CN1274587C - 氢发生装置 - Google Patents

氢发生装置 Download PDF

Info

Publication number
CN1274587C
CN1274587C CNB00817766XA CN00817766A CN1274587C CN 1274587 C CN1274587 C CN 1274587C CN B00817766X A CNB00817766X A CN B00817766XA CN 00817766 A CN00817766 A CN 00817766A CN 1274587 C CN1274587 C CN 1274587C
Authority
CN
China
Prior art keywords
catalyst
catalyzer
temperature
gas
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB00817766XA
Other languages
English (en)
Other versions
CN1413166A (zh
Inventor
田口清
富泽猛
鹈饲邦弘
庄野敏之
北河浩一郎
上田哲也
藤原诚二
吉田丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP37385899A external-priority patent/JP3482367B2/ja
Priority claimed from JP2000157756A external-priority patent/JP2001342005A/ja
Priority claimed from JP2000173135A external-priority patent/JP2001354404A/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1413166A publication Critical patent/CN1413166A/zh
Application granted granted Critical
Publication of CN1274587C publication Critical patent/CN1274587C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0488Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00194Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00716Means for reactor start-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/00198Sensing a parameter of the reaction system at the reactor inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/00202Sensing a parameter of the reaction system at the reactor outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/19
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • C01B2203/1661Measuring the amount of product the product being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1695Adjusting the feed of the combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

氢发生装置包括具有使作为原料的含碳有机化合物与水反应的改性催化剂的改性部、将原料供给改性部的原料供给部、向改性部供水的供水部、对改性催化剂进行加热的加热部、具有使改性部供给的改性气体中的一氧化碳和水发生转移反应的转化催化剂的转化部、具有使转化部供给的气体中的一氧化碳氧化或甲烷化的净化催化剂的净化部,前述转化催化剂由铂族金属和铈氧化物等金属氧化物组成。

Description

氢发生装置
技术领域
本发明涉及向燃料电池等供氢的氢发生装置。
背景技术
作为能够有效利用能量的分散型发电装置,使用发电效率较高的燃料电池的发电废热供暖系统正倍受瞩目。大多数燃料电池,例如已被实际使用的磷酸型燃料电池及正在开发的高分子电解质型燃料电池都是以氢为原料发电的。但是,作为燃料基础设施并未提供氢,所以必须在设置电池的场所设置可产生氢的装置。产生氢的方法包括水蒸汽改性法和自动加热法。这种方法是使作为原料的含碳有机化合物,例如天然气、LPG等烃类、甲醇等醇类或石脑油等与水在设置了改性催化剂的改性部反应,从而获得氢。
该水蒸汽改性反应产生了作为副成分的一氧化碳(CO)。特别是在低温下工作的高分子电解质型燃料电池,由于CO成为对燃料电池的电极催化剂有害的成分,所以应该同时使用使水和CO进行转移反应成为氢和二氧化碳的转化部及使CO氧化或甲烷化反应的净化部。转化部中,Fe-Cr系催化剂大多数在300~500℃的温度范围内使用,或Cu-Zn系催化剂大多数在200~300℃的温度范围内使用。由于在高温范围内使用Fe-Cr系催化剂,所以CO不可大幅度减少。由于在较低温度下使用Cu-Zn系催化剂,所以能够将CO浓度降到非常低的水平。因此,转化部中最终使用Cu-Zn系催化剂,使CO浓度降至0.5%左右。此外,在净化部使用铂族金属即Pt或Ru系催化剂,有选择地使CO氧化或甲烷化,最终将CO浓度降至20ppm左右的水平。
Cu-Zn系催化剂在还原状态下对转移反应具备活性。在装置连续运转时,由于Cu-Zn系催化剂始终处于还原状态,所以催化剂活性几乎不下降。但是,在反复启动停止的断续运转状态下,一旦转化部内混入了空气,催化剂被氧化,则催化剂活性大幅度下降。此外,催化剂在300℃以上的高温状态下使用时也存在催化剂活性下降的问题。
因此,为了提高耐氧化性及耐热性,提出使用金属氧化物上载有铂族金属的催化剂作为转化催化剂。这种金属氧化物上载有铂族金属的催化剂即使在500℃左右的温度下使用,也几乎不会引发因催化剂结块而出现的凝结。此外,即使处于氧化状态,也具备催化剂活性看不出有改变的良好特征。但是,与Cu-Zn系催化剂相比,其在低温下的反应性可能略有下降。其结果是,转化部出口处的CO浓度增加,用以往的净化部使用的Pt或Ru系催化剂不能够使CO浓度充分下降。
另外,由于前述各种催化剂的反应温度各不相同,为了能够稳定地供氢,必须将催化剂加热至反应温度。改性部温度被控制在约700℃,转化部温度被控制在500℃~200℃左右。由于位于原料流的上流的改性部的温度较高,所以在采用水蒸汽改性法的氢发生装置中,大多数情况采用的结构是利用来自改性部的热量,例如改性气体保有的热量或者设置于改性部的加热部的余热,用来对转化部进行加热。
利用来自改性部的改性气体的热量依次对转化部进行加热的传统的加热方法,对应于各反应部的热容量,使催化剂温度达到稳定需要一定时间。阻碍温度稳定的原因是气体经过的气体通道的低温部分在加热过程中气体中的水产生凝结。
另一方面,对烃类燃料进行水蒸汽改性时,为了防止碳的析出,供给的水量要超过烃类改性所需的量。例如,以甲烷、LPG等烃类为原料时,一般供给碳量2.5倍以上的水进行水蒸汽改性,因此,从改性部出来的气体中含有不少的水蒸汽。
但是,发生了水凝结的部分由于温度未到沸点以上,所以要使各反应部的温度上升,必须加速水的再次蒸发。
此外,从常温状态开始启动装置的情况下,以改性气体具备的热量加热的转化部等其他部分将使剩余的水蒸汽发生凝结。
上述水的凝结现象会导致以下问题。
第1,凝结产生的水到再蒸发为止的这部分的温度未上升。为了能够稳定地生成氢,必须加速使各部温度上升至规定温度。但是,作为气体的水蒸汽和装置壁面等的热交换加速进行,水发生凝结。而为了使一度凝结的水进行蒸发,必须控制液体和装置壁面等的热交换,这样蒸发速度就变慢。特别是由于在转化部有热容量大的转化催化剂,因此凝结很多的水。其结果是,将转化催化剂加热至最佳反应温度所需时间增加,启动时间变长。因此,启动停止频繁的装置存在启动时间缩短这样装置操作上的问题。
第2,凝结的水会使转化催化剂的催化活性下降。常用的转化催化剂是具有高度催化活性的Cu-Zn系催化剂。该催化剂在还原状态显现出高催化活性。由于催化剂在200~300℃的温度下使用,一般运转时能够维持水未发生凝结的还原状态。但是,在水发生了凝结的情况下,水会使催化剂氧化,导致催化活性显著下降。因此,如果启动停止频繁,则催化活性明显下降,转化后的气体中的CO浓度增加。特别是作为向固体高分子电解质型燃料电池供氢的氢发生装置使用时,由于CO增加会使发电特性大幅度下降,因此这是一个很大的问题。
由于以往实际使用的大多数磷酸型燃料电池都是连续运转的,所以启动操作较少,对各反应部的加热不很频繁。但是,对于发电量较小的家用燃料电池,估计装置的启动停止较频繁。因此,要使频繁启动停止的装置缩短启动时间,其存在的问题是必须尽量减少水的凝结。
此外,在转化催化剂部分发生水的凝结时,催化剂被氧化,将阻碍水和CO的转移反应。这是装置的启动停止次数较多的氢发生装置中转化催化剂的特性下降的原因之一。特别是由于Cu-Zn催化剂在还原状态显现出较高的催化活性,所以水导致的催化剂氧化会使反应性显著下降。
因此,为了维持催化活性,也希望能够尽量减少水的凝结。
本发明的目的是提供氢发生装置,该氢发生装置能够解决上述已有的氢发生装置的转化部中存在的问题,能够有效减少通过燃料改性生成的氢气中的一氧化碳,以简单的结构稳定地提供氢气。
本发明提供的氢发生装置能够容易地进行CO转化催化剂的活化处理,装置反复启动停止时氧的混入不会造成不良影响,能够长时间稳定运转。
此外,本发明的氢发生装置在启动时,通过抑制转化部的水凝结,能够缩短装置的启动时间,同时防止转化催化剂的活性下降,稳定地供给氢气。
发明的揭示
本发明提供了氢发生装置,该装置包括具有使作为原料的含碳有机化合物与水反应的改性催化剂的改性部、将原料供给改性部的原料供给部、向改性部供水的供水部、对改性催化剂进行加热的加热部、具有使改性部供给的改性气体中的一氧化碳和水发生转移反应的转化催化剂的转化部、具有使转化部供给的气体中的一氧化碳氧化或甲烷化的净化催化剂的净化部,前述转化催化剂由铂族金属和金属氧化物组成。
前述转化催化剂中的金属氧化物最好包括铈氧化物及锆氧化物中的至少1种。
本发明的较理想状态是具备向转化后的气体供给氧气的氧气供给部,前述净化部的催化剂中至少包含Pt及Ru。
前述净化催化剂最好包含Pt-Ru合金。
本发明的另一理想状态的构成是前述转化部具备加热转化催化剂的加热部,利用前述加热部将前述转化催化剂加热至由前述改性部供给转化部的气体的露点以上的温度。
本发明的另一理想状态是具备向由改性部供给转化部的气体供给空气的空气供给部,该空气供给部供给的空气量控制在能够使前述转化催化剂的温度在前述气体的露点温度以上。
本发明的理想状态的构成是,具备对前述转化部的催化剂温度进行测定的温度测定部和对由改性部供给转化部的气体的露点进行调整的露点调整装置,将利用前述露点调整装置调低了露点的改性气体供给前述转化部。
前述露点调整装置是将空气与原料及水一起向改性部供给的空气供给部,利用由该空气供给部供给改性部的空气,将来自改性部的气体的露点下调。
本发明的另一状态中,前述转化部被分割成分别具有转化催化剂的多段催化剂反应室,各催化剂反应室的中间部分具有放热部或冷却部中的至少1种。
在这里,改性气体流动方向的第1段催化剂反应室的催化剂温度最好保持在300℃以上450℃以下。
前述多段催化剂反应室的催化剂温度最好是改性气体流动方向的下段低于上段。
前述多段催化剂反应室的催化剂体积最好是改性气体流动方向的下段大于上段。
前述多段催化剂反应室的催化剂中的铂族金属加载量最好是改性气体流动方向的下段大于上段。
前述催化剂反应室中改性气体流动方向的第2段以后的至少1种催化剂最好含有铜成分。
前述具备含有铜成分的催化剂的催化剂反应室的下流侧最好设置具备含有铂族金属的催化剂的催化剂反应室。
各催化剂反应室间最好具备改性气体的扩散部或混合部。
最好具备根据前述转化催化剂的温度对前述冷却部的工作进行控制的控制部。
最好利用前述冷却部回收的热量对送入前述改性部的原料、水或送入前述转化部的改性气体中的至少1种进行加热。
对附图的简单说明
图1是本发明实施方式1的氢发生装置结构的纵截面简图。
图2是本发明实施方式2的氢发生装置结构的纵截面简图。
图3是本发明实施方式3的氢发生装置结构的纵截面简图。
图4是本发明实施方式4的氢发生装置结构的纵截面简图。
图5是本发明实施方式5的氢发生装置的转化部结构的纵截面简图。
图6表示转化催化剂的工作温度与通过催化剂后的一氧化碳浓度的一般关系。
图7是本发明实施方式6的氢发生装置的转化部结构的纵截面简图。
图8是本发明实施方式7的氢发生装置的转化部结构的纵截面简图。
实施发明的最佳方式
以下,参照附图对本发明的实施方式进行详细说明。
实施方式1
图1是本发明的氢发生装置的一种实施方式的结构简图。
10表示改性部,它具有装入了改性催化剂的改性室11和对改性室11进行加热的加热部12。改性催化剂是在氧化铝形成的颗粒状催化剂载体上载有铂族金属的催化剂,例如,从N.E.ケムキヤフト公司购入的E催化剂。加热部12由火炎燃烧室构成,改性室内的催化剂被加热至700~750℃。加热部只要具备加热至目的加热温度的加热手段即可,不限定于火炎燃烧器。通过原料供给通道14将需要进行水蒸汽改性反应的以烃类为主成分的原料由原料供给部13送入改性部10的改性室11。此外,通过供水通道16由供水部15供水。
转化部20的气体入口通过气体通道21与改性部10的气体出口连接,其内部装入了转化催化剂22。转化部具备测定入口侧气体温度的第1温度测定部23及测定出口侧气体温度的第2温度测定部24。转化催化剂是在堇青石形成的蜂窝状催化剂载体上载有铈氧化物及铂的催化剂。
净化部30的气体入口通过气体通道31与转化部20的气体出口连接,其内部装入了净化催化剂32。净化部具备测定入口侧气体温度的第1温度测定部33及测定出口侧气体温度的第2温度测定部34。净化催化剂是在堇青石形成的蜂窝状催化剂载体上载有铂及钌的催化剂。设置于净化部30的出口的气体通道41向燃料电池装置等供氢。气体通道31通过气体通道35与空气供给部36连接,由该空气供给部向气体通道31供给空气。
以下,对本实施方式的氢发生装置的工作情况进行说明。
使加热部12工作,对改性室11内的改性催化剂进行加热。分别由原料供给部13和供水部15向改性室11供给作为原料的烃类和水进行水蒸汽改性反应。经过改性的气体通过气体通道21送入转化部20,在此经过转化的气体又通过气体通道31送入净化部30。此时,由空气供给部36向气体通道31供给空气,该空气被混入转化后的气体中。在净化部30被净化的气体再通过气体通道41供给外部。
本实施方式的特征之一是转化部20中使用了铈氧化物及Pt作为催化剂。该催化剂与在较高温度下使用的Fe-Cr系催化剂相比,能够使一氧化碳大幅度减少。此外,与以往被广泛使用的Cu-Zn系催化剂相比,具备耐热温度高、且即使反复氧化还原其催化活性也不会下降的特点。但是,与活性下降前的Cu-Zn系催化剂相比,其低温下的活性略差。因此,在转化部出口处存在一氧化碳浓度升高的倾向。一氧化碳浓度的增加与净化部的负荷增加有关。其结果是,有时出现对于采用以往使用的具备Pt或Ru系催化剂的净化部无法适应的情况。
Pt系净化催化剂在低温下的催化活性随着一氧化碳浓度的增加而下降。此外,随着一氧化碳浓度的增加,必须使送入净化部的氧量增加。在与一氧化碳浓度相适应的条件下运转时,最终必须使催化剂温度达到较高温度。但是,在催化剂温度处于高温时,二氧化碳与氢反应,进行生成一氧化碳和水的反应,这样就导致一氧化碳浓度不能够充分下降。
Ru系净化催化剂通过氧化碳与氢进行甲烷化反应,使一氧化碳减少。此外,二氧化碳和氢也同时进行甲烷化反应。这些反应都是放热反应,所以一旦温度超过某一催化剂的温度,反应就急剧发生。由于Ru系净化催化剂在氧化反应中也使一氧化碳减少,所以随着一氧化碳浓度的增加,必须使送入净化部的氧量增加,使催化剂温度达到某一较高温度。有时随着催化剂温度和一氧化碳浓度的增加,由于进行甲烷化反应,使催化剂温度上升,最终导致一氧化碳浓度增加。
因此,本发明的净化部使用了Pt催化剂和Ru催化剂。Pt催化剂随着一氧化碳浓度的增加其低温下的催化活性下降。另一方面,Ru催化剂即使在较低温度下对一氧化碳的氧化反应也具有催化活性。所以,组合使用Pt催化剂和Ru催化剂的情况下,Ru催化剂促进一氧化碳在某一程度的反应,Pt催化剂吸附的一氧化碳量减少,所以能够维持对一氧化碳的氧化反应的催化活性。其结果是,与单独使用Pt催化剂时相比,在较低温度下能够使高浓度一氧化碳减少。另一方面,在催化剂温度升高的情况下,由于Pt催化剂优先促进一氧化碳的氧化反应,所以Ru催化剂很难促进甲烷化反应的进行。甲烷化反应和一氧化碳的氧化反应相比,一氧化碳的氧化反应放热较少,所以能够抑制催化剂的放热,并可抑制随着催化剂温度的上升而进行甲烷化反应的恶性循环。
如上所述,由于本发明的氢发生装置能够在较低温度下也使一氧化碳减少,所以即使供给适合于高浓度一氧化碳氧化的氧,也不会使最终的催化剂温度升至高温,能够使一氧化碳减少。
本实施方式的特征是转化部使用了铈氧化物及Pt作为催化剂。如前所述,该催化剂存在使转化部出口处的一氧化碳浓度高于使用以往的转化催化剂时的一氧化碳浓度的特有的问题。为了解决这一问题,本实施方式具备将转化部与组合使用Pt催化剂和Ru催化剂的净化部结合的特别结构。因此,为了有效减少高浓度一氧化碳,必须使净化部的催化剂使用温度范围扩大。
这里,对Pt催化剂和Ru催化剂的组合比例进行说明。
Ru催化剂的用量较多时,由于甲烷化反应容易进行,所以催化剂的使用上限温度下降。相反,Ru催化剂的用量较少时,由于不能够在低温下维持Pt催化剂活性,所以催化剂的使用下限温度升高。
转化部出口的一氧化碳浓度较低时,Ru催化剂量减少,高温时的使用上限温度升高。此外,一氧化碳浓度较高时,增加Ru催化剂量,使低温时的使用下限温度降低。
因此,考虑到低温及高温时的反应,希望将包含Pt和Ru的净化催化剂的Ru原子数设定在Pt原子数的1/10以上1以下的范围内。此外,通过使用Pt和Ru的合金催化剂,能够适应高浓度一氧化碳,能够使催化剂的使用温度范围更扩大。Pt和Ru合金化后,由于Pt和Ru催化剂在更接近的位置存在,所以低温下因Ru催化剂而消耗一氧化碳的效果更大,Pt催化剂活性易维持。此外,高温下比单独使用Ru催化剂时更能够抑制甲烷化反应。
另外,组合使用Rh催化剂和Pt催化剂也可以获得与Ru催化剂同样的效果。这是因为Rh催化剂对更低温度下的一氧化碳的氧化反应具有催化活性。
上述例子中,使用铈氧化物作为金属氧化物,将Pt催化剂与其组合形成转化催化剂,但所用金属氧化物并不仅限于铈氧化物。例如,Zr和Zn等的金属氧化物与Pt催化剂组合也可对转移反应显现出催化活性。此外,铂族金属催化剂并不仅限于Pt,Ru、Pd、Rh等其他铂族金属也同样适用。
实施例1
以下所述为实施方式1的氢发生装置的工作例。
以甲烷气体为原料,使1摩尔甲烷气体与2.5摩尔水发生加成反应而水蒸汽改性。其结果是,改性部10出口处的气体为包含约10%一氧化碳和约10%二氧化碳的氢气。在该氢发生装置稳定运转时,转化部20出口处气体中的一氧化碳浓度约为1%左右。通过第1温度测定部23及第2温度测定部24对此时转化催化剂的氢气流的上流及下流温度进行测定,判定是否是转化部能够有效减少一氧化碳的温度。
为了获得一氧化碳的氧化反应必须氧量的4倍氧量,通过空气供给部36向该氢气中送入空气,供给设置了组合使用Pt催化剂和Ru催化剂的净化催化剂的净化部30。通过第1温度测定部33及第2温度测定部34对此时净化催化剂的氢气流的上流及下流温度进行测定,掌握净化催化剂状态。其结果是,第1温度测定部33测得的温度在约80℃~120℃的范围内时,能够将出口处氢气中的一氧化碳浓度控制在20ppm以下。此时,因为氧化放热,第2温度测定部测得的温度在约150℃~190℃的范围内。
除了净化部的催化剂为Pt催化剂之外,其他都与上述构成相同的氢发生装置中,净化部的第1温度测定部测得的温度为80℃时,一氧化碳浓度未降低,在约110℃~120℃的温度范围内时,出口处的一氧化碳浓度降至20ppm以下。
净化部的催化剂为Ru催化剂时,净化部的第1温度测定部测得的温度在约80℃~110℃的范围内,就能够将出口处的一氧化碳浓度降至20ppm以下。温度在110℃以上时,由于随着甲烷化反应放热的增加,因此出口处的温度升高,不能够使一氧化碳浓度下降。
从上述结果可看出,组合了Pt催化剂和Ru催化剂的净化催化剂的催化剂使用温度范围较大,能够有效减少高浓度一氧化碳。
实施方式2
图2所示为本实施方式的氢发生装置的结构。
与图1不同的是转化部20中设置了作为加热手段的加热器25。加热器25由电热器构成,在装置启动时,特别能够将转化部的水凝结控制在最低限度,这样不仅能够缩短启动时间,还可维持转化催化剂的活性。
经过改性的气体的露点可由供给的原料及水的量算出。例如,原料为甲烷,在供给该甲烷摩尔数的3倍的水时,如果假设甲烷发生改性反应100%转化为二氧化碳和氢,则由反应式可看出,改性反应后的气体的水蒸汽分压为1/6,由此能够容易地算出气体的露点。
本发明中,用加热器25进行控制,使设置于转化部的第1温度测定部23及第2温度测定部24测得的转化催化剂的前后气体温度高于露点。这样能够防止转化部发生水凝结,从而使装置的启动时间缩短并防止转化催化剂的特性下降。此外,最终稳定运转时,利用经过改性的气体具备的热量,对包含转化部在内的装置各部分进行加热,使它们的温度升至水蒸汽露点以上,所以装置内就不会发生水凝结,能够稳定地供氢。
实施方式3
本实施方式的氢发生装置的结构如图3所示。除了未设置转化部的加热器25、并通过气体通道27对气体通道21设置空气供给部26之外,其他构成都几乎与实施方式2相同。
本实施方式中,通过空气供给部26向改性后的气体供给空气,转化部及转化催化剂进行加热。此外,若使用本发明的转化催化剂,则利用供给空气中的氧,使改性后气体成分的一部分容易被氧化,利用氧化时的放熟,对转化部及转化催化剂进行加热。
这样,本实施方式与实施方式2相同,对转化部进行加热,能够防止转化部的水凝结,以此缩短装置的启动时间并防止转化催化剂的特性下降。此外,由于通过供给的空气量,能够控制转化催化剂促进的氧化反应,即控制放热量,所以能够容易地对催化剂温度进行控制。
实施方式4
本实施方式的氢发生装置的结构如图4所示。除了未设置转化部的加热器25、并通过气体通道18对原料供给通道14设置空气供给部17之外,其他构成都几乎与实施方式2相同。
本实施方式中抑制水凝结的手段是在原料中混入空气后再供给改性催化剂。由于通过在原料气体中供给空气,使部分原料被氧化,所以不仅能够减少改性反应所需水量,还可利用空气中的氮使改性后气体的露点下降。其结果是,能够减少装置各构成部分的水凝结量。此外,由于空气中的氮气而导致的气体流量增加,随之气体所具备的热量增加,因此能够加速对各构成部分的加热。
改性催化剂通过加热部12被加热,利用供给的空气使部分原料在改性催化剂的催化下氧化而释放的热量也可加热。
此外,本实施方式不适合以往作为转化催化剂广泛使用的Cu-Zn系催化剂。其原因是,本实施方式的加热方法是利用送入空气,由于空气作用被氧化,上述催化剂导致其活性下降,所以最好不要使用Cu-Zn系催化剂。考虑到这一情况,最好采用几乎不会因为氧化还原反应而使催化剂活性下降的铂族金属,特别是将Pt或Rh与铈氧化物、锆氧化物、锌氧化物等金属氧化物作为转化催化剂使用。
实施例2
以下所述为实施方式2的氢方式装置的工作例。
首先,在装置启动时,使加热部12工作,开始对改性室11进行加热。然后,使作为原料的1摩尔甲烷气体和2.5摩尔水加成,供给改性部的改性室11。甲烷流量为300L/小时。对加热部12的加热热量进行控制,使改性催化剂温度达到约700℃,进行水蒸汽改性反应,
在装置刚启动以后,由于包含转化部20在内的各构成部分处于接近室温的状态,所以发生水凝结。改性后的气体露点约为45℃。因此,为了防止转化部的水凝结,利用加热器25使第1温度测定部23及第2温度测定部24测得的温度达到45℃以上。这样就能够防止转化部、特别是催化剂的水凝结。此时加热器25的消耗功率约100W左右。
稳定运转时,为了通过与水的转移反应而有效地使供给转化部的改性气体中的一氧化碳下降,利用加热器25将转化部内部的温度控制在约300℃。在加热器25不工作的情况下,转化部温度上升至300℃左右稳定工作大约需要60分钟,而使用加热器25时,可缩短至30分钟左右。
该工作时间取决于装置大小、原料供给量及加热器控制温度。
稳定运转时,由于改性后气体温度达到约700℃,因此能够利用该热量依次对装置的各构成部分进行加热,使转化部稳定运转。
实施例3
以下所述为实施方式3的氢发生装置的工作例。
在与实施例2相同的条件下使装置运转。利用空气供给部26以60L/小时的量向改性后的气体供给空气,通过转化催化剂使改性后的气体氧化,再利用氧化热对转化催化剂加热。供给转化部的空气量必须根据产生的氢量设定。发热量估计对应于60L/小时的供给空气量约为320kJ/小时。该放热量相当于约89W的加热器。其结果是,即使本实施例中未使用加热器25,也可获得与实施例2相同程度的启动时间。
通过烃类的水蒸汽改性反应,由于改性后的气体中含有大量氢,所以即使在刚启动后的低温状态,也能够容易地进行氧化反应。
考虑到改性气体中的氢气的爆炸临界浓度,本实施例中由空气供给部26供给的空气量中的氧浓度应在4%以下。
实施例4
以下所述为实施方式4的氢发生装置的工作例。
在与实施例2几乎相同的条件下使装置运转。但是,启动时向送入改性部10之前的原料甲烷中供给可使原料完全氧化所需空气的约1/4量的空气,使原料氧化。由于甲烷的氧化比水蒸汽改性反应优先进行,所以1/4的甲烷被氧化,包含因氧化而产生的水,供给相当于残留甲烷2.5倍摩尔量的水。
通过向送入改性部之前的原料中供给空气,使改性后气体的露点约为40℃,与不送入空气的情况相比,不易发生水凝结。此外,由于送入空气而增加了气体量,由于空气中的氮气而导致的气体流量增加,随之气体所具备的热量增加,容易加速对各构成部分进行加热。其结果是,实施例2的转化部的温度达到300℃左右约需30分钟,但本实施例可将该时间缩短为25分钟左右。
由空气供给部17供给空气可不仅在装置启动时进行,也可在稳定运转时进行,都不会出现大问题。实施例中使用了烃类如甲烷作为原料,但事实上天然气、LPG等烃类、甲醇等醇类或石脑油等一般可用作水蒸汽改性的原料的含碳有机化合物都可使用。
实施例5
本发明实施例所用的转化催化剂如下调制。在氧化铈CeO2粉末中含浸入氯铂酸水溶液,然后在约500℃进行热处理,使3重量%的Pt载于CeO2。将载有该Pt的CeO2涂布于由直径100mm、长50mm的堇青石形成的蜂窝状催化剂载体,制得转化催化剂。
作为比较例,用Cu-Zn催化剂代替载有Pt的CeO2。使用Pt-CeO2催化剂时,即使启动停止重复10次以上,转化催化剂的催化活性都几乎没有发现下降。这是因为Pt-CeO2催化剂几乎不会因氧化而使活性下降。
另一方面,使用Cu-Zn催化剂时,如果装置启动停止10次以上,则转化后气体中的一氧化碳浓度约为第1次启动时的2倍,这表示催化活性下降。这是因为启动停止时催化剂被氧化,导致活性下降。
因此,本发明的Pt-CeO2催化剂与以往的Cu-Zn催化剂相比,催化活性不易下降。这是主要因为Pt和Cu对一氧化碳的吸附特性不同。即,Pt不会因氧化而发生结块现象,而Cu与Pt相比,更容易因氧化而发生结块,其结果是,对一氧化碳的吸附性下降。该催化剂的氧化会在送入空气或水凝结时发生。
实施例6
使用图2的装置,进行作为转化催化剂的Pt-CeO2催化剂和Rh-CeO2催化剂的特性比较。
Rh-CeO2催化剂的作为转化催化剂的基本特性是不会因为氧化而使催化活性下降,所以具备与Pt-CeO2催化剂几乎同等的特性。但是,由于Rh-CeO2催化剂对二氧化碳或一氧化碳与氢的甲烷化反应的催化活性比Pt-CeO2催化剂好,所以转化后气体中的甲烷浓度略微增加。
在300℃的催化温度下进行比较,以Pt-CeO2催化剂为转化催化剂的转化后气体中的甲烷浓度为0.1%(干燥气体),而以Rh-CeO2催化剂为转化催化剂的转化后气体中的甲烷浓度为0.2%(干燥气体)。但是,出口处的一氧化碳浓度几乎相同。这种程度的甲烷浓度增加在实际使用上不会产生任何问题,Rh-CeO2催化剂也可作为转化催化剂使用。
此外,这里所示仅为Pt及Rh催化剂的组合的催化活性,不同金属其活性略有不同,使用其他铂族金属,如Ru或Pd也可获得同等的转移反应性。
实施例7
确认各种转化催化剂的转移反应性。其结果是,使用作为金属氧化物的ZrO2、ZnO或CeO2与它们的混合物或固溶物调制的催化剂具备Cu-Zn催化剂没有的作为转化催化剂所必须的良好耐氧化性。但是,各种金属氧化物的转移反应性略有不同。例如,使用ZrO2时,二氧化碳或一氧化碳与氢的甲烷化反应容易进行,在转化部出口处的甲烷浓度显现出略有增加的倾向。虽然因使用催化剂的条件有所不同,但若在300℃的催化温度下进行比较,以Pt-CeO2催化剂为转化催化剂时转化部出口处的甲烷浓度为0.1%(干燥气体),而以Pt-ZrO2催化剂为转化催化剂时为0.15%(干燥气体)。此外,使用ZnO时,由于其低温供氧性优于CeO2,因此低温下的转移反应性提高,但高温下,例如在500℃以上的温度下使用时,Zn氧化物的还原倾向变大,显示出催化活性下降的倾向。
实施方式5
图5为本实施方式的氢方式装置的转化部结构的纵截面简图。
转化部50由第1反应室51、第2反应室52及连接两者的细径部53组成,第1反应室51及第2反应室52中分别设置了第1催化剂61及第2催化剂62。各催化剂上流侧中设置了扩散板63及64。第1反应室51具有与改性部10相连的改性气体入口55,第2反应室52具有与净化部30相连的转化气体出口56。为了将反应室温度保持一定,在必要位置的外周覆盖陶瓷绝热材料54。
这里对将在改性部10中对天然气进行水蒸汽改性而获得的改性气体供给转化部的例子进行说明。
对天然气进行水蒸汽改性而获得的气体组成随着改性催化剂催化的反应的温度而改变,除去水蒸汽的平均值是,氢约为80%,二氧化碳和一氧化碳分别约为10%。由入口55送入的改性气体首先在第1催化剂61的催化下进行反应,使CO浓度降至1~2%。通过第1催化剂的改性气体在第2催化剂62的催化下进行反应,使CO浓度降至0.1~0.8%左右,然后从出口56排出,再经过净化部30等供给燃料电池等使用。
以下,对本装置的工作原理进行说明。CO转移反应是依赖于温度的平衡反应,根据平衡理论,在越低的温度下反应,能够使CO浓度越低。但是,由于低温下催化剂催化的反应速度较慢,所以如图6中的实线所示,CO转化催化剂显现出对应于温度CO浓度有极小值的特性。因此,催化剂在低温下的活性越高,越能使CO浓度下降越多。一般,作为CO转化催化剂使用的铜-锌催化剂、铜-铬催化剂等铜系催化剂,在低温下活性较高,能够在150℃~300℃左右的范围内进行CO转移反应,所以可将CO浓度降至数百~数千ppm。但是,铜系催化剂填入反应器后,作为初始操作必须使氢和改性气体等还原气体通过并活化。此外,由于铜系催化剂的耐热性较差,在300℃左右,所以为使活化时的反应热不超过耐热温度,需稀释还原气体再供给或者以小流量慢慢反应。催化剂中的铜含量也会对活化所需时间产生影响。为了确保使用寿命,必须使铜含量达到数10wt%左右,这样就需要较长的活化时间。
此外,进行CO转移反应时,一般单位催化剂体积的气体流速(空间速度:SV)必须是每小时1000以下。由于需要大量催化剂,热容量较大,所以装置启动时催化剂升温需要较长时间。因此,可采取同时用电热器等从反应室外部进行加热的方法,或者采用提高供给的改性气体温度以加快升温速度的方法。但是,由于铜系催化剂的耐热温度较低,所以不希望急剧加热而导致局部高温。
使装置停止运转时,随着装置温度下降,反应室内部的压力也下降,有微量的外部空气混入。因此,如果长期反复启动停止装置,则铜系催化剂会慢慢劣化,所以必须采取能够防止氧混入的手段,这样装置就会变得复杂。
本装置使用铂族金属催化剂作为CO转化催化剂,在这种情况下,不需要长时间的活化和还原处理。此外,由于耐热性较高,即使启动时局部出现500℃左右的高温,也不会有问题,所以能够通过供给温度较高的改性气体而急剧加热,从而快速启动装置。此外,由于即使混入微量空气也很难劣化,所以不需要特别设置防氧化手段等。
进行CO转移反应时,转化催化剂的上流部到下流部的温度分布会对特性产生影响。CO浓度较高的上流侧,反应速度较快,最好温度较高。受CO平衡浓度影响的下流侧,最好温度较低。因此,象本装置那样将CO转化催化剂分成多段,在各段中间设置放热部或冷却部,通过调节放热量或冷却量,就能够以更少的催化剂量减少CO。
此外,虽然温度越高,空间速度能够越快,但如果温度过高,反而会引发改性反应的逆反应而产生甲烷,这样改性气体中的氢量就会下降,影响到装置的工作效率。因此,第1催化剂温度最好在450℃以下。相反,如果第1催化剂温度较低,则空间速度必须变慢,所以第1催化剂温度最好在300℃以上。此时,即使第1催化剂温度低于300℃,若空间速度变慢,虽也能够发挥作用,但由于第1催化剂和第2催化剂的温差较小,所以多段分割的效果减弱,分割部分使反应器的体积变大。
第2催化剂温度高于第1催化剂时,因第1催化剂的作用而减少的CO又因为逆反应再次增加,所以第2催化剂温度最好低于第1催化剂的温度。这在催化剂的段数为3段以上的情况也相同。
催化剂温度越低、空间速度越小时,能够获得较理想的特性,同时,高温下的甲烷化是空间速度越快越难进行。因此,上段的催化剂的体积最好小于下段催化剂。
CO转化催化剂中最好含有氧化铈和铂,这样能够获得较理想的特性。氧化铈的粒径最好为0.1μm~15μm,粒径如果大于该范围,则铂的分散性下降,很难获得理想的特性。粒径如果小于0.1μm,则会从蜂窝状催化剂载体剥离,或颗粒易松散,使用寿命容易缩短。
催化剂的各段中间最好设置扩散部或混合部。由于体积较大的CO转化催化剂容易沿截面方向进行温度分布,所以催化剂通过后中心部和外周部的CO容易存在浓度差。因此,通过设置混合部或扩散部,使下段的催化剂有效发挥作用,获得更理想的特性。
转化催化剂中铂族金属的加载量最好是下段大于上段。铂族金属的加载量较多时,甲烷化易进行,这种倾向在催化剂温度越高的上段越明显。另一方面,铂族金属的加载量越多,低温活性越高。因此,通过增加甲烷化反应不易进行的下段的催化剂中铂族金属的加载量,能够以更小的催化剂体积获得理想的特性。
本实施方式中,作为铂族金属催化剂使用在氧化铈上载有铂的催化剂。可使用的铂族金属包括铑、钯、钌等,它们载于氧化铝、氧化锆、氧化镁、氧化锌、氧化钛、氧化硅等载体上。
本实施方式中,是将铂盐载于氧化铈,再将其涂布于堇青石形成的蜂窝状载体上,制得CO转化催化剂,但也可将催化剂载于颗粒状氧化铝,制得CO转化催化剂。此外,作为蜂窝状载体可使用不锈钢等金属和陶瓷棉。
实施方式6
如图7所示,本实施方式的转化部50a中,连接第1反应室51和第2反应室52的细径部53中设置了冷却水供给管57。
由于CO转移反应为平衡反应,所以作为反应物的水蒸汽比例较大时,能够进一步减少CO。通过在冷却部设置冷却水供给管57,不仅能够利用水的蒸发潜热冷却送入第2反应室的气体,还有利于CO转移反应的平衡,能够更有效地减少CO。
实施方式7
如图8所示,本实施方式的转化部50b中,第1反应室51和第2反应室52的连接部由多根管子53b组成,另外还设置了冷却风机58。
冷却效率取决于管子的表面积,本例中由于连接部由多根管子组成,所以能够有效进行冷却,因为还可以使连接部的长度缩短,所以可实现装置的小型化。此外,由于设置了冷却风机58,所以能够更有效地冷却。通过设置检测第2催化剂62温度的装置和利用检测出的温度控制冷却风机58的工作或转速的控制装置,能够始终将催化剂温度维持在最佳值。另外,在冷却部进行了热交换而被加热的空气,可用作对改性气体进行加热的燃烧部的空气,或用于对改性所用原料和水进行加热,这样可提高装置的运转效率。
实施方式8
本实施方式中,图7的第2催化剂62使用的铜系催化剂是在堇青石形成的蜂窝状催化剂载体上涂布铜系催化剂而获得的催化剂。这里的铜系催化剂是以铜为活性成分的CO转化催化剂,包括铜—锌催化剂、铜—铬催化剂或以它们为主成分还添加了氧化铝、二氧化硅、氧化锆等的催化剂。通过设置低温下可促进CO转移反应的铜系催化剂,能够进一步降低通过第2段后的CO浓度。此外,由于在第1段设置了耐热性较高的铂族金属催化剂,所以在启动时,耐热性较低的铜系催化剂不会暴露在高温下,劣化影响减少。
在铜系催化剂的下流侧,最好还设置铂族金属催化剂。在装置停止运转时和长期停运时,外部可能会有微量空气混入,铜系催化剂会因空气的混入而慢慢劣化。由于铂族金属催化剂可在装置停止运转时还吸附氢和CO,所以若将铜系催化剂夹在中间,在其上流侧和下流侧设置铂族金属催化剂,就可使微量的氧被铂族金属催化剂消耗,从而抑制铜系催化剂的劣化。
实施例8
将载有铂的粒径15μm的氧化铈粉末涂布于直径相同、长度分别为20mm和60mm的堇青石形成的蜂窝状载体上,制得第1催化剂及第2催化剂。如图5所示,它们分别被设置于第1反应室51和第2反应室52。以每分钟10升的流量从改性气体入口55送入一氧化碳占8%、二氧化碳占8%、水蒸汽占20%、其余为氢的改性气体。使第1催化剂和第2催化剂温度分别达到400℃及250℃。然后,通过气相色谱仪测得从转化气体出口56排出的气体的CO浓度为3000ppm。接着,用氮气置换反应室中的气体,再供给空气,然后再次供给改性气体,测得出口处气体中的CO浓度为3000ppm。将以上操作重复50次,同样测定CO浓度,其值为3200ppm。
实施例9
使实施例8的第1催化剂温度分别变为250℃、275℃、300℃、400℃、450℃、475℃。与实施例8相同,对转化气体出口56排出的气体中的CO浓度进行测定,其值分别为7000ppm、7200ppm、3100ppm、3000ppm、3100ppm、3500ppm。此外,对气体中的甲烷浓度进行测定,其结果是,在400℃以下未检测出甲烷,450℃时甲烷浓度为0.5%,475℃时甲烷浓度为1.1%。
实施例10
除了采用的氧化铈的粒径分别为0.05μm、0.1μm、5μm、15μm、17μm之外,其他都与实施例8相同,测定出口处气体中的CO浓度,其值分别为2900ppm、3000ppm、3400ppm、3500ppm、5000ppm。然后,用氮气置换反应室中的气体,再供给空气,接着再次供给改性气体,测定出口处气体中的CO浓度,其值分别为3800ppm、3000ppm、3400ppm、3500即m、5100ppm。将上述操作重复50次,同样测定CO浓度,其值分别为9000ppm、3100ppm、3500ppm、3600ppm、8000ppm。
比较例1
反应室不分割,作为一个反应室,其中设置在长80mm的载体上载有与实施例8同样的催化剂的催化剂。然后,在与实施例8同样的条件下测定出口处气体中的CO浓度,极小值为7000ppm。接着,用氮气置换反应室中的气体,再供给空气,接着再次供给改性气体,在相同温度下测定出口处气体中的CO浓度,其值为7100ppm。将上述操作重复50次,同样测得CO浓度为7200ppm。
比较例2
设置铜—锌催化剂代替比较例1所用的铂催化剂,同样测定出口处气体的CO浓度,其值为1000ppm。然后,用氮气置换反应室中的气体,再供给空气,接着再次供给改性气体,测定出口处气体中的CO浓度,其值为200ppm。将上述操作重复50次,同样测定CO浓度为22000ppm。
产业上利用的可能性
本发明提供了能够有效减少燃料改性而产生的氢气中的一氧化碳、并以简单的结构稳定供氢的氢发生装置。即使反复启动停止该氢发生装置,它也能够长期稳定运转,且装置启动时间缩短。

Claims (5)

1.氢发生装置,所述装置包括具有使作为原料的含碳有机化合物与水反应的改性催化剂的改性部、将原料供给改性部的原料供给部、向改性部供水的供水部、对改性催化剂进行加热的加热部、具有使改性部供给的改性气体中的一氧化碳和水发生转移反应的转化催化剂的转化部,前述转化催化剂包含铂族金属,前述转化部被分割成分别具有转化催化剂的多段催化剂反应室,前述多段催化剂反应室的催化剂温度是改性气体流动方向的下段低于上段,且前述多段催化剂反应室的催化剂中的铂族金属加载量是改性气体流动方向的下段大于上段。
2.如权利要求1所述的氢发生装置,其中,改性气体流动方向的第1段催化剂反应室的催化剂温度保持在300℃以上450℃以下。
3.如权利要求1所述的氢发生装置,其中,前述改性催化剂至少含有铂及氧化铈。
4.如权利要求1所述的氢发生装置,其中,各催化剂反应室的中间部分具有放热部或冷却部中的至少1种。
5.如权利要求1所述的氢发生装置,其中,各催化剂反应室间具备改性气体的扩散部或混合部。
CNB00817766XA 1999-12-28 2000-12-27 氢发生装置 Expired - Fee Related CN1274587C (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP373858/1999 1999-12-28
JP373858/99 1999-12-28
JP37385899A JP3482367B2 (ja) 1999-12-28 1999-12-28 水素精製装置
JP157756/2000 2000-05-29
JP2000157756A JP2001342005A (ja) 2000-05-29 2000-05-29 水素生成装置
JP157756/00 2000-05-29
JP2000173135A JP2001354404A (ja) 2000-06-09 2000-06-09 水素生成装置
JP173135/2000 2000-06-09
JP173135/00 2000-06-09

Publications (2)

Publication Number Publication Date
CN1413166A CN1413166A (zh) 2003-04-23
CN1274587C true CN1274587C (zh) 2006-09-13

Family

ID=27341839

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00817766XA Expired - Fee Related CN1274587C (zh) 1999-12-28 2000-12-27 氢发生装置

Country Status (5)

Country Link
US (1) US6972119B2 (zh)
EP (1) EP1256545A4 (zh)
KR (1) KR20020074464A (zh)
CN (1) CN1274587C (zh)
WO (1) WO2001047802A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646625B2 (ja) * 2000-06-01 2005-05-11 日産自動車株式会社 燃料改質装置
JP4596735B2 (ja) * 2000-12-05 2010-12-15 テキサコ ディベラップメント コーポレイション コンパクト燃料プロセッサーの起動のために触媒を加熱する装置及び方法
WO2002059038A1 (fr) * 2001-01-26 2002-08-01 Matsushita Electric Industrial Co., Ltd. Dispositif de purification d'hydrogene et systeme de generation de puissance a pile a combustible
JP2003080054A (ja) * 2001-09-13 2003-03-18 Mitsubishi Heavy Ind Ltd 反応方法
US20030186805A1 (en) 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US7160341B2 (en) * 2002-04-29 2007-01-09 General Motors Corporation System for controlling front and back end temperatures of a shift reactor
CA2410927A1 (fr) * 2002-11-05 2004-05-05 Michel Petitclerc Reacteur a chauffage electrique pour le reformage en phase gazeuse
WO2004071951A1 (ja) * 2003-02-14 2004-08-26 Matsushita Electric Industrial Co., Ltd. 水素生成装置及び燃料電池発電システム
US6932848B2 (en) 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
US7318970B2 (en) * 2003-04-04 2008-01-15 Texaco Inc. Architectural hierarchy of control for a fuel processor
CN1636860B (zh) * 2003-12-26 2011-04-20 松下电器产业株式会社 氢生成装置和使用该装置的燃料电池系统
US7294157B2 (en) * 2004-02-25 2007-11-13 Honda Motor Co., Ltd. Carbon monoxide converter
CN100453446C (zh) * 2004-07-20 2009-01-21 松下电器产业株式会社 氢生成装置及其运行方法以及燃料电池系统
US7510696B2 (en) * 2005-02-07 2009-03-31 Air Products And Chemicals, Inc. Method and apparatus for the production of hydrogen-rich gas
KR100647331B1 (ko) * 2005-08-02 2006-11-23 삼성에스디아이 주식회사 연료전지용 쉬프트 반응기, 이를 채용한 연료전지 시스템및 상기 연료전지용 쉬프트 반응기의 운전 방법
KR101004487B1 (ko) 2005-09-08 2010-12-31 가시오게산키 가부시키가이샤 이동형 전자 장치의 전원공급용 개질기
WO2007125870A1 (ja) * 2006-04-26 2007-11-08 Panasonic Corporation 水素生成装置の製造方法
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
US8382865B2 (en) * 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
EP2072460A4 (en) * 2006-08-30 2011-10-26 Kyocera Corp REACTION DEVICE, FUEL CELL SYSTEM, AND ELECTRONIC APPARATUS
US8382866B2 (en) * 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
BRPI0717850A2 (pt) * 2006-11-02 2013-10-29 Rco2 As Processo para reduzir emissão de co2 da combustão de materiais orgânicos
US8123826B2 (en) * 2006-11-08 2012-02-28 Saudi Arabian Oil Company Process for the conversion of oil-based liquid fuels to a fuel mixture suitable for use in solid oxide fuel cell applications
US20080128655A1 (en) * 2006-12-05 2008-06-05 Diwakar Garg Process and apparatus for production of hydrogen using the water gas shift reaction
JP5344935B2 (ja) * 2007-05-31 2013-11-20 パナソニック株式会社 水素生成装置
EP2103348A1 (en) * 2008-03-19 2009-09-23 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Catalyst system for CO-removal from hydrogen-rich fuel cell feed gas
JP5604309B2 (ja) 2009-01-19 2014-10-08 パナソニック株式会社 水素生成装置、燃料電池システム、及び水素生成装置の停止方法
WO2011021944A1 (en) 2009-08-19 2011-02-24 Eicproc As Combined processes for utilizing synthesis gas at low co2 emission and high energy output
WO2011028133A1 (en) 2009-09-04 2011-03-10 Eicproc As Method for producing synthesis gas from natural gas using a promoter and ceria in the form ce203
KR101768757B1 (ko) 2011-11-21 2017-08-30 사우디 아라비안 오일 컴퍼니 석유 연료를 사용한 화합된 수소 및 전기 생산 방법 및 그 시스템
US10989029B2 (en) 2015-11-05 2021-04-27 Saudi Arabian Oil Company Methods and apparatus for spatially-oriented chemically-induced pulsed fracturing in reservoirs
CN109355108B (zh) * 2018-09-18 2020-02-21 华中科技大学 一种合成气制备及金属冶炼的聚光太阳能气化生物质系统
CN111217329A (zh) * 2018-11-25 2020-06-02 中国科学院大连化学物理研究所 一种水汽变换反应方法
WO2022112309A1 (en) * 2020-11-24 2022-06-02 Topsoe A/S Method of starting-up a water gas shift reactor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491499A (en) 1973-11-23 1977-11-09 Exxon Research Engineering Co Process and catalyst for conversion of carbon monoxide and steam to hydrogen and carbon dioxide
JPS5137078A (en) 1974-09-24 1976-03-29 Taiyo Kaken Co Tadanko kisosetsushokusochi
JPS5832001A (ja) 1981-08-20 1983-02-24 Babcock Hitachi Kk 水素製造装置
JPS58204801A (ja) 1982-05-25 1983-11-29 Mitsubishi Electric Corp 炭化水素系燃料の水素化装置
JPS62250095A (ja) 1986-04-23 1987-10-30 Chubu Gas Kk 一酸化炭素変成器昇温方法
DE68905891T2 (de) * 1988-07-22 1993-10-14 Ici Plc Erzeugung von Wasserstoff welche Kohlenmonoxidkonvertierung mittels Wasserdampf umfasst.
JPH05147903A (ja) 1991-12-03 1993-06-15 Fuji Electric Co Ltd 改質装置
JPH05258764A (ja) 1992-03-12 1993-10-08 Hitachi Ltd 燃料電池発電装置
JPH06290801A (ja) 1993-04-02 1994-10-18 Mitsubishi Electric Corp 燃料電池発電装置
JPH0757756A (ja) * 1993-08-06 1995-03-03 Toshiba Corp 燃料電池発電システム
US5702838A (en) * 1995-08-18 1997-12-30 Matsushita Electric Industrial Co., Ltd. Fuel cell device equipped with catalyst material for removing carbon monoxide and method for removing carbon monoxide
WO1998000361A1 (fr) * 1996-06-28 1998-01-08 Matsushita Electric Works, Ltd. Appareil de modification
JP3129670B2 (ja) * 1997-02-28 2001-01-31 三菱電機株式会社 燃料改質装置
JPH1143303A (ja) 1997-07-25 1999-02-16 Matsushita Electric Works Ltd 改質装置
JPH11300205A (ja) 1998-04-17 1999-11-02 Nkk Corp 合成ガス製造用触媒及び合成ガスの製造方法
JP4462510B2 (ja) 1998-06-10 2010-05-12 国立大学法人山梨大学 改質ガス酸化触媒
JP4089039B2 (ja) 1998-10-09 2008-05-21 松下電器産業株式会社 水素精製装置
JP3473896B2 (ja) * 1998-12-18 2003-12-08 松下電器産業株式会社 水素精製装置
WO2000048261A1 (fr) 1999-02-10 2000-08-17 Kabushiki Kaisha Toshiba Convertisseur de co et systeme de production pour pile a combustible
KR100386435B1 (ko) * 1999-03-18 2003-06-02 마츠시다 덴코 가부시키가이샤 수성가스 시프트 반응 촉매, 수소가스중의 일산화 탄소제거방법 및 연료전지 발전(發電) 시스템
JP3473898B2 (ja) 1999-04-22 2003-12-08 松下電器産業株式会社 水素精製装置
JP4644892B2 (ja) 1999-12-16 2011-03-09 ダイキン工業株式会社 改質装置

Also Published As

Publication number Publication date
EP1256545A4 (en) 2005-04-13
WO2001047802A1 (fr) 2001-07-05
US6972119B2 (en) 2005-12-06
KR20020074464A (ko) 2002-09-30
US20030003033A1 (en) 2003-01-02
CN1413166A (zh) 2003-04-23
EP1256545A1 (en) 2002-11-13

Similar Documents

Publication Publication Date Title
CN1274587C (zh) 氢发生装置
CN1178322C (zh) 发电装置及其运作方法
CN1242717A (zh) 制造氢或合成气体用的催化剂及制造氢或合成气体的方法
CN1205115C (zh) 氢精制装置
CN1213804C (zh) 一氧化碳去除用催化剂及其活化方法、一氧化碳去除方法及燃料电池系统运行方法
WO2000048261A1 (fr) Convertisseur de co et systeme de production pour pile a combustible
CN1633725A (zh) 燃料电池体系
CN1257834C (zh) 氢气发生装置
CN1189386C (zh) 氢发生装置
US6713032B2 (en) Catalyst for removing carbon monoxide in hydrogen rich gas and production method therefor
CN1321136A (zh) 氢气发生装置及使用该装置的燃料电池
CN1623893A (zh) 部分氧化用重整催化剂和重整方法
CN1209279C (zh) 氢气纯化装置
CN1717276A (zh) 非自燃铜-氧化铝催化剂的制备方法
JP2001180912A (ja) 水素精製装置
JP6408114B2 (ja) 酸素化物の製造システム及び酸素化物の製造方法
JP2005238025A (ja) 燃料改質触媒、およびこれを用いた燃料改質システム
JP2005343879A (ja) 低級炭化水素の芳香族化触媒反応方法および芳香族化触媒反応装置ならびに芳香族化合物および水素の製造方法
CN100338809C (zh) 一氧化碳去除用催化剂及其活化方法、一氧化碳去除方法及燃料电池系统运行方法
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
WO2001047806A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
CN1726077A (zh) 利用部分催化氧化产生合成气的方法
CN1711212A (zh) 金属负载的铜催化剂用于重整醇的用途
WO2013031598A1 (ja) 酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法
JP4663095B2 (ja) 水素精製装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060913

Termination date: 20141227

EXPY Termination of patent right or utility model