CN1286705A - 乙烯/α-烯烃共聚物的用途和乙烯共聚物组合物的用途 - Google Patents

乙烯/α-烯烃共聚物的用途和乙烯共聚物组合物的用途 Download PDF

Info

Publication number
CN1286705A
CN1286705A CN99800240A CN99800240A CN1286705A CN 1286705 A CN1286705 A CN 1286705A CN 99800240 A CN99800240 A CN 99800240A CN 99800240 A CN99800240 A CN 99800240A CN 1286705 A CN1286705 A CN 1286705A
Authority
CN
China
Prior art keywords
ethylene
alpha
mfr
film
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99800240A
Other languages
English (en)
Other versions
CN1111178C (zh
Inventor
高桥守
中川贵
杉村健司
吉次健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Mitsui Chemical Industry Co Ltd
Original Assignee
Mitsui Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemical Industry Co Ltd filed Critical Mitsui Chemical Industry Co Ltd
Publication of CN1286705A publication Critical patent/CN1286705A/zh
Application granted granted Critical
Publication of CN1111178C publication Critical patent/CN1111178C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明提供机械强度、耐热性或透明性都很好的模塑制品,如薄膜、片材、包装材料、注塑产品、发泡成形产品和纤维。这些模塑制品含有乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A′)该乙烯/α-烯烃共聚物(A)是乙烯和含6至8个碳原子的α-烯烃的共聚物,它具有以下性质:熔体张力和MFR满足特定关系,由流动曲线的时间-温度叠加的平移因子确定的流动活化能、共聚物中α-烯烃的碳原子数和共聚物中α-烯烃的含量满足特定关系,以及由所述共聚物用吹塑法制得的30微米厚的薄膜的雾度满足特定关系。乙烯共聚物组合物(A′)与共聚物(A)具有基本上相同的组分和组分比,含有(B)乙烯与含6至8个碳原子的α-烯烃的共聚物和(C)乙烯与含6至8个碳原子的α-烯烃的共聚物,共聚物(C)的MFR和共聚物(B)的MFR之间具有特定的关系。

Description

乙烯/α-烯烃共聚物的用途和乙烯共聚物组合物的用途
                      发明领域
本发明涉及乙烯/α-烯烃共聚物的用途。本发明还涉及该乙烯共聚物组合物的用途。该乙烯共聚物组合物具有与乙烯/α-烯烃共聚物基本上相同的组成和用途。
本发明还涉及含有乙烯/α-烯烃共聚物或乙烯共聚物组合物和另一种乙烯共聚物的组合物的用途。
                      发明背景
乙烯共聚物可用各种模塑方法进行模塑并用于许多领域中。乙烯共聚物所需的性能根据模塑方法和共聚物的用途而各不相同。例如,在用高速模塑法制备吹塑薄膜的过程中,必须选择其分子量具有高熔体张力的乙烯共聚物,来稳定地进行高速模塑而不发生膜泡摆动或膜泡破裂。需要类似的性能在吹塑法中用来防止垂挂或破裂,或者在T形模头模塑法中用来使宽度减少降低至最小。
在日本专利公开No.90810/1981或No.106806/1985中,报道了一种提高用齐格勒催化剂(具体的是钛催化剂)制得的乙烯聚合物的熔体张力或溶胀比(挤出胀大比)来改进聚合物模塑性的方法。然而,一般来说,用钛催化剂制得的乙烯聚合物(具体是低密度乙烯共聚物)通常具有宽的组成分布,且含有当聚合物用作模塑制品(如膜)时导致粘性的组分。因此,需要更多地降低导致粘性的组分。
在用齐格勒催化剂制得的乙烯聚合物中,那些用铬催化剂制得的乙烯聚合物具有较高的熔体张力。但是还需要对热稳定性作进一步改进。
用烯烃聚合催化剂(包含过渡金属茂金属化合物)制得的许多乙烯共聚物的熔体张力高、热稳定性优良,所以预计它们是能够满足上述要求的共聚物。然而,在用茂金属催化剂制得的乙烯共聚物中,熔体张力(melt tension,MT)通常与流动活化能(Ea)成正比。
如上所述,熔体张力高的聚合物由于膜泡稳定性好而显示优良的模塑性,但是它们具有高的流动活化能(Ea),这意味着它们的模塑条件受温度影响很大。因此,如果不能非常严格且均匀地控制模塑条件,那么所得的模塑产物会不均匀。例如,膜的透明度低。
当流动活化能(Ea)低时,可以抑制模塑产物中不均匀性的发生,但是因为熔体张力低,所以会产生不稳定的膜泡,从而模塑性下降。
本发明是在上述情况下作出的,本发明的一个目的是提供一种乙烯/α-烯烃共聚物的用途,这种乙烯/α-烯烃共聚物具有优良的模塑性且能够制成透明度和机械强度优良的膜和模塑制品。本发明的另一个目的是提供一种乙烯共聚物组合物的用途。这种乙烯共聚物组合物具有与乙烯/α-烯烃共聚物基本上相同的组成和用途。
                      发明的揭示
本发明的模塑制品,如单层薄膜或片材,多层薄膜或片材、注塑产品、挤塑产品、纤维、发泡成形产品或电线外皮,含有下述的乙烯/α-烯烃共聚物(A)、乙烯共聚物组合物(A′)、乙烯共聚物组合物(A″)或乙烯共聚物组合物(A)。
乙烯/α-烯烃共聚物(A):
所述的乙烯/α-烯烃共聚物(A)是乙烯和含6至8个碳原子的α-烯烃的共聚物,它具有以下性质:
(A-ⅰ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            9.0×MFR-0.65>MT>2.2×MFR-0.84
(A-ⅱ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物中α-烯烃的碳原子数(C)和共聚物中α-烯烃的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
以及
(A-ⅲ)由所述共聚物用吹塑法制得的30微米厚的膜的雾度(haze)满足以下关系:
当流动指数(FI)(定义为当在190℃时剪切应力达到2.4×106达因/厘米2(dyne/cm2)时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI≥100×MFR时,
在α-烯烃的碳原子数(C)为6的情况下,
雾度<0.45/(1-d)×log(3×MT1.4)×(C-3)0.1
在α-烯烃的碳原子数(C)为7或8的情况下,
雾度<0.50/(1-d)×log(3×MT1.4),
以及
当流动指数(FI)(定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI<100×MFR时,
在α-烯烃的碳原子数(C)为6的情况下,
雾度<0.25/(1-d)×log(3×MT1.4)×(C-3)0.1
在α-烯烃的碳原子数(C)为7或8的情况下,
雾度<0.50/(1-d)×log(3×MT1.4),
其中,d表示密度(克/厘米3),MT表示熔体张力(克)。
本发明的乙烯/α-烯烃共聚物(A)可以通过在烯烃聚合催化剂的存在下对乙烯和含6至8个碳原子的α-烯烃进行共聚来得到,所述催化剂包含:
(a)有机铝氧化合物
(b-Ⅰ)至少一种选自由下式(Ⅰ)表示的过渡金属化合物的过渡金属化合物:
            ML1 x            (Ⅰ)其中,M是选自周期表第4族的过渡金属原子;L1是与过渡金属原子M配位的配位体,至少两个配位体L1各自为含有选自3至10个碳原子烃基中的至少一个基团的取代的环戊二烯基,除取代的环戊二烯基以外的配位体L1是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子;x是过渡金属原子M的化合价;
以及
(b-Ⅱ)至少一种选自由下式(Ⅱ)表示的过渡金属化合物的过渡金属化合物:
            ML2 x            (Ⅱ)其中,M是选自周期表第4族的过渡金属原子;L2是与过渡金属原子M配位的配位体,至少两个配位体L2各自为甲基环戊二烯基或乙基环戊二烯基,除甲基环戊二烯基或乙基环戊二烯基以外的配位体L2是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子;x是过渡金属原子M的化合价。
在该烯烃聚合催化剂中,有机铝氧化合物(a)、过渡金属化合物(b-Ⅰ)和过渡金属化合物(b-Ⅱ)较好负载在载体(c)上。
乙烯共聚物组合物(A'):
所述的乙烯共聚物组合物(A')含有:
(B)乙烯/α-烯烃共聚物,它是乙烯和含6至8个碳原子的α-烯烃的共聚物,
(C)乙烯/α-烯烃共聚物,它是乙烯和含6至8个碳原子的α-烯烃的共聚物,
所述乙烯/α-烯烃共聚物(B)是具有以下性质:
(B-ⅰ)密度为0.880-0.970克/厘米3
(B-ⅱ)在190℃和2.16千克负荷下的熔体流动速率(MFR)为0.02-200克/10分钟,
(B-ⅲ)室温下溶于癸烷的组分分数(W)和密度(d)满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1
(B-ⅳ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm)和密度(d)满足以下关系:
            Tm<400×d-248,
(B-ⅴ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            9.0×MFR-0.65>MT>2.2×MFR-0.84
(B-ⅵ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物中α-烯烃的碳原子数(C)和共聚物中α-烯烃的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
以及
(B-ⅶ)由GPC测得的重均分子量(Mw)和数均分子量(Mn)的比值(Mw/Mn)满足以下条件:
            2.2<Mw/Mn<3.5;
所述乙烯/α-烯烃共聚物(C)具有以下性质:
(C-ⅰ)密度为0.880-0.970克/厘米3
(C-ⅱ)在190℃和2.16千克负荷下的熔体流动速率(MFR)为0.02-200克/10分钟,
(C-ⅲ)室温下溶于癸烷的组分分数(W)和密度(d)满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1
(C-ⅳ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm)和密度(d)满足以下关系:
            Tm<400×d-248,
以及
(C-ⅴ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            MT≤2.2×MFR-0.84
共聚物(C)的熔体流动速率(MFR(C))与共聚物(B)的熔体流动速率(MFR(B))的比值满足以下条件:
            1<(MFR(C))/(MFR(B))≤20。
乙烯共聚物组合物(A')具有与乙烯/α-烯烃共聚物(A)的组合物基本上相同的组成和用途。
在乙烯共聚物组合物(A')中,乙烯/α-烯烃共聚物(B)和(C)较好都是乙烯/1-己烯共聚物,而且乙烯共聚物组合物(A')具有以下性质:
(A'-ⅰ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            9.0×MFR-0.65>MT>2.2×MFR-0.84
(A'-ⅱ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物(B)和(C)中1-己烯的碳原子数(C)和共聚物(B)和(C)中1-己烯的总含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
以及
(A'-ⅲ)由所述共聚物组合物用吹塑法制得的30微米厚的膜的雾度满足以下条件:
当流动指数(FI)(定义为当在190℃时剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI≥100×MFR时,
雾度<0.45/(1-d)×log(3×MT1.4)×(C-3)0.1
以及
当流动指数(FI)(定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI<100×MFR时,
雾度<0.25/(1-d)×log(3×MT1.4)×(C-3)0.1
其中,d表示密度(克/厘米3),MT表示熔体张力(克),C表示1-己烯的碳原子数,即6。
除了性质(A'-ⅰ)至(A'-ⅲ)以外,乙烯共聚物组合物(A')较好还具有以下性质:
(A'-ⅳ)由GPC测得的重均分子量(Mw)和数均分子量(Mn)的比值(Mw/Mn)满足以下条件:
            2.0≤Mw/Mn≤2.5。
乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')中可以与以下物质共混:
(D)在烯烃聚合催化剂的存在下由乙烯和含3至20个碳原子的α-烯烃共聚得到的乙烯/α-烯烃共聚物,所述催化剂包含
(a)有机铝氧化合物和
(b-Ⅲ)含具有环戊二烯基骨架的配位体的周期表第4族过渡金属的过渡金属化合物,所述乙烯/α-烯烃共聚物具有以下性质:
(D-ⅰ)密度为0.850-0.980克/厘米3,和
(D-ⅱ)135℃时在十氢化萘中测得的特性粘度(η)为0.4-8dl/g;
由此制备含有乙烯/α-烯烃共聚物(A)和乙烯/α-烯烃共聚物(D)的乙烯共聚物组合物(A″)、含有乙烯共聚物组合物(A')和乙烯/α-烯烃共聚物(D)的乙烯共聚物组合物(A),条件是乙烯/α-烯烃共聚物(A)不同于乙烯/α-烯烃共聚物(D),乙烯/α-烯烃共聚物(B)和(C)都不同于乙烯/α-烯烃共聚物(D)。
                    发明的最佳实施方式
以下详细说明本发明乙烯/α-烯烃共聚物的用途和乙烯共聚物组合物的用途。
本文中所用的术语“聚合”不仅指“均聚”,而且指“共聚”。同样地,本文中所用的术语“聚合物”不仅指“均聚物”,而且指“共聚物”。
本发明的薄膜、片材和模塑制品含有下述的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。首先,描述乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。
                    乙烯/α-烯烃共聚物(A)
本发明的乙烯/α-烯烃共聚物(A)是乙烯和含6至8个碳原子的α-烯烃的无规共聚物。用来与乙烯进行共聚的含6至8个碳原子的α-烯烃的例子包括无支链的直链α-烯烃,如1-己烯、1-庚烯和1-辛烯。其中最好使用1-己烯。
本发明的乙烯/α-烯烃共聚物(A)具有以下性质(A-ⅰ)至(A-ⅲ):
(A-ⅰ)熔体张力(MT(克))和熔体流动速率(MFR(克/10分钟))满足以下关系:
9.0×MFR-0.65>MT>2.2×MFR-0.84
较好的是9.0×MFR-0.65>MT>2.3×MFR-0.84
更好的是8.5×MFR-0.65>MT>2.5×MFR-0.84
具有以上性质的乙烯/α-烯烃共聚物的熔体张力高、所以具有优良的模塑性。
MFR是根据ASTM D1238-65T在负荷为2.16千克、温度为190℃的条件下测得的。
熔体张力(MT)是通过以恒定速率拉伸熔融聚合物时测得的应力来确定的。也就是说,将制得的聚合物粉末以常规方法熔融并造粒,得到待测样品。然后用ToyoSeiki Seisakusho K.K.制造的MT测量机、在树脂温度为190℃、挤压速率为15毫米/分钟、引出速率(take-up rate)为10至20米/分钟、注嘴直径为2.09mmψ、注嘴长度为8毫米的条件测量样品的熔体张力。在造粒之前,将乙烯/α-烯烃共聚物与0.05%重量磷酸三(2,4-二叔丁基苯基)酯(作为辅助抗氧剂)、0.1%重量3-(4'-羟基-3',5'-二叔丁基苯基)丙酸正十八烷基酯(作为热稳定剂)和0.05%重量硬脂酸钙(作为盐酸吸收剂)共混。
(A-ⅱ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物中α-烯烃的碳原子数(C)和共聚物中α-烯烃的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
较好的是(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1500)×x+2.87
更好的是(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1300)×x+2.87
为了改进薄膜模塑性,需要提高熔体张力,而引入长链支链是已知的提高熔体张力的有效方法。无长链支链的乙烯/α-烯烃共聚物的Ea以下式表示:Ea×10-4=(0.039Ln(C-2)+0.0096)×x+2.87。当存在长链支链时,Ea值增加,所以如果Ea×10-4>(0.039Ln(C-2)+0.0096)×x+2.87,则就认为存在长链支链,薄膜模塑性和透明度均得到改进。在Ea×10-4>(0.039Ln(C-2)+0.1660)×x+2.87的情况下,尽管模塑性良好,但膜强度和膜透明度都降低了,所以这种情况是不理想的。
流动活化能(Ea)的测量描述于例如“聚合物实验科学,第9卷,热力学性质Ⅰ”(Polymer Experimental Science,Vol.9,Thermodynamic PropertiesⅠ),由聚合物学会的聚合物实验科学编辑委员会编辑,Kyoritsu Publishing K.K.,第25-28页。测量粘弹性和频率的关系得到的流动曲线,由流动曲线的时间-温度叠加的平移因子来确定流动活化能(Ea)。在某些基础温度固定时测得表示储能弹性模量(纵坐标)和角速度(横坐标)关系的图。然后,将在不同的测量温度时测得的数据沿与横坐标平行的方向移动,结果它们重叠在于基础温度时得到的数据上(热流变学的简化)。将测量温度下得到的数据重叠到基础温度下得到的数据上的位移Log(aT)对测量温度(绝对温度)的倒数1/T作图,得到直线斜率。将该直线斜率乘以2.303R(R是气体常数),由此得到与温度无关的活化能常数。
具体地,Ea按如下方法测量。
用Rheometrix Co.制造的RDS-Ⅱ型流变计测量角速度(ω(rad/sec))时的储能弹性模量(G′(达因/厘米2))的分布。将一块直径为25mmψ的平行板用作样品夹持器。样品的厚度约为2毫米。测量温度为130、170、200和230℃,在每个温度下、在0.04≤ω≤400的范围内测量G'。例如,在130℃的测量时,将样品加热至150℃以完全熔融晶体,然后冷却至130℃。在2-25%的范围内适当地选择应变,以使得转矩在测量范围内是可检测到的,而且不会变得很大。测量后,把130℃作为基准温度、将在四种温度条件下得到的流动曲线叠置起来,从位移因子的Arrhenius型曲线中计算得到Ea值。用接在RDS-Ⅱ上的RHIOS分析软件进行计算。
(A-ⅲ)由所述共聚物用吹塑法制得的30微米厚的膜的雾度满足以下条件:
当流动指数(FI)(定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI≥100×MFR时,
在α-烯烃的碳原子数(C)为6的情况下,
雾度<0.45/(1-d)×log(3×MT1.4)×(C-3)0.1
在α-烯烃的碳原子数(C)为7或8的情况下,
雾度<0.50/(1-d)×log(3×MT1.4),
以及
当流动指数(FI)(定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI<100×MFR时,
在α-烯烃的碳原子数(C)为6的情况下,
雾度<0.25/(1-d)×log(3×MT1.4)×(C-3)0.1
在α-烯烃的碳原子数(C)为7或8的情况下,
雾度<0.50/(1-d)×log(3×MT1.4),
其中,d表示密度(克/厘米3),MT表示熔体张力(克)。
满足以上条件的乙烯/α-烯烃共聚物具有优良的模塑性,能够制得透明度优良的薄膜。
厚度为30微米的薄膜的雾度按ASTM-D-1003-61测量。该薄膜用单螺杆挤塑机(装有
Figure 9980024000141
L/D为26,
Figure 9980024000142
模头,模唇宽为0.7毫米,且使用空气流量为90升/分钟、挤出量为9克/分钟、吹胀比为1.8、取出速度为2.4米/分钟和操作温度为200℃的单缝空气环)按吹塑法制成。
在变化剪切速率的条件下沿毛细管挤出树脂,并找到与指定应力对应的剪切速率,如此确定流动指数(FI)。也就是说,使用与测量MT相同的样品、在树脂温度为190℃、剪切应力为约5×104至3×106达因/厘米2的条件下、用毛细管流动性质试验机(由Toyo Seiki Seisakusho K.K.制造)测量流动指数。
在该测量中,根据待测树脂的MFR(克/10分钟)如下变化注嘴的直径:
MFR>20:0.5毫米
20≥MFR>3:1.0毫米
3≥MFR>0.8:2.0毫米
0.8≥MFR:3.0毫米
按如下方法测量密度(d)。将在190℃、2.16千克负荷下测量熔体流动速率(MFR)过程中得到的线料(strands)于120℃加热1小时,然后经过1小时缓慢地冷却至室温,用密度梯度管测量线料的密度。
除了上述性质外,本发明的乙烯/α-烯烃共聚物(A)较好还具有以下性质。
在本发明的乙烯/α-烯烃共聚物(A)中,由乙烯得到的组分单元的含量为50-100%重量、较好的是55-99%重量,更好的是65-98%重量,最好的是70-96%重量,由含6至8个碳原子的α-烯烃得到的组分单元的含量为0-50%重量,较好的是1-45%重量,更好的是2-35%重量,特别好的是4-30%重量。
乙烯/α-烯烃共聚物的组成通常用以下方式测定。在直径为
Figure 9980024000151
的样品管中将约200毫克共聚物均匀溶解在1毫升六氯丁二烯中以制备样品,在测量温度为120℃、测量频率为25.05MHz、谱宽为1,500Hz、脉冲重复时间为4.2秒,脉冲宽度为6微秒的测量条件下测量样品的13C-NMR谱。
乙烯/α-烯烃共聚物(A)的密度(d)宜为0.880-0.970克/厘米3,较好的是0.880-0.960克/厘米3,更好的是0.890-0.935克/厘米3,最好的是0.905-0.930克/厘米3
乙烯/α-烯烃共聚物(A)的熔体流动速率(MFR)宜为0.02-200克/10分钟,较好的是0.05-50克/10分钟,更好的是0.1-10克/10分钟。
23℃时乙烯/α-烯烃共聚物(A)中溶于正癸烷的组分分数(W)和密度(d)较好的是满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1,
较好的是W<60×exp(-100(d-0.88))+0.1,
更好的是W<40×exp(-100(d-0.88))+0.1,
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1
乙烯/α-烯烃共聚物中溶于正癸烷的组分分数(W)按如下方法测量(当该共聚物具有较低的可溶组分分数时,它的组成分布较窄)。将3克共聚物加入450毫升正癸烷中,于145℃溶解于其中,再冷却至23℃。然后,过滤除去不溶于正癸烷的部分,从滤液中回收溶于正癸烷的部分。
用差示扫描量热计(DSC)测得的乙烯/α-烯烃共聚物吸热曲线最大峰位置的温度(Tm,(℃))和密度(d,(克/厘米3))需要满足以下关系:
            Tm<400×d-248,
较好的是Tm<450×d-296,
更好的是Tm<500×d-343,
特别好的是Tm<550×d-392。
用差示扫描量热计(DSC)测得的乙烯/α-烯烃共聚物吸热曲线最大峰位置的温度(Tm)可从吸热曲线上得到。该吸热曲线如下获得:在铝盘中将约5毫克样品以10℃/分钟的速率加热直至200℃,样品保持于200℃约5分钟,将其以10℃/分钟的速率冷却至室温,再以10℃/分钟的速率加热。在测量中使用perkin-ElmerCo.制造的DSC-7型仪器。
在用差示扫描量热计(DSC)测得的吸热曲线最大峰位置的温度和密度(d)之间具有如上限定的关系、并且在溶于正癸烷的组分分数(W)和密度(d)之间具有如上限定的关系的乙烯/α-烯烃共聚物具有窄的组分分布。
上述乙烯/α-烯烃共聚物(A)可以两种或多种结合使用。
本发明的乙烯/α-烯烃共聚物(A)可以在烯烃聚合催化剂(Cat-1)的存在下对乙烯和含6至8个碳原子的α-烯烃进行共聚得到,所述催化剂(Cat-1)含有:
(a)有机铝氧化合物,
(b-Ⅰ)至少一种选自式(Ⅰ)所示的过渡金属化合物的过渡金属化合物,
(b-Ⅱ)至少一种选自式(Ⅱ)所示的过渡金属化合物的过渡金属化合物。
烯烃聚合催化剂还包含负载了(a)有机铝氧化合物,(b-Ⅰ)至少一种选自式(Ⅰ)所示的过渡金属化合物的过渡金属化合物和(b-Ⅱ)至少一种选自式(Ⅱ)所示的过渡金属化合物的过渡金属化合物的载体(c)。下文有时将该负载催化剂称作″Cat-2″。
用于形成烯烃聚合催化剂(Cat-1)和(Cat-2)的组分如下。
(a)有机铝氧化合物
用于本发明的有机铝氧化合物(a)(下文有时称作“组分(a)”)可以是迄今已知的溶于苯的铝氧烷(aluminoxane)或如日本专利公开No.276807/1990中揭示的不溶于苯的有机铝氧化合物(organoaluminum oxy-compound)。
铝氧烷可用如下方法制备,通常以其烃类溶液的形式得到。
(1)将有机铝化合物(如三烷基铝)加入含吸附水的化合物或含结晶水的盐(如氯化镁水合物、硫酸铜水合物、硫酸铝水合物、硫酸镍水合物或氯化铈水合物)的烃类介质悬浮液中,以使得所述有机铝化合物与吸附水或结晶水反应。
(2)在介质(如苯、甲苯、乙醚或四氢呋喃)中使水、冰或水蒸气直接作用在有机铝化合物(如三烷基铝)上。
(3)在介质(如癸烷、苯或甲苯)中使有机锡氧化物(如氧化二甲基锡或氧化二丁基锡)与有机铝化合物(如三烷基铝)进行反应。
铝氧烷会含有少量的有机金属组分。可以从回收的铝氧烷溶液中蒸馏除去溶剂或未反应的有机铝化合物,将剩余物再溶解在溶剂中。
用于制备铝氧烷的有机铝化合物的例子包括,三烷基铝,如三甲基铝、三乙基铝、三丙基铝、三异丙基铝、三正丁基铝、三异丁基铝、三仲丁基铝、三叔丁基铝、三戊基铝、三己基铝、三辛基铝和三癸基铝;
三环烷基铝,如三环己基铝和三环辛基铝;
卤化二烷基铝,如一氯二甲基铝、一氯二乙基铝、一溴二乙基铝和一氯二异丁基铝;
氢化二烷基铝,如氢化二乙基铝和氢化二异丁基铝;
烷氧基二烷基铝,如甲氧基二甲基铝和乙氧基二乙基铝;
芳氧基二烷基铝,如苯氧基二乙基铝。
其中,特别好的是三烷基铝和三环烷基铝。
还可以用作有机铝化合物的是下式所示的异戊二烯基铝(isoprenylaluminum):
            (i-C4H9)xAly(C5H10)z
其中,x、y、z都是正数,并且z≥2x。
上述的有机铝化合物可以单独使用或结合使用。
用于制备铝氧烷的溶剂的例子包括:
芳烃,如苯、甲苯、二甲苯、异丙基苯和甲基异丙基苯;
脂族烃,如戊烷、己烷、庚烷、辛烷、癸烷、十二烷、十六烷和十八烷;
脂环烃,如环戊烷、环己烷、环辛烷和甲基环戊烷;
石油馏分,如汽油、煤油和粗柴油;
这些芳烃、脂族烃和脂环烃的卤化产物,如它们的氯化或溴化产物。还可以使用的是醚类,如乙醚和四氢呋喃。在这些溶剂中,特别好的是芳烃。
可用于本发明的不溶于苯的有机铝氧化合物所含的60℃时溶于苯的Al组分,以Al原子计,其含量不超过10%,较好的是不超过5%,特别好的是不超过2%,该有机铝氧化合物不溶于或少量溶于苯中。
有机铝氧化合物在苯中的溶解度可用以下方法测量。将相当于100毫克原子Al的有机铝氧化合物悬浮在100毫升苯中,于60℃搅拌混合6小时。然后于60℃用有夹套的G-5玻璃过滤器对混合物进行热过滤,用50毫升苯于60℃将在过滤器上分离得到的固体洗涤4次,得到滤液。测量全部滤液中所存在的Al原子的量(x毫摩尔),得到溶解度(x%)。
(b-Ⅰ)过渡金属化合物和
(b-Ⅱ)过渡金属化合物
过渡金属化合物(b-Ⅰ)是下式(Ⅰ)所示的过渡金属化合物,过渡金属化合物(b-Ⅱ)是下式(Ⅱ)所示的过渡金属化合物。
            ML1 x           (Ⅰ)其中,M是选自周期表第4族的过渡金属原子;L1是与过渡金属原子M配位的配位体,至少两个配位体L1各自为含有选自3至10个碳原子烃基中的至少一个基团的取代的环戊二烯基,除取代的环戊二烯基以外的配位体L1是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子;x是过渡金属原子M的化合价。
            ML2 x         (Ⅱ)其中,M是选自周期表第4族的过渡金属原子;L2是与过渡金属原子M配位的配位体,至少两个配位体L2各自为甲基环戊二烯基或乙基环戊二烯基,除甲基环戊二烯基或乙基环戊二烯基以外的配位体L2是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子;x是过渡金属原子M的化合价。
以下详细说明由式(Ⅰ)和(Ⅱ)表示的过渡金属化合物。
在式(Ⅰ)中,M是选自周期表第4族的过渡金属原子,具体是锆、钛或铪,较好的是锆。
L1是与过渡金属原子M配位的配位体,至少两个配位体L1各自为含有选自3至10个碳原子烃基中的至少一个基团的取代的环戊二烯基。这些配位体L1可以相同或不同。
取代的环戊二烯基可以具有两个或多个取代基,这两个或多种取代基可以相同或不同。当取代的环戊二烯基具有两个或多个取代基时,至少一个取代基是含3至10个碳原子的烃基,余下的取代基是甲基、乙基或含3至10个碳原子的烃基。
含3至10个碳原子的烃基的例子包括,烷基、环烷基、芳基和芳烷基。具体来说,可以有烷基,如正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、辛基、2-乙基己基和癸基;环烷基,如环戊基和环己基;芳基,如苯基和甲苯基;芳烷基,如苄基和neophyl。
其中,较好的是烷基,特别好的是正丙基和正丁基。与过渡金属配位的取代的环戊二烯基较好的是二取代的环戊二烯基,特别好的是1,3-取代的环戊二烯基。
在式(Ⅰ)中,除与过渡金属原子M配位的取代的环戊二烯基以外的配位体L1是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子。
含1至12个碳原子的烃基的例子包括,烷基、环烷基、芳基和芳烷基。具体来说,可以有烷基,如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、辛基、2-乙基己基和癸基;环烷基,如环戊基和环己基;芳基,如苯基和甲苯基;芳烷基,如苄基和neophyl。
烷氧基的例子包括,甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、戊氧基、己氧基和辛氧基。
芳氧基的例子包括苯氧基。
三烷基甲硅烷基的例子包括,三甲基甲硅烷基、三乙基甲硅烷基和三苯基甲硅烷基。
卤素原子是氟、氯、溴或碘。
由式(Ⅰ)表示的过渡金属化合物的例子包括,
二氯化二(正丙基环戊二烯基)合锆、
二氯化二(正丁基环戊二烯基)合锆、
二氯化二(正己基环戊二烯基)合锆、
二氯化二(甲基正丙基环戊二烯基)合锆、
二氯化二(甲基正丁基环戊二烯基)合锆、
二氯化二(二甲基正丁基环戊二烯基)合锆、
二溴化二(正丁基环戊二烯基)合锆、
氯化甲氧基二(正丁基环戊二烯基)合锆、
氯化乙氧基二(正丁基环戊二烯基)合锆、
氯化丁氧基二(正丁基环戊二烯基)合锆、
二乙氧基二(正丁基环戊二烯基)合锆、
氯化甲基二(正丁基环戊二烯基)合锆、
二甲基二(正丁基环戊二烯基)合锆、
氯化苄基二(正丁基环戊二烯基)合锆、
二苄基二(正丁基环戊二烯基)合锆、
氯化苯基二(正丁基环戊二烯基)合锆、以及
氢化氯化二(正丁基环戊二烯基)合锆。
在以上这些例子中,二取代的环戊二烯基环包括1,2-和1,3-取代的环戊二烯基环,三取代的环戊二烯基环包括1,2,3-和1,2,4-取代的环戊二烯基环。
还可以用于本发明的过渡金属化合物是把上述锆化合物中的锆金属用钛金属或铪金属取代的过渡金属化合物。
在式(Ⅰ)表示的过渡金属化合物中,特别好的是二氯化二(正丙基环戊二烯基)合锆、二氯化二(正丁基环戊二烯基)合锆、二氯化二(1-甲基-3-正丙基环戊二烯基)合锆和二氯化二(1-甲基-3-正丁基环戊二烯基)合锆。
在式(Ⅱ)中,M是选自周期表第4族的过渡金属原子,具体的是锆、钛或铪,较好的是锆。
L2是与过渡金属原子M配位的配位体,至少两个配位体L2各自为甲基环戊二烯基或乙基环戊二烯基。这些配位体L2可以相同或不同。
在式(Ⅱ)中,除甲基环戊二烯基和乙基环戊二烯基以外的配位体L2是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子,它们中的每一个都与式(Ⅰ)中L1所指出的基团或原子相同。
由式(Ⅱ)表示的过渡金属化合物的例子包括,
二氯化二(甲基环戊二烯基)合锆、
二氯化二(乙基环戊二烯基)合锆、
二溴化二(甲基环戊二烯基)合锆、
二溴化二(乙基环戊二烯基)合锆、
氯化甲氧基二(甲基环戊二烯基)合锆、
氯化甲氧基二(乙基环戊二烯基)合锆、
氯化乙氧基二(甲基环戊二烯基)合锆、
氯化乙氧基二(乙基环戊二烯基)合锆、
二乙氧基二(甲基环戊二烯基)合锆、
二乙氧基二(乙基环戊二烯基)合锆、
氯化甲基二(甲基环戊二烯基)合锆、
氯化甲基二(乙基环戊二烯基)合锆、
二甲基二(甲基环戊二烯基)合锆、
二甲基二(乙基环戊二烯基)合锆、
氯化苄基二(甲基环戊二烯基)合锆、
氯化苄基二(乙基环戊二烯基)合锆、
二苄基二(甲基环戊二烯基)合锆、
二苄基二(乙基环戊二烯基)合锆、
氯化苯基二(甲基环戊二烯基)合锆、
氯化苯基二(乙基环戊二烯基)合锆、
氢化氯化二(甲基环戊二烯基)合锆、以及
氢化氯化二(乙基环戊二烯基)合锆。
还可以用于本发明的过渡金属化合物是把上述锆化合物中的锆金属用钛金属或铪金属取代的过渡金属化合物。
在式(Ⅱ)表示的过渡金属化合物中,特别好的是二氯化二(甲基环戊二烯基)合锆和二氯化二(乙基环戊二烯基)合锆。
在本发明中,至少一种选自式(Ⅰ)表示的过渡金属化合物的过渡金属化合物和至少一种选自式(Ⅱ)表示的过渡金属化合物的过渡金属化合物作为过渡金属化合物结合使用。选择过渡金属化合物的组合较好的是使比值MFR(Ⅰ)/MFR(Ⅱ)的比值满足条件MFR(Ⅰ)/MFR(Ⅱ)≤20,所述MFR(Ⅰ)/MFR(Ⅱ)的比值是使用所含过渡金属化合物组分仅仅是式(Ⅰ)表示的过渡金属化合物的催化剂组分得到的烯烃聚合物的MFR(MFR(Ⅰ))与使用所含过渡金属化合物组分仅仅是式(Ⅱ)表示的过渡金属化合物的催化剂组分在相同的聚合条件下得到的烯烃聚合物的MFR(MFR(Ⅱ))的比值。
这些组合的例子包括二氯化二(1,3-正丁基甲基环戊二烯基)合锆和二氯化二(甲基环戊二烯基)合锆组合,二氯化二(1,3-正丙基甲基环戊二烯基)合锆和二氯化二(甲基环戊二烯基)合锆组合,以及二氯化二(正丁基环戊二烯基)合锆和二氯化二(甲基环戊二烯基)合锆组合。
至少一种选自由式(Ⅰ)表示的过渡金属化合物中的过渡金属化合物(b-Ⅰ)与至少一种选自由式(Ⅱ)表示的过渡金属化合物中的过渡金属化合物(b-Ⅱ)较适宜的用量是(b-Ⅰ)/(b-Ⅱ)的摩尔比为99/1至40/60,较好的是95/5至45/55,更好的是90/10至50/50,最好的是85/15至55/45。
包含至少一种选自由式(Ⅰ)表示的过渡金属化合物中的过渡金属化合物(b-Ⅰ)和至少一种选自由式(Ⅱ)表示的过渡金属化合物中的过渡金属化合物(b-Ⅱ)的过渡金属化合物催化剂组分下文中有时称为“组分(b)”。
虽然在本发明中使用的是由有机铝氧化合物(a)、过渡金属化合物(b-Ⅰ)和过渡金属化合物(b-Ⅱ)形成的烯烃聚合催化剂(Cat-1),然而也可用有机铝氧化合物(a)、过渡金属化合物(b-Ⅰ)和过渡金属化合物(b-Ⅱ)负载在下述载体(c)上的催化剂(Cat-2)来代替。
(c)载体
可任选地用于本发明的载体(c)是无机或有机化合物的粒状固体,粒径为10-300微米,较好的是20-200微米。无机载体较好的是多孔氧化物,它的例子包括SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2,以及它们的混合物,如SiO2-MgO、SiO2-Al2O3、SiO2-TiO2、SiO2-V2O5、SiO2-Cr2O3和SiO2-TiO2-MgO。
其中,较好的是那些含SiO2和/或Al2O3作为主要组分的载体。
上述无机氧化物可以含有少量的碳酸盐、硫酸盐、硝酸盐和氧化物组分,如Na2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO4)3、BaSO4、KNO3、Mg(NO3)2、Al(NO3)3、Na2O、K2O和Li2O。
虽然载体(c)的性质随类型和制备方法而变化,但是用于本发明的较佳载体需要具有50-1,000米2/克(较好的是100-700米2/克)的比表面积,0.3-2.5厘米3/克的孔体积。如果需要,载体于100至1,000℃(较好的是150至700℃)下焙烧后进行使用。
载体(c)中吸附水的量以小于1.0%重量为宜,较好的是小于0.5%重量。载体(c)中表面羟基的量以不低于1.0%重量为宜,较好的是1.5-4.0%重量,特别好的是2.0-3.5%重量。
吸附水的量(%重量)和表面羟基的量(%重量)如下测量:
吸附水的量
将载体在大气压下、在氮气气流中、于200℃干燥4小时。把载体在干燥后所失去的重量对干燥前重量的百分数作为吸附水的量。
表面羟基的量
把在大气压下、在氮气气流中、于200℃干燥4小时后所得载体的重量作为X(克)。将载体于1,000℃焙烧20小时以除去表面羟基,把所得经焙烧后载体的重量作为Y(克),表面羟基的量用下式计算:
表面羟基的量(%重量)={(X-Y)/X}×100
还可以用作本发明中载体(c)的是有机化合物的粒状固体,粒径为10-300微米。这些有机化合物的例子包括用含2至14个碳原子的α-烯烃(如乙烯、丙烯、1-丁烯或4-甲基-1-戊烯)作为主要组分制得的聚合物(共聚物),以及用乙烯基环己烷或苯乙烯作为主要组分制得的聚合物(共聚物)。
下述有机铝化合物(d)可以任选地用作形成本发明中所用的烯烃聚合催化剂(Cat-1)和(Cat-2)的组分。
(d)有机铝化合物
可任选地用于本发明的有机铝化合物(d)(下文有时称为“组分(d)”)有例如以下式(ⅰ)表示的有机铝化合物:
            R1 nAlX3-n             (ⅰ)其中,R1是含1至12个碳原子的烃基,X是卤素原子或氢原子,n是1至3。
在式(ⅰ)中,R1是含1至12个碳原子的烃基,如烷基、环烷基或芳基。这些基团的例子包括甲基、乙基、正丙基、异丙基、异丁基、戊基、己基、辛基、环戊基、环己基、苯基和甲苯基。
有机铝化合物(d)的例子包括三烷基铝,如三甲基铝、三乙基铝、三异丙基铝、三异丁基铝、三辛基铝和三-2-乙基己基铝;
链烯基铝,如异戊二烯基铝;
卤化二烷基铝,如一氯二甲基铝、一氯二乙基铝、一氯二异丙基铝、一氯二异丁基铝和一溴二甲基铝;
倍半烷基铝卤化物,如倍半氯化甲基铝、倍半氯化乙基铝、倍半氯化异丙基铝、倍半氯化丁基铝和倍半溴化乙基铝;
二卤化烷基铝,如二氯甲基铝、二氯乙基铝、二氯异丙基铝和二溴乙基铝;
氢化烷基铝,如氢化二乙基铝和氢化二异丁基铝。
还可用作有机铝化合物(d)的是以下式(ⅱ)表示的化合物:
            R1 nAlY3-n      (ⅱ)其中,R1如上所述,Y是-OR2基团、-OSiR3 3基团、-OAlR4 2基团、-NR5 2基团、-SiR6 3基团或-N(R7)AlR8 2基团;n是1至2;R2、R3、R4和R8各自为甲基、乙基、异丙基、异丁基、环己基、苯基等;R5是氢原子、甲基、乙基、异丙基、苯基、三甲基甲硅烷基等;R6和R7各自是甲基、乙基等。
这些有机铝化合物的例子包括:
(1)式为R1 nAl(OR2)3-n的化合物,如甲氧基二甲基铝、乙氧基二乙基铝和甲氧基二异丁基铝;
(2)式为R1 nAl(OSiR3 3)3-n的化合物,如Et2Al(OSiMe3)、(iso-Bu)2Al(OSiMe3)和(iso-Bu)2Al(OSiEt3);
(3)式为R1 nAl(OAlR4 2)3-n的化合物,如Et2AlOAlEt2和(iso-Bu)2AlOAl(iso-Bu)2
(4)式为R1 nAl(NR5 2)3-n的化合物,如Me2AlNEt2、Et2AlNHMe、Me2AlNHEt、Et2AlN(SiMe3)2和(iso-Bu)2AlN(SiMe3)2;以及
(5)式为R1 nAl(SiR6 3)3-n的化合物,如(iso-Bu)2AlSiMe3;以及
(6)式为R1 nAl(N(R7)AlR8 2)3-n的化合物,如Et2AlN(Me)AlEt2和(iso-Bu)2AlN(Et)Al(iso-Bu)2
在式(ⅰ)和(ⅱ)表示的有机铝化合物中,较好的是式R1 3Al、R1 nAl(OR2)3-n和R1 nAl(OAlR4 2)3-n的化合物,特别好的是上述式中的R1是异烷基、n是2的化合物。
烯烃聚合催化剂(Cat-1)是由组分(a)、组分(b),组分(d)(如果需要的话)形成的;烯烃聚合催化剂(Cat-2)(固态催化剂(Cat-2))是由固态催化剂(组分)形成的,其中组分(a)和组分(b)负载在组分(c)上,如果需要的话还有组分(d)。
可以通过在聚合反应器内部或外部使催化剂组分互相混合和接触来制备烯烃聚合催化剂(Cat-1)。还可以通过预先将组分(a)制成固态组分,然后使组分(a)与组分(b)混合和接触以形成固态催化剂,或者使组分(a)与组分(b)混合和接触以形成固态催化剂,然后将固态催化剂加入聚合反应体系中。
在惰性烃类溶剂中使组分(a)、组分(b)和组分(d)(如果需要的话)进行混合和接触,可形成烯烃聚合催化剂(Cat-1)。这些催化剂组分可以以任何顺序进行接触,但是当组分(a)与组分(b)接触时,最好把组分(b)加入到组分(a)的悬浮液中。较好的是事先混合两种或多种过渡金属化合物(组分(b-Ⅰ)和(b-Ⅱ)来形成组分(b),然后与其它组分进行混合和接触。
用来制备烯烃聚合催化剂(Cat-1)的惰性烃类溶剂的例子包括脂族烃、如丙烷、丁烷、戊烷、己烷、庚烷、辛烷、癸烷、十二烷和煤油;脂环烃,如环戊烷、环己烷和甲基环戊烷;芳烃,如苯、甲苯和二甲苯;卤化烃,如氯化乙烯、氯苯和二氯甲烷;以及这些烃的混合物。
在组分(a)、组分(b)和组分(d)(如果需要的话)的混合和接触时,组分(a)的浓度约在0.1-5摩尔/升溶剂的范围内,较好的是0.3-3摩尔/升溶剂,以组分(a)中的铝计。组分(a)中的铝(Al)与组分(b)中的过渡金属的原子比(Al/过渡金属)一般在10至500的范围内,较好的是20至200。可任选使用的组分(d)中的铝原子(Al-d)与组分(a)中的铝原子(Al-a)的原子比(Al-d/Al-a)一般在0.02至3的范围内,较好的是0.05至1.5。在组分(a)、组分(b)和组分(d)(如果需要的话)的接触时,混合温度通常在-50至150℃的范围内,较好的是-20至120℃,接触时间通常在1分钟至50小时的范围内,较好的是10分钟至25小时。
在如上制得的烯烃聚合催化剂(Cat-1)中,1克催化剂中的组分(b)的含量宜为5×10-6至5×10-4摩尔,较好的是10-5至2×10-4摩尔,以过渡金属原子计;1克催化剂中的组分(a)和组分(d)的总含量宜为10-2至2.5×10-2摩尔,较好的是1.5×10-2至2×10-2摩尔,以铝原子计。
使载体(c)负载组分(a)、组分(b)和组分(d)(如果需要的话),由此制备固态催化剂(Cat-2)。
虽然组分(a)、组分(b)、载体(c)和组分(d)(如果需要的话)可以以任何顺序接触来制备固态催化剂(Cat-2),但是较好的是组分(a)与载体(c)接触,然后与组分(b)接触,然后再与组分(d)(如果需要的话)接触。较好的是事先混合两种或多种过渡金属化合物(组分(b-Ⅰ)和(b-Ⅱ))来形成组分(b),然后与其它组分进行接触。
组分(a)、组分(b)、载体(c)和组分(d)之间的接触在惰性烃类溶剂中进行,用于制备催化剂的惰性烃类溶剂的例子与上述用来制备烯烃聚合催化剂(Cat-1)的溶剂相同。
在组分(a)、组分(b)、载体(c)和组分(d)(如果需要的话)之间的混合和接触时,1克载体(c)中组分(b)的用量一般为5×10-6至5×10-4摩尔,较好的是10-5至2×10-4摩尔,以过渡金属原子计;组分(b)的浓度约在10-4至2×10-2摩尔/升溶剂的范围内,较好的是2×10-4至10-2摩尔/升溶剂,以过渡金属原子计。组分(a)中的铝(Al)与组分(b)中的过渡金属的原子比(Al/过渡金属)一般在10至500的范围内,较好的是20至200。可任选使用的组分(d)中的铝原子(Al-d)与组分(a)中的铝原子(Al-a)的原子比(Al-d/Al-a)一般在0.02至3的范围内,较好的是0.05至1.5。在组分(a)、组分(b)、载体(c)和组分(d)(如果需要的话)的接触时,混合温度通常在-50至150℃的范围内,较好的是-20至120℃,接触时间通常在1分钟至50小时的范围内,较好的是10分钟至25小时。
在如上制备的固态催化剂(Cat-2)时,1克催化剂(c)所负载的组分(b)的量宜为5×10-6至5×10-4摩尔,较好的是10-5至2×10-4摩尔,以过渡金属原子计;1克载体(c)所负载的组分(a)和组分(d)的总含量宜为10-3至5×10-2摩尔,较好的是2×10-3至2×10-2摩尔,以铝原子计。
烯烃聚合催化剂(Cat-2)可以是其中的烯烃已经预聚合的预聚合催化剂。
在组分(a)、组分(b)和载体(c)的存在下向惰性烃类溶剂中加入烯烃来进行预聚合,来制备预聚合催化剂。较好的是,固态催化剂组分(Cat-2)由组分(a)、组分(b)和载体(c)形成。固态催化剂组分(Cat-2)还可以与组分(a)和/或组分(d)共混。
为了制备预聚合催化剂,可行的是将烯烃加入含有制得的固态催化剂(Cat-2)(固态催化剂组分)的悬浮液中,或者可行的是从含有制得的固态催化剂(Cat-2)的悬浮液中分离固态催化剂(Cat-2),然后将该固态催化剂再悬浮在惰性烃中,向所得的悬浮液中加入烯烃。
在预聚合催化剂的制备中,组分(b)的用量通常为10-6至2×10-2摩尔/升溶剂,较好的是5×10-5至10-2摩尔/升溶剂,以组分(b)中的过渡金属原子计;1克载体(c)中组分(b)的用量为5×10-6至5×10-4摩尔,较好的是10-5至2×10-4摩尔,以组分(b)中的过渡金属原子计。组分(a)中的铝(Al)与组分(b)中的过渡金属的原子比(Al/过渡金属)一般在10至500的范围内,较好的是20至200。可任选使用的组分(d)中的铝原子(Al-d)与组分(a)中的铝原子(Al-a)的原子比(Al-d/Al-a)一般在0.02至3的范围内,较好的是0.05至1.5。
固态催化剂组分的用量通常为10-6至2×10-2摩尔/升溶剂,较好的是5×10-5至10-2摩尔/升溶剂,以过渡金属化合物中的过渡金属计。
预聚合温度通常在-20至80℃的范围内,较好的为0至60℃,预聚合时间通常在0.5至200小时的范围内,较好的是1至50小时。
预聚合中所用烯烃的例子包括乙烯;3至20个碳原子的α-烯烃,如丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-辛烯、1-癸烯、1-十二碳烯和1-十四碳烯。其中,特别好的是乙烯,或者乙烯和聚合反应中所用相同的α-烯烃的组合。
预聚合催化剂用例如以下方法制备。将载体悬浮在惰性烃类溶剂中得到悬浮液。向该悬浮液中加入有机铝氧化合物(组分(a)),使它们反应一段给定的时间。然后除去上层清液,将所得固体再悬浮于惰性烃中。向该体系中加入过渡金属化合物(组分(b)),使它们反应一段给定的时间。然后除去上层清液得到固态催化剂组分。随后,向含有有机铝化合物(组分(d))的惰性烃中加入固态催化剂组分,再加入烯烃。由此得到预聚合催化剂。
在预聚合中,1克载体(c)宜制得0.1至500克的烯烃聚合物,较好的是0.2至300克,更好的是0.5至200克。
在预聚合催化剂中,1克载体(c)所负载的组分(b)的量宜为5×10-6至5×10-4摩尔,较好的是10-5至2×10-4摩尔,以过渡金属原子计;所负载的组分(a)和组分(d)的量较好的是使得组分(a)和(d)中的铝原子(Al)与组分(b)中的过渡金属原子(M)的摩尔比(Al/M)为5至200,较好的是10至150。
预聚合可以用分批法和连续法中的任一种来进行,可以在减压、大气压或在压力下进行。在预聚合过程中,最好使氢存在于体系中以制得特性粘度(η)(在十氢化萘中于135℃测得)为0.2至7dl/g(较好的是0.5至5dl/g)的预聚物。
乙烯和α-烯烃的共聚是在上述烯烃聚合催化剂的存在下、于气相或淤浆液相中(较好的是在气相中)进行的。在淤浆聚合中,用惰性烃作为溶剂,或者用烯烃本身作为溶剂。
用于淤浆聚合的惰性烃类溶剂的例子包括脂族烃,如丙烷、丁烷、异丁烷、戊烷、己烷、辛烷、癸烷、十二烷、十六烷和十八烷;脂环烃,如环戊烷、甲基环戊烷、环己烷和环辛烷;芳烃,如苯、甲苯和二甲苯;石油馏分,如汽油、煤油和粗柴油。在惰性烃类溶剂中,较好的是脂族烃、脂环烃和石油馏分。
当共聚以淤浆聚合或气相聚合进行时,催化剂的用量通常宜为10-8至10-3摩尔/升,较好的是10-7至10-4摩尔/升,以聚合反应体系中过渡金属原子的浓度计。
在由组分(a)、组分(b)和可任选组分(d)形成的烯烃聚合催化剂中,组分(d)中的铝原子(Al)对过渡金属化合物(b)中的过渡金属原子(M)的原子比(Al/M)在5至300的范围内,较好的是10至200,更好的是15至150。
在用由组分(a)、组分(b)、载体(c)和可任选组分(d)形成的烯烃聚合催化剂进行聚合反应中,除了负载在载体上的有机铝氧化合物(组分(a))以外,还可以使用不负载在载体上的有机铝氧化合物。在这种情况下,不负载在载体上的有机铝氧化合物中的铝原子(Al)对过渡金属化合物(b)中的过渡金属原子(M)的原子比(Al/M)在5至300的范围内,较好的是10至200,更好的是15至150。可任选使用的组分(d)可负载在载体(c)上。或可在聚合过程中加入组分(d)。还可以在聚合反应过程中加入预先负载在载体上的组分(d)。已负载在载体上的组分(d)与在聚合反应过程中加入的组分(d)可以相同或不同。可任选使用的组分(d)中的铝原子(Al)对过渡金属化合物(b)中的过渡金属原子(M)的原子比(Al/M)在5至300的范围内,较好的是10至200,更好的是15至150。
当进行淤浆聚合时,聚合温度通常为-50至100℃,较好的是0至90℃。当进行气相聚合反应时,聚合温度通常为0至120℃,较好的是20至100℃。
聚合压力通常为大气压至100千克/厘米2,较好的是2至50千克/厘米2。聚合反应可以用分批法、半连续法和连续法的任一种来进行。
聚合反应可以用在不同反应条件下的两步或多步来进行。在烯烃聚合催化剂中,除了上述组分外,还可以含有其它用于烯烃聚合的组分。
可以用该烯烃聚合催化剂进行聚合的烯烃的例子包括乙烯;含6至8个碳原子的α-烯烃;其它α-烯烃,如丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-癸烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-十八碳烯和1-二十碳烯;含3至20个碳原子的环烯烃,如环戊烯、环庚烯、降冰片烯、5-甲基-2-降冰片烯、四环十二碳烯和2-甲基-1,4,5,8-二亚甲基-1,2,3,4,4a,5,8,8a-八氢萘。也可以使用苯乙烯、乙烯基环己烷和二烯。
在用烯烃聚合方法得到的乙烯/α-烯烃共聚物中,由乙烯得到的组分单元的含量宜为50-100%重量,较好的是55-99%重量,更好的是65-98%重量,最好的是70-96%重量,由含6至8个碳原子的α-烯烃得到的组分单元的含量为0-50%重量,较好的是1-45%重量,更好的是2-35%重量,最好的是4-30%重量。
如此得到的乙烯/α-烯烃共聚物显示上述性质(A-ⅰ)至(A-ⅲ),所以模塑性优良,并且能够制得透明度和机械强度优良的膜。
乙烯共聚物组合物(A')
乙烯共聚物组合物(A')具有基本上与乙烯/α-烯烃共聚物(A)相同的组成和用途。且含有(B)乙烯/α-烯烃共聚物和与共聚物(B)不同的(C)乙烯/α-烯烃共聚物。
乙烯/α-烯烃共聚物(B)是乙烯和6至8个碳原子的α-烯烃的无规共聚物。6至8个碳原子的α-烯烃的例子包括与上述相同的烯烃。
在乙烯/α-烯烃共聚物(B)中,由乙烯得到的组分单元的含量宜为50-100%重量,较好的是55-99%重量,更好的是65-98%重量,最好的是70-96%重量,由6至8个碳原子的α-烯烃得到的组分单元的含量宜为0-50%重量,较好的是1-45%重量,更好的是2-35%重量,最好的是4-30%重量。
乙烯/α-烯烃共聚物(B)较好的是具有以下性质(B-ⅰ)至(B-ⅶ),特别好的是具有以下性质(B-ⅰ)至(B-ⅷ)。
(B-ⅰ)密度(d)为0.880-0.970克/厘米3,较好的为0.880-0.960克/厘米3,更好的为0.890-0.935克/厘米3,最好的为0.905-0.930克/厘米3
(B-ⅱ)熔体流动速率(MFR)为0.02-200克/10分钟,较好的是0.05至50克/10分钟,更好的是0.1至10克/10分钟。
(B-ⅲ)23℃时溶于癸烷的组分分数(W(%重量))和密度(d(克/厘米3))满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1,
较好的是W<60×exp(-100(d-0.88))+0.1,
更好的是W<40×exp(-100(d-0.88))+0.1,
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1。
(B-ⅳ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm(℃))和密度(d(克/厘米3))满足以下关系:
Tm<400×d-248,
较好的是Tm<450×d-296,
更好的是Tm<500×d-343,
特别好的是Tm<550×d-392。
在用差示扫描量热计(DSC)测得的吸热曲线最大峰位置的温度(Tm)和密度(d)之间具有如上限定的关系、并且在溶于正癸烷的组分分数(W)和密度(d)之间具有如上限定的关系的乙烯/α-烯烃共聚物(B)具有窄的组成分布。
(B-ⅴ)熔体张力(MT(克))和熔体流动速率(MFR(克/10分钟))满足以下关系:
9.0×MFR-0.65>MT>2.2×MFR-0.84
较好的是9.0×MFR-0.65>MT>2.3×MFR-0.84
更好的是8.5×MFR-0.65>MT>2.5×MFR-0.84
具有以上性质的乙烯/α-烯烃共聚物显示高的熔体张力(MT),所以具有优良的模塑性。
(B-ⅵ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物中α-烯烃的碳原子数(C)和共聚物中α-烯烃的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
较好的是(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1500)×x+2.87
更好的是(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1300)×x+2.87
(B-ⅶ)由GPC测得的分子量分布(Mw/Mn,Mw:重均分子量,Mn:数均分子量)满足以下条件:
2.2<Mw/Mn<3.5,
较好的是2.4<Mw/Mn<3.0。
分子量分布(Mw/Mn)使用Milipore Co.制造的GPC-150C用如下方法测量。
使用直径为72毫米、长度为600毫米的TSK-GNH-HT柱,柱温为140℃。在柱中,用邻二氯苯(购自Wako Junyaku Kogyo K.K.)作为流动相、用0.025%重量的BHT(购自Takeda Chemical Industries,Ltd.)作为抗氧剂,使500微升的样品(浓度为0.1%重量)流动。用差示折光计作为检测器。用购自TOHSO K.K.的Mw<1,000和Mw>4×106的聚苯乙烯和购自Pressure Chemical Co.的1,000≤Mw≤4×106的聚苯乙烯作为标准聚苯乙烯。
(B-ⅷ)以1,000个碳原子计,共聚物分子中存在的不饱和键的数目不超过0.5个,并且以1个共聚物分子计低于1个。
如下进行不饱和键的定量测定:用13C-NMR从积分曲线上寻找不属于双键之信号(即10至50ppm范围内的信号)的面积强度(area intensity)和属于双键之信号(即105至150ppm范围内的信号)的面积强度,计算这些强度之间的比率。
可以在烯烃聚合催化剂的存在下、对乙烯和6至8个碳原子的α-烯烃进行共聚,得到乙烯/α-烯烃共聚物(B),所述催化剂包含例如,(a)有机铝氧化合物和(b-Ⅱ)由上式(Ⅱ)表示的过渡金属化合物。
有机铝氧化合物(a)和过渡金属化合物(b-Ⅱ)与上述制备乙烯/α-烯烃共聚物(A)的方法中的相同。类似于上述情况,也可以使用载体(c)和有机铝化合物(d),可以进行预聚合反应。组分用量、预聚合反应条件和聚合反应条件与制备乙烯/α-烯烃共聚物(A)中的相同。
乙烯/α-烯烃共聚物(C)是乙烯和6至8个碳原子的α-烯烃的无规共聚物。6至8个碳原子的α-烯烃的例子包括与上述相同的烯烃。
在乙烯/α-烯烃共聚物(C)中,由乙烯得到的组分单元的含量宜为50-100%重量、较好的是55-99%重量,更好的是65-98%重量,最好的是70-96%重量,由含6至8个碳原子的α-烯烃得到的组分单元的含量宜为0-50%重量,较好的是1-45%重量,更好的是2-35%重量,特别好的是4-30%重量。
乙烯/α-烯烃共聚物(C)较好的是具有以下性质(C-ⅰ)至(C-ⅴ),特别好的是具有以下性质(C-ⅰ)至(C-ⅵ):
(C-ⅰ)密度(d)为0.880-0.970克/厘米3,较好的为0.880-0.960克/厘米3,更好的为0.890-0.935克/厘米3,最好的为0.905-0.930克/厘米3
(C-ⅱ)熔体流动速率(MFR)为0.02-200克/10分钟,较好的是0.05至50克/10分钟,更好的是0.1至10克/10分钟。
(C-ⅲ)23℃时溶于癸烷的组分分数(W(%重量))和密度(d(克/厘米3))满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1,
较好的是W<60×exp(-100(d-0.88))+0.1,
更好的是W<40×exp(-100(d-0.88))+0.1,
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1。
(C-ⅳ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm(℃))和密度(d(克/厘米3))满足以下关系:
Tm<400×d-248,
较好的是Tm<450×d-296,
更好的是Tm<500×d-343,
特别好的是Tm<550×d-392。
在用差示扫描量热计(DSC)测得的吸热曲线最大峰位置的温度(Tm)和密度(d)之间具有如上限定的关系、并且在溶于正癸烷的组分分数(W)和密度(d)之间具有如上限定的关系的乙烯/α-烯烃共聚物(C)具有窄的组成分布。
(C-ⅴ)熔体张力(MT(克))和熔体流动速率(MFR(克/10分钟))满足以下关系:
MT≤2.2×MFR-0.84
(C-ⅵ)以1,000个碳原子计,共聚物分子中存在的不饱和键的数目不超过0.5个,并且以1个共聚物分子计低于1个。
可以在烯烃聚合催化剂的存在下、对乙烯和6至8个碳原子的α-烯烃进行共聚,得到乙烯/α-烯烃共聚物(C),所述催化剂包含例如,(a)有机铝氧化合物和(b-Ⅰ)由上述式(Ⅰ)表示的过渡金属化合物。有机铝氧化合物(a)和过渡金属化合物(b-Ⅰ)与上述制备乙烯/α-烯烃共聚物(A)的方法中的相同。类似于上述情况,也可以使用载体(c)和有机铝化合物(d),可以进行预聚合反应。组分用量、预聚合反应条件和聚合反应条件与制备乙烯/α-烯烃共聚物(A)中的相同。
本发明的乙烯共聚物组合物(A')宜含有1-90%重量(较好的为2-80%重量)乙烯/α-烯烃共聚物(B)和10-99%重量(较好的为20-98%重量)乙烯/α-烯烃共聚物(C)。
在包含乙烯/α-烯烃共聚物(B)和乙烯/α-烯烃共聚物(C)的乙烯共聚物组合物(A')中,乙烯/α-烯烃共聚物(C)的熔体流动速率(MFR(C))与乙烯/α-烯烃共聚物(B)的熔体流动速率(MFR(B))的比值满足以下条件:
1<MFR(C)/MFR(B)≤20。
在本发明中,乙烯/α-烯烃共聚物(B)和(C)都宜为乙烯/1-己烯共聚物。在这种情况下,如下所述,乙烯共聚物组合物(A')具有基本上与乙烯/α-烯烃共聚物(A)相同的性质,且能够预期它具有与共聚物(A)相似的用途。
(A'-ⅰ)熔体张力(MT(克))和熔体流动速率(MFR(克/10分钟))满足以下关系:
9.0×MFR-0.65>MT>2.2×MFR-0.84
较好的是9.0×MFR-0.65>MT>2.3×MFR-0.84
更好的是8.5×MFR-0.65>MT>2.5×MFR-0.84
具有以上性质的乙烯共聚物组合物(A')的熔体张力高,所以具有优良的模塑性。
(A'-ⅱ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物(B)和(C)中1-己烯的碳原子数(C)和共聚物(B)和(C)中1-己烯的总含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
较好的是(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1500)×x+2.87
更好的是(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1300)×x+2.87
(A'-ⅲ)由乙烯共聚物组合物(A')用吹塑法制得的30微米厚的膜的雾度满足以下条件:
当流动指数(FI)(定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI≥100×MFR时,
雾度<0.45/(1-d)×log(3×MT1.4)×(C-3)0.1
以及
当流动指数(FI)(定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率)和熔体流动速率(MFR)满足关系FI<100×MFR时,
雾度<0.25/(1-d)×log(3×MT1.4)×(C-3)0.1
其中,d表示密度(克/厘米3),MT表示熔体张力(克),C表示1-己烯的碳原子数目,即6。
满足以上条件的乙烯共聚物组合物(A')具有优良的模塑性,能够制得透明度优良的膜。
本发明乙烯共聚物组合物(A')较好的是除了以上性质以外,还具有如下性质:
(A'-ⅳ)由GPC测得的分子量分布(Mw/Mn,Mw:重均分子量,Mn:数均分子量)满足以下条件:
2.0≤Mw/Mn≤2.5,
较好的是2.0≤Mw/Mn≤2.4。
在乙烯共聚物组合物(A')中,由乙烯得到的组分单元的含量宜为50-100%重量,较好的是55-99%重量,更好的是65-98%重量,最好的是70-96%重量,由6至8个碳原子的α-烯烃(较好的是1-己烯)得到的组分单元的含量为0-50%重量,较好的是1-45%重量,更好的是2-35%重量,最好的是4-30%重量。
乙烯共聚物组合物(A')的密度(d)宜为0.880-0.970克/厘米3,较好的是0.880-0.960克/厘米3,更好的是0.890-0.935克/厘米3,最好的是0.905-0.930克/厘米3
乙烯共聚物组合物(A')的熔体流动速率(MFR)宜为0.05-200克/10分钟,较好的是0.08-50克/10分钟,更好的是0.1-10克/10分钟。
23℃时乙烯共聚物组合物(A')中溶于正癸烷的组分分数(W(重量%))和其密度(d(克/厘米3)满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1,
较好的是W<60×exp(-100(d-0.88))+0.1,
更好的是W<40×exp(-100(d-0.88))+0.1,
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1
用差示扫描量热计(DSC)测得的乙烯共聚物组合物(A')吸热曲线最大峰位置的温度(Tm(℃))和密度(d(克/厘米3))满足以下关系:
Tm<400×d-248,
较好的是Tm<450×d-296,
更好的是Tm<500×d-343,
特别好的是Tm<550×d-392。
在用差示扫描量热计(DSC)测得的吸热曲线最大峰位置的温度(Tm)和密度(d)之间具有如上限定的关系、并且在溶于正癸烷的组分分数(W)和密度(d)之间具有如上限定的关系的乙烯共聚物组合物(A')具有窄的组分分布。
包含乙烯/α-烯烃共聚物(B)和乙烯/α-烯烃共聚物(C)的乙烯共聚物组合物(A')可以用常规方法制备,例如以下方法:
(1)用转鼓、挤压机、捏合机等机械混合或熔融混合乙烯/α-烯烃共聚物(B)、乙烯/α-烯烃共聚物(C)和可任选加入的其它组分。
(2)将乙烯/α-烯烃共聚物(B)、乙烯/α-烯烃共聚物(C)和可任选加入的其它组分溶解在合适的良溶剂(如烃类溶剂,如己烷、庚烷、癸烷、环己烷、苯、甲苯和二甲苯)中,然后从溶液除去溶剂。
(3)将乙烯/α-烯烃共聚物(B)、乙烯/α-烯烃共聚物(C)和可任选加入的其它组分分别溶解在良溶剂中制备溶液,把这些溶液进行混合,从混合物中除去溶剂。
(4)将方法(1)至(3)适当地进行组合。
上述本发明的乙烯/α-烯烃共聚物(A)和乙烯共聚物组合物(A')都具有优良的模塑性,能够制得透明度和机械强度优良的膜。另外,它们能够与其它聚合物(较好的是乙烯/α-烯烃共聚物)组合使用。例如,它们可用作乙烯/α-烯烃共聚物(A)与另一种乙烯/α-烯烃共聚物的乙烯共聚物组合物(A″)和乙烯/α-烯烃共聚物(A')与另一种乙烯/α-烯烃共聚物的乙烯共聚物组合物(A)。作为这种乙烯/α-烯烃共聚物,特别好的是使用下述乙烯/α-烯烃共聚物(D)。
用于本发明的乙烯/α-烯烃共聚物(D)是乙烯和含3至20个碳原子的α-烯烃的无规共聚物。含3至20个碳原子的α-烯烃的例子包括丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-辛烯、1-癸烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-十八碳烯和1-二十碳烯。
在乙烯/α-烯烃共聚物(D)中,由乙烯得到的组分单元的含量为50-100%重量,较好的是55-99%重量,更好的是65-98%重量,最好的是70-96%重量,由3至20个碳原子的α-烯烃得到的组分单元的含量为0-50%重量,较好的是1-45%重量,更好的是2-35%重量,最好的是4-30%重量。
乙烯/α-烯烃共聚物(D)较好的是具有以下性质(D-ⅰ)至(D-ⅱ),特别好的是具有以下性质(D-ⅰ)至(D-ⅳ)。
(D-ⅰ)密度(d)在0.850-0.980克/厘米3的范围内,较好的为0.910-0.960克/厘米3,更好的为0.915-0.955克/厘米3,最好的为0.920-0.950克/厘米3
(D-ⅱ)135℃时在十氢化萘中测得的特性粘度(η)在0.4-8dl/g的范围内,较好的为0.4-1.25dl/g,更好的为0.5-1.23dl/g。
(D-ⅲ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm(℃))和密度(d(克/厘米3))满足以下关系:
Tm<400×d-250,
较好的是Tm<450×d-297,
更好的是Tm<500×d-344,
特别好的是Tm<550×d-391。
(D-ⅳ)室温时溶于正癸烷的组分分数(W(%重量))和密度(d(克/厘米3))满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1,
较好的是W<60×exp(-100(d-0.88))+0.1,
更好的是W<40×exp(-100(d-0.88))+0.1,
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1。
在用差示扫描量热计(DSC)测得的吸热曲线最大峰位置的温度(Tm)和密度(d)之间具有如上限定的关系、并且在溶于正癸烷的组分分数(W)和密度(d)之间具有如上限定的关系的乙烯/α-烯烃共聚物(D)具有窄的组分分布。
乙烯/α-烯烃共聚物(A)不同于乙烯/α-烯烃共聚物(D);乙烯/α-烯烃共聚物(B)和(C)都不同于乙烯/α-烯烃共聚物(D)。具体而言,可以从以下性质将乙烯/α-烯烃共聚物(D)与乙烯/α-烯烃共聚物(A)至(C)区别开来。
这就是说,乙烯/α-烯烃共聚物(D)不满足共聚物(A)所需性质(A-ⅰ)至(A-ⅲ)中的至少一种性质。
乙烯/α-烯烃共聚物(D)也不满足共聚物(B)所需性质(B-ⅲ)至(B-ⅶ)中的至少一种性质。
乙烯/α-烯烃共聚物(D)还不满足共聚物(C)所需性质(C-ⅲ)至(C-ⅴ)中的至少一种性质。
与乙烯/α-烯烃共聚物(A)相比,乙烯/α-烯烃共聚物(D)宜有较低的特性粘度(η)(在135℃十氢萘中测得)和较低的密度。
与乙烯/α-烯烃共聚物(B)和(C)相比,乙烯/α-烯烃共聚物(D)宜有较低的特性粘度(η)(在135℃十氢萘中测得)和较低的密度。
可以在烯烃聚合催化剂的存在下对乙烯和含3至20个碳原子的α-烯烃进行共聚来制备乙烯/α-烯烃共聚物(D),所述烯烃聚合催化剂例如包含(a)有机铝氧化合物和(b-Ⅲ)下述式(Ⅲ)表示的过渡金属化合物。有机铝氧化合物(a)与前述制备乙烯/α-烯烃共聚物(A)方法中的相同。类似于上述情况,可以使用载体(c)和有机铝化合物(d),可以进行预聚合反应。制备乙烯/α-烯烃共聚物(D)的组分用量、预聚合反应条件和聚合反应条件与制备乙烯/α-烯烃共聚物(A)中的相同。
过渡金属化合物(b-Ⅲ)如下所述。
(b-Ⅲ)过渡金属化合物
用来制备乙烯/α-烯烃共聚物(D)的含具有环戊二烯基骨架的配位体的周期表第4族过渡金属的过渡金属化合物(b-Ⅲ)(下文有时称为“组分(b-Ⅲ)”)没有特别的限制,只要它是含具有环戊二烯基骨架的配位体的周期表第4族过渡金属的化合物。然而,过渡金属化合物(b-Ⅲ)较好的是式(Ⅲ)表示的化合物:
            ML3 x         (Ⅲ)
在式(Ⅲ)中,M是选自周期表第4族的过渡金属原子,具体的是锆、钛或铪,较好的是锆。
x是过渡金属的化合价。
L3是与过渡金属原子M配位的配位体,至少一个配位体L3是具有环戊二烯基骨架的配位体。具有环戊二烯基骨架的配位体的例子包括:
环戊二烯基;
烷基取代的环戊二烯基,如甲基环戊二烯基、二甲基环戊二烯基、三甲基环戊二烯基、四甲基环戊二烯基、五甲基环戊二烯基、乙基环戊二烯基、甲基乙基环戊二烯基、丙基环戊二烯基、甲基丙基环戊二烯基、丁基环戊二烯基、甲基丁基环戊二烯基和己基环戊二烯基;茚基;4,5,6,7-四氢茚基;以及芴基。这些基团可以被卤素原子、三烷基甲硅烷基等取代。
在具有环戊二烯基骨架的配位体中,特别好的是烷基取代的环戊二烯基。
当式(Ⅲ)表示的化合物含有两个或多个具有环戊二烯基骨架的配位体时,它们中的两个可以通过下列基团键合,这些基团如亚烷基,如亚乙基或亚丙基;取代的亚烷基,如亚异丙基或二苯基亚甲基;亚甲硅基;或取代的亚甲硅基,如二甲基亚甲硅基、二苯基亚甲硅基或甲基苯基亚甲硅基。
在式(Ⅲ)中,除具有环戊二烯基骨架的配位体以外的L3是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子、氢原子或SO3R基团(R是1至8个碳原子的烃基,它可以具有取代基,如卤素)。它们中的每一个都与式(Ⅰ)中L1所指出的基团或原子相同。由SO3R表示的配位体的例子包括对甲苯磺酸根(p-toluenesulfonato group)、甲磺酸根和三氟甲磺酸根。
其中过渡金属化合价例如为4的式(Ⅲ)的过渡金属化合物更具体的是由以下式(Ⅲ')表示:
            R2 kR3 lR4 mR5 nM           (Ⅲ')其中,M是与上述相同的过渡金属原子;R2是具有环戊二烯基骨架的基团(配位体),R3、R4和R5各自是具有环戊二烯基骨架的基团、烷基、环烷基、芳基、芳烷基、烷氧基、芳氧基、三烷基甲硅烷基、SO3R基、卤素原子或氢原子;k是1或更大的整数;k+1+m+n=4。
在本发明中较好的是使用茂金属化合物,其中R3、R4和R5中的一个是具有环戊二烯基骨架的基团(配位体),例如其中R2和R3各自是具有环戊二烯基骨架的基团(配位体)的茂金属化合物。具有环戊二烯基骨架的基团可以通过下列基团来键合,这些基团如亚烷基,如亚乙基或亚丙基;取代的亚烷基,如亚异丙基或二苯基亚甲基;亚甲硅基;或取代的亚甲硅基,如二甲基亚甲硅基、二苯基亚甲硅基或甲基苯基亚甲硅基。在这种情况下,其它配位体(如R4和R5)各自是具有环戊二烯基的基团、烷基、环烷基、芳基、芳烷基、烷氧基、芳氧基、三烷基甲硅烷基、SO3R基、卤素原子或氢原子。
由式(Ⅲ)表示的过渡金属化合物的例子包括:
二氯化二(茚基)合锆、
二溴化二(茚基)合锆、
二(对甲苯磺酸根)二(茚基)合锆、
二氯化二(4,5,6,7-四氢茚基)合锆、
二氯化二(芴基)合锆、
二氯化亚乙基二(茚基)合锆、
二溴化亚乙基二(茚基)合锆、
亚乙基二(茚基)二甲基合锆、
亚乙基二(茚基)二苯基合锆、
一氯化亚乙基二(茚基)甲基合锆、
二(甲磺酸根)亚乙基二(茚基)合锆、
二(对甲苯磺酸根)亚乙基二(茚基)合锆、
二(三氟甲磺酸根)亚乙基二(茚基)合锆、
二氯化亚乙基二(4,5,6,7-四氢茚基)合锆、
二氯化亚异丙基(环戊二烯基-芴基)合锆、
二氯化亚异丙基(环戊二烯基-甲基环戊二烯基)合锆、
二氯化二甲基亚甲硅基二(环戊二烯基)合锆、
二氯化二甲基亚甲硅基二(甲基环戊二烯基)合锆、
二氯化二甲基亚甲硅基二(二甲基环戊二烯基)合锆、
二氯化二甲基亚甲硅基二(三甲基环戊二烯基)合锆、
二氯化二甲基亚甲硅基二(茚基)合锆、
二(三氟甲磺酸根)二甲基亚甲硅基二(茚基)合锆、
二氯化二甲基亚甲硅基(4,5,6,7-四氢茚基)合锆、
二氯化二甲基亚甲硅基(环戊二烯基-芴基)合锆、
二氯化二苯基亚甲硅基二(茚基)合锆、
二氯化甲基苯基亚甲硅基二(茚基)合锆、
二氯化二(环戊二烯基)合锆、
二溴化二(环戊二烯基)合锆、
一氯化二(环戊二烯基)甲基合锆、
一氯化二(环戊二烯基)乙基合锆、
一氯化二(环戊二烯基)环己基合锆、
一氯化二(环戊二烯基)苯基合锆、
一氯化二(环戊二烯基)苄基合锆、
一氢化一氯化二(环戊二烯基)合锆、
一氢化二(环戊二烯基)甲基合锆、
二(环戊二烯基)二甲基合锆、
二(环戊二烯基)二苯基合锆、
二(环戊二烯基)二苄基合锆、
氯化甲氧基二(环戊二烯基)合锆、
氯化乙氧基二(环戊二烯基)合锆、
二(甲磺酸根)二(环戊二烯基)合锆、
二(对甲苯磺酸根)二(环戊二烯基)合锆、
二(三氟甲磺酸根)二(环戊二烯基)合锆、
二氯化二(甲基环戊二烯基)合锆、
二氯化二(二甲基环戊二烯基)合锆、
氯化乙氧基二(二甲基环戊二烯基)合锆、
二(三氟甲磺酸根)二(二甲基环戊二烯基)合锆、
二氯化二(乙基环戊二烯基)合锆、
二氯化二(甲基乙基环戊二烯基)合锆、
二氯化二(丙基环戊二烯基)合锆、
二氯化二(甲基丙基环戊二烯基)合锆、
二氯化二(丁基环戊二烯基)合锆、
二氯化二(甲基丁基环戊二烯基)合锆、
二(甲磺酸根)二(甲基丁基环戊二烯基)合锆、
二氯化二(三甲基环戊二烯基)合锆、
二氯化二(四甲基环戊二烯基)合锆、
二氯化二(五甲基环戊二烯基)合锆、
二氯化二(己基环戊二烯基)合锆、以及
二氯化二(三甲基甲硅烷基环戊二烯基)合锆。
在以上这些例子中,二取代的环戊二烯基环包括1,2-和1,3-取代的环戊二烯基环,三取代的环戊二烯基环包括1,2,3-和1,2,4-取代的环戊二烯基环。烷基(如丙基和丁基)包括异构体,如正烷基、异烷基、仲烷基和叔烷基。
还可使用的是把上述列举的锆化合物中的锆用钛或铪取代的化合物。
式(Ⅲ)表示的过渡金属化合物包括式(Ⅰ)表示的过渡金属化合物(b-Ⅰ)和式(Ⅱ)表示的过渡金属化合物(b-Ⅱ)。
在上述烯烃聚合催化剂的存在下对乙烯和含3至20个碳原子的α-烯烃进行共聚,可以制备乙烯/α-烯烃共聚物(D),这样使得所得共聚物的密度为0.850-0.980克/厘米3
乙烯/α-烯烃共聚物(D)的用量较好的是99-60重量份,更好的是95-60重量份,以100重量份乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')计。
包含乙烯/α-烯烃共聚物(D)和乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')的组合物可以通过上述常规方法进行制备。该组合物可用多步骤聚合方法制成。在该方法中,用一个或多个聚合反应器在不同的反应条件下分两步或多步进行共聚。
本发明的模塑制品可用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成。
模塑制品的实例包括单层薄膜、多层薄膜、注塑产品、挤塑产品、纤维、泡沫产品和电线外皮。更具体地可以例举农用薄膜(单层、多层)、阻水片材、多层薄膜、包装薄膜(多层薄膜、可伸薄膜、重质包装薄膜)、多层不渗透薄膜、层压薄膜的密封剂、重质包装薄膜、谷物袋、流体包装袋、批量包含物包装袋、箱中袋内部容器、医用容器、耐热容器、纤维、发泡成形产品、垫圈、挤塑产品、管子、各种注塑产品和电线外皮。
以下详细描述由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的模塑制品。
农用薄膜(单层)
农用薄膜含有乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和目前已知的添加剂(如有必要的话),如抗氧化剂、紫外光吸收剂、润滑剂、滑爽剂、抗粘连剂、脱膜剂、抗静电剂、着色剂、炭黑、中密度聚乙烯、乙烯/乙酸乙烯酯共聚物和乙烯/α-烯烃共聚物橡胶。
本发明农用薄膜的厚度为3-30微米,较好为7-20微米。
用吹胀法或T形模法使乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)成膜,可以制备农用薄膜。将乙烯/α-烯烃共聚物(A)或组合物(A')、(A″)或(A)通过缝形模头挤出,并用给定的空气流吹胀挤出物,可以用吹胀法成膜。
这种农用薄膜具有各种优良的性质,如天候稳定性、拉伸性、耐撕裂性、耐冲击性、刚性和与土壤的粘合性(即挠性),因此这种薄膜可以有效地用于户外耕种、塑料大棚种植、温室中半促成栽培、无土栽培工艺、早期挖掘栽培等,因为主要需要覆盖薄膜对土壤产生温度升高效应。
农用多层薄膜
本发明的农用多层薄膜是由外层、中间层和内层组成的三层复合薄膜。外层
用于构成本发明农用多层薄膜的外层由含有乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)、无机化合物、和(如有需要)耐气候老化稳定剂和消雾剂所形成。
含有共聚物(A)或组合物(A')、(A″)或(A)的外层具有极小的透光度随时间的降低。因此,具有这种外层的农用多层薄膜可以长期保持透光状态。
当使用共聚物(A)或组合物(A')、(A″)或(A)时,多层薄膜的外层可以变薄,这样可以使多层薄膜轻质。
无机化合物
可用于形成多层薄膜外层的无机化合物的实例包括无机氧化物、无机氢氧化物和水滑石,所有这些无机化合物都含有至少一种选自Mg、Ca、Al或Si的原子,并能有效地用作保温剂(thermo-keeping agent)。
更具体地说,可以例举无机氧化物,如SiO2、Al2O3、MgO和CaO;无机氢氧化物,如Al(OH)3、Mg(OH)2和Ca(OH)2;和水滑石,如用通式M2+ 1-xAlx(OH)2(An-)x/n·mH2O(式中M2+是Mg、Ca或Zn的二价金属离子,An-是阴离子,如Cl-、Br-、I-、NO3 2-、ClO4-、SO4 2-、CO2 2-、SiO3 2-、HPO4 2-、HBO3 2-或PO4 2-,x是满足0<x<0.5条件的数字,m是满足0≤m≤2条件的数字)的无机配位化合物、以及这些化合物的煅烧产物。其中优选的是水滑石,特别优选的是用上述通式表示的无机配位化合物的煅烧产物。
上述的无机化合物可以单独使用或两种或多种组合使用。
这些无机化合物的平均粒径宜不超过10微米,较好不超过5微米,更好不超过3微米。
当无机化合物的平均粒径在上述范围内时,可以制得具有良好透明度的多层薄膜。
在本发明中,无机化合物的用量为1-20重量份,较好为1-18重量份,更好为2-15重量份,按100重量份共聚物(A)或组合物(A')、(A″)或(A)计。
当在制备多层薄膜的外层时使用上述量的无机化合物时,可以制得具有优良保温性的多层薄膜。
耐天候老化稳定剂
虽然任选地用于制备多层薄膜外层的耐天候老化稳定剂可广义地分为紫外光吸收剂或光稳定剂,但光稳定剂更有效地使农用薄膜变薄,并产生更高的耐天候老化吸收效果。
至今已知的光稳定剂可用作这种光稳定剂。其中较好使用受阻胺光稳定剂(HALS)。
受阻胺光稳定剂的实例包括如下化合物:
(1)癸二酸二(2,2,6,6-四甲基-4-哌啶基)酯,
(2)丁二酸二甲酯-1-(2-羟乙基)-4-羟基-2,2,6,6-四甲基哌啶缩聚物,
(3)1,2,3,4-丁烷四羧酸四(2,2,6,6-四甲基-4-哌啶基)酯,
(4)苯甲酸(2,2,6,6-四甲基-4-哌啶基)酯,
(5)2-(3,5-二叔丁基-4-羟基苄基)-2-正丁基丙二酸二(1,2,6,6-四甲基-4-哌啶基)酯,
(6)癸二酸二(N-甲基-2,2,6,6-四甲基-4-哌啶基)酯,
(7)1,1'-(1,2-亚乙基)二(3,3,5,5-四甲基哌嗪酮),
(8)1,2,3,4-丁烷四羧酸(混合2,2,6,6-四甲基-4-哌啶基/十三烷基)酯,
(9)1,2,3,4-丁烷四羧酸(混合1,2,2,6,6-五甲基-4-哌啶基/十三烷基)酯,
(10)1,2,3,4-丁烷四羧酸{混合2,2,6,6-四甲基-4-哌啶基/β,β,β',β′-四甲基-3,9-[2,4,8,10-四氧杂螺(5,5)十一烷]二乙基}酯,
(11)1,2,3,4-丁烷四羧酸(混合1,2,2,6,6-五甲基-4-哌啶基/β,β,β',β'-四甲基-3,9-[2,4,8,10-四氧杂螺(5,5)十一烷]二乙基}酯,
(12)N,N'-二(3-氨丙基)乙二胺-2,4-二[N-丁基-N-(1,2,2,6,6-五甲基-4-哌啶基)氨基]-6-氯-1,3,5-三嗪缩合物,
(13)N,N'-二(2,2,6,6-四甲基-4-哌啶基)己二胺和1,2-二溴乙烷的缩合物,
(14)[N-(2,2,6,6-四甲基-4-哌啶基)-2-甲基-2-(2,2,6,6-四甲基-4-哌啶基)亚氨基]丙酰胺。
这些受阻胺光稳定剂可以单独使用或两种或多种组合使用。
按100重量份共聚物(A)或组合物(A')、(A″)或(A)计,光稳定剂的用量为0.005-5重量份,较好的为0.005-2重量份,更好为0.01-1重量份。
紫外光吸收剂的实例包括:
水杨酸型紫外光吸收剂,如水杨酸苯酯、水杨酸对叔丁基苯酯和水杨酸对辛基苯酯;
二苯酮型紫外光吸收剂,如2,4-二羟基二苯酮、2-羟基-4-甲氧基二苯酮、2-羟基-4-辛氧基二苯酮、2-羟基-4-十二烷氧基二苯酮、2,2'-二羟基-4-甲氧基二苯酮、2,2'-二羟基-4,4'-二甲氧基二苯酮和2-羟基-4-甲氧基5-磺基二苯酮;
苯并三唑型吸收剂,如2-(2'-羟基-5'-甲基苯基)苯并三唑、2-(2'-羟基-5'-叔丁基苯基)苯并三唑、2-(2'-羟基-3',5'-二叔丁基苯基)苯并三唑、2-(2'-羟基-3'-叔丁基-5'-甲基苯基)-5-氯苯并三唑、2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯苯并三唑和2-(2'-羟基-3',5'-二叔戊基苯基)苯并三唑;和
氰基丙烯酸酯型紫外光吸收剂,如2-氰基-3,3'-二苯基丙烯酸2-乙基己基酯和2-氰基-3,3'-二苯基丙烯酸乙酯。
按100重量份共聚物(A)或组合物(A')、(A″)或(A)计,紫外光吸收剂的用量为0.005-5重量份,较好的为0.005-2重量份,更好为0.01-1重量份。
其它组分
在共聚物(A)或组合物(A')、(A″)或(A)中可加入目前已知的添加剂,如消雾剂、抗静电剂和热稳定剂,其加入量以不损害本发明的目的为准。
所用的消雾剂较好是含由多元醇和含12-24个碳原子的高级脂肪酸(包括羟基脂肪酸)形成的部分酯化产物为主要成分的消雾剂。
中间层
用于构成本发明农用多层薄膜的中间层由含乙烯/乙酸乙烯酯共聚物、无机化合物、(如有必要)下述的乙烯/α-烯烃共聚物(A-1)、耐天候老化稳定剂和消雾剂的组合物制成。
乙烯/乙酸乙烯酯共聚物
在用于本发明的乙烯/乙酸乙烯酯共聚物中,乙酸乙烯酯的含量为2.0-30%重量,较好的为3.0-25%重量,更好的为5.0-20%重量。
当用乙烯/乙酸乙烯酯共聚物制成中间层时,可以制得具有优良保温性的多层薄膜。本申请中所用的术语“保温性”是指在夜间吸收从白天吸收太阳光而升高温度的地面释放出的辐射并反射该辐射,从而保持温室中温度(大气温度和土壤温度)的性质。
无机化合物
用于形成多层薄膜中间层的无机化合物与用于上述外层的无机化合物相同。
该无机化合物的用量为1-20重量份,较好的为1-18重量份,更好的为2-15重量份,按100重量份乙烯/乙酸乙烯酯共聚物和下述乙烯/α-烯烃共聚物(A-1)的总和计。组分(A-1)是选择性使用的组分,因此它的用量可以为0重量份。
当在形成多层薄膜中间层时按上述用量使用无机化合物时,可以制得保温性更优异的多层薄膜。
乙烯/α-烯烃共聚物(A-1)
选择性地用于形成多层薄膜中间层的乙烯/α-烯烃共聚物(A-1)的密度不超过0.925克/厘米3,较好的为0.880-0.920克/厘米3的乙烯/α-烯烃共聚物,它是乙烯/α-烯烃共聚物(A)中的一种。
在本发明中,乙烯/α-烯烃共聚物(A-1)与乙烯/乙酸乙烯酯共聚物(C)的重量比((A-1)/(C))为99/1-1/99,较好的为90/10-10/90,更好的为80/20-20/80。
当在形成多层薄膜中间层时按上述与乙烯/乙酸乙烯酯共聚物的重量比使用乙烯/α-烯烃共聚物(A-1)时,可以使中间层变薄。
耐天候老化稳定剂
选择性地用于形成多层薄膜中间层的耐天候老化稳定剂的实例包括与形成外层时所述的相同紫外光吸收剂和光稳定剂。
光稳定剂的用量为0.005-5重量份,较好的为0.005-2重量份,更好的为0.01-1重量份,按100重量份乙烯/α-烯烃共聚物(A-1)和乙烯/乙酸乙烯酯共聚物的总和计。组分(A-1)是选择性使用的组分,因此它的用量可以为0重量份。
紫外光吸收剂的用量为0.005-5重量份,较好的为0.005-2重量份,更好的为0.01-1重量份,按100重量份乙烯/α-烯烃共聚物(A-1)和乙烯/乙酸乙烯酯共聚物的总和计。组分(A-1)是选择性使用的组分,因此它的用量可以为0重量份。
其它组分
在用于形成中间层的乙烯/乙酸乙烯酯共聚物中,可加入目前已知的添加剂,如消雾剂、防雾凝剂、抗静电剂和热稳定剂,其加入量以不损害本发明的目的为准。
所用的消雾剂较好是含由多元醇和含12-24个碳原子的高级脂肪酸(包括羟基脂肪酸)形成的部分酯化产物为主要成分的消雾剂。
消雾剂的用量为0.05-5重量份,较好的为0.1-4重量份,更好的为0.5-3重量份,按100重量份乙烯/α-烯烃共聚物(A-1)和乙烯/乙酸乙烯酯共聚物的总和计。组分(A-1)是选择性使用的组分,因此它的用量可以为0重量份。
内层
用于构成本发明农用多层薄膜的内层由共聚物(A)或组合物(A')、(A″)或(A)制成,在共聚物(A)或组合物(A')、(A″)或(A)中,可以加入无机化合物、耐气候老化稳定剂和消雾剂。
在本发明中,按100重量份共聚物(A)或组合物(A')、(A″)或(A)计,无机化合物的用量为1-3重量份。
当制备多层薄膜内层时按上述量使用无机化合物(B)时,可以制得保温性优异的多层薄膜。
耐天候老化稳定剂
选择性地用于形成多层薄膜内层的耐天候老化稳定剂的实例包括与上述相同的紫外光吸收剂和光稳定剂。
光稳定剂的用量为0.005-5重量份,较好的为0.005-2重量份,更好的为0.01-1重量份,按100重量份共聚物(A)或组合物(A')、(A″)或(A)计。
紫外光吸收剂的用量为0.005-5重量份,较好的为0.005-2重量份,更好的为0.01-1重量份,按100重量份共聚物(A)或组合物(A')、(A″)或(A)计。
其它组分
在用于形成多层薄膜内层的共聚物(A)或组合物(A')、(A″)或(A)中,可加入目前已知的添加剂,如消雾剂、抗静电剂和热稳定剂,其加入量以不损害本发明的目的为准。
所用的消雾剂较好是含由多元醇和含12-24个碳原子的高级脂肪酸(包括羟基脂肪酸)形成的部分酯化产物为主要成分的消雾剂。
消雾剂的用量为0.05-5重量份,较好的为0.1-3重量份,更好的为0.5-2重量份,按100重量份共聚物(A)或组合物(A')、(A″)或(A)计。
多层薄膜
在由外层、中间层和内层构成的本发明农用多层薄膜中,外层的厚度通常为3-100微米,较好的为10-80微米,更好的为20-70微米;中间层的厚度为10-150微米,较好的为20-120微米,更好的为30-100微米;内层的厚度为3-100微米,较好的为10-80微米,更好的为20-70微米;这些层的总厚度为30-200微米,较好的为50-180微米,更好的为70-150微米。
本发明的农用多层薄膜具有如下物理性质和特性。
(ⅰ)纵向埃尔曼多夫抗撕强度不小于90千克/厘米,较好的为不小于100千克/厘米;横向埃尔曼多夫抗撕强度不小于90千克/厘米,较好的为不小于100千克/厘米。
(ⅱ)100微米厚度时落镖冲击强度不小于900克,较好的为不小于1000克。
(ⅲ)纵向断裂拉伸强度不小于350千克/厘米2,较好的为370千克/厘米2;横向断裂拉伸强度不小于350千克/厘米2,较好的为370千克/厘米2
(ⅳ)在薄膜厚度为100微米的情况下,初始透光度不小于90%,较好的为不小于92%,而且在户外暴露120天后的透光度不小于85%,较好的为不小于87%。
通过按JIS Z 1702进行纵向和横向拉伸试验,测量埃尔曼多夫抗撕强度。通过按JIS Z 1707进行冲击试验(落镖尖端直径为38毫米)测量落镖冲击强度。通过用恒定十字头速度型拉伸试验仪(Instron Co.)按JIS K 6781进行多层薄膜纵向和横向拉伸试验测量断裂拉伸强度。
厚度为50微米的本发明农用多层薄膜的光泽度通常不小于60%,雾度通常不大于15%。
该薄膜的光泽度按ASTM D 523在入射角为60°时测量。该薄膜的雾度按ASTM D 1003-61测量。
制备多层薄膜
本发明农用多层薄膜的制备方法包括将聚乙烯树脂和上述多层薄膜各层的添加剂混合,用班伯里密炼机或开炼机熔融捏和各种混合物,并对各种混合物进行共挤塑吹胀法或共挤塑T形模法,从而使外层、中间层和内层层压在一起。
该农用多层薄膜具有优良的保温性、防尘性和韧性,从而通过将其展开形成农用或园艺设施(如温室和通道)可长期用于栽培有用农作物。
阻水片材
阻水片材由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和(如有必要)已知添加剂(如炭黑、热稳定剂、耐天候老化稳定剂、颜料、填料(炭黑除外)、润滑剂、抗静电剂、阻燃剂和发泡剂)制成。阻水片材可以是将由共聚物(A)或组合物(A')、(A″)或(A)制成的外层或内层与其它基材、增强材料或其它排水材料结合起来的多层片材。
阻水片材较好具有如下性质:在片材厚度为1.5毫米的情况下,撕裂伸长率(JIS A 6008,Crepe法,速度为200毫米/分钟)不小于80%;在片材厚度为1.5毫米的情况下,穿透伸长率(elongation at penetration)不小于5毫米;用现场(field)热合机在预定温度为500℃和热合速度为5米/分钟的条件下热合的片材热合部分处的剥离强度不小于10千克/20毫米。
该阻水片材有时与不平坦的物体(点状或带锥形的物体)接触,因此撕裂伸长率和穿透伸长率是保持阻水片材质量的重要因素。
Leister Co.制造的10E型热空气片材封焊机用作现场使用的热合机。剥离试验按如下方法进行:用Leister Co.制造的10E型热空气片材封焊机在预定温度为500℃和热合速度为5米/分钟的条件下将两个片材热合,然后在23℃整理48小时以上,按JIS K 6328在50毫米/分钟的速度下进行剥离强度试验,测量剥离强度。剥离强度是热合性能的一种量度。穿透试验按如下方法进行:将阻水片材固定在一个直径为5厘米的固定装置上,然后将一根平尖端直径为0.7毫米的针以50毫米/分钟的速度穿入该片材,测量断裂强度,从而测量断裂强度/片材强度之比(千克/毫米)和断裂伸长率。
由于本发明的阻水片材易于用现场实际使用的热合机高强度地热合,所以它在实际使用中非常有利。
该阻水片材具有优良的机械强度(如拉伸强度、撕裂强度、撕裂伸长率、穿透强度和穿透伸长率,以及具有优良的挠性和热合性。
多层薄膜
多层薄膜包括基材薄膜层和含有乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的层。
只要具有成膜能力,对基材薄膜的材料没有特别限定。例如聚合物、纸、铝箔和赛璐玢可以用作这种材料。聚合物的实例包括烯烃聚合物,如高密度聚乙烯、中密度或低密度聚乙烯、乙烯/乙酸乙烯酯共聚物、乙烯/丙烯酸酯共聚物、离聚物、聚丙烯、聚1-丁烯和聚4-甲基-1-戊烯;乙烯基聚合物,如聚氯乙烯、聚偏二氯乙烯、聚苯乙烯、聚丙烯酸酯和聚丙烯腈;聚酰胺聚合物,如尼龙6、尼龙66、尼龙10、尼龙11、尼龙12、尼龙610和聚己二酰间苯二甲胺;聚酯聚合物,如聚对苯二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯/间苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯;聚乙烯醇;乙烯/乙烯醇共聚物;和聚碳酸酯聚合物。
当基材薄膜用聚合物制成时,该聚合物薄膜可以是非拉伸薄膜,或者可以是单轴拉伸或双轴取向薄膜。
该基材可以根据多层薄膜的用途进行适当选择。例如,在包装复合薄膜的情况下,基材可以根据包装的物品进行适当选择。例如,当包装的物品是易于腐烂的食品时,可以使用具有优良透明度、刚性和耐透气性的树脂,如聚酰胺、聚偏二氯乙烯、乙烯/乙烯醇共聚物、聚乙烯醇和聚酯。当包装的物品是饼干或当制备纤维包装时,较好使用具有优良透明度、刚性和耐透水性的聚丙烯。
在用挤出涂覆法在基材上形成乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的层时,可以将共聚物(A)或组合物(A')、(A″)或(A)直接挤出涂覆在基材上,或者为了提高基材和共聚物(A)或组合物(A')、(A″)或(A)间的粘合性,可以先用已知的方法在基材上涂布有机钛型、聚乙烯亚胺型或异氰酸酯型锚定涂层剂(anchor coating agent),或者提供粘性聚烯烃或高压聚乙烯的底涂层树脂层,然后挤出涂覆共聚物(A)或组合物(A')、(A″)或(A)。
为了确保基材和与它接触的树脂(底涂层树脂或共聚物(A)或组合物(A')、(A″)或(A))间的粘合性,可以对挤出熔融树脂薄膜吹臭氧,从而强制氧化该薄膜的表面。
该多层薄膜适用于各种包装袋,如潮湿食品(如液体汤、腌制品和意大利式细面条)的包装袋、糊状食品(如日本豆面酱(miso)和果酱)的包装袋、粉末(如糖、面粉和鱼粉)的包装袋和医用片剂或颗粒的包装袋。在这些用途中,多层薄膜起到密封层的作用。
包装多层薄膜
该包装多层薄膜具有由一个外层、一个或多个中间层和一个内层构成的至少三层结构。形成外层和内层的树脂和形成中间层的树脂在组成上相互不同。
外层和内层可以分别由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成。形成外层的共聚物(A)或组合物(A′)、(A″)或(A)和形成内层的共聚物(A)或组合物(A')、(A″)或(A)可以相同或不同。
中间层任选于用作上述基材薄膜材料的树脂组合物。该中间层较好是由含1-丁烯(共)聚物的树脂或树脂组合物和(如有必要)乙烯/丙烯/1-丁烯无规共聚物形成的层。
1-丁烯(共)聚物是1-丁烯均聚物或1-丁烯含量为75-85%摩尔和丙烯含量为15-25%摩尔的1-丁烯/丙烯共聚物。
1-丁烯(共)聚物的MFR为0.1-5克/10分钟,较好的为0.5-2克/10分钟,密度为0.890-0.925克/厘米3,较好的为0.895-0.920克/厘米3。1-丁烯(共)聚物可用常规的齐格勒-纳塔催化剂制备。
在本发明中,1-丁烯(共)聚物的用量为40-100%重量,较好的为50-90%重量,更好的为55-95%重量,按100%重量的1-丁烯(共)聚物和乙烯/丙烯/1-丁烯无规共聚物的总量计。
在乙烯/丙烯/1-丁烯无规共聚物中,丙烯的含量宜为50-98%摩尔,较好的为70-97%摩尔。
乙烯/丙烯/1-丁烯无规共聚物的MFR为0.1-100克/10分钟,较好的为1-30克/10分钟,密度为0.890-0.910克/厘米3。
乙烯/丙烯/1-丁烯无规共聚物可用常规的齐格勒-纳塔催化剂制备。
在本发明中,乙烯/丙烯/1-丁烯无规共聚物的用量为0-60%重量,较好的为10-50%重量,更好的为5-45%重量,按100%重量的1-丁烯(共)聚物和乙烯/丙烯/1-丁烯无规共聚物的总量计。
当1-丁烯(共)聚物和乙烯/丙烯/1-丁烯无规共聚物的用量在上述范围内时,可以制得能用自动包装机很好切割的多层薄膜。
在本发明中,除1-丁烯(共)聚物和乙烯/丙烯/1-丁烯无规共聚物以外,在形成中间层的树脂或树脂组合物中可加入各种添加剂,如稳定剂、配合剂和填料,其用量以不损害本发明的目的为准。这与形成上述外层和内层的树脂或树脂组合物相似。具体地说,为了使物品更好看,可以加入消雾剂或抗静电剂,或为了保护物品,可以加入紫外线抑制剂。也可加入抗氧化剂和润滑剂。
该中间层可包括含有上述量的1-丁烯(共)聚物和乙烯/丙烯/1-丁烯无规共聚物的一个或多个层。
本发明的包装多层薄膜通常制成厚度为10-20微米。将该薄膜中间层的厚度调节为1-5微米,将外层和内层的厚度各调节为2-8微米。视用途而异,可以在内层和/或外层的外侧上形成其它树脂层。
该包装用的多层薄膜按如下步骤制得,即通过用各种掺合机将形成各层的组分混合,然后进行常规模塑法,即将混合物加入吹胀膜模塑机(它是装有多模唇的挤塑机)或T形模头模塑机中的方法。
在包装多层薄膜中,横向埃尔曼多夫抗撕强度与纵向埃尔曼多夫抗撕强度之比(横向/纵向)宜不大于9.1,且这样的薄膜可用作优良的包装用的薄膜。特别当该薄膜应用于自动包装机时,该薄膜可被沿薄膜横向移动的刀切割,因此用横向埃尔曼多夫抗撕强度与纵向埃尔曼多夫抗撕强度之比可以评价该薄膜的切割性能。如果该埃尔曼多夫抗撕强度之比不大于9.1,用自动包装机切割该薄膜的性能评价为好的。
本发明包装用的多层薄膜的埃尔曼多夫抗撕强度之比不大于9.1,且易于用自动包装机切割。另外,用该薄膜易于进行高速连续包装。埃尔曼多夫抗撕强度是按JIS Z-1702方法测量的。
本发明的包装用的多层薄膜具有优良的透明度,且雾度通常不大于2.0%。
另外,本发明的包装用的多层薄膜具有极好的指压回复性,初始回复性不小于70%,永久应变不大于5.5毫米。
另外,本发明的包装用的多层薄膜具有优良的低温密封性。在90℃热合后,其密封强度不小于100千克/厘米2
本发明的包装用的多层薄膜具有优良的机械强度性能、透明度和低温热合性,而且即使在包装用的后它被压向物品时,也有优良的回复性。因此,该薄膜适于包装食品和日用必需品。
拉伸包装薄膜
拉伸包装薄膜是从下述组分制成的:乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),并且若需要的话还有其它树脂组分,如密度为0.880-0.895g/cm3的乙烯/丙烯无规共聚物,密度为0.880-0.895g/cm3的乙烯/丁烯无规共聚物和密度为0.910-0.924g/cm3的高压乙烯/乙酸乙烯酯无规共聚物。
以100重量份的共聚物(A)或组合物(A')、(A″)或(A)为基准计,其它树脂组分的用量为0-40重量份。
在本发明中,可以在乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),或包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和其它树脂组分的组合物中加入增滑剂、防粘结剂、消雾剂、抗静电剂和其它用于保护成分的各种添加剂如紫外线抑制剂,其用量以不损害本发明的目的为准。
所用的增滑剂的例子较好地包括较高级脂肪族酰胺如油酰胺(oleic amide)、硬脂酰胺和芥酰胺(erucic amide)。
所用的防粘结剂的例子较好地包括无机物如二氧化硅和滑石。
所用的抗静电剂的例子较好地包括甘油脂肪族酯和山梨醇脂肪族酯。
包含共聚物(A)或组合物(A')、(A″)或(A)的薄膜具有所需的适度粘性。若薄膜需要较大的粘性,则可以在线型低密度聚乙烯中加入约2-10重量%的液体聚丁二烯、聚异丁烯等。
本发明的拉伸包装薄膜包括含共聚物(A)或组合物(A')、(A″)或(A)的薄膜。
本发明拉伸包装薄膜的厚度通常为10-50μm。拉伸包装薄膜可以具有单层结构或多层结构。
单层结构的拉伸包装薄膜可经常规薄膜模塑法如吹胀法或T形模法制得。
多层结构的拉伸包装薄膜可经迄今已知的模塑法制得,如使用吹塑薄膜模塑机(它是一种装有多个模唇的挤压机)或T形模模塑机的方法。
拉伸包装薄膜较好地具有下述性质:纵向断裂拉伸应力(JIS Z1702)为不小于400kg/cm2;纵向断裂拉伸伸长率(JIS Z1702)为不小于500%;冲击强度(ASTM D3420)为不小于2,500kg·cm/cm;纵向撕裂强度(JIS Z1720)为不小于50kg/cm;粘性(20kg,50℃×1天)在3-25g/cm的范围内;在拉伸比为300%下经1小时后的强度为150-300g/15mm;和拉伸的最大极限为不小于300%。
与常规低密度聚乙烯或乙烯/乙酸乙烯酯共聚物的薄膜相比,本发明的拉伸包装薄膜在断裂时具有较大的拉伸伸长,并且以300-600%的比率进行拉伸是可行的,这样本发明的薄膜适用于高度拉伸包装或特别形状(两种或多种具有不同形状的物品)的拉伸包装。
而且,与常规低密度聚乙烯或乙烯/乙酸乙烯酯共聚物的薄膜相比,本发明的拉伸包装薄膜在包装后所施加的应力较小,因而包装好的物质很难变形。再者,本发明的拉伸包装薄膜在包装后的薄膜强度高并且具有令人满意的薄膜外观。
本发明的拉伸包装薄膜可以是包含共聚物(A)或组合物(A')、(A″)或(A)的单层薄膜,或者可以是包含一层共聚物(A)或组合物(A')、(A″)或(A)和一层或多层其它层的多层结构的薄膜。
多层结构的拉伸包装薄膜(如将拉伸包装薄膜制成具有无粘性表面和粘性表面的多层薄膜)可用下述方法制造。在用作中间层的共聚物(A)或组合物(A')、(A″)或(A)的膜层的一个表面上形成一层由密度比共聚物(A)或组合物(A')、(A″)或(A)密度高的线型低密度聚乙烯制成的膜层作为无粘性的层,此膜层的厚度占所得拉伸包装薄膜总厚度的约5-30%。在另一个表面上,形成一层由包含共聚物(A)或组合物(A')、(A″)或(A)和2-10重量%液体聚异丁烯、液体聚丁二烯等的组合物制成的膜层作为粘性层,此膜层的厚度占所得拉伸包装薄膜总厚度的约5-30%。
拉伸包装薄膜的伸长性高并且粘性适中,在包装后它对包装好的物质不会产生过度的应力,在包装后它的强度高并且美观,它不具有过度的粘性,并且生产率、包装性能和处理性能都很好。
包装薄膜
包装薄膜是一种改进的包装或外包装薄膜,更具体地说它是一种具有改进的透明度、韧度、挤出加工性能和辐射交联效率的收缩膜、表层膜、拉伸膜、热粘性膜和真空外包装薄膜。这些膜含有至少一层的至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。这些膜可以是双轴取向的多层和/或有阻隔性。
在乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中可以加入添加剂,例如抗氧化剂(如受阻酚型,如购自Ciba Geigy Corp.的Irganox(商品名)1010)、亚磷酸盐(如购自Ciba Geigy Corp.的Irgafos(商品名)168)、粘结添加剂(如聚异丁烯(PIB)、PEPQ(Sandoz Chemical的商品名),据认为,它们的主要物质是亚膦酸联苯酯(biphenyl phosphonite))、颜料、着色剂和填料,其用量以不损害本申请人发现的改进薄膜性能为准。再者,该薄膜也可以包含用于提高其防粘结和摩擦系数特性的添加剂。这种添加剂的例子包括未处理或处理过的二氧化硅、滑石、碳酸钙和粘土,以及伯或仲脂肪族酰胺和硅氧烷涂料,但并不局限于这些添加剂。例如在美国专利4,486,552(Niemann)中所述,也可以加入其它用于提高薄膜消雾性能的添加剂。另外,也还可以加入其它添加剂如单独加入季铵化合物或其与EAA或其它功能聚合物的混合物,以提高薄膜的抗静电性能并可使其用于包装电敏感的制品。
用于制造本发明包装或外包装烯烃薄膜的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可以用作薄膜的唯一的聚合物组分,与薄膜的单层结构或多层结构无关。其它聚合物也可以与乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)共混,以改进膜的加工性能、膜的强度、热合性能或粘合性能。将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)与其它聚合物组分适当共混制成的包装和外包装薄膜能保持提高了的特性,并且在特别的情况下,能提供改进的诸多组合性能。与乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)共混的合适聚合物的例子包括高压低密度聚乙烯(LDPE)、乙烯/乙酸乙烯酯共聚物(EVA)、乙烯/羧酸共聚物及其离聚物、聚丁烯(PB)、α-烯烃聚合物(如高密度聚乙烯、中密度聚乙烯、聚丙烯、乙烯/丙烯共聚物、线型低密度聚乙烯(LLDPE)和超低密度聚乙烯)、以及接枝改性的聚合物,和它们的共混物,但并不局限于这些例子。这些聚合物包括它们在密度、MWD和/或共聚单体组合上的变化,例如在Smith的美国专利5,032,463(该专利在本文中参考引用)中所述的聚合物。乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)至少占该共混组合物的50%,较好至少占80%。然而,对多层薄膜结构特别好的是外薄膜层(本领域中也称为“表皮层”或“表面层”)和密封剂层基本上由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A′)、(A″)或(A)组成。
本发明的取向和未取向薄膜结构可用常规简单的热吹泡法、流延挤出或挤塑涂布法制得。特别在取向薄膜的情况下,该薄膜可用更精细的技术(如“绷架”、“双泡”或“夹气泡(trapped bubble)”法)制造。
在本领域中使用的术语“拉伸”和“取向”,在本文中它们可以互换使用,但取向实际上是例如用推在管子上的内气压或用拉在薄膜边缘上的绷架拉伸薄膜的结果。
简单的热吹泡薄膜法例如在“化学技术百科全书”(The encyclopedia ofChemical Technology),Kirt-Othmer,第三版(John Wiley & Sons,NewYork)1981,16卷,416-417页和18卷,191-192页上有描述。用于制造双轴取向薄膜的更精细的方法(如“双泡”法)在美国专利3,456,044(Pahlke)中有描述。适于制造双轴拉伸或取向薄膜的其它方法例如在美国专利4,865,902(Golike等)、美国专利4,352,849(Mueller)、美国专利4,820,557(Warren)、美国专利4,927,708(Herran等)、美国专利4,963,419(Lustig等)和美国专利4,952,451(Mueller)中有描述。
如Pahlke在美国专利3,456,044中所述,与简单的气泡法相比,“双泡”或“夹气泡”成膜法明显提高了薄膜在纵向和横向上的取向。提高了的取向可以在薄膜加热后产生更高的自由收缩值。如Pahlke在美国专利3,456,044和Lustig等在美国专利5,059,481中所述,当用简单方法制造时,低密度聚乙烯和超低密度聚乙烯分别在纵向和横向上有差的收缩性,例如它们在两个方向上的自由收缩比较小,约为3%。然而,与常规薄膜材料相反,特别与Lustig等在美国专利5,059,481、美国专利4,976,898和美国专利4,863,769中揭示的薄膜材料相反,以及与Smith在美国专利5,032,463中揭示的薄膜材料相反,即使使用简单气泡法,本发明的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)在纵向和横向上也有明显改进的收缩性能。另外,当在高吹胀比(如2.5∶1或更高)的条件下用简单气泡法,或更优选地用Pahlke在美国专利3,456,044和Lustig等在美国专利4,976,898中揭示的“双泡”法制造乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)时,可以在纵向和横向上获得合适的收缩性能,这使得所得的薄膜适用于收缩外包装用途。
吹胀比(本文中缩写成“BUR”)按如下公式计算:
BUR=气泡的直径÷模头直径。
本发明的烯烃包装或外包装薄膜可以是单层薄膜或多层薄膜。当薄膜结构是单层结构时,该单层可包含含量至少为10重量%(较好为至少30重量%)的至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),或可包含含量为100重量%的至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。
用于形成该单层的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)视薄膜所需的性能而异。当两种或多种乙烯/α-烯烃共聚物(A)和乙烯共聚物组合物(A')、(A″)或(A)用在该单层薄膜结构中时,应参考加工和所用条件,部分地根据它们相互间的相容性来选择聚合物。类似地,当使用至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和至少一种常规乙烯聚合物(如按美国专利3,645,992中所述制备的常规均匀支化的线型乙烯/α-烯烃共聚物、按美国专利4,076,698中所述的齐格勒方法制备的常规均匀支化的乙烯/α-烯烃共聚物)的共混物时,部分地根据它们与乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的相容性来选择乙烯聚合物。
视其各种不同的性质,单层薄膜可用于五种不同包装方法中的任何一种,但对于具体的物品,该单层薄膜最适用于拉伸外包装和表皮包装法。按照拉伸外包装的要求,由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得的单层薄膜具有非常好的透氧性。
透氧性在拉伸包装红色肉类的各个切块(即商店中包装的肉制品,食品商/肉商实际上将原块的肉制品切割成更小的块,以便于分别出售)时特别有用,这时透氧性可以让新鲜红色的肉“发亮”成所需的鲜红色。能有效地包装红色肉类的各个切块的薄膜通常具有最小的收缩性和良好的拉伸性。该薄膜较好具有透氧性和良好的弹性回复,以使消费者能检查肉,而不会使该薄膜永久变形和使其没有吸引力。Pak-Wing Steve Chum和Nicole F.Whiteman在1993年4月28日申请的题目为“食品的包装方法”的待审美国专利申请中揭示了食品(包括这些红色肉类的各个部分)的包装方法。然而,即使在本领域中没有利用收缩性,用于包装红色肉类各个部分的薄膜也可以制成可热收缩的薄膜。
适用于拉伸外包装的单层薄膜结构特别优选地用一种共混料制成,该共混料是乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和乙烯/α,β-不饱和羰基化合物共聚物(如EVA、EAA)、乙烯/甲基丙烯酸(EMAA)共聚物、它们的碱金属盐(离聚物)、它们的酯和它们的其它衍生物中的任何一种的共混物。
对于共挤塑或层压的多层薄膜结构(如三层和五层薄膜结构),乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可以用作该结构的芯层、外表面层、中间层和/或内密封剂层。特别对于本发明的热粘性薄膜,至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)用作该薄膜结构的至少一个可热合的外层。该可热合的外层可以与其它一层或多层共挤塑,或者在二次操作时可层压在另外一层或多层上。该共挤塑法或层压法可按Wilmer A.Jenkins和James P.Harrington所著的“用塑料包装食品”(1991)中所述的方法或在“Society ofPlastics Engineers RETEC Proceedings”,1981年6月,15-17,211-229页中的“阻隔包装用的共挤塑法”(W.J.Schrenk和C.R.Finch著)所述的方法进行。
对于多层薄膜结构,乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)一般至少占整个多层薄膜结构的10%。该多层结构的其它层包括阻隔层和/或粘结层、和/或结构层,但并不局限于这些。用于这些层的各种材料都可用于这些层,其中一些材料可用作同一薄膜结构的两个或多个层。这些材料的一些例子包括箔、尼龙、乙烯/乙烯醇(EVOH)共聚物、聚偏二氯乙烯(PVDC)、聚对苯二甲酸乙二醇酯(PET)、取向聚丙烯(OPP)、乙烯/乙酸乙烯酯(EVA)共聚物、乙烯/丙烯酸(EAA)共聚物、乙烯/甲基丙烯酸(EMAA)共聚物、ULDPE、LLDPE、HDPE、MDPE、LMDPE、LDPE、离聚物、接枝改性的聚合物(如马来酸酐接枝的聚乙烯)和纸。该多层薄膜结构一般包括2-7层。
在本文所揭示的一个实施方式中,多层薄膜结构包括至少3层(如A/B/A结构),其中每个外层含有至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),以及至少一个芯层或被覆层含有高压低密度聚乙烯(LDPE)。该多层薄膜结构具有非常好的光学性质,且能保持优良的总体薄膜强度性质。按整个结构的百分数计,薄膜结构层之比一般使得芯层占薄膜结构的主要部分。该芯层必须至少占整个结构的33%。例如在三层薄膜结构中,各个外层(A)至少占整个薄膜结构的33重量%,而LDPE芯层((B)层)占整个薄膜结构的33重量%。在该三层薄膜结构中,LDPE芯层较好至少占整个薄膜结构的70%。另外的被覆层也可包括在该薄膜结构中,只要不使光学性质变差。例如,可以使用由乙烯/乙酸乙烯酯共聚物、乙烯/丙烯酸共聚物或酸酐接枝改性的聚乙烯制成的粘结层或中间层,或者可以使用由偏二氯乙烯/氯乙烯共聚物或乙烯/乙烯醇共聚物制成的阻隔层。在一个更优选的三层薄膜结构中,每个外层(A)含有至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),其用量占整个薄膜结构的15重量%;且芯层(B)含有LDPE,其用量占整个薄膜结构的70重量%。该多层薄膜结构可以被取向和/或辐射(按任何次序),以提供具有可控线性撕裂性的多层收缩薄膜结构或多层表层包装。适用于本文揭示的具有改良光学透明度的多层薄膜结构的LDPE的密度通常为0.915-0.935克/厘米3,熔体指数为0.1-10克/10分钟,熔体张力至少为1克。为了改善光学透明度,乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的密度通常为0.85-0.96克/厘米3,较好为0.9-0.92克/厘米3,熔体指数(12)通常为0.2-10克/10分钟,较好为0.5-2克/10分钟。
通过单独使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)(在下述薄膜结构中称为“A”)或将其与其它透氧薄膜层(如乙烯/乙酸乙烯酯(EVA)和/或乙烯/丙烯酸(EAA)层)组合使用,也可以使该多层薄膜结构具有透氧性。特别令人感兴趣的薄膜结构包括(A)/EAA/(A)、(A)/VLDPE/(A)和LLDPE/(A)/LLDPE的薄膜结构。这些薄膜结构是诸如PVC薄膜之类的常规薄膜的替代物,且适用于拉伸外包装各种新鲜食品(如按零售规格切割的红色肉类、鱼、禽类、蔬菜、水果和乳酪以及用于零售展示和受益于进入环境氧气或需要适当呼吸的其它食品)。这些薄膜较好制成具有优良透氧性、拉伸性、弹性回复性和热合性的非收缩薄膜(如没有由双泡法造成的双轴取向),这样,批发商或零售商可以接任何常规方式(如贮备卷(stock rolls))使用该薄膜,或在常规包装设备上使用该薄膜。
另一方面,这些多层薄膜结构可以包括不透氧薄膜(如购自Dow ChemicalCompany的SARAN(商品名),它是聚偏二氯乙烯聚合物制成的薄膜、购自EvalCompany of America(Kuraray of America,Inc.的一个分部,Kuraray Ltd.的全资机构)的EVAL树脂(商品名),它是乙烯/乙烯醇共聚物)。不透氧性在诸如包装原块肉类切块(即送到指定商店用于为特定消费者消费而进一步切割的大块肉类)之类的薄膜应用中是重要的。如Davis等在美国专利4,886,690中所述,不透氧层也可设计成“可剥离的”,以便在包装好的原块肉块送达肉商/食品杂货店后即刻除去。这种可剥离的结构或设计特别适用于包装肉的个别部分的“case-ready”真空表皮,从而不需要重新包装成透氧包装,以发亮成鲜红色。
由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的薄膜结构也可用任何已知的方法预成形,如根据待包装制品的形状和轮廓挤压热成形。使用预成形薄膜结构的优点是补充或避免给定的包装操作,如增加可拉伸性、对给定的拉伸要求来说可减少薄膜厚度和减少发热和循环时间。
单层或多层薄膜结构的厚度是可以变化的。然而,单层和多层薄膜结构的厚度一般为0.1密耳(2.5微米)至50密耳(1,270微米),较好为0.4密耳(10微米)至15密耳(381微米),特别好为0.6密耳(15微米)至4密耳(102微米)。
与相比拟的常规齐格勒聚合的线型乙烯/α-烯烃聚合物相比,本文所述的用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得的薄膜结构令人惊奇地显示出更有效的辐射交联。作为本发明的一个方面,通过利用这些独特聚合物的这种辐射交联效率的优点,可以制成含有特别或选择性交联薄膜层的薄膜结构。为了利用这一发现的更多优点,可以制备含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和预辐射剂(pro-rad agents)(如Warren在美国专利4,957,790中揭示的氰尿酸三烯丙酯)和/或交联抑制剂(抗氧化剂)(如Evert在美国专利5,055,328中揭示的丁基化羟基甲苯)的特别的薄膜层材料。
辐射交联也用于提高该薄膜结构的收缩温度范围和热合范围。例如,美国专利5,089,321揭示了一种包括至少一个可热合外层和至少一个芯层的多层薄膜结构,这些层具有良好的辐射交联性能。在辐射交联技术中,采用电子束源的β辐射和采用放射元素(如钴60)的γ辐射是交联薄膜材料的最常用的方法。
辐射交联按如下方法进行。热塑性薄膜用吹塑薄膜法制成,然后暴露在辐射源(β或γ)中交联薄膜材料,辐射剂量高达20兆拉德。当需要取向薄膜时,如用于收缩和表皮包装,可以在最终薄膜取向前或后进行辐射交联,然而较好在最终取向前进行辐射交联。当通过在最终薄膜取向前辐射粒料或薄膜来制造可热收缩薄膜或表皮包装薄膜时,所得的薄膜总是具有较高的收缩张力,且往往会产生较高的包装翘曲和硬挺卷曲。相反,当在辐射前进行取向时,所得的薄膜具有低的收缩张力。与收缩张力不同,本发明乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的自由收缩性能基本上不受辐射是否在最终薄膜取向前或后进行的影响。
优选用于本文所述薄膜结构的辐射技术包括本领域中熟练技术人员已知的技术。较好使用剂量值为0.5-20兆拉德的电子束(β)辐射装置进行辐射。也可以预料,由于在辐射处理时产生的低度断链,本文所述的由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的收缩薄膜结构具有改进的物理性能。
本发明的热粘性薄膜(取向或未取向的单层或多层结构)可用于箱中袋(bag-in-box)和成形-填充-密封(form-fill-seal)操作。本发明薄膜应用在成形-填充-密封操作中的实例描述于Wilmer A.J.Jenkins和James P.Harrington的“用塑料包装食品”,32-83页(1991)中。包装也可用Packaging Machinery Manufacturers Institute的C.G.Davis著的“包装机械操作;No.8,成形-填充-密封操作,自学课程”(1982年4月);M.Bakker(编辑者)“The Wiley Encyclopedia of PackagingTechnology”,John Wiley & Sons(1986)(334页,364-369页);和S.Sacharow和A.L.Brody“Packaging:An Introduction”,Harcourt Brace Javanovich Publications.Inc.(1987)(332-326页)中所述的垂直或水平成泡-填充-密封包装或热成形-填充-密封包装法制造。Hayssen Ultima Super CMB的垂直成形-填充-密封机是特别适用于成形-填充-密封操作的机器。使用这种机器,可以包装常规的物品,如食品、药品和五金器件。袋的热成形和抽空装置的其它制造商包括Cryovac和Koch。
重级包装薄膜
重级包装薄膜包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。重级包装薄膜的薄膜厚度至少约为1.25密耳(31μ),薄膜密度为0.923-0.95克/厘米3(g/cc),撕裂强度和冲击强度比目前工业上通常使用的聚乙烯薄膜至少高30%。这类薄膜可用于重级包装、运输和热填充包装。
本文中涉及新颖薄膜时所用的术语“中等模量”是指0.923-0.95g/cc的算得的薄膜密度。在此所用的术语“算得的薄膜密度”是指由聚合物(组分)或层的已知重量和退火后测定的密度所算得的薄膜密度。
本文中涉及新颖薄膜时所用的术语“厚的”是指薄膜厚度不小于约1.25密耳(31μ)。
本文中所用的术语“可变注道挤出吹胀(variable-stalk blown extrusion)”是指用于薄膜的环形模口的高度和注道,即气泡膨胀点间的距离,在吹胀薄膜的生产中可以在0英寸(0厘米)-144英寸(366厘米)的范围内变化。该术语包括众所周知的袋式吹胀薄膜和注道吹胀薄膜的挤出。本文中所用的术语“高注道挤出”一般是指用于薄膜的环形模口和空气环之间的距离为30英寸(76厘米)或更大。
本文中所用的术语“热填充”是指在制品温度不低于45℃时包装或填充制品的操作。本文中所用的术语“重级”是指包装组件或单件包装的重量一般不小于10磅(4.5千克)的工业物品。
根据ASTM D1922测定本发明薄膜的抗撕裂性,并以克记录。在纵向(MD)和横向(CD)测定抗撕裂性。本说明书中,用术语“撕裂强度”表明MD抗撕裂性和CD抗撕裂性的平均值,撕裂强度也以克记录。根据ASTM D1709测定本发明薄膜的抗冲击性。这些性能的值随厚度的增加而提高时,撕裂和冲击的结果与实际测定的薄膜厚度(微米)成比例增加或减小,从而将薄膜厚度精确地校正到3密耳。然而,只有在厚度变化不大于10%,即测定的厚度在2.7-3.3密耳范围时才能进行校正计算和记录。
本发明的中等模量薄膜的计算的薄膜密度为0.923-0.95g/ce,0.926-0.948g/cc为宜,更好是0.93-0.945g/cc。
薄膜厚度一般不小于约1.25密耳,在1.5-8.75密耳范围为宜,2-8密耳则更好。
这类新颖薄膜与几乎同样薄膜密度、熔体指数和薄膜厚度的可比拟的常规聚乙烯薄膜相比,其撕裂强度或冲击强度较常规聚乙烯薄膜至少高30%。
这类新颖薄膜可以方便地制成包袋,并能用于重级包装、运输和热填充包装。在这些用途中,要求薄膜具有优良的性能平衡,即薄膜具有优良的撕裂强度、冲击强度和尺寸稳定性,同时具有高强度和中等模量。
可以通过可变注道挤出吹胀制得这类新颖薄膜。用吹胀薄膜挤出法来制造薄膜是众所周知的。例如,Dowd的美国专利4,632,801中描述了典型的吹胀薄膜挤出法,在此引用作为参考。在这种典型的方法中,将聚合物加到螺杆挤出机中,在螺杆挤出机中熔融,并在压力下从挤出机挤出。挤出熔融的聚合物通过成膜的环形模口,形成一熔融的管。然后使空气通人环形模口吹胀该管,产生所需直径的“泡”。使用环形模口和位于该模口下侧的夹辊,保持泡中的空气,之后挤压该泡制得平折薄膜。通过挤出速率、泡直径和夹辊速率来调节薄膜的最终厚度,所述挤出速率、泡直径和夹辊速率可通过各种变量,如螺杆速率、引出速率和卷取速度来调节。如果在保持泡直径和夹辊速率不变下提高挤出速率,则最终的薄膜厚度会较大。
典型的吹胀挤出一般可分为“注道”挤出或“袋式”挤出。对于注道挤出,在环形模口上方相当高位置处发生泡的吹胀和膨胀,可以对其进行调节。通过空气环(一般为单模唇结构),在管外平行于纵向通入空气流,直到该熔融管在环形模口上面至少5英寸(12.7厘米)的高度被吹胀,从而保持管直径几乎与薄膜的环形模口直径相同。为保证成膜期间泡的最佳稳定性,可以冷却泡内部;同样可以在泡内部使用泡稳定装置。
已知,如果采用注道挤出,可改善分子弛豫,并降低一个方向上过度取向的趋势,从而可以获得很好平衡的薄膜性能。随注道高度,即膨胀部分高度的增加,一般可以改善横向(CD)上的性能,从而改善平均的薄膜性能。当由高分子量聚乙烯组合物,如高分子量高密度聚乙烯(HMW-HDPE)或高分子量低密度聚乙烯(HMW-LDPE)(它们具有足以充分确保泡稳定性的熔体强度)制成吹塑薄膜时,注道挤出,尤其是高注道挤出非常有用。
在袋式挤出的情况下,通过正好毗邻环形模口的空气环输入空气,使从模口挤出的泡立刻吹胀和膨胀。空气环通常是双模唇型,以保证输入空气后泡的稳定性。袋式挤出的使用比注道挤出更广泛,它一般适合于较低分子量和较低熔体强度的聚乙烯组合物,如线型低密度聚乙烯(LLDPE)和超低密度聚乙烯(ULDPE)。
注道挤出和袋式挤出可以生产单层薄膜和多层薄膜,本发明的薄膜可以是单层结构或多层结构。可以用本领域已知的任何方法生产多层薄膜,这些方法包括共挤出、层压及其组合。本发明优选的中等模量的厚的聚乙烯膜是单层膜结构。
在制造本发明薄膜中使用的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中可以加入添加剂,如抗氧化剂、亚磷酸盐、粘结剂、StandostabPEPQ(商品名,购自Sandoz)、颜料、着色剂和填料,其量以不损害改进的抗撕裂性和抗冲击性为准。而且,在本发明的薄膜中可以加入能提高防粘结性能和摩擦系数的添加剂,如脱模剂、硅氧烷涂剂等,尽管它们一般是不需要的。添加剂的例子包括未处理或处理过的二氧化硅、滑石、碳酸钙、粘土以及伯、仲和取代的脂肪族酰胺,但并不局限于此。为了提高薄膜的抗静电性能和能够重级包装电敏感的制品,可以加入诸如单独的季铵化合物或其与乙烯/丙烯酸(EAA)共聚物或其它功能聚合物的混合物之类的添加剂。
新颖的薄膜有利地改进了薄膜强度,因此,除了再生料和碎料外,用于稀释的聚合物可以与制备新颖薄膜所用的薄膜组合物混合或加入其中,其量大于使用常用聚乙烯薄膜组合物时通常可能的用量。新颖薄膜具有或保持所需的质量性能,该膜成功地用于重级包装或运输。用于稀释的合适材料的例子包括弹性体、橡胶、酸酐改性的聚乙烯(如用马来酸酐接枝的聚丁烯、LLDPE和HDPE)、高压聚乙烯,如低密度聚乙烯(LDPE)、乙烯/丙烯酸(EAA)共聚物、乙烯/乙酸乙烯酯(EVA)共聚物、乙烯/甲基丙烯酸酯(EMA)共聚物,以及它们的组合。
拉伸粘合薄膜
本发明的多层薄膜包含至少两层,其中一个表面基本上是粘性的,适合用作拉伸的外包装材料。这类新颖的多层薄膜包含由至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的背面层,其密度至少约为0.90g/cc,或者其密度约为0.90g/cc,由至少一种成膜的烯烃聚合物组合物制成的前表层,其密度约为0.90g/cc,和任选的至少一层芯层或结构层,它由至少一种高强度的乙烯聚合物组合物制成。
前表层所具有的粘合性明显小于背面层。芯层或结构层可以变化,以满足特定薄膜的强度要求。
在本发明中,在其一个表面上具备粘合性的薄膜对拉伸外包装、拉伸捆扎和张力卷取进行外包装或固定小制品或大制品尤其有用。在不需要用于粘合的添加剂或功能聚合物的情况下就可以获得本发明一个表面有粘合性的薄膜。
本发明的优点是可以减少或消除树脂在模唇上的堆积或积累和低分子量物质的迁移。因此,减少了膜生产和外包装过程中的清洁和保留时间。而且,可以减少与邻近制品或包装的薄膜的粘合性、薄膜表面上粉尘或碎片的污染和残留有关的问题。
本发明的另一个方面提供了一种单面粘合剂薄膜,它由具有类似流变特性和单体化学特性的聚合物制成,从而易于获得在共挤出中彼此类似的改进的熔体粘度,和用于重复利用的优良的聚合物间的相容性。
本发明还有一个方面是提供一种单面粘合剂薄膜,它具有显著的拉伸粘合和非拉伸粘合,在拉伸条件下不会降低其高的粘合性。
人们业已发现粘合程度与形成薄膜背面和前表层的聚合物或共混物的密度紧密相关,还发现当降低背面层的聚合物密度时可改进粘合性。当背面层的密度不大于0.90g/cc,较好在0.85-0.89g/cc的范围,最好在0.86-0.88g/cc的范围时,背面层显示出对前表层的明显的粘合性。本发明的前表层的密度不小于0.90g/cc,较好在0.91-0.96g/cc的范围内,更好在0.93-0.95g/cc的范围内。密度更好在0.93-0.95g/cc范围内的前表层提供了一种单面粘合剂膜,其拉伸粘合和非拉伸粘合彼此相等。
本发明多层薄膜的芯层或结构层的密度可以变化,以满足最终用途的特定薄膜强度的要求。
用于形成背面层并且密度为0.90g/cc或小于0.90g/cc的乙烯聚合物的例子包括非常低密度聚乙烯(VLDPE)、共聚物(A)或组合物(A')、(A″)或(A),和它们的共混物。背面层宜用共聚物(A)或组合物(A')、(A″)或(A)制成。
用于形成本发明前表层并且密度大于0.90g/cc的成膜烯烃聚合物组合物的例子包括丙烯和乙烯的聚合物(如聚丙烯和乙烯/丙烯共聚物)、低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)、共聚物(A)或组合物(A')、(A″)或(A)、均匀或不均匀支化的线型低密度聚乙烯(LLDPE)、均匀或不均匀支化的非常低密度聚乙烯(VLDPE),和它们的共混物。前表层宜用聚丙烯制成,如MDPE和HDPE或单独的MDPE与聚丙烯混合,因为可以提供彼此相等的拉伸粘合和非拉伸粘合。
形成本发明芯层或结构层的乙烯聚合物的例子包括低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)、共聚物(A)或组合物(A')、(A″)或(A)、均匀或不均匀支化的线型低密度聚乙烯(LLDPE)和均匀或不均匀支化的非常低密度聚乙烯(VLDPE)。
线型聚乙烯领域的技术人员皆知道不均匀支化的VLDPE和LLDPE。它们可以通过使用诸如美国专利4,076,698(Anderson等)中所述的配位金属催化剂的齐格勒-纳塔溶液聚合、淤浆聚合或气相聚合制得。这些齐格勒型线型聚乙烯被不均匀支化,并且具有低的熔体张力。这些聚合物的密度低,且基本上不是无定形的,因为它们本来就含有大量的高密度(晶体)聚合物部分。使用普通的齐格勒-纳塔催化剂很难制备这些聚合物并造粒,使其密度小于0.90g/cc,因为粒料具有粘合性,很容易聚结在一起。
线型聚乙烯领域的技术人员也知道均匀支化的VLDPE和LLDPE。例如,可参考美国专利3,645,992(Elunston)披露的内容。它们可以通过使用锆和钒催化剂中的任何一种的溶液聚合、淤浆聚合或气相聚合制得。Eiwen等在美国专利4,937,299中指出使用金属茂催化剂来制备第二类线型聚乙烯的方法。该第二类线型聚乙烯是均匀支化的聚合物,但与齐格勒型不均匀支化的线型聚乙烯相似其熔体张力低。这类聚合物在市场上有Mitsui Chemicals,Inc.以商品名“TAFMAR”和Exon Chemicals以商品名“EXACT”销售。
用于背面层的乙烯聚合物组合物、用于前表层的成膜烯烃聚合物组合物和用于芯层或结构层的高强度乙烯聚合物组合物都包含通过乙烯均聚或乙烯和少量各种单体的共聚制得的乙烯聚合物。
本文披露的拉伸外包装材料中可以加入添加剂,如增粘剂、粘结剂(如PIB)、增滑剂、防粘连剂、抗氧化剂(如受阻酚,如可从Ciba Geigy Corp.购得的Irganox1010或Irganox 1076)、亚磷酸盐(如可从Ciba Geigy Corp.购得的Irgafos 168)、Standostab PEPQ(可从Sandoz购得)、颜料、着色剂、填料和加工助剂,尽管它们对获得本发明要求的结果来说并不是必需的。添加剂应按照这样的方式和量加入,即不会有损于本发明所发现的主要的粘合和非粘合性能。
采用薄膜层压和/或共挤出技术以及本领域已知的吹塑或流延薄膜挤出装置,可以由一层或多层包含A/B和A/B/C结构的薄膜层制得本发明的多层薄膜。较好的结构是通过共挤出技术,更好是流延共挤出技术制得的A/B/C结构。
在如“化学工艺大全”(The Encyclopedia of Chemical Technology),Kirt-Othmer,第三版(John Wiley & Sons,New York)1981,16卷,第416-417页和18卷,第191-192页中描述了较好的吹塑薄膜方法。在如“Modem Plastics”,1989年10月中旬,Encyclopedia Issue,66卷,11号,256-257页中描述了较好的流延薄膜挤出法。在TomI.Buttler的“薄膜挤出手册:方法、材料、性能、共挤出”第4章,31-80页,TAPPI Press(Atlanta,Ga,1992)中描述了较好的共挤出技术和要求。
本发明多层薄膜的每一聚合物层的熔体指数在0.4-20克/10分钟的范围内,较好为0.5-12克/10分钟,更好为0.8-6克/10分钟。
本发明多层薄膜的总膜厚在0.4-20密耳(10-508μ),较好在0.6-10密耳(15-254μ),更好在0.8-5密耳(20-127μ)的范围内。
本发明的A/B多层薄膜的各层比值大于2∶98(A层∶B层),较好在5∶95至35∶65,更好在10∶90至25∶75的范围内。含有两层或多层的多层薄膜的各层比值应使薄膜的背面层厚度和前表层厚度彼此相同,并且芯层或结构层的比例在60-98重量%的范围内,较好为65-95重量%,更好为70-90重量%。
多层阻隔薄膜
多层阻隔薄膜(multi-layer barrier film)是一种不透氧、不透水的多层阻隔薄膜,其用途包括造口术包、经皮提供药物的层压制品,和由多层阻隔薄膜制得的制品,如可热合的包。
根据本发明的一个实施方案,提供了一种不透氧、不透水的多层阻隔薄膜,该薄膜在1英寸的膜宽上具有至少1.0lb,较好大于1.5lb的热合强度。本文中所用的术语“不透氧性”是指薄膜的透氧性不大于90cc/m2/H·atom。本文所用的术语“不透水性”是指薄膜的水蒸汽渗透性不大于5gm/m2/H。
在一个实施方案中,薄膜包含一层其上有至少一层可热合表层的阻隔层。阻隔层包含一种任意合适的阻隔层材料,它与可热合表层(单层或多层)是相容的,并能提供所需的不透氧性和不透水性。较好的阻隔材料是偏二氯乙烯和氯乙烯的共聚物或偏二氯乙烯和甲基丙烯酸甲酯的共聚物。当阻隔层含有偏二氯乙烯和氯乙烯的共聚物或偏二氯乙烯和甲基丙烯酸甲酯的共聚物时,阻隔层可任选含有乙烯和乙酸乙烯酯的共聚物作为加工助剂,其量为0-6重量%,4-6重量%则更好。
在本发明的一个实施方案中,阻隔层与至少一层可热合的表层共挤出。为提供所需的挠性,可热合的表层在纵向(MD)和横向(TD)上的2%割线模量小于15,000psi。可热合的表层包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。为有助于加工薄膜,表层(单层或多层)可含有乙烯和乙酸乙烯酯的共聚物作为加工助剂,其量为0-10重量%,更好为0.5-5重量%。而且,表层可以任选地含有增滑剂和/或防粘连剂。希望由乙烯和乙酸乙烯酯的共聚物制成的粘合剂结合层在表层和阻隔层之间共挤出,以提高它们之间的粘合性。
在本发明较好的实施方案中,阻隔层在两层可热合的表层之间共挤出。在这种情况下,表层的比例为薄膜的70体积%(厚度),阻隔层的比例为薄膜的30体积%(厚度)。采用这样的结构,就可以制造可重复使用的造口术包或袋。也可以分开制备阻隔层和表层(单层或多层),然后使用合适的粘合剂聚合物、液体粘合剂或热熔粘合剂将它们层压在一起。本发明的多层阻隔薄膜以65°角和0.45Hz弯曲时的噪音小于85dB,以65°角和0.45Hz弯曲时噪音较好地小于83dB,以65°角和0.45Hz弯曲时噪音最好小于81dB。
在本发明的另一个实施方案中,在阻隔层上加上另外的层,形成可经皮供药的体系。该体系较好地包含阻隔薄膜的衬里层,它的作用是作为到药物体系的通路。含有活性药物的粘合剂宜固定在薄膜的一个表面上。粘合剂靠近释放控制膜,该膜适合与患者皮肤接触,并控制药物的释放。
在该实施方案的另一种形式中,衬里层可以配有含活性药物和释放控制膜的储器,以控制药物扩散到患者皮肤上和隐藏储器的开口。可以将经皮供药体系粘合在患者皮肤的周围或全部都用粘合剂敷上。粘合剂和膜宜覆盖有一可剥离的衬里,以保护使用前的结构。
因此,本发明的特征是提供一种不透氧、不透水的多层阻隔薄膜,该薄膜可以采用共挤出法或层压法制造。本发明还具有的特征是气味阻隔性、挠性和低噪音。本发明的再一个特征是提供一种在制造包袋中使用的可热合的表面。
在本发明的一个实施方案中,使用标准挤出技术,如供料头共挤出、多歧管模头共挤出或这两种方法的结合可以制造多层阻隔薄膜。在挤出期间可以控制各独立层的体积(厚度)。因此,可以控制多层结构的总厚度。在另一种方法中,分开制造各独立层,用合适的粘合剂结合层将它们层压在一起。
不有意拉伸薄膜,除非在制造薄膜时所产生的固有结果,以保护薄膜的低噪音。例如,通过吹塑法制得的薄膜在纵向(MD)和横向(CD)两个方向基本上都有一些取向,但是流延薄膜在横向上未被拉伸。薄膜中发生的取向越小,噪音一般会更小。本发明的多层阻隔薄膜以65°角和0.45Hz弯曲时的噪音小于85dB,以65°角和0.45Hz弯曲时的噪音较好小于83dB,以65°角和0.45Hz弯曲时的噪音最好小于81dB。
为提供所需的挠性,可热合的表层在纵向(MD)和横向(TD)上的2%割线模量小于15,000psi。2%割线模量是薄膜的刚性或挠性的指示。我们发现,可热合表层的2%割线模量值较低时,所得的薄膜就较为柔韧。一般希望薄膜的2%割线模量尽可能低,薄膜仍可以采用常用设备进行加工。整个多层薄膜的2%割线模量宜不大于30,000psi。所得的多层薄膜具有低的透氧性和低的蒸汽渗透性,并具有造口术要求的气味阻隔性、挠性和低噪音。
不透氧和水的多层阻隔薄膜包含一层阻隔层,该层可由氯乙烯(15-20重量%)和偏二氯乙烯(80-85重量%)的共聚物或偏二氯乙烯(93-94重量%)和甲基丙烯酸甲酯(6-7重量%)的共聚物制成。合适的阻隔材料的例子包括SARAN(注册商标)469和SARAN MA,它们均从Dow Chemical Company购得。当使用SARAN阻隔层材料时,阻隔层可含有乙烯和乙酸乙烯酯的共聚物作为加工助剂,其量为0-6重量%,4-6重量%则更好。合适的乙烯/乙酸乙烯酯共聚物组合物的一个例子是可从E.I.Dupont de Nemours & Co.,Inc.以Elvax(Elvax:注册商标)商品名购得的共聚物。
阻隔层宜与两层可热合的表层一起共挤出,或层压在该两层之间,所述可热合的表层包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。
通过折叠薄膜和热合包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的表层,阻隔薄膜可用于制造可重复使用的造口术包或袋。包的透氧性小于90cc/m2/H·atom(1.8cc/100in2/H·atom)。该阻隔薄膜的总厚度为35-100微米。阻隔薄膜占薄膜总厚度的10-30%。表层(和粘合剂层,若需要的话)一般占薄膜总厚度的70-90%。
通过使用合适粘合剂的层压技术,可制得本发明的多层阻隔薄膜。例如,可以分别制得阻隔层和表层(单层或多层),然后用粘合剂聚合物、液体粘合剂或热熔粘合剂将它们层压在一起。用于将阻隔层和表层结合在一起的合适粘合剂聚合物的例子包括使用乙酸乙烯酯、丙烯酸乙酯、甲基丙烯酸乙酯、甲基丙烯酸、丙烯酸和一氧化碳制得的烯属不饱和共聚物,但并不局限于此。还可以使用乙烯和甲基丙烯酸或丙烯酸的离聚物和用酸酐接枝的共聚物。合适的液体粘合剂或热熔粘合剂的例子包括以氨基甲酸酯、共聚酯和酰胺/丙烯酸酯共聚物为基的那些粘合剂。
一种五层的不透氧和水的阻隔薄膜包含由前面讨论的合适阻隔材料制成的阻隔层。阻隔层宜和两层可热合的外表层共挤出,在阻隔层和两层可热合外表层的每一层之间夹有粘合剂层。在五层实施方案中的可热合表层可以含有主要为乙烯和α-烯烃的线型共聚物(如在PCT申请PCT/US92/08812中描述的)或均匀支化的线型聚烯烃树脂,如EXACT树脂和TAFMER树脂。合适粘合剂的一个例子是乙烯和乙酸乙烯酯的共聚物,它可以提高阻隔层和表层之间的相互粘合性。
在本发明另一个实施方案的最简单的形式中,它包括阻隔层和附加的层,制成用于经皮供药的体系,薄膜的阻隔层和表层的作用是作为阻隔药物体系的背衬膜。这类阻隔薄膜还包含粘合剂层,它含有加在基体中的活性药物,并粘合在薄膜的一个表面上。选择的粘合剂应该和活性药物相容,并能渗透到活性药物中。许多活性药物,如雌激素、硝化甘油、尼古丁和莨菪胺可按这种方式为患者给药。理论上,几乎所有的药物都可以按这种方式给药。
适合与患者皮肤接触并控制药物释放的释放控制膜位于粘合剂层上。可以在该控制膜的周围或整个表面上施用另外一种粘合剂层,用其将经皮供药体系固定在患者的皮肤上。本发明这个实施方案中使用的粘合剂应该是一种医用粘合剂,如硅氧烷粘合剂、丙烯酸粘合剂或乙酸乙烯酯粘合剂。本实施方案中,该体系一般密封在一个包装中,或固定在第二种阻隔薄膜上,在使用该体系时可以除去所述包装或第二种阻隔薄膜。
下面描述本发明经皮供药体系的另一种形式。将构成阻隔薄膜的阻隔层和表层模塑成用于包含活性药物的储器。用一个释放控制膜隐藏储器的开口。施用在该膜周围或整个表面上的粘合剂的作用是将该体系固定在患者的皮肤上。选择的粘合剂应该和活性药物相容并能渗透到活性药物中。宜提供可剥离的衬里或类似物,用于在使用之前隐藏和保护粘合剂和该膜。
通过折叠多层薄膜的边,然后热合该边,可由多层阻隔薄膜制得有一个开口的常规重复使用的造口术包。薄膜宜按这样的方式折叠和密封:使一层可热合的表层形成所得包或袋的内表面。本发明的阻隔薄膜提供了造口术使用所需的挠性、安静、防水性、气味阻隔性和不透氧性。正如本领域技术人员所评价的,本发明的阻隔薄膜还可应用于其它需要不透水和氧的性能的包装用途。
层压薄膜密封剂
使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),通过冷却空气吹胀可制得层压薄膜密封剂。
本发明层压薄膜密封剂的落镖冲击强度不小于100千克/厘米,较好为不小于150千克/厘米。这类薄膜的完全密封温度不高于130℃,较好为110-130℃。
本发明的层压薄膜密封剂的粘结强度一般不大于1.5千克/厘米,拉伸时的杨氏模量一般不小于3,500千克/厘米2
本发明的层压薄膜密封剂的厚度在10-150微米的范围内,较好在10-60微米的范围内。
通过将上述本发明的层压薄膜密封剂层压在一个基材上可制得层压薄膜。
可以使用任何能成膜的材料制成的薄膜作为基材。这种薄膜的例子包括聚合物薄膜、片、织物、纸、金属箔和赛璐玢。
层压薄膜密封剂具有优良的低温热合性、热粘性、抗冲击性、抗粘连性和开口性。
重级包装薄膜
重级包装薄膜按JIS K 6781测定的杨氏模量为不小于4,000千克/厘米2,按ASTM D 1709方法A测定的落镖冲击强度为不小于55千克/厘米,膜厚一般为30-200微米。
使乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)经吹胀法或T形模法可以制得重级包装薄膜。将重级包装薄膜层压在聚酯或聚酰胺薄膜上,可以制造多层薄膜。
重级包装薄膜具有优良的机械强度、透明度和表面光滑度,因此这类薄膜适用于包装食品、办公用品、家具、玩具、电器部件和机械部件。而且这类薄膜可用于寒冷地区的重级包装包。
谷物包
本发明的谷物包由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的膜制成,将相互叠加的两个膜的三边密封。可以按任何方式制得谷物包,只要在一端形成一个开口,在另一端形成底部。例如,谷物包可以是通过将一个膜一折为二并密封两个边获得的包,或是密封吹胀等方法制得的管状薄膜的一端,使另一端敞开所获得的包。
为在一边密封薄膜,宜将薄膜融合在一起,但是可以采用任何方法,只要密封后的薄膜可以装物品。
伸出的边缘部分
伸出的边缘部分是连接下面描述的连接绳索的基座,并用作卷绕绳索的边界,以闭合本发明谷物包的开口。
在包形薄膜的开口端配置一分开的薄膜,可以制得这种伸出的边缘部分,或在制造包时将薄膜相互重叠以延伸一个薄膜也可以制得这种伸出的边缘部分。
系绳
提供系绳来闭合谷物包的开口。尽管任何材料都可用于系绳,但是以与薄膜相同的材料为宜,因为使用这样的材料更易于谷物包的重复利用。
绳密封件
通过绳密封部分将系绳固定在延伸的边缘部分上。将延伸的边缘部分向着另一薄膜开口的一边折叠,使折叠的薄膜中有绳,这样就制得了绳密封部分。系绳可以只穿过折叠和密封的延伸边缘部分,或和折叠的延伸边缘部分密封在一起,使它们不能自由移动。当然,绳密封部分的内部可涂布有粘合剂,以连接并将系绳固定到绳密封部分上。
间隔
在绳密封部分和另一个薄膜的开口端之间留有间隔。最好提供间隔,因为在使用谷物包时能容易地打开袋口,间隔可用作卷绕系绳以闭合谷物包的边界。间隔的宽度在5-100毫米范围,以10-30毫米为宜。
本发明的附加组成
本发明的谷物包包含上述的基本组成,但是它还可以包含下面的附加组成。
片状物
本发明的谷物包可以装有从绳索密封件延伸到开口端边的片状物,该片状物有一定的宽度,以便覆盖开口。最好提供片状物,因为该片状物可以保存在开口附近的内含物,这样即使以开口这一边放置包,谷物也很难从包中掉出。
片状物的宽度不小于间隔的宽度,一般在30-150毫米,较好的在50-100毫米范围。
折叠部分
包的底部可以有一V形截面的折叠部分,将合成树脂薄膜的一端向内折叠可形成该折叠部分。最好提供折叠部分,因为将谷物倒入包内时,谷物包的底部变得平坦,包就能稳定地树起。这种情况下,谷物包底部的每个角落宜都斜搭密封,形成等腰三角形,其斜搭边长度与每个折叠部分的宽度相同,使底部宽度保持恒定,而与包中所含的谷物体积无关。
空气洞
谷物包的两边宜有许多空气洞,因为可以适当保持在制得的包中所含谷物的条件。沿薄膜的开口端和底端的至少一端形成许多空气洞。薄膜上的各空气洞排列成长方形。
可以在两个薄膜的任一个或两个上提供空气洞。
要求谷物包具有优良的抗冲击性和抗撕强度,因为要在包中倒入重质物,并且包要频繁移动。
本发明的谷物包可以通过如吹胀法由共聚物(A)或组合物(A')、(A″)或(A)获得的薄膜制得,为谷物包提供适合的强度。因此,制得的谷物包厚度小于常用聚乙烯谷物包的厚度。由冷却空气吹胀共聚物(A)或组合物(A')、(A″)或(A)制得并且具有(ⅰ)不小于4,000千克/厘米2拉伸时的杨氏模量和(ⅱ)不小于55千克/厘米的落镖冲击强度的薄膜适用于谷物包。
而且,用于谷物包的薄膜较好的具有不小于50%的光泽和30-200微米的厚度。
薄膜具有如此优良的低温性能(如低温落包强度(low-temperature drop-bagstrength)性能),使它能满意地用作谷物包,即使在0℃以下的寒冷地区。因此,降低薄膜的厚度是可行的,并且高速模塑薄膜也是可行的。
使用本发明的谷物包时,将谷物包一端的开口打开,通过开口在包中倒入适量的谷物。然后,将延伸的边缘部分向着另一个薄膜的开口端边卷适当的次数,最后,将系绳的两端系牢,闭合开口。这样,谷物包的使用方式与常用的纸质谷物包相同,对制造商或使用常用纸质谷物包的商人在操作上没有变化。
本发明的谷物包使用合成树脂材料,因此,与常用的纸质谷物包相比,能以较低的成本生产这类包。上述组成可以以任何方式组合起来使用。
制造谷物包的方法
制造谷物包的方法包括下列步骤:形成延伸的边缘部分的步骤,通过将一个薄膜(两个薄膜中的一个)的一端延伸到另一个薄膜开口端的上部,形成延伸的边缘部分;系绳穿过的步骤,沿所制包的宽度方向,在与另一个薄膜开口有一定间隔(间隔)的地方穿过系绳;折叠步骤,将延伸的边缘部分向着另一个薄膜的开口端边折叠,使系绳包在折叠的延伸边缘部分中;和密封步骤,密封由此折叠的延伸边缘部分,包入系绳,并在延伸的边缘部分和另一个薄膜的开口端之间留有间隔。
通过密封两个叠加的独立薄膜的三边,可制得包括两个叠加合成树脂薄膜(其三边密封,一端为底部,另一端开口)的谷物包,或通过将一个薄膜一折为二并密封两边制得上述谷物包。然而,如果使用管状薄膜,如吹胀薄膜,可以简化该制造方法,因为可以在开始时闭合两个边。
上述方法还包括底部折叠步骤,在内部折叠底部形成V形截面的折叠部分。上述方法还可以包括穿孔步骤,沿薄膜的两个端边穿出多个空气洞。上面的方法还可以有第二次穿孔步骤,沿另一边薄膜的开口端和底端中的至少任一边穿出多个空气洞。
流体物质的包装袋
流体物质的包装袋可用于包装供消费者使用的流体物质(如,诸如牛奶之类的液体),可以由包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的特定薄膜结构制得这种袋。
本发明用于包装流体物质的袋可通过使用包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的单层薄膜结构(聚合物密封层)制得。
乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)一般仅用于形成该薄膜结构的膜层或密封层。然而,乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可以和其它用于热合层的聚合物掺混。乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的用量一般为薄膜结构重量的10-100%。
在用于形成本发明的袋的聚合物中可以加入本领域技术人员已知的添加剂,如抗氧化剂、亚磷酸盐、粘结添加剂、Standostab PEPQ(商品名,可从Sandoz购得)、抗粘连剂、增滑剂、UV稳定剂、颜料和加工助剂。
本说明书中披露的薄膜和薄膜结构可以是单层结构或多层结构,条件是乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)用于至少一层,较好的是密封层。密封层的厚度至少约为0.1密耳(2.5μ),较好为0.2密耳(5μ)-10密耳(254μ),更好为0.4密耳(10μ)-5密耳(127μ)。
用于本发明袋的薄膜结构的热合温度范围令人惊奇地宽。该薄膜结构的热合温度一般在50-160℃范围,较好为75-130℃。业已发现本发明密封层的热合温度范围比常用聚乙烯薄膜的热合温度范围宽,它可以由不均匀支化的乙烯聚合物制得,并具有几乎相同的密度。为了改进由这种薄膜结构生产的袋在热合过程中的挠性,重要的就是拓宽该薄膜结构的热合温度范围。用于制造具有上述热合温度范围的薄膜结构的共聚物(A)或组合物(A')、(A″)或(A)的熔点一般为50-130℃,较好为55-115℃。
用于本发明的袋的薄膜结构显示了低温下未曾料到的热合强度特性。本发明的薄膜结构获得了在约110℃密封棒温度下约0.3秒内至少约1牛顿/英寸(39.4牛顿/米)的热粘着强度(按照DTC热粘着强度法测定),或获得在约110℃密封棒温度下0.4秒内至少11bf/in(175牛顿/米)的热合强度(按照DTC热合强度法测定)。本发明的薄膜结构还显示低于约110℃的热粘着或热合起始温度,其强度至少约1牛顿/英寸(39.4牛顿/米)。业已发现使用本发明的密封层达到的密封,与使用较高密度的常用聚乙烯达到的密封相比,在低温下具有更高的热合强度。为了能用普通的包装机器,如立式成形-填充-密封机器以高速操作来生产无泄漏袋,重要的一点是提供低温下的高热合强度。
当乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)用于本发明袋的薄膜结构的密封层时,应考虑(1)用成形-填充-密封机器以高速制造袋,和(2)获得几乎没有泄漏的袋包装,而不象使用线型低密度聚乙烯、线型超低密度聚乙烯、高压低密度聚乙烯或它们的组合制得的袋那样。
在本发明的一个实施方案中,通过在纵向热合管形薄膜结构形成一个闭合端来制造袋。
该薄膜结构具有:
(Ⅰ)至少一层包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),其量为10-100重量%,和
(Ⅱ)至少一层包含至少一种选自不均匀支化的线型乙烯/C3-C18α-烯烃共聚物、高压低密度聚乙烯和乙烯/乙酸乙烯酯共聚物的聚合物,其量为0-90重量%。
(Ⅱ)的不均匀支化的线型乙烯/C3-C18α-烯烃共聚物一般是线型低密度聚乙烯(如使用齐格勒催化剂制得的聚乙烯)。线型低密度聚乙烯常被划分成子属,该子属以非常低密度聚乙烯(VLDPE)或超低密度聚乙烯(ULDPE)为代表。本文中所用的术语VLDPE和ULDPE可以互换,本领域的技术人员通常按这种方式使用这些术语。(Ⅱ)的线型低密度聚乙烯的密度一般为0.87-0.94克/厘米3,较好为0.87-0.915克/厘米3。(Ⅱ)的不均匀支化的线型乙烯/C3-C18α-烯烃共聚物的熔体指数为0.1-10克/10分钟。
(Ⅱ)的高压低密度聚乙烯的密度较好为0.916-0.93克/厘米3,熔体指数为0.1-10克/10分钟。
(Ⅱ)的乙烯/乙酸乙烯酯共聚物的乙烯∶乙酸乙烯酯的重量比较好为2.2∶1至24∶1,熔体指数为0.2-10克/10分钟。
在本发明的另一个实施方案中,由包含下列组分的共混物制得袋:
(a)至少一种共聚物(A)或组合物(A')、(A″)或(A),其密度不大于0.915克/厘米3,熔体指数不大于10.0克/10分钟,其量为10-100重量%,和
(b)至少一种选自不均匀支化的线型乙烯/C3-C18α-烯烃共聚物、高压低密度聚乙烯和乙烯/乙酸乙烯酯(EVA)共聚物的聚合物,其量为0-90重量%。
(b)的不均匀支化的线型乙烯/C3-C18α-烯烃共聚物一般是线型低密度聚乙烯(如使用齐格勒催化剂制得的聚乙烯)。线型低密度聚乙烯包括如上所述的非常低密度聚乙烯(VLDPE)或超低密度聚乙烯(ULDPE)。(b)的线型低密度聚乙烯的密度一般为0.87-0.94克/厘米3,较好为0.87-0.915克/厘米3。(b)的不均匀支化的线型乙烯/C3-C18α-烯烃共聚物的熔体指数较好为0.1-10克/10分钟。
(b)的高压低密度聚乙烯的密度较好为0.916-0.93克/厘米3,熔体指数为0.1-10克/10分钟。
(b)的乙烯/乙酸乙烯酯共聚物的乙烯∶乙酸乙烯酯的重量比较好为2.2∶1至24∶1,熔体指数为0.2-10克/10分钟。
本发明袋的膜结构包括多层结构或复合膜结构,在这种情况下,该结构的聚合物密封层宜作为袋的内层。
本领域的技术人员会理解,本发明袋的多层薄膜结构可以包括膜层的各种组合,只要密封层构成最终薄膜结构的一部分。本发明袋的多层薄膜结构可以是共挤出膜、涂布膜或层压膜。该薄膜结构包括与阻隔薄膜组合在一起的密封层,所述阻隔薄膜如聚酯、尼龙、乙烯/乙烯醇共聚物(EVOH)或聚偏二氯乙烯(PVDC)(如Saran,商品名,可从Dow Chemical Company购得)的薄膜和涂布金属的薄膜。与密封层薄膜组合起来使用的其它材料的选择主要受袋的最终用途的影响。在此使用的袋指至少使用密封层作为内层。
本发明一个实施方案的袋的薄膜结构具有一层由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的密封层和至少一层聚合物外层。聚合物外层较好是聚乙烯薄膜层,更好是一层不均匀支化的线型聚乙烯,在此它被称作“线型低密度聚乙烯”(LLDPE)、“线型超低密度聚乙烯”(ULDPE)和/或“非常低密度聚乙烯”(VLDPE)。可购得的LLDPE商品的一个例子有从Dow ChemicalCompany购得的DOWLEX(商品名)2045。可购得的ULDPE商品的一个例子有从Dow Chemical Company购得的ATTANE(商品名)4201。
在此使用的LLDPE(包括VLDPE和ULDPE)是由乙烯和少量的3-18个碳原子,较好是4-10个碳原子的α-烯烃(如1-丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯和1-癸烯)制得的不均匀支化的线型共聚物。不均匀支化的LLDPE一般可通过使用齐格勒催化剂制得(如经美国专利4,076,698(Anderson等)中所述的方法)。
用于外层的LLDPE的密度一般不小于0.87克/厘米3,较好为0.9-0.93克/厘米3,熔体指数一般为0.1-10克/10分钟,较好为0.5-2克/10分钟。
外层的厚度不限,只要密封层有至少0.1密耳(2.5μ)的厚度。
本发明另一个实施方案的袋的薄膜结构包括一层插在两层聚合物密封层之间的聚合物层。
本发明还有一个实施方案的袋的薄膜结构包括一层在至少一层聚合物外层和至少一层聚合物密封层之间的聚合物芯层。尽管这一聚合物层可以是和外层相同的LLDPE薄膜层,但是它宜为不同的LLDPE层,更好是具有高于外层密度的LLDPE层。芯层的厚度不限,只要密封层的厚度至少为0.1密耳(2.5μ)。
本发明再有一个实施方案的袋的薄膜结构可以是包括密封层和不同的聚乙烯薄膜层的结构,所述不同的聚乙烯在后面被称作“高压低密度聚乙烯”(LDPE)。LDPE层的密度一般为0.916-0.930克/厘米3,熔体指数为0.1-10克/10分钟。LDPE层的厚度不限,只要密封层的厚度至少为0.1密耳(2.5μ)。
本发明还有一个实施方案的袋的薄膜结构是包括密封层和EVA共聚物层的结构,所述EVA共聚物的乙烯∶乙酸乙烯酯的重量比为2.2∶1至24∶1,熔体指数为0.2-20克/10分钟。EVA层的厚度不限,只要密封层的厚度至少为0.1密耳(2.5μ)。
用于制造本发明袋的薄膜结构的厚度在0.5密耳(12.7μ)-10密耳(254μ)的范围内,较好在1密耳(25.4μ)-5密耳(127μ)的范围内。
本发明袋的薄膜结构设计为柔韧的。为了使诸如刚性之类的特定薄膜性能达到最佳化,互不相同的LLDPE(如VLDPE和ULDPE)可用于外层和芯层。这样,对特定的用途,如用于立式成形-填充-密封机器,可制得最佳薄膜。
通过本技术领域皆知的吹塑管挤出法和流延挤出法中的任何一种方法,可制得用于制造本发明袋的聚乙烯薄膜结构。例如,在“现代塑料”,1989年10月中旬,Encyclopedia Issue,66卷,11号,264-266页中描述了吹塑管挤出法。例如在“现代塑料”,1989年10月中旬,Encyclopedia Issue,66卷,11号,256-257页中描述了流延挤出法。
本发明的袋是可以填入“流体物质”的密封容器。术语“流体物质”是指可重力流动或可被泵压的物质,但是它不包括气态物质。流体物质的例子包括不充碳酸气的饮料,如牛奶、水、果汁和葡萄酒;充了碳酸气的饮料,如苏打水、啤酒和水;乳状液,如冰淇淋混合物和软黄油;糊,如肉浆和花生白脱;果浆,如果浆、馅饼填充剂和橘子浆;果冻;生面;肉馅,如做香肠的肉;粉末,如明胶粉和清洁剂;颗粒固体,如坚果、糖和谷粒;和类似物质。本发明的袋对包装流体(如牛奶)特别有用。流体物质还包括油性液体,如烹饪油和机动车油。
形成用于本发明袋的薄膜结构后,将薄膜结构切成普通制袋机使用所要求的宽度。然后,使用本技术领域皆知的“成形-填充-密封机器”制得本发明的袋。本发明袋的一个实例是由管形部件制成的袋,它在纵向有一搭接密封和在横向上有一密封,使制得的袋在填充入流体物质后呈“枕形”。
本发明袋的另一个实例是由管形部件制成的袋,它沿管形部件的三边有鳍状密封,即纵向有顶部密封和侧面密封,并且它有用管形部件密封的基本上为凹形或“球形”的底部部分,以便在观察填入流体物质的袋的垂直截面时,底部为半圆或“弧形”。这类袋是本技术领域皆知的“Enviro-Pak”袋。
根据本发明制得的袋较好是通过立式成形-填充-密封机器(VFFS机器)制得的袋。销售的VFFS机器的例子包括由Hayssen或Prepac制造的VFFS机器。在F.C.Lewis的“成形-填充-密封”包装大全,p.180,1980中描述了VFFS机器。
VFFS包装法中,将在此所述的塑料薄膜结构的片送入VFFS机器,在机器的成管部分,将片成形为连续的管。具体而言,密封薄膜的纵边,即折合塑料薄膜并使其内边/外边密封,或使塑料薄膜经内边/外边密封为鳍状密封,制得管形部件。然后,用密封棒在其一端处横向密封管,形成所制得袋的底部。之后,在袋中充入诸如牛奶的物质。接着,用密封棒密封袋的上端,烧断或切断塑料薄膜,使制成的袋与管分离。在美国专利4,503,102和4,521,437中描述了使用VFFS机器制造袋的方法。
本发明袋的体积可以改变。袋一般可以容纳5毫升至10升的流体物质,较好为10毫升至8升,更好为1升至5升。
在两层或三层共挤出薄膜制品中使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的密封层可以较高速度通过VFFS机器制造袋,并可获得能形成不泄漏袋的薄膜结构。
使用本领域已知的技术,可以在本发明的袋上进行印刷,印刷前袋可以进行电晕处理。
当本发明的袋进行5英尺(1.52米)落下试验(按照本发明说明书定义)时,获得了优良的结果。本发明袋的破损百分率,按照5英尺(1.52米)落下试验测定,较好为不大于40%,更好为不大于20%,最好为不大于10%。
与迄今使用的容器,如玻璃瓶、纸盒和高密度聚乙烯罐相比,本发明的袋能更有利地用于供消费者使用的流体的包装(如牛奶)。为生产迄今使用的容器,将消耗大量的天然资源,并需要极大量的空间用于堆放。而且,需要大量的空间用于储存,并因为容器的热传递性能需要高能量用于制品的温度控制。
当将由薄膜制得的本发明的袋用于液体包装时,与迄今使用的容器相比可获得许多好处。本发明的袋具有下列优点:(1)天然资源的消耗小;(2)用于堆放所需的空间小;(3)可以回收;(4)易于进行加工;(5)用于储存所需的空间小;(6)由于包装的热传递性能,储存所消耗的能量小;(7)能安全地进行焚烧;(8)能够再用,例如,空的袋可用于其它用途,如用作冷冻包、夹心面包片包和一般用途的储藏包。
分批包入的包装
由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)或含它们中的任一种的组合物制得分批包入的包装。这类包装可由薄膜形成,将粉末、粒料或流体物质填入该包装中来保护物质。然后将整个包装(薄膜和内含物)加入一混合物中,制得一定的制品。例如,可以将包装和其中的内含物同时送入挤出机或混合机。
乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)较好的仅用作唯一一种制造分批包入的包装薄膜的聚合物组分。然而,其它聚合物可以和乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)一起进行混合、多层共挤出和/或多层层压,以提供薄膜可加工性、薄膜硬度、薄膜阻隔性能、薄膜强度、薄膜熔融性能和其它所需的薄膜性能。使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和其它聚合物组分的共混物制得的分批包入包装薄膜可以保持改进的性能。一些有用的聚合物共混物组分的例子包括乙烯/乙酸乙烯酯共聚物(EVA)、乙烯/乙烯醇共聚物(EVOH)、聚丁烯(PB)、密度为0.941-0.965克/厘米3的线型高密度聚乙烯(HDPE)和密度为0.87-0.94克/厘米3的线型低密度聚乙烯(LDPE)(可使用常用的齐格勒催化剂制得)。乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)较好占共混物组合物的至少约50%,更好至少约80%。特别好的是内层主要由至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)组成。
在乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中可以加入其它添加剂,其量以不损害分批包人包装的功能为准。这样的添加剂的例子包括增塑剂、抗氧化剂、亚磷酸盐、粘结添加剂、热稳定剂、光稳定剂(如Cyanamid生产的Cyasorb(商品名)UV 531二苯酮、Ciba Geigy Corp生产的Tinubin(商品名)622受阻胺光稳定剂)、颜料(如二氧化钛、碳酸钙、炭黑)、加工助剂(如聚乙二醇、含氟聚合物、含氟弹性体、蜡)、阻燃剂(如由Albright and Wilson Americas生产的Amgard(商品名)CPC 102,它是磷基阻燃剂)、润滑剂(如蜡、硬脂酸酯、矿物油)、增滑剂(如芥酰胺(erucamide)、油酰胺)、抗粘连剂(如滑石、二氧化硅)、交联剂(如过氧化物,如DuPont生产的Booster(商品名))、消雾剂(如ICI生产的Atmer(商品名)100脱水山梨醇酯)、抗冲改性剂(如Allied Corp.生产的Paxon(商品名)Pax Plus,它是橡胶改性的薄膜树脂)、抗静电剂(如Akzo Chemical,Inc.生产的Armostat 410,它是乙氧基化的叔胺)和填料(如滑石、碳酸钙、粘土、热解法氧化硅)。上面列举的添加剂仅是例子,它们并未包括所有的添加剂,也不对本发明构成限制。
采用制造热吹塑薄膜或流延薄膜的常用方法,可以制得在此所述的具有新颖性能的薄膜和薄膜结构。可以采用双轴取向法(如拉幅机薄膜法或双泡法)与普通技术相结合。例如在“化工大全”,Kirt-Othmer,第三版,John Wiley & Sons,NewYork,1981年,16卷,416-417页和18卷,191-192页中描述的普通热吹塑薄膜法。本说明书中所述的新颖薄膜和薄膜结构还可以通过制造双轴取向薄膜法制得,如美国专利3,456,044(Pahlke)所述的“双泡”法,和在美国专利4,865,920(Golike等)、4,352,849(Mueller)、4,820,557(Warren)、4,927,708(Herran等)、4,963,419(Lustig等)和4,952,451(Mueller)中所述的其它方法。根据诸如聚丙烯取向中所用技术之类的拉幅机薄膜技术,也可以制得这类薄膜和薄膜结构。
尽管薄膜可以是单层薄膜或多层薄膜,但是至少一种乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)用作薄膜结构中的至少一层,较好是内层。内层与包装中所含的物质相接触。内层可以和其它一层或多层共挤出,或层压到另外的一层或多层上,这是二次操作,如W.J.Schrenk和C.R.Finch在“塑料工程师PETEC加工协会”的“用于阻隔包装的共挤出”,1981年6月15-17,211-229页中所述。如K.R.Osborn和W.A.Jenkins在“塑料薄膜,技术和包装应用”(Technnomic Publishing Co.,Inc.(1992))中所述,使用管形薄膜(即吹塑薄膜技术)或扁平模头(即流延薄膜)可以生产单层薄膜,这类薄膜可以任选进行另外的后挤出过程,用于形成多层结构,如薄膜粘合或挤出层压在包装材料的其它层上。即使薄膜是两层或多层的共挤出薄膜(Osbom和Jenkins所述),根据最终包装薄膜的其它物理要求,该薄膜可以层压到包装材料的其它附加层上。在D.Dumbleton的“层压对共挤出”(Converting Magazine,1992年9月)中也比较了共挤出和层压。单层薄膜或共挤出薄膜还可以进一步进行另一种后挤出过程,如双轴取向。
制造多层包装材料的另一种技术是挤出涂覆。类似于流延薄膜法,挤出涂覆法采用了扁平模头技术。单层或共挤出物形式的薄膜层可以挤出涂覆到基材上。
对于聚合物共混物和/或多层薄膜结构,较好的是使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)作为所包含的至少一层,较好是内层。多层结构的其它层的例子包括阻隔层和/或连接层和/或结构层,但并不局限于这些。各种材料可用于这些层,其中一些可用作同一薄膜结构中的两层或多层。这种材料的例子包括乙烯/乙烯醇(EVOH)共聚物、聚偏二氯乙烯(PVDC)、聚对苯二甲酸乙二醇酯(PET)、取向的聚丙烯(OPP)、高密度聚乙烯(HDPE)、乙烯/乙酸乙烯酯(EVA)共聚物、乙烯/丙烯酸(EAA)共聚物、乙烯/甲基丙烯酸(EMAA)共聚物、LLDPE、HDPE、LDPE、尼龙、粘合剂接枝聚合物(如马来酐接枝的聚乙烯)和纸。多层结构一般包括2-7层。
单层薄膜或多层薄膜结构的(总)厚度通常在0.2-15密耳(5-381μ)范围,较好为1-5密耳(25.4-127μ)。在共挤出法(或多层挤出法)的情况下,制得主要包含线型乙烯/α-烯烃聚合物的内层,其厚度通常为0.2-15密耳(5-381μ)范围,较好为1-5密耳(25.4-127μ)。
将由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得的薄膜或薄膜结构成形为包、衬里或视最终用途需要的包装材料。通过使用诸如管衬里,可以连续混合各种材料。具体而言,内含物和衬里从一个管转移到另一个管,并与其它组分混合,随后任选地将共混物送入强力混炼机。另外,橡胶生产中使用的添加剂可包装在包中,将包含这些内含物的整个包投入橡胶生产中的某个步骤,而不必打开包。分批包入包的使用和生产技术为本工业领域所皆知,如美国专利4,394,473、5,120,787、4,248,348、欧洲专利公开公报0270902和加拿大专利2,053,051中所述。
当乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)用于分批包人包和薄膜时,具有许多优点。乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)在制造吹塑薄膜中具有优良的加工性能,其熔点和软化范围低于使用常用齐格勒催化剂制得的聚乙烯。由于乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)都由碳和氢原子组成,故共聚物(A)或组合物(A')、(A″)或(A)与各种特别用于橡胶工业的弹性体添加剂是相容的,这与由乙烯/丙烯酸共聚物或乙烯/甲基丙烯酸共聚物制得的分批包入薄膜和包(如欧洲专利公开公报0270902中所述)不同,或可以和由乙烯/乙酸乙烯酯共聚物制得的薄膜和包(美国专利5,120,787和4,248,348中所述)相比拟。
包含在分批包入包(或包装材料、涂覆材料或衬里)中的材料可以是那些能自由流动(即它们在重力状态下通过自身重量易于流动)的材料或那些不能自由流动(即它们在重力状态下通过自身重量不能流动)的材料。材料有许多种,但通常是那些不能自由流动的材料,如未硫化的橡胶、未交联的弹性体和焦油。
能自由流动的材料的典型例子包括粘土、硅酸盐、碳酸钙、二乙基二硫代氨基甲酸镉、二硫化四甲基秋兰姆、二硫化二(苯并噻唑基)、取代的硫代酯和胺抗氧化剂、苯胺抗臭氧衍生物、二胺、选自硫、提供硫的化合物和过氧化物的硫脲硬化剂、选自取代苯并三唑和取代二苯酮的紫外光剂、选自氧化铁、二氧化钛和有机染料的有色颜料、选自炭黑、氧化锌和水合硅化合物的增强颜料、诸如二氧化硅、浮石、硬脂酸酯和橡胶加工油的加工助剂、交联的弹性体、未硫化的橡胶复合材料、废胎胶末、除草剂、杀菌剂、杀真菌剂和氯化聚乙烯(CPE)。能有效包含在本发明包装中的可自由流动的物质不仅包括液体,还包括固体。
在橡胶工业中,通常使用少量(如0.5-10重量%)的橡胶加工油,该橡胶加工油与至少一种配合料相混合。能包装在本发明新颖包装中的物质不包括在或不限于上面列举的那些。
本发明的包装与加入其中或被包覆盖的配合料有关,还与配合料和诸如橡胶加工油的添加剂的混合物有关。在未硫化橡胶的情况下,薄膜配合在橡胶周围。尤其是在张力下用薄膜牢固地覆盖橡胶,然后将薄膜热合在橡胶上,完成包装。在包装的生产中,希望进行薄膜的热合,但这并不总是必须的。
由分批包入包装制得的制品可根据将要包入包装中的材料类型而变。这类制品的一些例子是沥青、动物饲料和线材。例如在沥青生产中包装废胎胶末、生产动物饲料中包装二氧化钛和电线涂覆生产中包装CEP时,在本发明的分批包入包装中投入上述特定的材料。其它制品的例子包括各种橡胶。例如,橡胶或橡胶混料添加剂可以用本说明书中所述的分批包入薄膜进行包装。通过包装废弃物(重质焦油流出物或废塑料)和通过将整个包装投入焚烧炉,可以产生能量。如果废塑料和其它物质可以包装和再利用,就可以生产诸如垃圾包和公园长凳的其它有用制品。
箱内包内容器
箱内包内容器可由包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的薄膜制成。
用于制成箱内包内容器的薄膜厚度一般为30-1,000微米,较好为50-700微米,尽管厚度可以根据内含物或生产方法而变。
本发明箱内包内容器的壁宜具有下列性能:
(ⅰ)粘连力小于1.0克/厘米,
(ⅱ)用Gerbo挠曲试验机测得的扭曲次数达2,000后,20.5厘米×28.0厘米的表面上产生针孔数为2个或更少,和
(ⅲ)根据JIS P-8115测定的挠曲数不小于90,000。
那些在模塑过程中在一个面上的颈缩不大于20厘米的薄膜为更佳。
可以由包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的单层薄膜制成箱内包内容器,或者它可以由一层乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)薄膜和一层另一种树脂(如尼龙、乙烯/乙烯醇共聚物、聚乙烯醇(EVOH)、粘合剂树脂)薄膜层压在一起的多层薄膜制得。
箱内包内容器整体上几乎是立方体的形式,其顶部有一个盖。在对应于斜切立方体时形成的周边的位置,存在较厚的热合部分。制成箱内包内容器时要折叠该容器的一半并插入至另一半,使它们相互重叠。
在箱内包的内容器中填充液体等,然后装入有硬外壳的容器,如波面纤维板箱中,再储存或运输。空的容器按照这样的方式折叠,即容器的一半插入另一半,使之相互重叠,然后储存或运输。
当按如上所述折叠箱内包内容器、或充胀成立方体形状、或填充液体后运输时,可以在箱内包内容器的各角落上施加不同的力,使容器经受比普通平板包情况下更大的应力,因此易产生针孔。由于这一原因,要求内容器具备诸如高的抗针孔性、抗挠曲性和抗粘连性等性能。本发明的箱内包内容器满足了上述要求。
可经如下述方法制造箱内包内容器。
(ⅰ)用纵向相互平行的T形模口,将熔融树脂挤出为两片,使用模具进行真空成型,模具的形状可以使制得容器的相对面的周边连接。
(ⅱ)从环形模口挤出熔融树脂(型坯挤出)为圆柱体形状,并用和上述相同的模具进行真空成型。
(ⅲ)将两个或多个树脂膜一个层叠在另一个上,热合四边制成包。在这种情况下,每个薄膜可以是包含共聚物(A)或组合物(A')、(A″)或(A)的单层薄膜或一层共聚物(A)或组合物(A')、(A″)或(A)的薄膜和一层另一种树脂(如尼龙、乙烯/乙烯醇共聚物、聚乙烯醇(EVOH)、粘合剂树脂)的薄膜层压在一起的多层薄膜。
箱内包内容器具有优良的热稳定性、抗粘连性、抗针孔性和抗挠曲性,并且具备经济优势,因此,它被广泛用作各种液体的容器,所述液体如酒、醋、照相显影液、漂白剂和杀菌剂液。
医用容器
医用容器是如多层薄膜制成的包、单层薄膜制成的包或单层瓶。多层薄膜的至少一层、单层薄膜和单层瓶可各自由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得。
通过冰冷却或空气冷却的吹胀法、T形模法、干层压、挤出层压、吹塑等方法制造医用容器。医用包的成型方法中,从卫生质量和经济优势考虑,优选吹胀法和共挤出T形模法。医用瓶的成型方法中,优选吹塑法。
医用容器的厚度一般在0.05-1.00毫米,较好为0.1-0.7毫米,更好为0.15-0.3毫米。如果容器的厚度不小于0.05毫米,容器就能具备优良的抗冲击性,在实际使用中不会出现问题。
这类医用容器未丧失透明度,显示优良的耐热性,即使进行消毒,也不会发生皱纹或变形。
耐热容器
耐热容器是如多层薄膜制成的包、单层薄膜制成的包、多层瓶或单层瓶。多层薄膜的至少一层、单层薄膜、多层瓶的至少一层和单层瓶可各自由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得。
多层耐热容器中除共聚物(A)或组合物(A')、(A″)或(A)层之外的层可以使用任何材料,没有特别的限制,例如,可以使用聚丙烯、尼龙、聚酯和聚乙烯醇。
通过冰冷却或空气冷却的吹胀法、T形模法、干层压、挤出层压、吹塑等方法制造耐热容器。
当耐热容器是包时,从卫生质量和经济优势考虑,优选吹胀法和共挤出T形模法。当耐热容器是瓶时,优选吹塑法。
耐热容器的厚度一般在0.05-1.00毫米,较好为0.1-0.7毫米,更好为0.15-0.3毫米。如果容器厚度不小于0.05毫米,容器就能具备优良的抗冲击性,在实际使用中不会出现问题。
本发明的耐热容器经热消毒后测定其雾度(ASTM D-1003-61)为不大于30%,较好为0-20%。
耐热容器的热变形起始温度不低于115℃,曲颈食品容器的厚度一般在0.05-1.00毫米范围。
按照下面所述测定热变形起始温度。由成型薄膜制得的包或瓶子样品在AlpsCo.制造的RK-4016型的小型耐热高压蒸汽消毒柜中进行消毒温度×30分钟的热水消毒。肉眼观察从消毒柜取出的样品,评价其变化。在110℃的消毒温度时开始消毒,消毒温度每上升1℃,完成一次消毒。重复此操作,当第一次观察到从消毒柜取出的样品变形时,测定消毒温度。测得的温度记为变形起始温度。
耐热容器,如曲颈食品容器未丧失透明度,即使进行消毒也显示优良的耐热性。
弹性纤维
弹性纤维在100%变形下具有至少50%的弹性回复,这类纤维包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。
纤维一般根据其直径分类。单丝纤维一般定义为,以一根丝为基准,直径不小于约15旦尼尔,一般不小于约30旦尼尔的纤维。细旦尼尔纤维一般用来指直径小于约15旦尼尔(以一根丝为基准)的纤维。微旦尼尔纤维一般定义为直径小于约100μ的纤维。纤维还可以根据制造法分类。例如,纤维可分类为单丝、连续卷绕的细丝、短纤维或切短纤维、纺粘纤维或熔喷纤维。
用于制造本说明书中所述的弹性纤维的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的熔体指数,在为单丝的情况下(一般具有不小于15旦尼尔/丝的纤维)在0.01-1,000克/10分钟范围,较好为0.1-5克/10分钟,在为细旦尼尔纤维的情况下(一般具有不大于15旦尼尔/丝的纤维)较好在5-250克/10分钟范围。
在制备弹性纤维所用的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中可以加入添加剂,如抗氧化剂、亚磷酸盐、粘结添加剂、抗粘连剂和颜料,其量以不损害本发明申请人所发现的纤维和织物的改善性能为准。
通过使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),可以制造各种单组分丝纤维。单组分丝纤维是具有单区域结构而没有其它不同聚合物区域结构(如两组分体系纤维区域结构)的纤维。单组分丝纤维包括短纤维、纺粘纤维或熔喷纤维(使用如美国专利4,340,563(Appel等)、4,663,220(Wisneski等)、4,668,566(Braun)或4,322,027(Reba)揭示的体系制得)和凝纺纤维(gel spunfibers)(采用美国专利4,413,110(Kavesh等)揭示的体系制得)。短纤维是可熔纺的,即可通过直接挤出而不必进行另外的拉伸可制造具有最终纤维直径的这些纤维,或通过熔纺制得大直径的纤维,然后采用普通的纤维取向技术对其进行热拉伸或冷拉伸来制造具有所需直径的短纤维。本说明书中揭示的新颖弹性短纤维可用作粘合纤维,本发明中,可以制得新颖的弹性纤维,其熔点低于包围它们的基体纤维的熔点。在粘合纤维的典型用途中,粘合纤维可以和其它基体纤维混合,并在整个结构上施加热量,使粘合纤维熔融,相互粘合到周围的基体纤维上。可从使用新颖弹性纤维获益的基体纤维的典型例子包括聚对苯二甲酸乙二醇酯纤维、棉纤维、尼龙纤维、聚丙烯纤维、其它不均匀支化的聚乙烯纤维和线型聚乙烯均聚物纤维,但并不局限于这些。基体纤维的直径可根据最终用途改变。
由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得的熔纺纤维所显示的弹性回复出人意料地几乎和按照下述方法制得的纤维的弹性回复相同,即先进行熔纺制得直径2倍或3倍于熔纺纤维的纤维,然后再进行冷拉伸使它们的直径与熔纺纤维的直径相同。在此所指的弹性并不是经热处理就会变得无效的取向结果。因此,制得的制品即使经热处理后仍能保持弹性。
本说明书揭示的新颖弹性纤维的情况中,乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的熔体指数可以在很宽范围内变化,对纤维的弹性仅有很小影响,从而使纤维和织物的强度和收缩力发生与弹性无关的变化。因此,可以较为韧性地设计织物和最终产品。例如,通过改变聚合物的熔体指数,而不是纤维的直径就可以改变纤维的收缩力。(如果降低熔体指数,收缩力就提高)。因此,在保持织物所需的弹性/强度性能下能更好地实行织物手感(即感觉)的最优化成为可能。
使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)还可以制得两组分体系纤维。乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可用作两组分体系纤维的至少一部分。例如,对壳/芯型两组分体系纤维的情况,其中芯被壳同轴包裹,乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可以存在于壳和芯的任一个中。选自乙烯/α-烯烃共聚物(A)和乙烯共聚物组合物(A')、(A″)或(A)的不同类型可独立地用于壳和芯,在这种情况下,宜按照下面的方式设计,即两个组分都具有弹性,壳组分的熔点低于芯组分的熔点。本发明包括另一种类型的两组分体系纤维,例如并列型纤维。并列型纤维例如是具有彼此不同的聚合物区域结构的纤维,乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可用于该纤维表面的至少一部分。
不具体限制纤维的形状。例如,纤维通常具有圆形截面形状,但是纤维还可以具有诸如三叶形(trilobal)或平形(即缎带形)的其它截面形状。本说明书揭示的弹性纤维不受纤维形状的限制。
可以各种方式测定纤维的直径并作记录。一般按照每根纤维的“旦尼尔”数测定纤维的直径。“旦尼尔”是与织物有关的术语,它定义为每9000米长纤维的纤维重量(克)。单丝一般应用于不小于15旦尼尔/丝,通常不小于30旦尼尔/丝的挤出股线。细旦尼尔纤维一般用来指约15或更小旦尼尔的纤维。微旦尼尔纤维(称作微纤维)一般用来指直径不大于约100微米的纤维。本说明书揭示的新颖弹性纤维的情况中,其直径可以在很宽范围内变化,而几乎不影响纤维的弹性。可以控制纤维的旦尼尔来适应最终产品的功能,较好的是熔喷法纤维具有0.5-30旦尼尔/丝,纺粘纤维具有1-30旦尼尔/丝,连续丝具有1-2,000旦尼尔/丝。
由上述新颖纤维制造的织物包括织造织物和非织造织物。在美国专利3,485,706(Evans)和4,939,016(Radwanski等)中揭示的包括射流喷网法非织造织物(或水力捻线织物(fabric twined by hydraulic power))在内的非织造织物可通过各种方法制造,如通过加热使短纤维起毛粘合的方法、一次性连续操作中纺粘连续纤维的方法、和熔喷纤维的方法,随后轧光制得的纤维网或热粘合该纤维网。本技术领域的技术人员皆知这些制造非织造织物的各种方法,本发明的揭示内容不受任何方法的限制。由上述纤维制得的其它结构也包括在本发明的范围之内,其实施例包括新颖纤维和另一种纤维(如聚对苯二甲酸乙二醇酯(PET))或棉花的混合物。
本说明书的权利要求书中使用的术语“包含”指在制造纤维和织物中使用的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可以含有附加的物质,它们对纤维或织物的弹性基本没有影响。这种有用的非限制性添加物质包括颜料、抗氧化剂、稳定剂和表面活性剂(如美国专利4,486,552(Niemann)、4,578,414(Sawyer等)或4,835,194(Bright等)所揭示的)。
使用本说明书揭示的新颖弹性纤维和织物制得的制品包括要求具有弹性部分的复合织物制品,如尿布。按美国专利4,381,781(Sciaraffa)所述,尿布中,要求西带部分(west band part)具有弹性,以防止尿布滑下,要求腿带部分具有弹性,以防止泄漏。具有弹性的这些部分常常用于改善形状配合和/或形状固定体系,使能很好地兼具舒适性和可靠性。通过使用本说明书揭示的新颖弹性纤维和织物,可以制得兼具弹性和空气渗透性的结构。
本说明书揭示的新颖弹性纤维和织物还可以用于美国专利2,957,512(Wade)揭示的各种结构。例如,美国专利2,957,512中所述结构的层50(即具有弹性的组分)可以被新颖的弹性纤维和织物代替。此美国专利中,没有弹性的材料被弄平,聚集和折皱制得具有弹性的结构。通过熔融粘合或使用粘合剂,新颖的弹性纤维和/或织物可以装配到另一种纤维、织物或没有弹性的结构上。通过使用新颖的弹性纤维和/或织物以及另一种没有弹性的组分,可以制得带聚集或抽褶的弹性结构。具体是没有弹性的组分(如美国专利’512中所述的组分)被聚集,具有弹性的组分在装配前预先伸长,或者该具有弹性的组分在装配后热收缩。
本说明书所述的新颖弹性纤维经射流喷网成布(或水力捻线)也可以制得新颖结构。例如美国专利4,801,482(Goggans)中揭示的弹性片(12)可使用本说明书所述的新颖弹性纤维/织物制造。
本说明书所述的具有弹性的连续丝还可用于要求高冲击回弹的织造织品。
本说明书揭示的新颖弹性纤维和织物的韧度和收缩力可以控制,如果需要,与如美国专利5,196,000(Clear等)中所述的相同衣服中收缩力变化相关的柔性设计是可行的。
美国专利5,037,416(Allen等)中描述了使用具有弹性的带所导致的配合形状的顶部片的优点(美国专利’416的参考部件19)。新颖弹性纤维可按照能提供美国专利’416的部件19所示功能或具有所需弹性的织物的形式使用。
在使用具有极高分子量的线型聚乙烯或乙烯共聚物的复合物中,使用本说明书揭示的新颖弹性纤维也可得到好处。例如,新颖的弹性纤维具有低的熔点(这种聚合物的熔点和密度基本为线性关系)。因此,在这种新颖的弹性纤维和如美国专利4,584,347(Harpell等)所述的具有极高分子量的聚乙烯纤维(如可从AlliedChemical购得的Spectrra(商品名)纤维)的混合物情况下,这种低熔点的弹性纤维可用于粘合高分子量的聚乙烯纤维而不是熔融它,从而可以保持高分子量纤维和结合体的高强度。
美国专利4,981,747(Norman)中,形成包含可逆收缩物质的复合弹性材料的弹性片122可以被本说明书揭示的新颖弹性纤维和/或织物所代替。
新颖的弹性纤维可以用作熔喷法的弹性组分,美国专利4,879,170(Radwanski)的附图的参考号6表示了这点。此美国专利’170中,描述了一般具有弹性的共模塑材料和它们的制备方法。
本说明书揭示的新颖弹性纤维和织物可用于制造弹性面板。这种面板可用作美国专利4,940,464(Van Gompel)中的部件18、20、14和/或26。还可以使用本说明书揭示的新颖弹性纤维和织物作为复合侧面面板的弹性组分(如美国专利’464中的层86)。
发泡成型产品
可以制造各种形状的发泡成型产品,如棒、管、带和片,发泡成型产品可以用作缓冲材料的基材、热绝缘材料、泥敷剂(膏药)材料等。
通过混合乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和发泡剂,然后加热该混合物或将其置于真空下,气化发泡剂或产生分解气体,在树脂模塑产物中产生气泡来制造发泡产品。
制造发泡产品方法的例子包括下列方法:
(1)挤出发泡法
将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)加入挤出机料斗中。在接近树脂熔点的温度下挤出树脂时,通过位于挤出机中部的注射孔注入物理发泡剂,从所需形状的模口挤出树脂,可连续获得发泡产品。物理发泡剂的例子包括挥发性发泡剂,如氟利昂、丁烷、戊烷、己烷和环己烷;和无机气体发泡剂,如氮、空气、水和碳酸气。挤出发泡中,可以加入成核剂,如碳酸钙、滑石、粘土或氧化镁。
按100重量份共聚物(A)或组合物(A)、(A')、(A″)或(A)计,物理发泡剂的加入量一般为5-60重量份,较好为10-50重量份。如果物理发泡剂的加入量太小,会降低产品的可发泡性。如果其加入量太大,会降低发泡产品的强度。
(2)乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)、可热分解的有机发泡剂(如偶氮二甲酰胺)、以及如果需要的话其它添加剂和热塑性树脂通过捏合设备,如单螺杆挤出机、双螺杆挤出机、班伯里混合机、捏合混合机或辊在低于可热分解发泡剂的分解温度下熔融捏合,制得可发泡的树脂组合物。该组合物一般模塑成片,在不低于发泡剂的分解温度的温度下加热该片进行发泡,从而制得发泡产品。
按100重量份共聚物(A)或组合物(A')、(A″)或(A)计,可热分解的有机发泡剂的加入量一般为1-50重量份,较好为4-25重量份。如果可热分解的有机发泡剂的加入量太小,会降低产品的可发泡性。如果其加入量太大,会降低发泡产品的强度。
(3)在压力容器中的发泡方法
乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可通过压机或挤出机模塑成片或块,将成型产品放人压力容器中。待物理发泡剂充分融化在树脂中后,对压力容器抽真空,制得发泡产品。还可以在室温下,在已经加入成型产品的压力容器中充入物理发泡剂,然后对容器加压并抽真空,之后取出成型产品并在油浴、烘箱等中加热进行发泡。
如果乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)预先交联,可制得交联的发泡产品。
交联方法的例子包括使与树脂混合的过氧化物自由基发生剂热分解来交联树脂的方法、通过电离辐射交联的方法、在多官能单体存在下通过电离辐射交联的方法、和硅烷交联法。
为通过这些方法制得交联的发泡产品,共聚物(A)或组合物(A')、(A″)或(A)、可热分解的有机发泡剂、作为交联助剂的多官能单体和其它添加剂在低于可热分解发泡剂的分解温度的温度下熔融捏合,并成型为片。制得的可发泡树脂组合物片用给定剂量的电离辐射辐照,以交联共聚物(A)或组合物(A')、(A″)或(A)。然后,将该交联片加热至不低于发泡剂分解温度的温度以发泡该片。可使用α射线、β射线、γ射线、电子射线等作为电离辐射。可以进行过氧化物交联或硅烷交联代替电离辐射的辐照交联。
本发明中,在共聚物(A)或组合物(A')、(A″)或(A)中可任选加入添加剂,如耐候稳定剂、热稳定剂、防滑剂、抗粘连剂、消雾剂、润滑剂、颜料、染料、成核剂、增塑剂、抗老化剂、盐酸吸收剂和抗氧化剂,其量以不损害本发明的目的为准。而且可以混入少量的其它聚合物,都不偏离本发明的精神。
这种发泡产品具有优良的挠性和韧性。
泡沫结构
泡沫结构包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。
可以使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和另一种合适的乙烯聚合物或另一种天然或合成聚合物的共混物。其它合适的乙烯聚合物的例子包括低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)(可使用如美国专利4,076,698所述的齐格勒催化剂制得)、乙烯/乙酸乙烯酯共聚物、乙烯和不饱和羧酸的共聚物以及α-烯烃的均聚物和共聚物。其它合适的聚合物包括聚苯乙烯(包括抗冲击型聚苯乙烯)、苯乙烯/丁二烯嵌段共聚物、聚异戊二烯和其它橡胶。主要含高熔点树脂的共混物较好。共聚物(A)或组合物(A')、(A″)或(A)或含共聚物(A)或组合物(A')、(A″)或(A)的共混物被称作“乙烯聚合物材料”。
乙烯聚合物材料所含的乙烯单体单元的量较好为不小于50重量%,更好为不小于70重量%,与其组成无关。乙烯聚合物材料可以完全或大体上由乙烯单体单元组成。较好的共混物包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和另一种普通乙烯聚合物,如LDPE、HDPE、乙烯/丙烯酸共聚物(EAA)或LLDPE。
在乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中可加入添加剂,如抗氧化剂(如受阻酚(Irganox(商品名)1010)、亚磷酸盐(如Irgafos(商品名)168)和颜料,其量以不损害本发明申请人所发现的改进性能为准。
在“聚合物发泡物和技术手册”(D.Klempner和K.C.Frisch编辑,HanserPublishers,Munich,Vienna,New York,Barcelona(1991))的C.P.Park著的“聚烯烃发泡物”第9章中有关于制造泡沫结构的方法或加工泡沫结构的方法的详细内容。
可以通过常用的挤出发泡法制得泡沫结构。一般通过包括下列步骤的方法制得该结构,加热乙烯聚合物材料制得增塑或熔融的聚合物材料,在该聚合物材料中加入发泡剂形成可发泡的凝胶,通过模头挤出该凝胶制得泡沫产品。在与发泡剂混合之前,将聚合物材料加热至不低于聚合物材料的玻璃化温度或熔点的温度。可采用任何常用方式,如挤出机、混合机或共混机,在聚合物材料中加入发泡剂并混合之。在足以抑制熔融聚合物材料的主要发泡和足以基本上均匀分散发泡剂的高压下,将发泡剂与熔融聚合物材料混合。如果需要,成核剂可与熔融聚合物混合,或在塑化或熔融之前与聚合物材料干混。可发泡的凝胶一般冷却至较低的温度,使所得的泡沫结构的性能最佳。之后,通过所需形状的模头挤出凝胶到较低压力的区域,制得泡沫结构,或传送该凝胶。较低压力区域的压力小于通过模头挤出可发泡凝胶之前所保持的压力。该压力可大于大气压或小于大气压(真空),但宜处于大气压力下。
通过多孔模头挤出乙烯聚合物材料,以聚集线料的形式加工这种结构。孔口的排列方式应使相邻的熔融挤出物流间的接触发生在发泡期间,并使接触表面具有足够高的粘合力,使它们相互粘合形成结合的泡沫结构。从模头出来的熔融挤出物流各自为线料或型材的形式,希望它们被发泡、聚集和相互粘合成为一个整体的结构。该线料或型材应该是一个结合起来的整体形式,使线料不会被泡沫产生、成形和使用时的应力所分开。美国专利3,573,152和4,824,720披露制造聚集线料形式的泡沫结构的方法和设备。
通过美国专利4,323,528中所述的累积挤出法可以制得泡沫结构。在这种方法中,按照下面的方式制得具有大侧面截面积的低密度的泡沫结构。(1)加压下形成乙烯聚合物材料和发泡剂的凝胶。在能使凝胶具有足够的粘度以便在发泡期间保留住发泡剂的温度下形成凝胶。(2)将凝胶挤出至保留区(holding zone),保持保留区的压力和温度,使凝胶不发泡。保留区有一环绕孔口的出口模头,以便将凝胶送人供凝胶发泡用的较低压力区,保留区还有一个可关闭模孔的浇道,该浇道可打开。(3)周期性打开浇道。(4)用可移动的柱塞,几乎同时在凝胶上施加机械压力,通过模孔将凝胶从保留区排放到较低压力区。排放凝胶的速度大于在模孔发生的主要发泡的速度,但小于产生截面或形状上明显不规则性的速度。(5)使排放的凝胶发泡,发泡不限于一个方向,制得泡沫结构。
泡沫结构可加工成适用于制造制品的未交联发泡珠粒。为了制造发泡珠粒,彼此分开的树脂颗粒,如颗粒状树脂粒料可悬浮于该树脂基本上不溶的液体介质如水中。然后,将发泡剂投入在高压釜或另一压力容器中的液体介质中,于高温和高压下用发泡剂浸泡树脂颗粒,再将树脂颗粒迅速排放到空气或真空区域,制得发泡珠粒。在美国专利4,379,859和4,464,484中充分揭示了这种方法。
在源自上述方法的一种方法中,在用发泡剂浸泡之前,悬浮粒料用苯乙烯单体浸泡,制得带有乙烯聚合物材料的接枝共聚物。将聚乙烯/聚苯乙烯共聚物珠粒冷却并从容器中排放,基本没有发泡。然后根据生产发泡聚苯乙烯的常用方法发泡和模塑该珠粒。在美国专利4,168,353中描述了聚乙烯/聚苯乙烯共聚物珠粒的制造方法。
泡沫珠粒可用本技术领域已知的任何方法进行模塑。例如,将泡沫珠粒填充在模具中,而后用蒸汽等加热,以聚集和熔化它们,从而制得一制品。若需要的话,在高温和高压下用空气或另一种发泡剂浸渍珠粒,之后再将它们填充在模具中。另外,在将珠粒填充在模具中之前对其进行加热。然后,可以用本技术领域已知的合适方法将泡沫珠粒制成块状(block)或成形制品。一些方法披露于美国专利3,504,068和3,953,558中。对上述方法和成形方法的更具体描述可参见上述C.P.Park的出版物第191页,197-198页以及227-229页。
制造泡沫结构有用的发泡剂包括无机发泡剂、有机发泡剂和可分解的化学制剂。无机发泡剂的合适例子包括二氧化碳、氮气、氩气、水、空气、氮气和氦气。有机发泡剂的例子包括含1-6个碳原子的脂族烃、含1-3个碳原子的脂肪醇和含1-4个碳原子的完全或部分卤代的脂族烃。脂族烃的例子包括甲烷、乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷和新戊烷。脂肪醇的例子包括甲醇、乙醇、正丙醇和异丙醇。完全或部分卤代的脂族烃的例子包括含氟烃、含氯烃和含氯氟烃。含氟烃的例子包括氟代甲烷、全氟甲烷、氟代乙烷、1,1-二氟乙烷(HFC-152a)、1,1,1-三氟乙烷(HFC-143a)、1,1,1,2-四氟乙烷、2,2-二氟丙烷、1,1,1-三氟丙烷、全氟丙烷、二氯丙烷、二氟丙烷、全氟丁烷和全氟环丁烷。用于本发明的部分卤代的含氯烃和含氯氟烃的例子包括氯代甲烷、二氯甲烷、氯代乙烷、1,1,1-三氯乙烷、1,1-二氯-1-氟乙烷(HCFC-141b)、1-氯-1,1-二氟乙烷(HCFC-142b)、1,1-二氯-2,2,2-三氟乙烷(HCFC-123)和1-氯-1,2,2,2-四氟乙烷(HCFC-124)。完全卤代的含氯氟烃的例子包括三氯一氟甲烷(CFC-11)、二氯二氟甲烷(CFC-12)、三氯三氟乙烷(CFC-113)、1,1,1-三氟乙烷、五氟乙烷、二氯四氟乙烷(CFC-114)、氯七氟丙烷和二氯六氟丙烷。化学发泡剂的例子包括偶氮二甲酰胺、偶氮二异丁腈、苯磺酰肼(benzenesulfonhydrazide)、4,4-氧代苯磺酰基氨基脲、对甲苯磺酰基氨基脲、偶氮二羧酸钡、N,N’-二甲基二亚硝基对苯二酰胺和三肼基三嗪。较好的发泡剂包括异丁烷、HFC-152a和它们的混合物。
加到熔融聚合物材料中的发泡剂的量以能形成发泡凝胶为准,其范围为0.2-5.0g·mol/kg聚合物,较好为0.5-3.0g·mol/kg聚合物,更好为1.0-2.50g·mol/kg聚合物。
在泡沫结构中可以加入各种添加剂如稳定性控制剂、成核剂、无机填料、颜料、抗氧化剂、酸清除剂、紫外光吸收剂、阻燃剂、加工助剂和挤出助剂。
稳定性控制剂可以加到泡沫结构中,以改进尺寸稳定性。较好的稳定性控制剂包括酰胺和C10-C24脂肪酸的酯。这种稳定性控制剂可以参见美国专利3,644,230和4,214,054。最好的稳定性控制剂包括硬脂酰基硬脂酰胺、甘油一硬脂酸酯、甘油一山萮酸酯和山梨醇一硬脂酸酯。以100份聚合物为基准计,稳定性控制剂的用量通常约为0.1-10份。
泡沫结构具有很好的尺寸稳定性。以初始体积计,较好泡沫的回复性达80%。初始体积在发泡后30秒钟内测量。体积用适当的方法如水体积置换法(watervolume displacement)进行测量。
可以加入成核剂以控制泡沫中泡的大小。较好的成核剂包括无机材料如碳酸钙、滑石、粘土、二氧化钛、二氧化硅、硫酸钡、硅藻土、柠檬酸和碳酸氢钠的混合物。以100重量份聚合物树脂计,成核剂的用量约为0.01-5重量份。
泡沫结构基本上是未交联或不交联的。泡沫结构中所含的链烯基芳族聚合物材料基本上是不交联的。按ASTM D-2765-84中的方法A测量,泡沫结构所含的凝胶不大于5%。在不使用任何交联剂或辐射的情况下自然发生的某些程度的交联是允许的。
泡沫结构的密度小于250kg/cm3,更好为小于100kg/cm3,最好为10至小于70kg/cm3。按ASTM D3576测量泡沫的平均孔眼大小为0.05-5.0毫米,更好为0.2-2.0毫米,最好为0.3-1.8毫米。
泡沫结构可为本领域已知的任何物质形状,如挤出的片、棒、板和型材。泡沫结构可通过将可发泡的珠粒模塑成任何上述形状或其它形状而制得。
泡沫结构可为闭孔泡沫结构或开孔泡沫结构。按ASTM D2856-A测量,泡沫结构所含的闭孔的量较好为不小于80%。
对于运动物品、用于休闲时间娱乐的物品和缓冲包装来说,较坚韧和较弹性的泡沫结构是非常有用的。
发泡结构
发泡结构包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A),它具有韧度、弹性和低密度。
本发明结构的热稳定性比EVA发泡结构高,并且在发泡过程、制造过程和使用过程中不会产生令人不愉快的气味。具有柔软度和韧度的交联发泡结构可用于运动物品、医用设备和缓冲物品。
为了制备发泡结构,可以使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和合适、不同的乙烯聚合物或另一种天然或合成聚合物的共混物。合适、不同的乙烯聚合物的例子包括低密度聚乙烯(LDPE,如采用高压、自由基聚合方法制得的聚乙烯)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE,如采用如在美国专利4,076,698中所述的这种齐格勒催化剂制得的聚乙烯)、乙烯/酯共聚物、乙烯/乙酸乙烯酯共聚物、乙烯和烯属不饱和羧酸的共聚物,以及α-烯键物质的均聚物或共聚物。其它合适的聚合物包括聚苯乙烯(包括高抗冲聚苯乙烯)、苯乙烯/丁二烯嵌段共聚物、聚异戊二烯和其它橡胶。包含大比例的高熔点树脂的共混物是优选的。乙烯聚合物材料包含的乙烯单体单元的量较好为不小于50重量%,更好为不小于70重量%,该量与其组成无关。乙烯聚合物材料可以完全由烯类单体单元组成。较好的共混物是乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和另一种常规乙烯聚合物,如LDPE、HDPE、乙烯/丙烯酸共聚物(EAA)或LLDPE的共混物。
发泡结构可呈本技术领域已知的任何外形。例如,该结构可以是片状、厚板状或燃烧树干状物(burn stock)。其它有用的发泡结构是可发泡或可发性的颗粒、可模塑可发泡的颗粒、通过发泡和/或粘结和焊接珠粒制成的珠粒和产品。
对制造发泡结构的过程或加工发泡结构的方法的更具体描述可参见“聚合物泡沫和技术手册”(由D.Klempner和K.C.Frisch编辑,Hanser Publishers,Munich,Vienna,New York,Barcelona(1991)),C.P.Park“聚烯烃泡沫”第9章。
本发明的发泡结构可以经下述方法制得,该方法包括将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)与可分解的化学发泡剂混合,加热它们制备塑化或熔融的可发泡的聚合物材料,挤出含交联剂的可发泡的熔融聚合物材料,并将该聚合物材料置于升高到能释放发泡剂的温度下的步骤,这样就制得发泡结构。可以用本领域已知的方式混合聚合物材料和化学发泡剂并将它们熔融共混,例如采用挤压机、混合机或共混机。化学发泡剂宜先与聚合物材料干混,之后加热聚合物材料使之熔化,但是也可以在聚合物材料是熔融相时加入该发泡剂。可以加入交联剂或用辐射照射来引发交联。引发交联和置于升高到发生膨胀或发泡的温度下的此两个步骤可以同时或依次进行。当使用交联剂时,与化学发泡剂相类似地将其加到聚合物材料中。当使用交联剂时,加热可发泡的熔融聚合物材料或将其置于较好为低于150℃的温度下,以防止交联剂或发泡剂的分解并抑制过早交联。在辐射交联的情况下,加热可发泡的聚合物材料或将其置于较好为低于160℃的温度下,以防止发泡剂的分解。通过所需形状的模头挤出可发泡的熔融聚合物材料,制备可发泡的结构。然后在高温(一般为150-250℃)如在烘箱内的温度下交联可发泡的结构,从而使结构发泡。在辐射交联的情况下,用辐射照射可发泡的结构,以交联聚合物,然后用上述升高的温度进行发泡。宜采用上述交联剂或辐射中任何一种方法将本发明的结构加工成片或薄板。
本发明的发泡结构可以是用诸如GB2,145,961A中所述的长合模面模头(longland die)经挤出法制得的连续薄板的形式。在这个方法中,聚合物、交联剂和发泡剂在一挤出机中混合,在长合模面模头中加热混合物至使聚合物交联并使发泡剂发泡,而后使混合物通过模头制得发泡结构。使用一合适的润滑剂使发泡结构和模头之间进行接触。
本发明的发泡结构可以是适用于制造制品的交联发泡珠粒的形式。发泡珠粒可按下述方法制备。将相互分开的树脂颗粒,如颗粒状树脂粒料,悬浮在该树脂粒料基本上是不可溶的液体如水中。然后,在高压釜或另外的压力容器中用交联剂和发泡剂在高温和高压下浸渍粒料,将树脂颗粒快速地排到空气或真空区中,从而制得发泡珠粒。用发泡剂浸渍聚合物珠粒,而后冷却,从容器中排出,并采用加热或使用蒸汽使其发泡。在从上述方法引出的方法中,可以用苯乙烯单体浸渍悬浮的粒料,从而和乙烯聚合物材料一起制得接枝共聚物。可以用发泡剂浸渍悬浮状态或非水状态的树脂粒料。然后用蒸汽加热使可发泡的珠粒发泡,按常规方法模塑成发泡的聚苯乙烯珠粒。
可用本领域已知的任何方法模塑发泡珠粒。例如,将发泡珠粒填充在一模具中,用压模压制,然后用蒸汽等加热,以聚集和熔接它们,从而制得制品。在将珠粒填充在模具中之前,可以任选地用空气或另一种发泡剂预热之。对上述方法和模塑方法的更具体描述可以参见上述C.P.Park的出版物,227-233页,美国专利3,886,100、美国专利3,959,189、美国专利4,168,353和美国专利4,429,059。发泡珠粒也可以这样制得,即用适当的混合设备或挤出机制备聚合物、交联剂和可分解发泡剂的混合物,然后将该混合物模塑成粒料,加热粒料使其交联和发泡。
还有另一种制造适用于制造制品的交联、发泡珠粒的方法。熔化乙烯聚合物材料,用常规的挤出机将其与物理发泡剂混合,制得基本上连续的发泡线料。将发泡线料造粒,获得发泡珠粒。然后用辐射照射使发泡珠粒交联。接着粘结交联、发泡的珠粒并按上述关于其它方法所述的将其模塑成各种制品。其它的详述可参见美国专利3,616,365和上述C.P.Park的出版物,224-228页。
本发明的发泡结构可以经两种不同的方法制成燃烧树干状物。一种方法是使用交联剂,另一种方法是使用辐射。
本发明的发泡结构可以经下述方法制成燃烧树干状物,该方法包括将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)与交联剂和化学发泡剂混合,制得厚片,加热混合物的厚片,用交联剂使聚合物材料交联,并分解发泡剂,从模具中释放压力,使厚片发泡。可以任选地再次加热通过释放压力制得的燃烧树干状物,进行进一步发泡。
交联聚合物片可通过用高能束照射聚合物片或加热含化学交联剂的聚合物片制得。将交联聚合物片切成所需的形状,并在不低于聚合物软化点的温度下用高压氮浸渍。然后释放压力,在片中形成泡核,并进行一定程度的发泡。再次在低压和不低于聚合物软化点的温度下加热该片。然后释放压力,使该片发泡,从而制得发泡产品。
制造本发明发泡结构有用的发泡剂例如是可分解的化学发泡剂。化学发泡剂在高温下分解产生气体或蒸气,从而使聚合物发泡制得发泡产品。化学发泡剂宜为固体形式,以便与聚合物材料容易干混。化学发泡剂的例子包括偶氮二甲酰胺、偶氮二异丁腈、苯磺酰肼(benzenesulfohydrazide)、4,4-氧代苯磺酰基氨基脲、对甲苯磺酰基氨基脲、偶氮二羧酸钡、N,N’-二甲基-N,N’-二亚硝基对苯二酰胺、N,N’-二亚硝基五亚甲基四胺、4,4-氧代二(苯磺酰基酰肼)和三肼基三嗪。较好的是偶氮二甲酰胺。对化学发泡剂的进一步详述可参见上述C.P.Park的出版物(205-208页),F.A.Shutob著的“聚烯烃泡沫”和“聚合物泡沫和技术手册”(D.Klempner和K.C.Frisch著,Hanser Publishers,Munich,Vienna,NewYork<Barcelona(1991))。
在与聚合物材料共混中,化学发泡剂的用量为能足以产生0.2-5.0mol,较好0.5-3.0mol,最好1.2-2.50mol的气体或蒸气。
制造本发明发泡结构有用的交联剂是过氧化物。过氧化物的例子包括1,1-过氧化二叔丁基-3,3,5-三甲基环己烷、过氧化二枯基、2,5-二甲基-2,5-二(过氧化叔丁基)己烷、过氧化1-丁基枯基、α,α'-二(过氧化丁基)二异丙基苯、过氧化二叔丁基和2,5-二甲基-2,5-二(过氧化叔丁基)己烷。较好的是过氧化二枯基。对有机过氧化物交联剂的进一步详述可参见上述C.P.Park的出版物(198-204页)。
用辐射的交联可采用常规辐射中的任何一种进行。有用辐射的例子包括电子束、β射线、γ射线、X射线和中子。在辐射交联中,认为用辐射进行照射产生聚合物基团,该基团相互交联。对辐射交联的进一步详述可参见上述C.P.Park的出版物(198-204页)。
在制造本发明发泡结构的某些方法中,可以使用物理发泡剂。物理发泡剂包括有机发泡剂和无机发泡剂。无机发泡剂的较好例子包括二氧化碳、氮气、氩气、水、空气和氦气。有机发泡剂的例子包括含1-9个碳原子的脂族烃、含1-3个碳原子的脂肪醇和含1-4个碳原子的完全或部分卤代的烃。脂族烃的例子包括甲烷、乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷和新戊烷。脂肪醇的例子包括甲醇、乙醇、正丙醇和异丙醇。完全或部分卤代的脂族烃的例子包括含氟烃、含氯烃和含氯氟烃。含氟烃的例子包括氟代甲烷、全氟甲烷、氟代乙烷、1,1-二氟乙烷(HFC-152a)、1,1,1-三氟乙烷(HFC-143a)、1,1,1,2-四氟乙烷(HFC-134a)、五氟乙烷、二氟甲烷、全氟乙烷、2,2-二氟丙烷、1,1,1-三氟丙烷、全氟丙烷、二氯丙烷、二氟丙烷、全氟丁烷和全氟环丁烷。用于本发明的部分卤代的含氯烃和含氯氟烃的例子包括氯代甲烷、二氯甲烷、氯代乙烷、1,1,1-三氯乙烷、1,1-二氯-1-氟乙烷(HCFC-141b)、1-氯-1,1-二氟乙烷(HCFC-142b)、氯二氟甲烷(HCFC-22)、1,1-二氯-2,2,2-三氟乙烷(HCFC-123)和1-氯-1,2,2,2-四氟乙烷(HCFC-124)。完全卤代的含氯氟烃的例子包括三氯一氟甲烷(CFC-11)、二氯二氟甲烷(CFC-12)、三氯三氟乙烷(CFC-113)、1,1,1-三氟乙烷、五氟乙烷、二氯四氟乙烷(CFC-114)、氯七氟丙烷和二氯六氟丙烷。
加到用于制备可发泡聚合物凝胶的熔融聚合物材料中的发泡剂的量为0.2-5.0mol/kg聚合物,较好为0.5-3.0mol/kg聚合物,更好为1.0-2.50mol/kg聚合物。
用ASTM D-2765-84的方法A测量本发明发泡结构的交联点密度为5-90%,更好为30-70%。
本发明发泡结构的密度小于500kg/m3,更好为小于250kg/m3,最好为小于150kg/m3。按ASTM D3576测定的该发泡结构的平均孔直径为0.05-5.0ml,更好为1.0-2.0ml,最好为0.2-1.0ml。
本发明的发泡结构可为闭孔结构或开孔结构。按ASTM D2856-A测量,本发明发泡结构所含的闭孔的量较好为大于90%。
在本发明的发泡结构中可以加入各种添加剂。添加剂的例子包括无机填料、稳定性控制剂、成核剂、着色剂、抗氧化剂、酸清除剂、紫外光吸收剂、阻燃剂、加工助剂和挤出助剂。
垫圈
垫圈包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。垫圈能压封各种容器,而不会污染内含物。本说明书披露的新颖垫圈材料特别有益于盛放液体的容器。
某些垫圈必须耐高于室温(约25℃)的温度,尽管只是短时间,尤其是它们用于“热填充”时。例如,若制品需要消毒,则熔点不低于100℃的垫圈应该适用于制品。因此,当使用垫圈时,可以通过选择适合于环境的密度来选择适用于应用的聚合物。
按最终使用所需的性能,将其它聚合物与有用量的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)混合,制得垫圈。其它聚合物是热塑性聚合物(例如可熔融加工的聚合物),其例子包括下述聚合物,如高支化的低密度聚乙烯、不均匀支化的线型低密度聚乙烯、乙烯/乙酸乙烯酯共聚物和乙烯/丙烯酸共聚物。
尽管由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的垫圈必须具有高到足以耐压缩的硬度,但它必须具有高到足以形成合适密封的柔软度。因此,若所制得的聚合物具有适用于使用的硬度,则可以制备各种垫圈。在本说明书中,将硬度测为“肖氏A硬度”或“肖氏D硬度”(按ASTM D-2240测量)。用于制造垫圈的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的肖氏A硬度为70-100,即使不使用通常加入用于降低所用聚合物和所得垫圈硬度的石油润滑油。
在乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中可以加入添加剂,如抗氧化剂、亚磷酸盐、粘结添加剂(如PIB)、增滑剂(如芥酰胺(erucamide))、防粘连剂和颜料,其用量以不损害本发明申请人所发现的改进性能为准。
垫圈可为各种形状,包括“o-环”和平的密封(如其厚度适用于所需应用的“膜状”垫圈)。
合适的最终使用的例子包括用于饮料的盖衬里、用于热装汁液的盖衬里、聚丙烯盖衬里、金属盖衬里、高密度聚乙烯盖衬里、用于窗玻璃的垫圈、密封容器、密封盖、用于医用设备的垫圈、过滤器部件、压力排放用的垫圈、热熔垫圈、容易拧开的盖、用于电化学电池的垫圈、用于冰箱的垫圈、原电池的垫圈、用于防漏电电池的垫圈、防水片、可重复使用的垫圈、合成的软木塞状材料、薄电池电子薄膜分隔器、磁性橡胶材料、用于酒精饮料瓶盖的圆盘垫圈、防冻密封环、用于塑料模塑的垫圈、膨胀接头、止水条、防腐管接头、软磁性塑料、管接头密封、耐全天候的塑料盖、电力铰链、磁性贴面发泡制品、大口瓶环、软垫圈、玻璃密封、用于防干扰的密封衬里、压力涂布机、瓶盖和麦管的整体结构、大号贮瓶的瓶衬里、用于苹果酱或辣沙司(salsa)大口瓶的金属盖、用于家用罐头的大口瓶和冠状盖。
由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制成的垫圈具有许多优点,尤其是当它用于食品时。例如,可以提到的有下述优点:与目前一般使用的聚合物垫圈(如乙烯/乙酸乙烯酯共聚物垫圈)的情况相比,其味道和气味均得到较大的改善;对极性物质如聚对苯二甲酸乙二醇酯和玻璃的粘合性低,这对降低从密封容器上去除盖的转矩是有效的;挤出物的量小,这从遵守规定的角度来看对食品是有效的;对非极性物质如聚丙烯和高密度聚乙烯(如聚乙烯(线型均聚物)或线型不均匀高密度聚乙烯)的粘合性良好;对氧、二氧化碳和水的阻隔性令人满意;与目前一般使用的聚合物(如乙烯/乙酸乙烯酯共聚物)相比,其熔点较高;耐应力开裂性良好;耐化学腐蚀性良好;并且硬度可以变化,这对诸如下列情况是有效的,即垫圈的硬度视密封容器所需的转矩和容器的内压必须提高或降低时。
用于制造垫圈的各种技术披露于美国专利5,215,587(McConnellogue等)、美国专利4,085,186(Rainer)、美国专利4,619,848(Kinght等)、美国专利5,104,710(Kinght)、美国专利4,981,231(Kinght)、美国专利4,717,034(Mumford)、美国专利3,786,954(Shull)、美国专利3,779,965(Lefforge等)、美国专利3,493,453(Ceresa等)、美国专利3,183,144(Caviglia)、美国专利3,300,072(Caviglia)、美国专利4,984,703(Burzynski)、美国专利3,414,938(Caviglia)、美国专利4,939,859(Bayer)、美国专利5,137,164(Bayer)和美国专利5,000,992(Kelch)。
也可以使用常规技术通过将挤出的片或薄膜(例如吹塑薄膜、流延薄膜和挤出涂覆薄膜)制成袋状或切割之来制造本说明书所要求的垫圈。多层薄膜结构也适用于制造本文所披露的垫圈,而乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A’)、(A″)或(A)包含在该多层结构的至少一层(较好是将与制品接触的内层)中。包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的泡沫多层垫圈也可用于本发明。
挤出制品
挤出制品包括挤出涂覆制品,压出型材和挤出流延薄膜形式的制品,它们包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。
可以将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)与其它聚合物材料共混。使用该共混物可以制得单层或多层制品。而且,可以形成一种结构(如密封材料)、粘合剂层或粘结层。为了改进加工性能、薄膜强度、热合性能或粘合性能,可以将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)与其它聚合物共混。
可以使用化学和/或物理改性后的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)。可以采用任何已知的技术达到改性,例如离聚(ionomerization)和挤出接枝改性。
在本说明书中,术语“牵伸(drawdown)”的含义是熔融聚合物挤出物(网状物或长丝)在纵向或有时在横向(同时进行,尽管以低的程度)进行拉伸。
在本说明书中,术语“颈缩(neck-in)”定义为模头宽度与挤出物在取出处的宽度或制品最终宽度之差。颈缩受挤出制品的膨胀及其表面张力影响,尽管表面张力的影响是小的。众所周知,测得的颈缩值(在恒定输出时)是恒定的,即使牵伸速度提高或颈缩值随牵伸速度提高而下降,常规乙烯聚合物的颈缩值通常随分子量降低和/或随分子量分布变窄而提高。
可以在乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中加入添加剂,如抗氧化剂、亚磷酸盐、粘结添加剂(如PIB)、Standostab PEPQ(商品名,购自Sandoz)、颜料、着色剂和填料,其量以不损害本发明申请人所发现的高牵伸和基本上低的颈缩为准。而且,用于改进防粘连性和摩擦系数特性的添加剂也可以加到乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)中。这种添加剂的例子包括未处理或处理过的二氧化硅、滑石、碳酸钙、粘土以及伯、仲或取代的脂肪族酰胺,但并不局限于此。也可以加入用于冷却辊的脱模剂和硅氧烷涂剂。而且,其它用于改进透明流延薄膜的消雾性的添加剂也可以加入,如Niemann在美国专利4,486,552中所述的那些。再者,其它能改进本发明层、断面和薄膜的抗静电性能并能包装电敏感制品或制造它们的添加剂如季铵化合物可以单独加入或将其与乙烯/丙烯酸(EAA)共聚物或其它功能聚合物混合起来一起加入。
可以采用任何已知的方法如挤出、层压和它们的组合来制造含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的多层结构。乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)也可用于共挤出过程,在这种情况下,牵伸较高的材料主要被用来“支撑”一种或多种牵伸较低的材料。
乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可用于制造挤出薄膜、压出型材和挤出流延薄膜,而与单层结构或多层结构无关。当乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)用于涂覆或形成多层结构的目的时,基材或邻接层可以是极性或非极性的。基材的例子包括纸产品、金属、陶瓷、玻璃、各种聚合物(尤其是不同的聚烯烃)和它们的组合,但并不局限于此。压出型材可加工成各种制品,该制品的例子包括用于冰箱的垫圈、用于电线和电缆的护套、电线涂层、用于医用的管状材料和水管,但并不局限于此。使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)制得的挤出流延薄膜可用于食品外包装和工业拉伸外包装。
管包含乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)的硅烷改性的产品。
硅烷改性的产品可经下述方法制得,即在乙烯/α-烯烃共聚物(A)或组合物(A')(A″)或(A)中加入自由基产生剂和硅烷化合物,用适当的混合机如Henschel混合机将它们混合,在约140-250℃时加热以捏和该混合物,进行热接枝。
用于硅烷改性的自由基产生剂较好为2,5-二甲基-2,5-二(过氧化叔丁基)己烷、2,5-二甲基-2,5-二(过氧化叔丁基)己炔-3等。
用于硅烷改性的硅烷化合物较好为含能被水解的有机基团(如端乙烯基和烷氧基)的硅烷化合物,该硅烷化合物特别好为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷等。
通过交联共聚物(A)或组合物(A')、(A″)或(A)的硅烷改性产品的模塑产品,就可制得管。在该模塑产品中加入硅烷醇缩合催化剂,通常使用管成型机将该模塑产品制成管。
作为硅烷醇缩合催化剂,通常用作加速硅烷醇基之间脱水缩合的催化剂的常规化合物都可以使用。可以使用硅烷醇缩合催化剂和未改性的线型聚乙烯来制备母料,然后用混合机如Henschel混合机或V型共混机将该母料与硅烷改性的线型聚乙烯干混,将共混物模塑成管。
通常将上述制得的管在约室温至130℃的温度时与水分、水蒸气或高湿度氛围接触约1分钟至1周,这样由于硅烷醇催化剂的存在进行硅烷交联反应,获得交联过的管。
在管中可以加入添加剂,如热稳定剂、防老化剂、耐候稳定剂、盐酸吸收剂、包括内润滑剂和外润滑剂在内的润滑剂、有机或无机颜料、炭黑、阻燃剂、抗静电剂和填料。
注塑产品
通过注塑乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可以制得注塑产品。可以使用常规的注塑机来制造注塑产品。作为模塑条件,那些迄今为止已知的条件都可以采用。
注塑产品具有优良的耐热性和耐环境应力破裂。
电线护套
电线护套是一种保护电线或电缆的护套(最外层的护套)。
电线护套由乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)和(若需要的话)迄今为止已知的添加剂如热稳定剂、耐候稳定剂、炭黑、颜料、阻燃剂和防老化剂制得。
电线护套的50%龟裂引发时间(F50,ASTM D 1698)为不小于600小时,由Taber磨耗试验(JIS K 7204,负载为1千克,CS-17运货车轮,60rpm,1,000次)测量的磨耗为不大于10mg,以及悬臂梁式冲击强度(ASTMD 256,有缺口,在-40℃时测量)为不小于40J/m2
使用乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)经常规挤出涂覆法可以制得电线护套。
该电线护套具有耐应力开裂、耐磨和低温抗冲击性。
乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可用于下述高牵伸挤出法。
高牵伸挤出法是一种将乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)或含共聚物(A)或组合物(A')、(A″)或(A)的组合物(下面有时称为“热塑性组合物”)在基材上经挤出涂覆或经流延薄膜挤出的方法。该方法包括下述步骤:
(ⅰ)将热塑性组合物送入至少一个挤出机中,
(ⅱ)熔融混合热塑性组合物,形成至少一种聚合物流体,和
(ⅲ)通过一模头挤出该熔融的聚合物流体,制成一大的织物。
上述方法的改进之处在于:
(ⅰ)挤出机在不小于152米/分钟的线速度下进行操作,从而(a)使织物在基材上进行牵伸,用至少一层热塑性组合物涂覆基材,或(b)冷却该织物并使其牵伸在取出设备上,形成至少一层热塑性组合物,从而制得薄膜;和
(ⅱ)在后来的使用中,这样涂覆过的基材或薄膜被转移或放在一起。
与使用用常规齐格勒催化剂制得的乙烯聚合物获得的相比,使用本发明可以获得较小的颈缩、较高的牵伸和较高的耐拉引共振(一种不稳定熔体流动的现象)。
在本说明书中,术语“牵伸”的含义是熔融聚合物挤出物(织物或长丝)在纵向或有时在横向(同时,尽管以低的程度)被拉伸。
在本说明书中,术语“颈缩”定义为模头宽度与在取出处的织物宽度之差。颈缩受挤出物的膨胀及其表面张力影响,尽管表面张力的影响是小的。众所周知,测得的颈缩值(在恒定输出时)是恒定的,即使牵伸速度提高或颈缩值随牵伸速度提高而下降,常规乙烯聚合物的颈缩值通常随分子量降低和/或随分子量分布变窄而提高。
在本发明中,可以在共聚物(A)或组合物(A')、(A″)或(A)中加入添加剂,如抗氧化剂、亚磷酸盐、粘结添加剂(如PIB)、Standostab PEPQ(商品名,购自Sandoz)、颜料、着色剂和填料。而且,用于改进防粘连性和摩擦系数特性的添加剂也可以加到挤出涂覆层或薄膜中。这种添加剂的例子包括未处理或处理过的二氧化硅、滑石、碳酸钙、粘土以及伯、仲或取代的脂肪族酰胺,用于冷却辊的脱模剂和硅氧烷涂剂,但并不局限于此。而且,其它用于改进透明流延薄膜的消雾性的添加剂也可以加入,如Niemann在美国专利4,486,552中所述的那些。再者,其它能改进本发明涂覆层和薄膜的抗静电性能从而能包装电敏感制品的添加剂如季铵化合物可以单独加入或将其与乙烯/丙烯酸(EAA)共聚物或其它功能聚合物混合起来一起加入。
用于制备本发明组合物或制品的乙烯/α-烯烃共聚物(A)或乙烯共聚物组合物(A')、(A″)或(A)可与线型乙烯聚合物和/或高压乙烯聚合物共混,或用作唯一一种树脂聚合物组分,而与所得薄膜或所得涂覆层的单层结构或多层结构无关。将共聚物(A)或组合物(A')、(A″)或(A)与均聚物或与均聚物和其它聚合物共混,可以改进加工性能、薄膜强度、热合性或粘合性。
可与共聚物(A)或组合物(A')、(A″)或(A)共混的材料的一些合适的例子包括低密度乙烯聚合物如高压低密度乙烯均聚物(LDPE)、乙烯/乙酸乙烯酯共聚物(EVA)、乙烯/羧酸共聚物、乙烯/丙烯酸酯共聚物、在低至中压下制得的烯烃聚合物,如聚丁烯(PB)和乙烯/α-烯烃聚合物(包括高密度聚乙烯、中密度聚乙烯、聚丙烯、乙烯/丙烯共聚物、线型低密度聚乙烯(LLDPE)和超低密度聚乙烯),以及接枝改性的聚合物和它们的混合物。
合适的高压乙烯共聚物包括如Mckinney在美国专利4,599,392中所述的将乙烯和至少一种α,β-乙烯不饱和共聚单体(如丙烯酸、甲基丙烯酸或乙酸乙烯酯)共聚合制得的共聚物。在合适的高压乙烯共聚物中,所含的共聚单体占总量的0.1-55重量%,更好为1-35重量%,最好为2-28重量%。高压乙烯共聚物可以是那些经化学和/或物理改性如离聚或挤出接枝改性的共聚物。
在一种较好的聚合物共混物中包含至少一种乙烯共聚物(A)或乙烯共聚物组合物(A,)、(A″)或(A),并且共聚物(A)或组合物(A')、(A″)或(A)宜占聚合物共混物的至少约5%,更好为至少约10%。
在本发明的多层涂层或薄膜中,至少一种共聚物(A)或组合物(A')、(A″)或(A)可以包含在任何层或任何数量的层中。然而,在多层薄膜或薄膜结构中,较好的是该共聚物(A)或组合物(A')、(A″)或(A)包含在外层(在已有技术中有时称为“表层”或“表面层”)和密封剂层中。
本发明的共混组合物可用已有技术中已知的任何合适的方法制得,这种方法的例子包括转鼓干混、经化合物挤出或侧臂挤出的熔融共混、多反应器聚合和它们的组合。本发明的多层结构可用任何已知的方法制得,这种方法的例子包括共挤出、层压和它们的组合。本发明的组合物也可用于共挤出过程,其中使牵伸较高的材料主要被用来“支撑”一种或多种牵伸较低的材料。
各种极性和非极性基材可以用本发明的共混组合物或非共混组合物涂覆,这与单层结构或多层结构无关。基材的例子包括纸产品、金属、陶瓷、玻璃、各种聚合物(尤其是不同的聚烯烃)和它们的组合,但并不局限于此。

Claims (15)

1.一种模塑制品,它含有乙烯/α-烯烃共聚物(A),它是乙烯和含6至8个碳原子的α-烯烃的共聚物,具有以下性质:
(A-ⅰ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            9.0×MFR-0.65>MT>2.2×MFR-0.84
(A-ⅱ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物中α-烯烃的碳原子数(C)和共聚物中α-烯烃的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87,
以及
(A-ⅲ)由所述共聚物用吹塑法制得的30微米厚的膜的雾度满足以下关系:
当流动指数(FI)和熔体流动速率(MFR)满足关系FI≥100×MFR时,所述流动指数(FI)定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率,
在α-烯烃的碳原子数(C)为6的情况下,
雾度<0.45/(1-d)×log(3×MT1.4)×(C-3)0.1
在α-烯烃的碳原子数(C)为7或8的情况下,
雾度<0.50/(1-d)×log(3×MT1.4),
以及
当流动指数(FI)和熔体流动速率(MFR)满足关系FI<100×MFR时,所述流动指数(FI)定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率,
在α-烯烃的碳原子数(C)为6的情况下,
雾度<0.25/(1-d)×log(3×MT1.4)×(C-3)0.1
在α-烯烃的碳原子数(C)为7或8的情况下,
雾度<0.50/(1-d)×log(3×MT1.4),
其中,d表示密度(克/厘米3),MT表示熔体张力(克)。
2.如权利要求1所述的模塑制品,其特征在于所述的乙烯/α-烯烃共聚物(A)是通过在烯烃聚合催化剂的存在下,使乙烯和含6至8个碳原子的α-烯烃进行共聚得到的,所述催化剂包含:
(a)有机铝氧化合物;
(b-Ⅰ)至少一种选自由下式(Ⅰ)表示的过渡金属化合物的过渡金属化合物:
            ML1 x           (Ⅰ)其中,M是选自周期表第4族的过渡金属原子;L1是与过渡金属原子M配位的配位体,至少两个配位体L1各自为含有选自3至10个碳原子烃基中的至少一个基团的取代的环戊二烯基,除取代的环戊二烯基以外的配位体L1是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子;x是过渡金属原子M的化合价;
以及
(b-Ⅱ)至少一种选自由下式(Ⅱ)表示的过渡金属化合物的过渡金属化合物:
            ML2 x           (Ⅱ)其中,M是选自周期表第4族的过渡金属原子;L2是与过渡金属原子M配位的配位体,至少两个配位体L2各自为甲基环戊二烯基或乙基环戊二烯基,除甲基环戊二烯基或乙基环戊二烯基以外的配位体L2是含1至12个碳原子的烃基、烷氧基、芳氧基、三烷基甲硅烷基、卤素原子或氢原子;x是过渡金属原子M的化合价。
3.如权利要求1或2所述的模塑制品,其特征在于所述的乙烯/α-烯烃共聚物(A)是通过在烯烃聚合催化剂的存在下,使乙烯和含6至8个碳原子的α-烯烃进行共聚得到的,在所述的催化剂中,有机铝氧化合物(a)、过渡金属化合物(b-Ⅰ)和过渡金属化合物(b-Ⅱ)负载在载体(c)上。
4.一种模塑制品,它包含乙烯共聚物组合物(A'),该组合物含有乙烯/α-烯烃共聚物(B)和乙烯/α-烯烃共聚物(C),
其中所述的乙烯/α-烯烃共聚物(B)是乙烯和含6至8个碳原子的α-烯烃的共聚物,具有以下性质:
(B-ⅰ)密度为0.880-0.970克/厘米3
(B-ⅱ)在190℃和2.16千克负荷下的熔体流动速率(MFR)为0.02-200克/10分钟,
(B-ⅲ)室温下溶于癸烷的组分分数(W)和密度(d)满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1
(B-ⅳ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm)和密度(d)满足以下关系:
            Tm<400×d-248,
(B-ⅴ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            9.0×MFR-0.65>MT>2.2×MFR-0.84
(B-ⅵ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物中α-烯烃的碳原子数(C)和共聚物中α-烯烃的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
以及
(B-ⅶ)由GPC测得的重均分子量(Mw)和数均分子量(Mn)的比值(Mw/Mn)满足以下条件:
            2.2<Mw/Mn<3.5;
所述乙烯/α-烯烃共聚物(C)是乙烯和含6至8个碳原子的α-烯烃的共聚物,具有以下性质:
(C-ⅰ)密度为0.880-0.970克/厘米3
(C-ⅱ)在190℃和2.16千克负荷下的熔体流动速率(MFR)为0.02-200克/10分钟,
(C-ⅲ)室温下溶于癸烷的组分分数(W)和密度(d)满足以下关系:
在MFR≤10克/10分钟的情况下,
W<80×exp(-100(d-0.88))+0.1
在MFR>10克/10分钟的情况下,
W<80×(MFR-9)0.26×exp(-100(d-0.88))+0.1
(C-ⅳ)用差示扫描量热计(DSC)测得的共聚物吸热曲线最大峰位置的温度(Tm)和密度(d)满足以下关系:
            Tm<400×d-248,
以及
(C-ⅴ)190℃时的熔体张力(MT)和熔体流动速率(MFR)满足以下关系:
            MT≤2.2×MFR-0.84
共聚物(C)的熔体流动速率(MFR(C))和共聚物(B)的熔体流动速率(MFR(B))的比值满足以下条件:
1<(MFR(C))/(MFR(B))≤20。
5.如权利要求4所述的模塑制品,其特征在于所述的乙烯共聚物组合物(A')具有如下性质:
所述的乙烯/α-烯烃共聚物(B)和(C)都是乙烯/1-己烯共聚物,
(A'-ⅰ)190℃时的熔体张力(MT(g))和熔体流动速率(MFR)满足以下关系:
            9.0×MFR-0.65>MT>2.2×MFR-0.84
(A'-ⅱ)由流动曲线的时间-温度叠加的平移因子确定的流动活化能((Ea)×10-4J/molK)、共聚物(B)和(C)中1-己烯的碳原子数(C)和共聚物(B)和(C)中1-己烯的含量(x%摩尔)满足以下关系:(0.039Ln(C-2)+0.0096)×x+2.87<(Ea)×10-4≤(0.039Ln(C-2)+0.1660)×x+2.87
以及
(A'-ⅲ)由所述共聚物组合物用吹塑法制得的30微米厚的膜的雾度满足以下条件:
当流动指数(FI)和熔体流动速率(MFR)满足关系FI≥100×MFR时,所述流动指数(FI)定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率,
雾度<0.45/(1-d)×log(3×MT1.4)×(C-3)0.1
以及
当流动指数(FI)和熔体流动速率(MFR)满足关系FI<100×MFR时,所述流动指数(FI)定义为在190℃时当剪切应力达到2.4×106达因/厘米2时所给出的剪切速率,
雾度<0.25/(1-d)×log(3×MT1.4)×(C-3)0.1其中,d表示密度(克/厘米3),MT表示熔体张力(克),C表示1-己烯的碳原子数,即6。
6.如权利要求5所述的模塑制品,其特征在于除所述性质(A'-ⅰ)至(A'-ⅲ)以外,所述的乙烯共聚物组合物(A′)还具有以下性质:
(A'-ⅳ)由GPC测得的重均分子量(Mw)和数均分子量(Mn)的比值(Mw/Mn)满足以下条件:
            2.0≤Mw/Mn≤2.5。
7.一种模塑制品,它含有乙烯共聚物组合物(A″),该组合物包含:
(A)如权利要求1至3中任一项所述的乙烯/α-烯烃共聚物组合物,以及
(D)乙烯/α-烯烃共聚物,它是在烯烃聚合催化剂的存在下由乙烯和含3至20个碳原子的α-烯烃共聚制得的,所述催化剂包含
(a)有机铝氧化合物和
(b-Ⅲ)含具有环戊二烯基骨架的配位体的周期表第4族过渡金属的化合物,且具有以下性质:
(D-ⅰ)密度为0.850-0.980克/厘米3,以及
(D-ⅱ)135℃时在十氢化萘中测得的特性粘度(η)为0.4-8dl/g;
条件是乙烯/α-烯烃共聚物(A)不同于乙烯/α-烯烃共聚物(D)。
8.一种模塑制品,它含有乙烯共聚物组合物(A),该组合物包含:
(A')如权利要求4至6中任一项所述的乙烯共聚物组合物,以及
(D)乙烯/α-烯烃共聚物,它是在烯烃聚合催化剂的存在下由乙烯和含3至20个碳原子的α-烯烃共聚制得的,所述催化剂包含
(a)有机铝氧化合物和
(b-Ⅲ)含具有环戊二烯基骨架的配位体的周期表第4族过渡金属的化合物,且具有以下性质:
(D-ⅰ)密度为0.850-0.980克/厘米3,以及
(D-ⅱ)135℃时在十氢化萘中测得的特性粘度(η)为0.4-8dl/g;
条件是乙烯/α-烯烃共聚物(B)和(C)都不同于乙烯/α-烯烃共聚物(D)。
9.一种如权利要求1-8中任一项所述的模塑制品,其特征在于它是单层薄膜或片材。
10.如权利要求1-8中任一项所述的模塑制品,其特征在于它是多层薄膜或片材。
11.如权利要求1-8中任一项所述的模塑制品,其特征在于它是注塑产品。
12.如权利要求1-8中任一项所述的模塑制品,其特征在于它是挤塑产品。
13.如权利要求1-8中任一项所述的模塑制品,其特征在于它是纤维。
14.如权利要求1-8中任一项所述的模塑制品,其特征在于发泡成形产品。
15.如权利要求1-8中任一项所述的模塑制品,其特征在于电线外皮。
CN99800240A 1999-03-10 1999-03-10 包含乙烯/α-烯烃共聚物的模塑制品和包含乙烯共聚物组合物的模塑制品 Expired - Lifetime CN1111178C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001143 WO2000053648A1 (fr) 1999-03-10 1999-03-10 UTILISATION D'UN COPOLYMERE D'ETHYLENE/α-OLEFINE ET UTILISATION D'UNE COMPOSITION COPOLYMERE D'ETHYLENE

Publications (2)

Publication Number Publication Date
CN1286705A true CN1286705A (zh) 2001-03-07
CN1111178C CN1111178C (zh) 2003-06-11

Family

ID=14235138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99800240A Expired - Lifetime CN1111178C (zh) 1999-03-10 1999-03-10 包含乙烯/α-烯烃共聚物的模塑制品和包含乙烯共聚物组合物的模塑制品

Country Status (5)

Country Link
EP (1) EP1086963A4 (zh)
KR (1) KR100354881B1 (zh)
CN (1) CN1111178C (zh)
CA (1) CA2288684A1 (zh)
WO (1) WO2000053648A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404564C (zh) * 2003-03-28 2008-07-23 住友化学工业株式会社 乙烯共聚物
CN100448899C (zh) * 2002-09-02 2009-01-07 住友化学工业株式会社 乙烯共聚物
CN102341868B (zh) * 2009-03-30 2013-01-23 株式会社藤仓 发泡电线的制造方法
CN107488459A (zh) * 2017-08-22 2017-12-19 上海立得催化剂有限公司 一种高效环保去除高粘度矿物油中微量水分的方法
CN108025834A (zh) * 2015-09-30 2018-05-11 陶氏环球技术有限责任公司 具有乙烯/α-烯烃多嵌段共聚物的配件
CN110438814A (zh) * 2019-07-26 2019-11-12 温多利遮阳材料(德州)股份有限公司 一种用于改善耐候性的特斯林纺织品涂层
CN115516027A (zh) * 2020-05-20 2022-12-23 博里利斯股份公司 用于护封的改质的聚乙烯

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214834B2 (ja) * 2001-09-05 2013-06-19 出光ユニテック株式会社 易開封性包装体
SG110031A1 (en) * 2002-03-28 2005-04-28 Sumitomo Chemical Co Ethylene-based polymer resin
UA82370C2 (uk) 2003-07-14 2008-04-10 Франс Норен Афдихтингссистемен Б.В. Застосування композиції для захисту фасонного виробу від корозії, захисна обмотка для захисту фасонного виробу та спосіб її виготовлення
US7871557B2 (en) * 2003-09-26 2011-01-18 Sumitomo Chemical Company, Ltd. Method for producing an extruded molded article of ethylene polymer and the film
US20050154159A1 (en) * 2004-01-09 2005-07-14 Deslauriers Paul J. Olefin polymers, method of making, and use thereof
JP5500753B2 (ja) * 2005-03-30 2014-05-21 住友化学株式会社 樹脂組成物、バッグインボックス内装容器およびバッグインボックス
KR100762836B1 (ko) * 2005-09-20 2007-10-04 주식회사 엘지화학 초고강도 hdpe의 제조 방법
US20090018299A1 (en) * 2006-02-15 2009-01-15 Mitsui Chemicals, Inc. Ethylenic Polymer and Molded Article Obtained Therefrom
ATE460269T1 (de) 2006-11-08 2010-03-15 Frans Nooren Afdichtingssystem Verfahren zur bereitstellung eines verlängerten röhrenförmigen artikels mit einem selbstreparatureigenschaften aufweisenden korrosionsschutzbeschichtungssystem
KR20090091705A (ko) * 2006-11-21 2009-08-28 피나 테크놀러지, 인코포레이티드 고체 상태 스트레칭을 이용하는 공정에서 필름 및 성형된 물품을 생산하는데 유용한 폴리에틸렌
JP5226973B2 (ja) 2007-06-15 2013-07-03 三井化学株式会社 エチレン系共重合体、該共重合体を含む組成物ならびにその用途
JP5443904B2 (ja) * 2009-09-03 2014-03-19 東ソー株式会社 エチレン系樹脂射出発泡成形体
JP6274674B2 (ja) 2012-07-13 2018-02-07 フランス ノーレン アフディクティングスシステメン ビー.ブイ.Frans Nooren Afdichtingssystemen B.V. 湿潤環境にある物品を腐食に対して保護する方法及びそのための組成物
CN103300617A (zh) * 2013-06-24 2013-09-18 傲科塑料制品(张家港)有限公司 单滚边条
JP6010509B2 (ja) * 2013-07-04 2016-10-19 日立化成テクノサービス株式会社 難燃性ポリエチレン系樹脂筒状発泡体の製造方法及び該製造方法により得られる難燃性ポリエチレン系樹脂筒状発泡体
KR101911175B1 (ko) * 2017-05-10 2018-11-06 (주)경원소재 반도전성 조성물 및 이의 제조방법
EP3946936A4 (en) * 2019-04-04 2023-01-25 Amcor Flexibles North America, Inc. RECYCLABLE HIGH PERFORMANCE LID

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575123B2 (en) * 1992-06-17 2008-02-13 Mitsui Chemicals, Inc. Ethylene copolymer composition
JPH06136195A (ja) * 1992-09-08 1994-05-17 Mitsui Petrochem Ind Ltd エチレン系共重合体組成物
US5464905A (en) * 1992-11-19 1995-11-07 Mitsui Petrochemical Industries, Ltd. Ethylene/α-olefin copolymer composition, graft modified ethylene/α-olefin copolymer composition, ethylene copolymer composition, and multi-stage olefin polymerization process
JP3387993B2 (ja) * 1992-11-19 2003-03-17 三井化学株式会社 エチレン系共重合体組成物
CA2103401C (en) * 1992-11-19 2002-12-17 Mamoru Takahashi Ethylene copolymer composition
JP3425719B2 (ja) * 1992-11-19 2003-07-14 三井化学株式会社 エチレン・α−オレフィン共重合体
JPH07309908A (ja) * 1994-05-18 1995-11-28 Mitsui Petrochem Ind Ltd エチレン系共重合体組成物
JP3365683B2 (ja) * 1994-05-18 2003-01-14 三井化学株式会社 エチレン系共重合体組成物
JP3365682B2 (ja) * 1994-05-18 2003-01-14 三井化学株式会社 エチレン系共重合体組成物
US5879768A (en) * 1995-10-06 1999-03-09 The Dow Chemical Company Pouches for packaging flowable materials
EP1002014A1 (en) * 1997-08-08 2000-05-24 The Dow Chemical Company Sheet materials suitable for use as a floor, wall or ceiling covering material, and processes and intermediates for making the same
EP0926169B1 (en) * 1997-12-25 2005-02-23 Mitsui Chemicals, Inc. Ethylene/Alpha-olefin copolymer and process for preparing the same
CA2288686C (en) * 1998-03-10 2004-02-24 Mitsui Chemicals, Incorporated Ethylene copolymer composition and use thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448899C (zh) * 2002-09-02 2009-01-07 住友化学工业株式会社 乙烯共聚物
CN100404564C (zh) * 2003-03-28 2008-07-23 住友化学工业株式会社 乙烯共聚物
CN102341868B (zh) * 2009-03-30 2013-01-23 株式会社藤仓 发泡电线的制造方法
CN108025834A (zh) * 2015-09-30 2018-05-11 陶氏环球技术有限责任公司 具有乙烯/α-烯烃多嵌段共聚物的配件
CN108025834B (zh) * 2015-09-30 2021-07-06 陶氏环球技术有限责任公司 具有乙烯/α-烯烃多嵌段共聚物的配件
CN107488459A (zh) * 2017-08-22 2017-12-19 上海立得催化剂有限公司 一种高效环保去除高粘度矿物油中微量水分的方法
CN107488459B (zh) * 2017-08-22 2019-10-11 上海立得催化剂有限公司 一种高效环保去除高粘度矿物油中微量水分的方法
CN110438814A (zh) * 2019-07-26 2019-11-12 温多利遮阳材料(德州)股份有限公司 一种用于改善耐候性的特斯林纺织品涂层
CN115516027A (zh) * 2020-05-20 2022-12-23 博里利斯股份公司 用于护封的改质的聚乙烯
CN115516027B (zh) * 2020-05-20 2024-05-28 博里利斯股份公司 用于护封的改质的聚乙烯

Also Published As

Publication number Publication date
WO2000053648A1 (fr) 2000-09-14
EP1086963A4 (en) 2002-07-03
CN1111178C (zh) 2003-06-11
EP1086963A1 (en) 2001-03-28
CA2288684A1 (en) 2000-09-10
KR20020060270A (ko) 2002-07-16
KR100354881B1 (ko) 2002-10-11

Similar Documents

Publication Publication Date Title
CN1313526C (zh) 乙烯共聚物组合物及其用途
CN1111178C (zh) 包含乙烯/α-烯烃共聚物的模塑制品和包含乙烯共聚物组合物的模塑制品
CN1070208C (zh) 具有耐热性、低己烷提取物量和可控模量的聚烯烃组合物
CN1087326C (zh) 乙烯共聚物制备的薄膜及其制备方法
US5415905A (en) Dispersible film
CN1073590C (zh) 适用于易腐食品的改良环境包装的膜
TW494120B (en) Foamed gaskets made from homogeneous olefin polymers
CN1196066A (zh) 树脂制品
JPH09502473A (ja) バッチ包含パッケージ
JP2001503472A (ja) フィルム製造のための改良された靭性及び加工性を有する樹脂のためのエチレン−ノルボルネンコポリマーとのlldpeブレンド
MXPA04009294A (es) Encogimiento de colacion.
ES2325763T3 (es) Peliculas novedosas de polieteno.
US20200199337A1 (en) Roofing compositions comprising linear low density polyethylene
JP2022012572A (ja) バイオマスコンパウンド用樹脂材料及びそれを用いたバイオマスコンパウンド
JP2006312753A (ja) エチレン共重合体組成物およびその用途
TW438820B (en) Use of ethylene Α-olefin copolymer and use of ethylene copolymer composition
EP2918409A1 (en) Stretch wrapping film
KR100354880B1 (ko) 에틸렌·α-올레핀 공중합체로 된 성형체
JPH05169599A (ja) 牧草用ストレッチフィルム
CA2162681C (en) Ethylene copolymers having narrow composition distribution, their production and use
CN104736341B (zh) 伸缩包装用膜
JP2023152249A (ja) バイオマス由来オレフィンと化石燃料由来オレフィンとを含むオレフィン混合物から得られるエチレン系重合体、および該エチレン系重合体の製造方法
JP2024005095A (ja) ケミカルリサイクル由来エチレンを含むオレフィンから得られるエチレン系重合体、および該エチレン系重合体の製造方法
JP2021120431A (ja) ポリエチレン系樹脂、ポリエチレン系樹脂組成物及び樹脂成形品
JP2006315700A (ja) 食品包装用ストレッチフィルム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20030611