, 1 ,3-Propandiol, Ethylenglykol, 1,6- Hexandiol, Diethylenglykol, Isosorbit und 1,4-Cyclohexandimethanol. Bevorzugte aliphatische Dicarbonsäuren umfassen substituierte oder unsubstituierte, lineare oder verzweigte, nichtaromatische Dicarbonsäuren, ausgewählt aus der Gruppe der aliphatischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen und cycloaliphatischen Dicarbonsäuren mit 5 bis 10 Kohlenstoffatomen, wobei die cycloaliphatischen Dicarbonsäuren auch Heteroatome im Ring aufweisen können.
Die substituierten nichtaromatischen Dicarbonsäuren enthalten typischerweise 1 bis 4 Substituenten, ausgewählt aus Halogen, C6-C10-Aryl und C1-C4-Alkoxy. Nicht einschränkende Beispiele für aliphatische und cycloaliphatische Dicarbonsäuren umfassen Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Azelainsäure, Sebacinsäure, Fumarsäure, 2,2-Dimethylglutarsäure, Suberinsäure, 1 ,3-Cyclopentandicarbonsäure, 1 ,4-Cyclohexandicarbonsäure. 3- Cyclohexandicarbonsäure, Diglycolsäure, Itaconsäure, Maleinsäure, 2,5- Norbornandicarbonsäure.
Bevorzugte aromatische Dicarbonsäuren umfassen substituierte oder unsubstituierte, aromatische Dicarbonsäuren, ausgewählt aus der Gruppe der aromatischen Dicarbonsäuren mit 6 bis 12 Kohlenstoffatomen, wobei diese Dicarbonsäuren auch Heteroatome im aromatischen Ring und/oder im Substituenten aufweisen können.
Die substituierten aromatischen Dicarbonsäuren können typischerweise 1 bis 4 Substituenten ausweisen, ausgewählt aus Halogen, C6-C10-Aryl und C1-C4- Alkoxy. Nicht einschränkende Beispiele für aromatische Dicarbonsäuren umfassen Phthalsäure, Isophthalsäure, Terephthalsäure,
Naphthalindicarbonsäure und Furandicarbonsäure.
Das erfindungsgemäß vorliegende Multifilament-Garn weist einen Durchmesser im Bereich von 200pm bis 600pm auf, wobei sich diese Angabe auf ein Multifilament-Garn aus nicht-organischen Fasern, insbesondere aus Kohlenstoff-, Glas-, Mineralfasern (Basalt), bezieht.
Ganz besonders bevorzugt handelt es sich bei dem erfindungsgemäßen Multifilament-Garn um ein Multifilament-Garn aus einem Polyester, vorzugsweise einem Polyester auf Basis von aromatischen Dicarbonsäuren, welche vorzugsweise:
(i) eine feinheitsbezogene Festigkeit von 40 bis 300 cN/tex, insbesondere von 60 bis 100cN/tex, aufweisen und
(ii) einen Titer im Bereich von 100 bis 1200 dtex, besonders bevorzugt 250 bis 500 dtex, aufweisen und
(iii) eine Reißdehnung von maximal 25%, bevorzugt von maximal 20%, aufweisen und (iv) einen Thermoschrumpf von maximal 6% auf, bevorzugt von maximal 3%, aufweisen.
Besonders bevorzugt handelt es sich hierbei um Polyethylenterephthat (PET), Polybutylenterephthat (PBT), Polytrimethylenterephthalat (PTT) und Polyethylennaphthalat (PEN).
Besonders bevorzugte Polyester sind PET sowie PEN mit einer Glasübergangstemperatur von mindestens 70°C.
Besonders bevorzugte Polyester sind PET die mindestens 95 mol % Polyethylenterephthalat (PET) aufweisen.
Besonders bevorzugte Polyester, insbesondere Polyethylenterephthalat, haben ein Molekulargewicht entsprechend einer spezifischen Viskosität (pspez) von min. 0,8dl/g, insbesondere von min. 0,9dl/g, jeweils gemessen an Lösungen mit 1 g/l Polymer in Dichloressigsäure bei 25°C.
Die Herstellung solcher Polyester-Multifilament-Garne ist beispielsweise aus EP- A-0173221 sowie den darin zitierten Stellen grundsätzlich bekannt. Derartige hochfeste Polyester-Multifilament-Garne werden auch als Reifencord bezeichnet und in technischen Produkten eingesetzt, bei denen eine hohe Festigkeit benötigt wird.
Die Herstellung in industriellem Umfang erfolgt hierbei über einen Schmelzspinnprozess. Hierzu wird das thermoplastische, polymere Material aufgeschmolzen und mittels eines Extruders im flüssigen Zustand in einen Spinnbalken geleitet. Von diesem Spinnbalken wird das geschmolzene Material sogenannten Spinndüsen zugeführt. Die Spinndüse weist üblicherweise eine mit mehreren Bohrungen versehene Spinndüsenplatte auf, aus denen die einzelnen Kapillaren (Filamente) der Faser extrudiert werden. Neben den Schmelzspinnverfahren werden auch Nass- bzw. Lösungsmittel-Spinnverfahren zur Herstellung von Spinnfasern eingesetzt. Hierbei wird anstelle der Schmelze eine hochviskose Lösung eines synthetischen Polymers durch Düsen mit feinen Bohrungen extrudiert. Beide Verfahren werden vom Fachmann als sogenanntes mehrstelliges Spinnverfahren bezeichnet.
Die derart hergestellten Polymerfasern werden zur Einstellung der gewünschten mechanischen Festigkeit einer Faser-Nachbearbeitung zugeführt. Hierbei kann eine Modifizierung bzw. Ausrüstung von Polymerfasern für die jeweilige Endanwendung oder für die notwendigen Zwischenbehandlungsschritte, z.B. Verstreckung und/oder Kräuselung, erfolgen, üblicherweise durch Aufbringung geeigneter Avivagen bzw. Schlichten, die auf die Oberfläche der fertigen oder zu behandelnden Polymerfaser aufgebracht werden.
Dem thermoplastischen Polymer können Additive, beispielsweise Antistatika oder farbige Pigmente, zugesetzt werden, üblicherweise durch Einbringen in das geschmolzene thermoplastische Polymer während des mehrstelligen Spinnverfahrens der Polymerfaser.
Spinn-Öl-Ausrüstung
In einerweiteren Ausführungsform der vorliegenden Erfindung wird das thermoplastische Multifilament-Garn, insbesondere das Polyester-Multifilament- Garn, mit einem handelsüblichen Spinn-Öl ausgerüstet, welches den Multifilament-Garn Kern vom thermoplastischen Mantel entkoppelt. Hierbei wird das Spinn-Öl vor der Ummantelung des Multifilament-Garns auf das Multifilament- Garn aufgebracht.
Bei dem eingesetzten Spinn-Öl handelt es sich um handelsübliches Spinn-Öl.
Beispiele für entsprechende handelsübliche Spinn-Öle sind Destillate (Erdöl), bestehend aus entwachsten schweren parafinhaltigen Lösungsmitteln (50-70%), Mineralölen (25-50%), Ethoxylierter Fettalkohol (2.5-30%), C8-18 gradzahligen Amiden (2.5-10%) und C18-ungesättigten, N, Nbis(hydroxyethyl) C9-C11- Alkoholethoxylat (< 2.5%) Alternativ können Ethylenglykol (2.5-10%), Di- isooctylnatriumsulfosuccinat (1-2.5%) und/oder Natriumalkansulfonat (1-<2,5%) enthalten sein.
Mantel-Komponente
Der im erfindungsgemäßen Garn vorliegende Mantel steht im Kontakt zum Multifilament-Garn. Dies bedeutet, dass min. 90% der Oberfläche des Multifilament-Garn in direktem Kontakt mit der Ummantelung stehen oder min. 90% der Oberfläche des Multifilament-Garn in indirektem Kontakt mit der Ummantelung stehen, insofern die zuvor beschriebene Ausrüstung mit dem Spinn-Öl erfolgt ist.
Die Ummantelung weist üblicherweise eine Dicke von min. 10pm, vorzugsweise min. 20pm, besonders bevorzugt min. 50 pm, auf. Die Dicke ist nach hinsichtlich der Obergrenze nicht beschränkt. Üblicherweise liegt die maximale Dicke bei 300 pm, sodass die Dicke im Bereich von 10pm bis 300pm, vorzugsweise 50pm bis 300 m, insbesondere im Bereich 100pm bis 150pm, liegt..
Die Ummantelung weist üblicherweise elektrische Leitfähigkeit von min. 150 S/m auf.
Das in der Ummantelung eingesetzte elektrisch leitfähige Material weist üblicherweise elektrische Leitfähigkeit von min. 3x102 S/m auf, vorzugsweise min. 1x106 S/m.
Die Ummantelung umfasst 55 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 45 Gew.-% elektrisch leitfähiges Material, bevorzugt 85 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 15 Gew.-% elektrisch leitfähiges Material, besonders bevorzugt 90 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 10 Gew.-% elektrisch leitfähiges Material, insbesondere 94 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 6 Gew.-% elektrisch leitfähiges Material. Darüber hinaus kann die Ummantelung noch übliche Zusätze aufweisen, insbesondere solche, die die Verarbeitbarkeit der Ummantelungsmasse erleichtern. Der vorstehend beschriebene Compound wird nachfolgend als Mantel- Komponente bezeichnet.
Der Begriff thermoplastisches Elastomer bezeichnet ein thermoplastisches Elastomer gemäß DIN ES ISO 18064:2021-04 (ersetzt DIN EN ISO 18064:2015- 03)
Das erfindungsgemäß eingesetzte thermoplastische Elastomer lässt sich in einem bestimmten Temperaturbereich, bevorzugt im Bereich von 25°C bis 350°C, (thermoplastisch) verformen. Dieser Vorgang ist reversibel, das heißt er kann durch Abkühlung und Wiedererwärmung bis in den schmelzflüssigen Zustand beliebig oft wiederholt werden, solange nicht durch Überhitzung die sogenannte thermische Zersetzung oder durch mechanische Belastung bei der Formgebung das Material zu sehr geschädigt wurde.
Ein thermoplastisches Elastomer wird üblicherweise durch Kombination von Thermoplast mit einem Elastomer erhalten, dies kann üblicherweise auf zwei verschiedene Arten, Blockpolymere oder Polymerblends, erfolgen
Beispiele für geeignete Blockpolymere als thermoplastisches Elastomer sind TPS, TPU, TPA und TPC.
TPS steht für Styrol-Blockcopolymere, insbesondere Styrol/Butadien/Styrol (SBS), oder Styrol/Ethylen-Butylen/Styrol (SEBS) oder Styrol/Ethylen-Propylen/Styrol (SEPS)oder Styrol/Isopren/Styrol (SIS) basierende Styrol-Blockcopolymere. Diese Blockcopolymere weisen harte und weiche Segmente auf, wobei die Styrolgruppe das harte Segment bildet und die aliphatischen Gruppen, insbesondere aliphatischen Gruppen mit 2 bis 6 Kohlenstoffatomen, das weiche Segmente bildet. Derartige TPS zeichnen sich durch eine Härte 10 Shore A bis 70 Shore D aus. Bevorzugt innerhalb der TPS sind Styrol/Butadien/Styrol (SBS), Styrol/Ethylen-Butylen/Styrol (SEBS), Styrol/Ethylen-Propylen/Styrol (SEPS) oder Styrol/Isopren/Styrol (SIS) mit einer Härte 75 Shore A bis 40 Shore D.
Besonders bevorzugt innerhalb der TPS sind Styrol/Butadien/Styrol (SBS), Styrol/Ethylen-Butylen/Styrol (SEBS), Styrol/Ethylen-Propylen/Styrol (SEPS) oder Styrol/Isopren/Styrol (SIS) die in Form der Mantelkomponente eine Melt Flow Rate von maximal 10g/10 min (190°C, 21.60 kg) aufweisen.
Besonders bevorzugt innerhalb der TPS sind Styrol/Butadien/Styrol (SBS), Styrol/Ethylen-Butylen/Styrol (SEBS), Styrol/Ethylen-Propylen/Styrol (SEPS) oder Styrol/Isopren/Styrol (SIS) die einen Thermoschrumpf von maximal 3%, bevorzugt von maximal 2%, insbesondere bevorzugt von maximal 1%, aufweisen.
Ganz besonders bevorzugt sind Styrol/Butadien/Styrol (SBS), Styrol/Ethylen- Butylen/Styrol (SEBS), Styrol/Ethylen-Propylen/Styrol (SEPS) oder Styrol/Isopren/Styrol (SIS) die eine Kombination aus den vorgenannten Merkmalen Thermoschrumpf, Melt Flow Rate, Zugspannung beim Bruch und Härte, aufweisen, wobei Styrol/Ethylen-Butylen/Styrol (SEBS) insbesondere bevorzugt ist.
Kommerziell verfügbare TPS’s sind unter anderem Elastron® G und Elastron® D, Kraton® (Kraton Polymers), Septon® (Kuraray), Styroflex® (BASF), Thermolast® (Kraiburg TPE) ALLRUNA® (ALLOD Werkstoff GmbH & Co.KG) oder Saxomer® TPE-S (PCW), sowie Pre-Elect® TPE (Premix). Die vorstehend genannten TPS- Elastomere weisen eine besonders gute Leitfähigkeit auf und sind darüber hinaus in der Verarbeitung vorteilhaft. So zeigen erfindungsgemäße Garne mit dieser Mantelkomponente eine besonders glatte Oberfläche auf.
TPU steht für thermoplastisches Polyurethan, d.h. ein thermoplastisches Elastomer auf Polyurethanbasis. Derartige TPU zeichnen sich durch eine Härte ab ca. 60 Shore A aus. Kommerziell verfügbare TPU’s sind unter anderem Elastollan® (BASF) oder Desmopan®, Texin®, Utechllan® (Covestro).
TPA steht für thermoplastische Polyether-Polyamide, d.h. ein Blockpolymer auf Polyamidbasis. Derartige TPA zeichnen sich durch eine Härte 60 Shore A bis 70 Shore D aus. Kommerziell verfügbare TPA’s sind unter anderem PEBAX® (Arkema), VESTAMID® E (Evonik Industries) TPC steht für thermoplastische Polyester-Elastomer, d.h. ein Block-Copolymer auf einer Copolyester-Basis. Derartige TPC zeichnen sich durch eine Flärte 80 Shore A bis 70 Shore D aus. Kommerziell verfügbare TPC’s sind unter anderem Hytrel® (Du Pont), Keyflex® (LG Chem), Skypel® (SK Chemicals)
Beispiele für geeignete Polymerblends als thermoplastisches Elastomer sind TPO und TPV
TPO steht für thermoplastische Polyolefine, eine Mischung aus einem Polyolefin basierten Kunststoff (meist PP oder PE) und einem Elastomer wie z.B. EPDM. Im Gegensatz zu TPV ist TPO nicht oder nur teilweise vernetzt. TPOs sind Polymermischungen, die je nach Zusammensetzung hart oder weich eingestellt werden. Derartige TPO zeichnen sich durch eine Härte 55 Shore A bis 70 Shore D aus. Kommerziell verfügbare TPO’s sind unter anderem Elastron® TPO, Saxomer® TPE-0 (PCW)
TPV steht für thermoplastische Polyolefin Vulkanisate, eine Mischung aus einem polyolefinbasiertem Kunststoff (vor allem PP) und Elastomer wie EPDM. Im Gegensatz zu TPO ist bei TPV das Elastomer vernetzt oder vulkanisiert. TPV zeichnen sich durch eine Härte 35 Shore A bis 50 Shore D aus. Kommerziell verfügbare TPV’s sind unter anderem Elastron® V, Sariink® (DSM), Santoprene® (Exxon)
In einer bevorzugten Ausführungsform zeichnet sich das thermoplastische Elastomer durch eine Vicat-Erweichungstemperatur VST (50°C/10N) von mindestens 50°C, bevorzugt mindestens 60°C, insbesondere mindestens 100°C, aus.
In einer bevorzugten Ausführungsform zeichnet sich das thermoplastische Elastomer durch eine Schmelztemperatur im Bereich 140 bis 190°C, insbesondere im Bereich 150 bis 175°C, aus.
In einer bevorzugten Ausführungsform zeichnet sich das thermoplastische Elastomer durch einen Thermoschrumpf von maximal 3% auf, bevorzugt von maximal 2%, insbesondere bevorzugt von maximal 1%.
In einer bevorzugten Ausführungsform weist das thermoplastische Elastomer in Form der Mantelkomponente eine Melt Flow Rate von maximal 13g/10 min (190°C), insbesondere von maximal 11 g/10 min (190°C), besonders bevorzugt von maximal 10g/10 min (190°C), auf.
In einer bevorzugten Ausführungsform weist das thermoplastische Elastomer in Form der Mantelkomponente eine Melt Flow Rate von maximal 50 g/10 min (230°C), insbesondere von maximal 30 g/10 min (230°C), besonders bevorzugt von maximal 20 g/10 min (230°C), auf.
In einer besonders bevorzugten Ausführungsform ist das thermoplastische Elastomer ein TPS und steht für Styrol-Blockcopolymere, insbesondere Styrol/Butadien/Styrol (SBS), oder Styrol/Ethylen-Butylen/Styrol (SEBS) oder Styrol/Ethylen-Propylen/Styrol (SEPS) oder Styrol/Isopren/Styrol (SIS) basierende Styrol-Blockcopolymere, welche in Form der Mantelkomponente eine Melt Flow Rate von maximal 30 g/10 min (230°C), insbesondere von maximal 20 g/10 min (230°C), besonders bevorzugt von maximal 13 g/10 min (230°C), aufweisen.
In einer bevorzugten Ausführungsform weist das thermoplastische Elastomer eine Flärte 75 Shore A bis 40 Shore D auf.
In einer bevorzugten Ausführungsform weist das thermoplastische Elastomer eine Wasseraufnahme (23°C) von maximal 0,8% auf.
In einer bevorzugten Ausführungsform weist das thermoplastische Elastomer eine Zugspannung at Break (Tensile stress at break) von min. 10MPa und max. 28MPa auf.
In einer bevorzugten Ausführungsform wird als thermoplastisches Elastomer ein TPS Styrol-Blockcopolymer ausgewählt aus der Gruppe Styrol/Butadien/Styrol (SBS), Styrol/Ethylen-Butylen/Styrol (SEBS), Styrol/Ethylen-Propylen/Styrol (SEPS) oder Styrol/Isopren/Styrol (SIS) eingesetzt, wobei insbesondere das thermoplastische Elastomer Styrol/Ethylen-Butylen/Styrol (SEBS) besonders bevorzugt ist, oder als thermoplastisches Elastomer wird ein TPC thermoplastisches Polyester-Elastomer, d.h. ein Block-Copolymer auf einer Copolyester-Basis, eingesetzt..
Das in der Ummantelung vorhandene elektrisch leitfähige Material weist üblicherweise elektrische Leitfähigkeit von min. 3x102 S/m auf, vorzugsweise min. 1x106 S/m, auf.
Bevorzugt handelt es sich bei dem elektrisch leitfähigen Material um ein Partikelförmiges Material, beispielsweise ein Pulver oder Granulat. Neben sphärischen Partikeln sind auch nicht- sphärische Partikel bis hin zu Stäbchen-, faser-, plättchenförmigen oder verzweigten Partikeln möglich. Das Einbringen des elektrisch leitfähigen Materials in den Mantel ermöglicht es, dass auch größere Partikel zugesetzt werden können, die üblicherweise bei der Herstellung von Spinnfäden im Extrusions-Prozess stören. Im Rahmen der vorliegenden Erfindung kann das elektrisch leitfähige Material auch Partikel größer 2pm, vorzugsweise größer 3pm, insbesondere Partikel mit einer sphärischen Größe von mehr als 2pm, vorzugsweise größer 3pm, aufweisen. Derartige Partikelgrößen können bei üblichen Faden-Spinn-Prozessen nicht eingesetzt werden, da üblicherweise vor dem Spinnbalken ein Filter eingesetzt wird. Die Anwesenheit derartig großer Partikel aus elektrisch leitfähigem Material erlaubt es andererseits die elektrische Perkolationsschwelle leichter zu überwinden. Mit Hilfe der vorliegenden Erfindung können somit auch große Partikel aus elektrisch leitfähigem Material in das erfindungsgemäße Garn eingebracht werden.
Das elektrisch leitfähige Material wird üblicherweise mit dem thermoplastischen Polymer für den Mantel vermischt, wobei dies in der Schmelze, beispielweise in einem Extruder, oder durch anderweitige Zudosierung erfolgen kann. Zur besseren Verteilung des elektrisch leitfähigen Materials im thermoplastischen Elastomer des Mantels sind auch sogenannte Masterbatches von Vorteil.
Bevorzugte elektrisch leitfähige Materialien für den thermoplastischen Mantel sind beispielsweise in US-A-6,228,492; US-A-6,528,572; US-A-2003/158,323; US-A- 6,621,970; CN-A-1431342; US-A-2003/236.588 und US-A-5.840.425 offenbart. Diese sind durch Bezugnahme auch Bestandteil dieser Beschreibung und Offenbarung.
Weitere bevorzugte elektrisch leitfähige Materialien für den thermoplastischen Mantel sind geeignete Kohlenstoffnanoröhren wie beispielsweise in US-A- 6,099,960; US-A-6,280,697; US-A-2002/172,639; US-A-2003/102,222; US-A- 2002/113,335 und US-A-2003/102,444, offenbart. Diese sind durch Bezugnahme auch Bestandteil dieser Beschreibung und Offenbarung.
Besonders bevorzugte elektrisch leitfähige Materialien für den thermoplastischen Mantel sind sogenannte CNT’s (Carbon Nano Tubes) mit einem durchschnittlichen Durchmesser im Bereich von 8 bis 12 nm, bevorzugt im Bereich von 9 bis 10 nm, bestimmt mittel Transmissions-Elektronen-Mikroskopie (TEM),
Besonders bevorzugte elektrisch leitfähige Materialien für den thermoplastischen Mantel sind sogenannte CNT’s (Carbon Nano Tubes) mit einem durchschnittlichen Durchmesser im Bereich von 8 bis 12 nm, bevorzugt im Bereich von 9 bis 10 nm, und einer durchschnittlichen Länge im Bereich von 1 bis 3 gm, bevorzugt im Bereich von 1 bis 2 gm, bestimmt mittels Transmissions-Elektronen-Mikroskopie (TEM).
Besonders bevorzugte elektrisch leitfähige Materialien für den thermoplastischen Mantel sind sogenannte Graphene, insbesondere Graphen mit einer Höhe von <10nm und einer lateralen Ausdehnung von 1,5pm, bestimmt mittel Transmissions-Elektronen-Mikroskopie (TEM) Innerhalb der vorstehend genannten Graphene sind solche bevorzugt, die eine spezifische Oberfläche nach B.E.T. von mehr als 600m2/g aufweisen.
Das umschließende Aufbringen des Mantels auf das Multifilament-Garn erfolgt mittels Extrusion aus der Schmelze. Hierbei wird das Multifilament-Garn durch eine ringförmige Extrusionsdüse gezogen, um die herum eine weitere, größere Extrusionsdüse installiert ist, welche die aufgeschmolzene Mantelkomponente auf das Multifilamentgarn aufbringt. Die Garndicke wird dabei durch die Dicke des Seelengarns, die Durchmesserdifferenz der Extrusionsdüsen und die Abzugsgeschwindigkeit des Garns bestimmt. Anschließend wird das Mehrkomponentengarn in einem Wasserbad gekühlt und aufgewickelt.
Wie bereits ausgeführt, können die eingebrachten (elektrisch leitfähigen) Materialien hierbei, entgegen herkömmlichen Spinnverfahren, Größen von >3pm in einer oder mehrerer Dimensionen aufweisen, ohne den Herstellprozess nachhaltig zu stören.
Das erfindungsgemäß eingesetzte elektrisch leitfähige Material kann im Mantel auch Aggregate bilden. Diese Aggregate aus dem partikelförmigen Material, beispielsweise ein Pulver oder Granulat, können mittels optischer Methoden bestimmt werden. Hierzu wird aus der Mantelkomponente ein Film gebildet und mittels optischer Methoden die Aggregat-Größe bestimmt. Die Bestimmung kann beispielsweise mittels einer Analysators FSA100 der OCS Optical Control Systems GmbH, Witten, Germany, erfolgen. Hierzu wird eine kleine Menge der Mantelkomponente (üblicherweise 1 Gew.-% Mantel in RT5030 der Firma OCS) als Folie ausgeformt (d=20mm,>10pm) und untersucht (Fläche 1m2, Grauwert 150, Filtergröße 100, Auflösung 10pm, Filmdicke 30pm). Die individuelle Defektgröße kann, im Einzelfall, bis zu 500pm betragen und üblicherweise sind 90% der Defektstellen kleiner als 100pm. Vorzugsweise beträgt die durchschnittliche numerische Defektgröße üblicherweise bis zu 50pm. Zusätze in den Thermoplasten des Multifilament-Kerns und des Mantels
Die vorstehend beschriebenen thermoplastischen Polymere weisen übliche Zusätze auf. Hierbei handelt es sich üblicherweise um Anti-Oxidantien, Pigmente, Stabilisatoren, Tenside, Wachse, Fließförderer, feste Lösungsmittel, Weichmacher und andere Materialien, z.B. Keimbildner, die hinzugefügt werden, um die Verarbeitbarkeit der thermoplastischen Zusammensetzung zu verbessern.
Bei den vorstehend genannten Zusätzen handelt es sich nicht um das erfindungsgemäß eingesetzte elektrisch leitfähige Material.
Garn
Das erfindungsgemäße elektrisch leitfähige Garn mit einer Kern-Mantel Struktur aus einem Multifilament-Garn-Kern und einer elektrisch leitfähigen Ummantelung weist einerseits gute mechanische Eigenschaften auf und andererseits eine gute elektrische Leitfähigkeit.
Das erfindungsgemäße Garn weist vorzugsweise einen Durchmesser im Bereich von 0,1mm bis 2,5mm auf.
Das erfindungsgemäße Garn weist im Multifilament-Garn-Kern vorzugsweise 10 bis 500 Einzelfilamente auf.
Das erfindungsgemäße Garn ist im Multifilament-Garn-Kern elektrisch nicht- leitend.
Das erfindungsgemäße Garn weist vorzugsweise eine Bruchdehnung (=Reißdehnung) von maximal 25%, insbesondere maximal 20%, besonders bevorzugt von maximal 15%, auf.
Das erfindungsgemäße Garn weist vorzugsweise eine Höchstzugkraft im Bereich von 1500 bis 3600 cN, insbesondere 1700 bis 3600 cN, besonders bevorzugt 2000 bis 3600 cN, auf.
Das erfindungsgemäße Garn weist vorzugsweise eine feinheitsbezogene Festigkeit im Bereich von 35 bis 100 cN/tex, insbesondere von 50 bis 100 cN/tex, auf. Die feinheitsbezogene Festigkeit des erfindungsgemäßen Garns ist somit geringer als die feinheitsbezogene Festigkeit des Kerns, da das Mantelmaterial bei der Bestimmung der feinheitsbezogenen Festigkeit einbezogen wird, jedoch keinen nennenswerten Beitrag zur Festigkeit liefert. Das erfindungsgemäße Garn weist vorzugsweise eine maximale Biegekraft im Bereich von 0,5 bis 20 cN, insbesondere 1 bis 20 cN, besonders bevorzugt von 2 bis 20 cN, insbesondere bevorzugt 5 bis 20 cN, auf.
Das erfindungsgemäße Garn weist vorzugsweise ein Biegemodul im Bereich von 5 bis 200 daN/mm2, insbesondere von 10 bis 200 daN/mm2, besonders bevorzugt 50 bis 200 daN/mm2, insbesondere bevorzugt 100 bis 200 daN/mm2, insbesondere bevorzugt im Bereich von 120 bis 180 daN/mm2, auf.
Das erfindungsgemäße Garn weist vorzugsweise einen Thermoschrumpf von maximal 6%, bevorzugt von maximal 5%, auf.
Das erfindungsgemäße Garn ist im Multifilament-Garn-Kern elektrisch nicht- leitend. Der Begriff elektrisch nicht-leitend bedeutet eine elektrische Leitfähigkeit von < 108 S/m.
Das erfindungsgemäße Garn ist im Mantel elektrisch leitend und weist eine elektrische Leitfähigkeit von min. 150 S/m auf.
Die Ummantelung des erfindungsgemäßen Garns weist üblicherweise eine Dicke von min. 10pm, vorzugsweise min. 20pm, besonders bevorzugt min. 50 pm, auf. Die Dicke ist nach hinsichtlich der Obergrenze nicht beschränkt. Üblicherweise liegt die maximale Dicke bei 300 pm, sodass die Dicke im Bereich von 10pm bis 300pm, vorzugsweise 50pm bis 300pm, insbesondere im Bereich 100pm bis 150pm, liegt..
Die Ummantelung des erfindungsgemäßen Garns umfasst 55 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 45 Gew.-% elektrisch leitfähiges Material, bevorzugt 85 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 15 Gew.-% elektrisch leitfähiges Material, besonders bevorzugt 90 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 10 Gew.-% elektrisch leitfähiges Material, insbesondere 94 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 6 Gew.-% elektrisch leitfähiges Material.
Darüber hinaus kann die Ummantelung noch übliche Zusätze aufweisen, insbesondere solche, die die Verarbeitbarkeit der Ummantelungsmasse erleichtern.
Verwendung des elektrisch leitfähigen Garns
Weiterer Gegenstand der vorliegenden Erfindung sind textile Flächengebilde, insbesondere Vliese, Gewebe, Gestricke, Gewirke, Gitter, Kabel enthaltend das erfindungsgemäße Garn.
Die erfindungsgemäßen Garne können in sensorischen Anwendungen eingesetzt werden, beispielsweise als Drucksensoren in Reifen, sowie in der Bio-Sensorik in Textilien. Des Weiteren können die erfindungsgemäßen Garne als Antistatik- Material, beispielsweise in Fließ- und Förderbändern und Sieben eingesetzt werden. Eine weitere Anwendung kann als Kabel in der Datenübertragung erfolgen oder das Garn kann in flexiblen Elektronik-Anwendungen eingesetzt werden, beispielsweise als Intelligente Bekleidung oder als textiles Fleizmaterial.
Herstellung des elektrisch leitfähigen Garns
Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung des erfindungsgemäßen elektrisch leitfähigen Garns.
Das Verfahren zur Herstellung des erfindungsgemäßen elektrisch leitfähigen Garns umfasst die Schritte: a) Zuführen eines Multifilament-Garns mit
(i) einer feinheitsbezogenen Festigkeit von 40 bis 300 cN/tex und
(ii) einer Reißdehnung von maximal 25% und
(iii) einem Thermoschrumpf von maximal 6 %und
(iv) einen Titer von 100 bis 1200 dtex für ein Multifilament-Garn aus organischen Polymeren oder einem Durchmesser im Bereich von 200 bis 600pm für ein Multifilament-Garn aus nicht-organischen Materialien, in die Öffnung einer runden Extrusions-Düse, b) Ummantelung des gemäß Schritt a) zugeführten Multifilament-Garns mittels einer runden Extrusion-Düse durch Extrusion einer Mischung aus
(v) 55 bis 99 Gew.-% thermoplastischem Elastomer und
(vi) 45 bis 1 Gew.-% elektrisch leitfähigem Material,
(vii) elektrisch leitfähigem Material mit einer elektrische Leitfähigkeit von min. 3x102 S/m ,
(viii) die den Mantel bildende Mischung mit einer elektrischen Leitfähigkeit von min. 150 S/m
(ix) das Mantelmaterial, welches einen Thermoschrumpf von maximal 6% aufweist c) Abkühlen des ummantelten Garns, vorzugsweise auf Raumtemperatur (25°C), wobei das Garn nach Abkühlung
(x) eine elektrisch leitfähige Ummantelung mit einer Dicke von min. 10pm aufweist, d) Aufwickeln des Garns auf einen geeigneten Träger, vorzugsweise in Form einer Spule.
Die Extrusion der Ummantelung bestehend im Wesentlichen aus thermoplastischem Elastomer und elektrisch leitfähigem Material erfolgt üblicherweise bei Temperaturen im Bereich von 180 bis 250°C, mindestens jedoch 30°C oberhalb der Schmelztemperatur des thermoplastischen Elastomeren des Mantels.
Die Extrusion der Ummantelung erfolgt in einer Art und Weise, dass das Mantelmaterial keine oder nur eine geringe Orientierung aufweist, d.h. überwiegend amorphe Strukturen aufweist und nur geringe kristalline Anteile aufweist. Die geringere Orientierung kann mittels DSC oder Weitwinkelbeugung bestimmt werden. Weitere Methoden finden sich in der Dissertation von s. Bogner (2002) Institut für Textil- und Faserforschung Stuttgart.
Darüber hinaus ist es von Vorteil, wenn das zu ummantelnde Multifilament-Garn unter Spannung gehalten wird. Je nach Viskosität der geschmolzenen Ummantelung wird diese auch - zumindest teilweise- durch die Bremswirkung der geschmolzenen Komponente aufgebaut. Eine typische Zugspannung beträgt beispielsweise 5-15 cN.
Darüber hinaus ist es von Vorteil, wenn der Unterschied der Schmelzpunkte von Kern und Mantel mindestens 15°C, bevorzugt mindestens 25°C, insbesondere mindestens 30-80°C, beträgt.
Üblicherweise wird das die Ummantelung bildende Material zuvor getrocknet und anschließend dem Extruder zugeführt, wobei der Extruder mehrere Fleizzonen und eine Kühlung im Einzug aufweist. Neben den Fleizzonen im Extruder können auch außerhalb in Richtung Spinnkopf weitere Fleizzonen vorliegen. Nach Einbau der Düsen mit dem Seelengarn in den Spinnkopf wird das aufgeschmolzene Mantelmaterial seitlich über eine Düsenkombination auf das vorgelegte Garn (Multifilamentfaden) geleitet. Anschließend erfolgt die Abkühlung, vorzugsweise im Wasserbad, sowie die Relaxation in einer „Chili Unit“ wobei das ummantelte Garn üblicherweise ohne Spannung über mehrere Galetten läuft und dann aufgewickelt wird. Insofern eine dicke Ummantelung erfolgt, kann das resultierende Gewicht des ummantelten Garns zu einem unruhigen Lauf führen, der durch Anlegen einer leichten Spannung behoben werden kann. Üblicherweise wird in diesem Fall über zwei Galetten eine geringe Spannung angelegt werden, wobei die unterschiedlichen Geschwindigkeiten der beiden Galetten in Bereichen <0.5% liegen.
Das erfindungsgemäße elektrisch leitfähig Garn weist die erfindungsgemäßen Eigenschaften ohne eine weitere Verstreckung auf, so dass eine Schädigung durch Aufbrechen des perkolierenden Additiv-Netzwerkes unterbleibt. Darüber hinaus erlauben die besonderen Eigenschaften des Multifilament-Kerns, insbesondere die hohe spezifische Festigkeit, die geringe Bruchdehnung und das hohe Young Modul eine mechanische Spannung anzulegen, die während der Ummantelung aufrechterhalten werden kann. Die weiteren besonderen Eigenschaften des Multifilament-Kerns, insbesondere die Orientierung und der geringe Thermoschrumpf, führen dazu, dass während der Ummantelung kein Thermoschrumpf ausgelöst wird und somit auftretende Kräfte vermieden werden, die eine Schädigung des perkolierenden Additiv-Netzwerkes in der Ummantelung bewirken. Darüber hinaus wird eine sehr gleichmäßige Dicke der Ummantelung erhalten.
Testmethoden:
Soweit nicht bereits in der vorstehenden Beschreibung angegeben, werden folgende Meß- bzw. Test-Methoden verwendet:
Titer des Multifilament-Garns:
Die Bestimmung des Titers erfolgt gemäß DIN EN IS01973 für Fasern aus organischen Polymeren
Durchmesser des Multifilament-Garns
Die Bestimmung des Durchmessers erfolgt mittels optischer Methoden mittels eines Mikroskops. Geeignete Mikroskope sind REM, Digitalmikroskop, Lichtmikroskop.
Young-Modul
Die Bestimmung des Young-Moduls erfolgt zusammen mit der Bestimmung der Höchstzugkraft bzw. der Höchstzugkraft-Dehnung.
Bruchdehnung
Die Bestimmung der Bruchdehnung erfolgt gemäß DIN EN ISO 2062:04/2010. Thermoschrumpf
Die Bestimmung des Thermoschrumpfs des Multifilament-Garns (Kern) sowie des Mantels erfolgt bei 180°C gemäß der historischen DIN 53866 T3 (03/1987). Dicke
Die Bestimmung der Dicke des Mantelmaterials erfolgt mittels optischer Methoden, d.h. Untersuchung des Querschnitts mittels eines Mikroskops. Geeignete Mikroskope sind REM, Digitalmikroskop, Lichtmikroskop.
Elektrische Leitfähigkeit
Die Bestimmung der elektrischen Leitfähigkeit des elektrisch leitfähigen Materials erfolgt mittels eines Pulverleitfähigkeitsmessstandes, in dem das pulverförmige Material in einen Zylinder gefüllt und über einen Kolben mit einem Druck von 30 MPa komprimiert wird. Der elektrische Widerstand wird zwischen zwei Goldelektroden, die sich auf der Oberseite des Kolbens und auf der Unterseite des Zylinders befinden, kontinuierlich mit gemessen. Die Widerstandsmessungen werden in 4-Punkt-Technik (Widerstand kleiner 1000 Ohm) oder in 2-Punkt- Technik (Widerstand größer 1000 Ohm) durchgeführt, wobei die Umschaltung programmatisch auf Basis der ermittelten Messdaten erfolgt. Die Steuerung des Geräts sowie die Datenerfassung und -auswertung erfolgt durch eine maßgeschneiderte Software auf Basis von Agilent VEE Version 9.3. Weitere Angaben finden sich in Composites Science and Technology 2015, 114, 119-125 by Beate Krause, Regine Boldt, Liane Häußler, Petra Pötschke, „Ultralow percolation threshold in polyamide 6.6 / MWCNT composites“.
Die Bestimmung der elektrischen Leitfähigkeit des elektrisch leitfähigen Mantelmaterials erfolgt gemäß DIN 54345-5:07/1985
Festigkeit
Die Bestimmung der feinheitsbezogenen Festigkeit erfolgt gemäß DIN EN ISO 2062:04/2010
Glasübergangstemperatur
Bestimmung mittels Dynamische Differenzkalorimetrie (Differential Scanning Calorimetry; kurz DSC) mit folgender Vorgehensweise:
Durchführung der DSC-Messung unter Stickstoff, Kalibrierung gegen Indium. Stickstoff -Fluss liegt bei 50 ml/min; Einwaage bei Fasern im Bereich 2 - 3 mg. Temperaturbereich von -50 °C bis 210 °C @ 10 K/min dann isotherm für 5 min und schließlich wieder bis -50 °C @ 10 K/min
Generell liegt die Endtemperatur immer etwa 50 °C über dem höchsten zu erwartenden Schmelzpunkt.
DSC Messung erfolgt mittels einem TA/Waters Modell Q100. Intrinsische Viskosität (Hspez) (=spezifischen Viskosität)
Die Bestimmung der spezifischen Viskosität wird gemessen an Lösungen mit 1 g/l Polymer in Dichloressigsäure bei 25°C.
Härte
Die Bestimmung der Härte Shore A und Shore D erfolgt gemäß ISO 868 (DIN EN ISO 868:2003-10)
Vicat-Erweichungstemperatur VST
Die Bestimmung der Vicat-Erweichungstemperatur (A50) erfolgt gemäß ISO 306 bei 50°C/10N (DIN EN ISO 306:2014-03)
Schmelztemperatur
Die Bestimmung der Schmelztemperatur erfolgt gemäß ISO 11357-1/-3 mit 10°C/min. (DIN EN ISO 11357-1:2017-02 und DIN EN ISO 11357-3:2018-07)
Melt-Flow Rate
Die Bestimmung der Schmelze-Massefließrate erfolgt gemäß DIN EN ISO 1133 (2012) bei 190°C und 230°C (21 ,6kg).
Wasseraufnahme
Die Bestimmung der Wasseraufnahme erfolgt bei 23°C gemäß DIN EN ISO 62 (2008)
Zugspannung at Break (Tensile stress at break)
Die Bestimmung der Zugspannung at Break (Tensile stress at break) erfolgt gemäß DIN EN ISO 527-2/1A (2012).
Höchstzugkraft
Die Bestimmung der Höchstzugkraft erfolgt gemäß DIN EN ISO 2062:04/2010 Maximale Biegekraft
Zur Bestimmung der maximalen Biegekraft wird das Garn wird auf einen passenden Messkopf auf 2 Stützen aufgelegt. Die natürliche Krümmung zeigt dabei nach unten, Der Biegestift bewegt sich nach unten und drückt dabei das Garn durch. Am Endpunkt der Prüfstrecke bewegt sich der Biegestift wieder nach oben. Dabei wird die Kraft aufgezeichnet, Ausgewertet werden die max. Biegekraft und evtl die Kraft bei 10° Durchbiegung. Biegemodul
Die Bestimmung des Biegemoduls erfolgt gemäß der Biegekraft.
Beispiele:
Die vorliegende Erfindung wird durch die nachstehenden Beispiele erläutert ohne dadurch beschränkt zu werden.
Beispiel 1
Ummantelung mit der Zusammensetzung/Eigenschaften .
Das für den Mantel verwendete Compound ist ein SEBS TPS mit 20-40 Gew.-% Carbon Black als elektrisch leitfähiges Additiv. Das Compound weist relativ große Agglomerate von bis zu 90 pm im Durchmesser auf, ist schwarz und in Granulat Form. Sein Schmelzpunkt liegt bei 152.2 °C.
Weitere Eigenschaften sind:
Das Compound wird vor der Verarbeitung bei 60 °C für mind. 4 h getrocknet und ohne Luftkontakt dem Extruder zugeführt.
Zugeführtes Garn
Als Seelengarn dient ein 280 dtex f 48 Hochfestgarn mit einer Bruchdehnung von 17.6 %, einer max Zugkraft von 18.3 N und einer max. relativen Zugkraft von 683 mN/tex. Das Garn ist /60 gedreht.
Versuchsdurchführung
Zur Herstellung eines leitfähigen Garns der Dicke 0.65 mm aus einem leitfähigen SEBS/Additiv Compound wird eine Spinndüsenkombination von 0.3 mm innerer und 0.65 mm äußerer Düse verwendet. Das vorgelegte Garn wird durch die innere der beiden Spinndüsen und den Spinnkopf geführt und durch das Wasserbad, sowie über die Galletten zur Wickeleinheit geleitet. Die Spinndüsen werden im Spinnkopf fest verschraubt und die Aufwicklung gestartet. Das zuvor getrocknete elektrisch leitfähige Compound wird in den Extruder geführt und dort in 3 Heizzonen auf ca. 210 °C, bis zur passenden Viskosität erhitzt. Über den Extruder wird die Schmelze auf das laufende Garn geführt, dabei ist der Start der Beschichtung durch den Farbwechsel des Garns von weiß zu schwarz deutlich erkennbar. Die Extrudergeschwindigkeit wird je nach Aufwickelgeschwindigkeit so angepasst, dass das Garn den maximalen Durchmesser von 0.65 mm erreicht und dann nicht weiter erhöht.
Testdaten des ummantelten Garns
In den Figuren ist das Kraft/Dehnungsdiagramm des in Beispiel 1 beschriebenen Garns aufgezeigt, sowie mikroskopische Aufnahmen des gleichen Garns Figur 1 zeigt das Kraft-Dehnungsverhalten eines erfindungsgemäßen Garns gemäß Beispiel 1.
Figur 2 zeigt eine Mikroskopische Aufnahme eines erfindungsgemäßen Garns gemäß Beispiel 1.
Figur 3 zeigt eine Mikroskopische Aufnahme eines erfindungsgemäßen Garns gemäß Beispiel 1.
Figur 4 zeigt eine Mikroskopische Aufnahme des Querschnitts eines erfindungsgemäßen Garns gemäß Beispiel 1.

Claims

Patentansprüche
1. Elektrisch leitfähiges Garn mit einer Kern-Mantel Struktur umfassend:
(i) einen Kern aus mindestens einem Multifilament-Garn,
(ii) einem Mantel umfassend eine Mischung aus
(iia) thermoplastischem Elastomer und
(iib) mindestens einem elektrisch leitfähigen Material, dadurch gekennzeichnet, dass
(iii) das als Kern vorliegende Multifilament-Garn
(iiia) eine feinheitsbezogene Festigkeit von 40 bis 300 cN/tex aufweist, (iiib) eine Reißdehnung von maximal 25 % aufweist,
(iiic) Thermoschrumpf von maximal 6 % aufweist (iiid) einen Titer von 100 bis 1200 dtex aufweist für ein Multifilament- Garn aus organischen Polymeren oder einen Durchmesser im Bereich von 200 bis 600pm aufweist für ein Multifilament-Garn aus nicht-organischen Materialien
(iv) der Mantel
(iva) in Kontakt zum Kern steht und diesen vollständig umschließt,
(ivb) eine Dicke von min. 10 pm aufweist,
(ivc) eine elektrische Leitfähigkeit von min. 150 S/m aufweist,
(ivd) das elektrisch leitfähige Material eine elektrische Leitfähigkeit von min. 3x102 S/m aufweist,
(ive) 1 bis 45 Gew.-% elektrisch leitfähiges Material aufweist.
(ivf) 99 bis 55 Gew.-% thermoplastisches Elastomer aufweist,
(ivg) das Mantelmaterial einen Thermoschrumpf von maximal 6 % aufweist.
2. Garn gemäß Anspruch 1, dadurch gekennzeichnet, dass die feinheitsbezogene Festigkeit des Multifilament-Garns im Kern 50 bis 280 cN/tex, vorzugweise 60 bis 260 cN/tex, beträgt.
3. Garn gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Multifilament-Garn im Kern eine Reißdehnung von maximal 20% aufweist.
4. Garn gemäß Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass das Multifilament-Garn im Kern elektrisch nicht-leitend ist.
5. Garn gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Multifilament-Garn im Kern ein Multifilament-Garn aus Aramiden, Polyestern, Polyamiden, Kohlenstoff, Glas, Mineralfasern, oder aus Mischungen von zwei oder mehr der zuvor genannten Materialien, ist.
6. Garn gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Multifilament-Garn im Kern ein oder mehrere thermoplastische Polymere umfasst, vorzugsweise umfassen die thermoplastische Polymere schmelzspinnbare synthetische Polykondensate, insbesondere aliphatische Polyester, aryl-aliphatische Polyester, aromatische Polyester sowie deren Co-/Ter-Polymere.
7. Garn gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Multifilament-Garn im Kern aus einem Polyester, vorzugsweise einem Polyester auf Basis von aromatischen Dicarbonsäuren, besteht und welches
(i) eine feinheitsbezogene Festigkeit von 40 bis 300 cN/tex, insbesondere von 60 bis 100cN/tex,
(ii) einen Titer im Bereich von 100 bis 1200 dtex, besonders bevorzugt 250 bis 500 dtex, und
(iii) eine Reißdehnung von maximal 25%, bevorzugt von maximal 20%, und
(iv) einen Thermoschrumpf von maximal 6% auf, bevorzugt von maximal 3%, aufweist.
8. Garn gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Mantel mit min. 90% der Oberfläche des Multifilament-Garn im Kern in direktem Kontakt steht.
9. Garn gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Mantel 85 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 15 Gew.-% elektrisch leitfähiges Material, vorzugsweise 90 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 10 Gew.-% elektrisch leitfähiges Material, insbesondere 94 bis 99 Gew.-% thermoplastisches Elastomer und 1 bis 6 Gew.-% elektrisch leitfähiges Material, aufweist.
10. Garn gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Mantel ein oder mehrere thermoplastische Elastomere ausgewählt aus der Gruppe TPO, TPV, TPS, TPU, TPA und/oder TPC umfasst.
11. Garn gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Mantel ein oder mehrere thermoplastische Elastomere aufweist deren Vicat-Erweichungstemperatur VST (50°C/10N) mindestens 50°C, bevorzugt mindestens 60°C, insbesondere mindestens 100°C, beträgt.
12. Garn gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Mantel ein oder mehrere thermoplastische Elastomere aufweist deren Schmelztemperatur im Bereich 140 bis 190°C, insbesondere im Bereich 150 bis 175°C, liegt.
13. Garn gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das thermoplastische Elastomer in Form der Mantelkomponente einen Melt Flow Rate von maximal 13g/10 min (190°C), insbesondere von maximal 11 g/10 min (190°C), besonders bevorzugt von maximal 10g/10 min (190°C), aufweist.
14. Garn gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das thermoplastische Elastomer in Form der Mantelkomponente einen Melt Flow Rate von maximal 50 g/10 min (230°C), insbesondere von maximal 30 g/10 min (230°C), besonders bevorzugt von maximal 20 g/10 min (230°C), aufweist.
15. Garn gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Mantel ein oder mehrere elektrisch leitfähige Materialien ausgewählt aus der Gruppe Carbon Nano Tubes (CNT) und/oder Graphen umfasst.
16. Garn gemäß einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Mantel ein oder mehrere elektrisch leitfähige Materialien umfasst, und diese Partikel mit einer Partikelgröße mehr als 2pm umfasst.
17. Garn gemäß einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der Durchmesser 0,1mm bis 2,5mm beträgt.
18. Garn gemäß einem oder mehreren der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Garn eine Reißdehnung von maximal 25%, vorzugweise maximal 20%, besonders bevorzugt von maximal 15%, aufweist.
19. Garn gemäß einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Garn eine Höchstzugkraft im Bereich von 1500 bis 3600 cN, vorzugsweise 1700 bis 3600 cN, insbesondere 2000 bis 3600 cN, aufweist.
20. Garn gemäß einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass das Garn eine maximale Biegekraft im Bereich von 0,5 bis 20 cN, vorzugsweise 1 bis 20 cN, insbesondere 2 bis 20 cN, insbesondere bevorzugt 5 bis 20 cN, aufweist.
21. Garn gemäß einem oder mehreren der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Garn ein Biegemodul im Bereich von 5 bis 200 daN/mm2, vorzugsweise 10 bis 200 daN/mm2, insbesondere 50 bis 200 daN/mm2, insbesondere bevorzugt 100 bis 200 daN/mm2, insbesondere im Bereich von 120 bis 180 daN/mm2, aufweist.
22. Garn gemäß einem oder mehreren der Ansprüche 1 bis 21 , dadurch gekennzeichnet, dass das Garn einen Thermoschrumpf von maximal 6%, vorzugsweise von maximal 5%, aufweist.
23. Garn gemäß einem oder mehreren der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass der Mantel eine Dicke von min. 20pm, vorzugsweise von min. 50 pm, aufweist
24. Verfahren zur Herstellung des Garns definiert in den Ansprüchen 1 bis 23, umfasst die Schritte: a) Zuführen eines Multifilament-Garns mit
(i) einer feinheitsbezogenen Festigkeit von 40 bis 300 cN/tex und
(ii) einer Reißdehnung von maximal 25% und
(iii) einem Thermoschrumpf von maximal 6 %und
(iv) einen Titer von 100 bis 1200 dtex für ein Multifilament-Garn aus organischen Polymeren oder einem Durchmesser im Bereich von 200 bis 600pm für ein Multifilament-Garn aus nicht-organischen Materialien, in die Öffnung einer runden Extrusions-Düse, b) Ummantelung des gemäß Schritt a) zugeführten Multifilament-Garns mittels einer runden Extrusion-Düse durch Extrusion einer Mischung aus (v) 55 bis 99 Gew.-% thermoplastischem Elastomer und
(vi) 45 bis 1 Gew.-% elektrisch leitfähigem Material,
(vii) elektrisch leitfähigem Material mit einer elektrische Leitfähigkeit von min. 3x102 S/m ,
(viii) die den Mantel bildende Mischung mit einer elektrischen Leitfähigkeit von min. 150 S/m
(ix) das Mantelmaterial, welches einen Thermoschrumpf von maximal 6% aufweist c) Abkühlen des ummantelten Garns, vorzugsweise auf Raumtemperatur (25°C), wobei das Garn nach Abkühlung
(x) eine elektrisch leitfähige Ummantelung mit einer Dicke von min. 10pm aufweist, d) Aufwickeln des Garns auf einen geeigneten Träger, vorzugsweise in Form einer Spule.
25. Verwendung des Garns definiert in den Ansprüchen 1 bis 23 zur Herstellung von (i) textilen Flächengebilden, insbesondere Vliese, Gewebe, Gestricke, Gewirke, Gitter, (ii) Kabeln, (iii) Sensoren, (iv) als Antistatik-Material, insbesondere in beispielsweise in Fließ- und Förderbändern oder Sieben, (v) in der Datenübertragung oder (vi) in flexiblen Elektronik-Anwendungen.
26. Textiles Flächengebilde enthaltend ein oder mehrere Garne definiert in den Ansprüchen 1 bis 23.
EP22735413.1A 2021-06-28 2022-06-24 Elektrisch leitfähiges garn Pending EP4363642A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21182095 2021-06-28
PCT/EP2022/067391 WO2023274884A1 (de) 2021-06-28 2022-06-24 Elektrisch leitfähiges garn

Publications (1)

Publication Number Publication Date
EP4363642A1 true EP4363642A1 (de) 2024-05-08

Family

ID=76695608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22735413.1A Pending EP4363642A1 (de) 2021-06-28 2022-06-24 Elektrisch leitfähiges garn

Country Status (2)

Country Link
EP (1) EP4363642A1 (de)
WO (1) WO2023274884A1 (de)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586597A (en) * 1967-11-20 1971-06-22 Teijin Ltd Cloth having durable antistatic properties for use in garments and underwear
DE3431831A1 (de) 1984-08-30 1986-03-13 Hoechst Ag, 6230 Frankfurt Hochfestes polyestergarn und verfahren zu seiner herstellung
BR9710708A (pt) 1996-05-15 1999-08-17 Hyperion Catalysis Int Nanofibras com alta rea de superf¡cie
US5840425A (en) 1996-12-06 1998-11-24 Basf Corp Multicomponent suffused antistatic fibers and processes for making them
US6228492B1 (en) 1997-09-23 2001-05-08 Zipperling Kessler & Co. (Gmbh & Co.) Preparation of fibers containing intrinsically conductive polymers
US6280697B1 (en) 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
AU784574B2 (en) 2000-05-04 2006-05-04 Qunano Ab Nanostructures
US6682677B2 (en) 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
US6621970B2 (en) 2001-03-28 2003-09-16 Alcatel UV-curable optical fiber coating composition including fullerenes
JP4207398B2 (ja) 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
US6528572B1 (en) 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US7588699B2 (en) 2001-11-02 2009-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
CN1194121C (zh) 2003-01-28 2005-03-23 东华大学 冻胶纺超高分子质量聚乙烯/碳纳米管复合纤维及其制备
US20050170177A1 (en) 2004-01-29 2005-08-04 Crawford Julian S. Conductive filament
JP2006161190A (ja) * 2004-12-03 2006-06-22 Toray Ind Inc 導電性合成樹脂フィラメント
EP3502327A1 (de) 2017-12-22 2019-06-26 Sanko Tekstil Isletmeleri San. Tic. A.S. Verbundkerngarn, kleidungsstück mit einem verbundkerngarn, verfahren zur herstellung eines verbundkerngarns und verwendung eines verbundkerngarns

Also Published As

Publication number Publication date
WO2023274884A1 (de) 2023-01-05

Similar Documents

Publication Publication Date Title
EP3475958B1 (de) Elektrisch leitfähige formkörper mit positivem temperaturkoeffizienten
EP1961846B1 (de) Elektrisch leitfähige Fäden, daraus hergestellte Flächengebilde und deren Verwendung
DE60033692T2 (de) Orientierte, in eine Polymer-Matrix eingebettete Nanofasern
DE69033492T2 (de) Verfahren zur Herstellung von porösen Formkörpern aus Kunstharz, von ultrafeinen Fasern und von Vliesstoffen mit ultrafeinen Fasern
DE69701673T2 (de) Plexifilamente aus polymermischungen
EP3129530B1 (de) Polymerfaser mit verbesserter dispergierbarkeit
Ojha Structure–property relationship of electrospun fibers
DE10249585A1 (de) Leitfähige, schmutzabweisende Kern-Mantel-Faser mit hoher Chemikalienresistenz, Verfahren zu deren Herstellung und Verwendung
DE3904137A1 (de) Verfahren zur herstellung von verbundstapelfasern aus in eine harzmatrix eingelagerten feinen anorganischen fasern
CN111155201A (zh) 一种聚丙烯腈/碳纳米管复合纤维及其制备方法和应用
EP1658395B1 (de) Verfahren zur herstellung von formkörpern mit thermoregulativen eigenschaften
CN109853065B (zh) 石墨烯复合纤维及其制备方法
JP2004285538A (ja) ポリマーアロイ繊維およびナノファイバーの製造方法
EP1961845A2 (de) Elektrisch leitfähige Fäden, daraus hergestellte Flächengebilde und deren Verwendung
EP4363642A1 (de) Elektrisch leitfähiges garn
EP3682052A1 (de) Polymerfaser mit verbesserter langzeit-dispergierbarkeit
EP1961844A2 (de) Elektrisch leitfähige Fäden, daraus hergestellte Flächengebilde und deren Verwendung
JP4946253B2 (ja) 超極細繊維からなる粉末およびその製造方法
CN110396771B (zh) 一种纳米纤维无纺布的制备方法
EP2844788B1 (de) Thermoplastfasern mit reduzierter oberflächenspannung
Agrawal et al. Micro-fibrillar fiber of bicomponent polymer blends: Traditional paradigm with modern approach
Fallahi et al. Micro and nano fibrils from polypropylene/nylon 6 blends
JPS60444B2 (ja) 導電性繊維
JP2008088267A (ja) ポリアミドを有するポリマアロイチップおよびポリマアロイ繊維および超極細繊維ならびにそれらの製造方法
Sun Concurrent and sequential surface modification of electrospun polymer micro/nano-fibers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED