WO2013031598A1 - 酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 - Google Patents

酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 Download PDF

Info

Publication number
WO2013031598A1
WO2013031598A1 PCT/JP2012/071179 JP2012071179W WO2013031598A1 WO 2013031598 A1 WO2013031598 A1 WO 2013031598A1 JP 2012071179 W JP2012071179 W JP 2012071179W WO 2013031598 A1 WO2013031598 A1 WO 2013031598A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
catalyst
oxygenate
oxygenates
components
Prior art date
Application number
PCT/JP2012/071179
Other languages
English (en)
French (fr)
Inventor
稔人 御山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CA2845587A priority Critical patent/CA2845587A1/en
Priority to US14/237,427 priority patent/US9272267B2/en
Priority to CN201280041639.3A priority patent/CN103764277B/zh
Priority to EP12827075.8A priority patent/EP2752240B1/en
Priority to EP21155286.4A priority patent/EP3834929A1/en
Priority to JP2013531231A priority patent/JP6313597B2/ja
Publication of WO2013031598A1 publication Critical patent/WO2013031598A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for synthesizing oxygenates and a method for producing the same, an apparatus for producing oxygenates, and a method for producing oxygenates.
  • This application was filed on August 31, 2011, in Japanese Patent Application Nos. 2011-189052, 2011-189053 and 2011-189056, and on February 24, 2012, in Japan.
  • the priority is claimed based on Japanese Patent Application No. 2012-039007, Japanese Patent Application No. 2012-039008 and Japanese Patent Application No. 2012-039009, the contents of which are incorporated herein by reference.
  • Bioethanol is being popularized as an alternative fuel for petroleum.
  • Bioethanol is mainly produced by saccharification and fermentation of sugarcane and corn.
  • woody and herbaceous biomass also referred to as cellulose biomass
  • cellulose biomass woody and herbaceous biomass
  • waste wood and unused parts of crops such as rice straw that do not compete with food and feed
  • saccharification methods there are concentrated sulfuric acid saccharification method, dilute sulfuric acid / enzymatic saccharification method, hydrothermal saccharification method and the like, but many problems still remain to produce bioethanol at low cost.
  • an oxygenated product such as ethanol, acetaldehyde, and acetic acid from a mixed gas of hydrogen and carbon monoxide
  • a method of contacting the mixed gas with a catalyst containing rhodium, alkali metal, and manganese is known (for example, Patent Documents 1 and 2).
  • an object of the present invention is to provide a catalyst for synthesizing oxygenates that can efficiently synthesize oxygenates from a mixed gas of hydrogen and carbon monoxide.
  • the present invention relates to the following.
  • A Component: Rhodium
  • B Component: Manganese
  • C Component: Alkali Metal
  • D Component: (D1) Component, (D2) Component or (D3) Component
  • the component (D1) is one or more selected from the group consisting of titanium, vanadium and chromium
  • the component (D2) is an element belonging to Group 13 of the periodic table
  • the component (D3) is magnesium
  • a catalyst for oxygenate synthesis which is at least one selected from the group consisting of lanthanoids.
  • a catalyst for use For producing a catalyst for use.
  • a catalyst for use For producing a catalyst for use.
  • the oxygenate is one or more selected from the group consisting of acetic acid, ethanol, acetaldehyde, methanol, propanol, methyl formate, ethyl formate, methyl acetate and ethyl acetate [13] to [16] or [18 ]
  • the catalyst for oxygenate synthesis as described in any one of these.
  • an oxygenate means a molecule composed of carbon atoms, hydrogen atoms, and oxygen atoms, such as acetic acid, ethanol, acetaldehyde, methanol, propanol, methyl formate, ethyl formate, methyl acetate, and ethyl acetate.
  • the catalyst for oxygenate synthesis of the present invention can efficiently synthesize oxygenates from a mixed gas of hydrogen and carbon monoxide.
  • the catalyst for synthesizing oxygenates according to the present invention includes (A) component: rhodium, (B) component: manganese, (C) component: alkali metal, and (D) component. : (D1) component, (D2) component, or (D3) component.
  • the component (D1) is one or more selected from the group consisting of titanium, vanadium and chromium
  • the component (D2) is an element belonging to Group 13 of the periodic table
  • the component (D3) is , One or more selected from the group consisting of magnesium and lanthanoids.
  • Oxygenates can be efficiently synthesized by including the components (A) to (D), the components (A) to (D1), the components (A) to (D2), or the components (A) to (D3). Can do.
  • a component is an alkali metal.
  • the component (C) include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc. Among them, the generation of by-products is reduced, and the CO conversion rate Lithium is preferable from the viewpoint of increasing the oxygen content and more efficiently synthesizing oxygenates.
  • the “CO conversion rate” means “percentage occupied by the number of moles of consumed CO in the number of moles of CO in the mixed gas”.
  • (D) component is either (D1) component, (D2) component or (D3) component.
  • the component (D1) is at least one selected from the group consisting of titanium (Ti), vanadium (V), and chromium (Cr).
  • Ti titanium
  • V vanadium
  • Cr chromium
  • titanium and vanadium are preferable, and titanium is more preferable.
  • the (D2) component is an element belonging to Group 13 of the periodic table.
  • the component (D2) include boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl). Among these, boron and aluminum are preferable, and boron is more preferable.
  • the catalyst can efficiently synthesize oxygenates. Although it is not clear about the mechanism that increases the synthesis efficiency of oxygenates by including the component (D2), it is assumed that the dispersibility of the components (A) to (C) is increased by including the component (D2). .
  • the component (D3) is at least one selected from the group consisting of magnesium and lanthanoids.
  • Lanthanoids are elements from lanthanum to ruthenium (Lu) having atomic numbers of 51 to 71, such as lanthanum (La), cerium (Ce), and praseodymium (Pr).
  • As the component (D3) magnesium and lanthanum are preferable.
  • the catalyst can efficiently synthesize oxygenates, and can further increase the amount of ethanol in the oxygenates.
  • the components (A) to (C) It is estimated that the dispersibility is increased.
  • the catalyst of the present invention preferably has a composition represented by the following formula (I). aA ⁇ bB ⁇ cC ⁇ dD (I)
  • A represents the component (A)
  • B represents the component (B)
  • C represents the component (C)
  • D represents the component (D)
  • component (D) is at least one selected from the group consisting of component (D1): titanium, vanadium and chromium
  • a in formula (I) is preferably 0.053 to 0.98. . If the content is less than the above lower limit, the content of component (A) is too small and the synthesis efficiency of oxygenates may not be sufficiently increased. If the content exceeds the upper limit, the content of components (B) to (D) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
  • component (D) is at least one selected from the group consisting of component (D1): titanium, vanadium and chromium
  • b in formula (I) is preferably 0.0006 to 0.67. .
  • component (D) is at least one selected from the group consisting of component (D1): titanium, vanadium and chromium, c in formula (I) is preferably 0.00056 to 0.51. . If the amount is less than the above lower limit, the content of the component (C) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased.
  • component (D1) is at least one selected from the group consisting of component (D1): titanium, vanadium and chromium, d in formula (I) is preferably 0.0024 to 0.94. . If the content is less than the above lower limit, the content of component (D1) is too small and the synthesis efficiency of oxygenates may not be sufficiently increased. If the content exceeds the upper limit, the content of components (A) to (C) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
  • a is preferably 0.053 to 0.98, more preferably 0.24 to 0.8, and further preferably 0.32 to 0.67.
  • b is preferably 0.0006 to 0.67, more preferably 0.033 to 0.57, and further preferably 0.089 to 0.44.
  • c is preferably 0.00056 to 0.51, more preferably 0.026 to 0.42, and further preferably 0.075 to 0.33.
  • d is preferably 0.0026 to 0.94, more preferably 0.02 to 0.48, and still more preferably 0.039 to 0.25.
  • a is preferably 0.06 to 0.98, more preferably 0.23 to 0.8, and still more preferably 0.27 to 0.69.
  • b is preferably 0.00068 to 0.67, more preferably 0.034 to 0.57, and further preferably 0.072 to 0.45.
  • c is preferably 0.00064 to 0.51, more preferably 0.027 to 0.42, and further preferably 0.063 to 0.33.
  • d is preferably 0.0024 to 0.93, more preferably 0.017 to 0.45, and further preferably 0.022 to 0.41.
  • a is preferably 0.061 to 0.98, more preferably 0.23 to 0.8, and still more preferably 0.28 to 0.69.
  • b is preferably 0.0007 to 0.67, more preferably 0.035 to 0.57, and further preferably 0.073 to 0.45.
  • c is preferably 0.00065 to 0.51, more preferably 0.027 to 0.42, and further preferably 0.063 to 0.33.
  • d is preferably 0.0024 to 0.93, more preferably 0.017 to 0.44, and further preferably 0.022 to 0.4.
  • a in the formula (I) is 0.053 to 0.98 preferable. If the content is less than the above lower limit, the content of component (A) is too small and the synthesis efficiency of oxygenates may not be sufficiently increased. If the content exceeds the upper limit, the content of components (B) to (D) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
  • the component (D) is at least one selected from (D2) component: an element belonging to Group 13 of the periodic table, b in the formula (I) is 0.00059 to 0.67. preferable.
  • the content of the component (B) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased. If the amount exceeds the upper limit, the components (A), (C), There is a possibility that the content of the component (D) becomes too small and the synthesis efficiency of the oxygenate is not sufficiently increased.
  • the component (D) is at least one selected from the elements (D2): elements belonging to Group 13 of the periodic table, c in the formula (I) is 0.00056 to 0.51. preferable. If the amount is less than the above lower limit, the content of the component (C) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased.
  • the component (D) is at least one selected from (D2) component: an element belonging to Group 13 of the periodic table, d in the formula (I) is 0.0024 to 0.95. preferable. If the content is less than the above lower limit, the content of component (D2) is too small and the synthesis efficiency of oxygenates may not be sufficiently increased. If the content exceeds the above upper limit, the content of components (A) to (C) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
  • a is preferably 0.057 to 0.98, more preferably 0.12 to 0.78, and still more preferably 0.22 to 0.55.
  • b is preferably 0.00065 to 0.67, more preferably 0.015 to 0.57, and still more preferably 0.055 to 0.39.
  • c is preferably 0.00061 to 0.51, more preferably 0.013 to 0.41, and even more preferably 0.05 to 0.28.
  • d is preferably 0.0024 to 0.94, more preferably 0.028 to 0.8, and further preferably 0.13 to 0.57.
  • a is preferably 0.053 to 0.98, more preferably 0.19 to 0.78, and still more preferably 0.22 to 0.68.
  • b is preferably 0.00059 to 0.67, more preferably 0.026 to 0.57, and further preferably 0.055 to 0.45.
  • c is preferably 0.00056 to 0.51, more preferably 0.022 to 0.41, and further preferably 0.05 to 0.33.
  • d is preferably 0.0024 to 0.95, more preferably 0.028 to 0.6, and still more preferably 0.036 to 0.57.
  • component (D) is at least one selected from the group consisting of component (D3): magnesium and lanthanoids
  • a in formula (I) is preferably 0.065 to 0.98. If the content is less than the above lower limit, the content of component (A) is too small, and the synthesis efficiency of oxygenates may not be sufficiently increased. If the content exceeds the above upper limit, the content of components (B) to (D3) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
  • component (D) is at least one selected from the group consisting of component (D3): magnesium and lanthanoids
  • b in formula (I) is preferably 0.00075 to 0.67.
  • component (D) is at least one selected from the group consisting of component (D3): magnesium and lanthanoids
  • c in formula (I) is preferably 0.0007 to 0.51. If the amount is less than the above lower limit, the content of the component (C) is too small and the synthesis efficiency of the oxygenate may not be sufficiently increased.
  • component (D) is at least one selected from the group consisting of component (D3): magnesium and lanthanoids
  • d in formula (I) is preferably 0.0024 to 0.93. If the content is less than the above lower limit, the content of component (D3) is too small, and the synthesis efficiency of oxygenates may not be sufficiently increased. If the content exceeds the above upper limit, the content of components (A) to (C) There is a possibility that the amount becomes too small and the synthesis efficiency of oxygenates is not sufficiently increased.
  • a is more preferably 0.18 to 0.78, and further preferably 0.21 to 0.68.
  • b is more preferably 0.025 to 0.57, and further preferably 0.052 to 0.45.
  • c is more preferably 0.021 to 0.41, and further preferably 0.047 to 0.33.
  • d in the formula (I) is more preferably 0.028 to 0.63, and further preferably 0.036 to 0.59.
  • a is more preferably 0.11 to 0.98, further preferably 0.27 to 0.83, and particularly preferably 0.33 to 0.71.
  • b is more preferably 0.0014 to 0.67, further preferably 0.044 to 0.58, and particularly preferably 0.092 to 0.46.
  • c is more preferably 0.0012 to 0.51, further preferably 0.033 to 0.42, and particularly preferably 0.078 to 0.34.
  • d is more preferably 0.0024 to 0.83, further preferably 0.0068 to 0.23, and particularly preferably 0.0087 to 0.21. .
  • the components (A) to (D) may be present independently, or the components (A) to (D) may form an alloy.
  • the components (A) to (D1) may be present independently, or the components (A) to (D1) An alloy may be formed.
  • the components (A) to (D2) may be present independently, or the components (A) to (D2) An alloy may be formed.
  • the components (A) to (D3) may be present independently, or the components (A) to (D3) An alloy may be formed.
  • the catalyst of the present invention may be an assembly of components (A) to (D), components (A) to (D1), components (A) to (D2), or components (A) to (D3). And (A) to (D) components, (A) to (D1) components, (A) to (D2) components, or (A) to (D3) components supported on a carrier. Often it is a supported catalyst. By using a supported catalyst, contact efficiency between components (A) to (D), (A) to (D1), (A) to (D2), or (A) to (D3) and the mixed gas And oxygenates can be synthesized more efficiently.
  • the support those known as metal catalyst supports can be used, for example, silica, titania, alumina, ceria and the like.
  • Silica is preferred because various products with different specific surface areas and pore sizes can be procured on the market.
  • the “selectivity” is the percentage occupied by the number of moles of C converted into a specific oxygenate out of the number of moles of CO consumed in the mixed gas. For example, according to the following formula ( ⁇ ), the selectivity for acetic acid as an oxygenate is 100 mol%.
  • a carrier having a specific surface area of 10 to 1000 m 2 / g and a pore diameter of 1 nm or more is preferable.
  • the carrier preferably has a narrow particle size distribution.
  • the average particle size of the carrier is not particularly limited, but is preferably 0.5 to 5000 ⁇ m.
  • Various carriers having different specific surface areas, pore diameters, pore volumes, and particle diameters are commercially available. The catalyst activity, product distribution, and the like can be adjusted by appropriately selecting the type of the carrier.
  • the supported components (A) to (D), (A) to (D1), (A) to (D2), or (A) to (D3) It is considered that the catalyst activity and the product distribution change due to the particle size of the components becoming smaller or the reaction gas and the diffusion rate of the product decreasing when the raw material gas is allowed to flow and react.
  • the catalyst of the present invention is used as a supported catalyst, components (A) to (D), components (A) to (D1), components (A) to (D2), or (A) to (D3) with respect to 100 parts by mass of the carrier.
  • Component is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the synthesis efficiency of the oxygenate may be lowered. If the amount exceeds the upper limit, the components (A) to (D), the components (A) to (D1), and the components (A) to (D2) Alternatively, the components (A) to (D3) are less likely to be in a uniform and highly dispersed state, and the synthesis efficiency of oxygenates may be reduced.
  • the catalyst of the present invention is produced according to a conventionally known method for producing a noble metal catalyst.
  • the method for producing the catalyst include an impregnation method, an immersion method, an ion exchange method, a coprecipitation method, a kneading method, and the like.
  • the impregnation method is preferable.
  • the impregnation method in the obtained catalyst, the components (A) to (D) are more uniformly dispersed, the contact efficiency with the mixed gas is further increased, and oxygenates can be synthesized more efficiently.
  • Raw material compounds of components (A) to (D) used for catalyst preparation include inorganic salts such as oxides, chlorides, nitrates, carbonates, oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamineacetic acid Organic salts such as salts or chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, alkyl compounds, etc.
  • (A) to (D) components, (A) to (D1) components, (A) to Examples of the component (D2) or the compounds of the components (A) to (D3) include those usually used for preparing noble metal catalysts.
  • the impregnation method will be described. First, raw materials of the components (A) to (D), (A) to (D1), (A) to (D2), or (A) to (D3) are mixed with water, methanol, ethanol, tetrahydrofuran, The impregnating solution is adhered to the support by dissolving it in a solvent such as dioxane, hexane, benzene, toluene and immersing the support in the resulting solution (impregnation solution). When a porous material is used as the carrier, the impregnating solution is sufficiently permeated into the pores of the carrier, and then the solvent is evaporated to form a catalyst.
  • a solvent such as dioxane, hexane, benzene, toluene
  • a method of impregnating the carrier with the impregnating solution a method in which a solution in which all raw material compounds are dissolved is impregnated in the carrier (simultaneous method), a solution in which each raw material compound is separately dissolved is prepared, and each solution is sequentially added to the carrier And the like (sequential method) and the like.
  • the sequential method is preferable.
  • the catalyst obtained by the sequential method can synthesize oxygenates more efficiently.
  • a support (primary impregnation liquid) containing (D) component, (D1) component, (D2) component, or (D3) component is impregnated in a support (primary impregnation step), and then dried.
  • (D) component, (D1) component, (D2) component, or (D3) component is supported on a carrier to obtain a primary carrier (primary carrier step), and then a solution containing components (A) to (C)
  • a method of impregnating the (primary impregnation liquid) into the primary support (secondary impregnation step) and drying it (secondary support step) can be mentioned.
  • the catalyst (D), the component (D1), the component (D2), or the component (D3) is supported on the carrier, and then the components (A) to (C) are supported on the carrier.
  • Components A) to (D), components (A) to (D1), components (A) to (D2), or components (A) to (D3) are more highly dispersed, and oxygenates are more efficiently produced. Can be synthesized.
  • the primary supporting step includes, for example, a method of drying a carrier impregnated with the primary impregnation liquid (primary drying operation) and heating and baking it at an arbitrary temperature (primary baking operation).
  • the drying method in the primary drying operation is not particularly limited, and examples thereof include a method of heating the carrier impregnated with the primary impregnation liquid at an arbitrary temperature.
  • the heating temperature in the primary drying operation may be a temperature at which the solvent of the primary impregnation liquid can be evaporated, and is 80 to 120 ° C. if the solvent is water.
  • the heating temperature in the primary firing operation is, for example, 300 to 600 ° C.
  • components that do not contribute to the catalytic reaction are sufficiently volatilized out of the components contained in the raw material compound of component (D), component (D1), component (D2), or component (D3).
  • the catalytic activity can be further increased.
  • Examples of the secondary supporting step include a method of drying the primary support impregnated with the secondary impregnating liquid (secondary drying operation), and further heating and baking at an arbitrary temperature (secondary baking operation).
  • the drying method in the secondary drying operation is not particularly limited, and examples thereof include a method of heating the primary carrier impregnated with the secondary impregnation liquid at an arbitrary temperature.
  • the heating temperature in the secondary drying operation may be a temperature at which the solvent of the secondary impregnation solution can be evaporated, and is 80 to 120 ° C. if the solvent is water.
  • the heating temperature in the secondary firing operation is, for example, 300 to 600 ° C.
  • the catalyst prepared by the above-described method is usually subjected to a reduction treatment to be activated and used for the synthesis of oxygenates.
  • a reduction treatment a method of bringing a catalyst into contact with a gas containing hydrogen is simple and preferable.
  • the treatment temperature may be a temperature at which rhodium is reduced, that is, about 100 ° C., but is preferably 200 to 600 ° C.
  • hydrogen reduction may be performed while raising the temperature stepwise.
  • metal particles in the components (A) to (D), (A) to (D1), (A) to (D2), or (A) to (D3) are aggregated, and oxygen There is a possibility that the synthesis efficiency of the chemical compound may be reduced, or the energy in the reduction treatment may be excessive, resulting in an economic disadvantage.
  • a surface treatment step of performing a surface treatment by bringing an alkaline aqueous solution into contact with the primary support may be provided after the primary support step and before the secondary impregnation step.
  • the alkaline aqueous solution used in the surface treatment step can be determined in consideration of the type of the component (D), the component (D1), the component (D2), or the component (D3), the type of the carrier, and the like. Can be mentioned.
  • the concentration of the aqueous alkali solution can be determined in consideration of the type of the component (D), the component (D1), the component (D2), or the component (D3), the type of the carrier, etc., for example, 0.1 to 3 mol / L It is said.
  • the method (contact method) for bringing the alkaline aqueous solution into contact with the primary carrier is not particularly limited, and examples thereof include a method of immersing the primary carrier in the alkaline aqueous solution, a method of applying the alkaline aqueous solution to the primary carrier by spraying, and the like. It is done.
  • the time for contacting the alkaline aqueous solution with the primary carrier is determined in consideration of the contact method, the concentration of the alkaline aqueous solution, and the like. For example, when the primary carrier is immersed in the alkaline aqueous solution, 0.1 to 12 hours are preferable, and 1 to 8 hours are more preferable. If it is less than the lower limit, it is difficult to obtain the effect of providing this step, and even if the upper limit is exceeded, the catalytic activity may not be further improved.
  • the temperature of the aqueous alkali solution in the surface treatment step is not particularly limited, but is preferably 5 to 40 ° C, and more preferably 15 to 30 ° C. If it is less than the above lower limit, the contact time becomes too long and the productivity of the catalyst may be reduced. If it exceeds the upper limit, the component (D) supported on the primary support may be dissolved or altered. Because there is.
  • the oxygenated product production apparatus of the present invention (hereinafter sometimes referred to simply as production apparatus) comprises a reaction tube filled with the catalyst of the present invention, a supply means for supplying a mixed gas into the reaction tube, and a product from the reaction tube And a discharge means for discharging the gas.
  • FIG. 1 is a schematic diagram showing a manufacturing apparatus 10 according to an embodiment of the present invention.
  • the production apparatus 10 includes a reaction tube 1 filled with a catalyst to form a reaction bed 2, a supply tube 3 connected to the reaction tube 1, a discharge tube 4 connected to the reaction tube 1, and a reaction tube 1.
  • the temperature control part 5 connected and the pressure control part 6 provided in the discharge pipe 4 are provided.
  • the reaction tube 1 is preferably made of a material inert to the raw material gas and the synthesized oxygenate, and preferably has a shape capable of withstanding heating at about 100 to 500 ° C. or pressurization at about 10 MPa.
  • An example of the reaction tube 1 is a substantially cylindrical member made of stainless steel.
  • the supply pipe 3 is a supply means for supplying the mixed gas into the reaction tube 1 and includes, for example, a pipe made of stainless steel or the like.
  • the discharge pipe 4 is a discharge means for discharging the synthesis gas (product) containing the oxygenated product synthesized in the reaction bed 2 and includes, for example, a pipe made of stainless steel or the like.
  • the temperature control part 5 should just be what can make the reaction bed 2 in the reaction tube 1 arbitrary temperature, for example, an electric furnace etc. are mentioned.
  • the pressure control part 6 should just be what can make the pressure in the reaction tube 1 arbitrary pressure, for example, a well-known pressure valve etc. are mentioned.
  • the manufacturing apparatus 10 may include a known device such as a gas flow rate control unit that adjusts a gas flow rate such as mass flow.
  • the oxygenated product production method of the present invention is a method in which a mixed gas is brought into contact with a catalyst.
  • An example of the method for producing an oxygenated product of the present invention will be described using the production apparatus of FIG. First, the inside of the reaction tube 1 is set to an arbitrary temperature and an arbitrary pressure, and the mixed gas 20 is caused to flow into the reaction tube 1 from the supply tube 3.
  • the mixed gas 20 is not particularly limited as long as it contains hydrogen and carbon monoxide.
  • the mixed gas 20 may be prepared from natural gas or coal, biomass gas obtained by gasifying biomass, or the like. It may be.
  • the biomass gas can be obtained by a conventionally known method such as heating the pulverized biomass in the presence of water vapor (for example, 800 to 1000 ° C.).
  • gas purification treatment is performed for the purpose of removing impurities such as tar, sulfur, nitrogen, chlorine, and moisture before supplying the mixed gas 20 into the reaction tube 1. May be applied.
  • the gas purification treatment for example, various methods known in the technical field such as a wet method and a dry method can be adopted.
  • wet methods include sodium hydroxide method, ammonia absorption method, lime / gypsum method, magnesium hydroxide method, and dry methods include activated carbon adsorption method such as pressure swing adsorption (PSA) method, electron beam method, etc. Is mentioned.
  • PSA pressure swing adsorption
  • the mixed gas 20 is mainly composed of hydrogen and carbon monoxide, that is, the total of hydrogen and carbon monoxide in the mixed gas 20 is preferably 50% by volume or more, and 80% by volume or more. More preferably, it is more preferable that it is 90 volume% or more, and 100 volume% may be sufficient.
  • the greater the content of hydrogen and carbon monoxide the higher the amount of oxygenate produced and the more efficiently the oxygenate can be produced.
  • the volume ratio represented by hydrogen / carbon monoxide (hereinafter sometimes referred to as H 2 / CO ratio) is preferably 0.1 to 10, more preferably 0.5 to 3, and 1.5 to 2.5. Is more preferable.
  • catalyst activity, product distribution, etc. can be adjusted with reaction temperature.
  • the higher the reaction temperature the higher the selectivity of hydrocarbons such as methane, and the lower the total of ethanol selectivity and aldehyde selectivity, but the CO conversion and ethanol selectivity increase. Therefore, the amount of ethanol produced tends to be increased.
  • the lower the reaction temperature the lower the CO conversion rate, but the total of ethanol selectivity and acetaldehyde selectivity increases.
  • the acetaldehyde selectivity tends to increase and the amount of acetaldehyde produced tends to be increased. Therefore, the production amount of ethanol or acetaldehyde can be adjusted by appropriately selecting the reaction temperature as necessary.
  • the ethanol selectivity tends to increase
  • the acetaldehyde selectivity tends to increase.
  • the pressure (reaction pressure) when the mixed gas 20 is brought into contact with the catalyst is preferably 0.5 to 10 MPa, more preferably 1 to 7.5 MPa, and further preferably 2 to 5 MPa. preferable. If it is more than the said lower limit, the speed
  • the inflowing mixed gas 20 flows while in contact with the catalyst in the reaction bed 2, and a part thereof becomes an oxygenate. While the mixed gas 20 flows through the reaction bed 2, for example, an oxygenate is generated by a catalytic reaction represented by the following formulas (1) to (5).
  • a catalytic reaction represented by the following formulas (1) to (5).
  • the synthesis gas 22 containing this oxygenate is discharged from the discharge pipe 4.
  • the synthesis gas 22 is not particularly limited as long as it contains an oxygenate, but preferably contains at least one selected from acetic acid, ethanol and acetaldehyde, and more preferably contains ethanol. This is because the effect of the catalyst of the present invention is remarkable in the method for producing such a C2 compound.
  • the space velocity of the mixed gas in the reaction bed 2 (the value obtained by dividing the supply amount of gas per unit time by the catalyst amount (volume conversion)) is 10 to 100,000 L / L in terms of standard conditions. It is preferably adjusted to be catalyst / h.
  • the space velocity is appropriately adjusted in consideration of the reaction pressure suitable for the target oxygenate, the reaction temperature, and the composition of the mixed gas as the raw material.
  • the synthesis gas 22 discharged from the discharge pipe 4 may be treated with a gas-liquid separator or the like to separate the unreacted mixed gas 20 and the oxygenated product.
  • the mixed gas is brought into contact with the reaction bed 2 of the fixed bed.
  • the catalyst may be in a form other than the fixed bed, such as a fluidized bed or a moving bed, and the mixed gas may be brought into contact therewith.
  • the obtained oxygenates may be separated for each necessary component by distillation or the like.
  • a product other than ethanol for example, acetic acid, acetaldehyde, C2 compound excluding ethanol and esters such as ethyl acetate, methyl acetate, ethyl formate
  • ethanolification step examples include a method in which an oxygenate containing acetaldehyde, acetic acid and the like is brought into contact with a hydrogenation catalyst and converted to ethanol.
  • the hydrogenation catalyst a catalyst known in the art can be used, and copper, copper-zinc, copper-chromium, copper-zinc-chromium, iron, rhodium-iron, rhodium-molybdenum, palladium, palladium- Examples thereof include iron, palladium-molybdenum, iridium-iron, rhodium-iridium-iron, iridium-molybdenum, rhenium-zinc, platinum, nickel, cobalt, ruthenium, rhodium oxide, palladium oxide, platinum oxide, and ruthenium oxide.
  • These hydrogenation catalysts may be supported catalysts that are supported on the same support as that used in the catalyst of the present invention.
  • oxidation catalyst such as a metal catalyst mainly composed of gold, platinum, ruthenium, copper or manganese, or an alloy catalyst containing two or more of these metals. Methods and the like.
  • oxidation catalysts may be supported catalysts in which a metal is supported on the same support as that used in the catalyst of the present invention.
  • oxygenates can be efficiently synthesized from a mixed gas by using the catalyst of the present invention.
  • the amount of ethanol in the oxygenate can be increased by using the catalyst of the present invention.
  • Example A1 10 to 12
  • 1.08 mL of an aqueous solution (primary impregnation solution) containing 0.0307 g of titanium lactate ammonium salt (Ti (OH) 2 [OCH (CH 3 ) COO ⁇ ] 2 (NH 4 + ) 2 ) was added to silica gel (specific surface area: 310 m 2 / G, average pore diameter: 14 nm, pore volume: 1.1 cm 3 / g) was dropped into 1.0 g and impregnated (primary impregnation step). This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step). 1.
  • aqueous solution containing 0.061 g of rhodium chloride (RhCl 3 ), 0.0017 g of lithium chloride (LiCl), and 0.0159 g of manganese chloride tetrahydrate (MnCl 2 .4H 2 O) 08 mL was dropped onto the primary support and impregnated (secondary impregnation step), dried at 110 ° C. for 3 hours (secondary drying operation), and further calcined at 450 ° C. for 3 hours to obtain a catalyst (secondary Firing operation, secondary support step).
  • secondary impregnation solution containing 0.061 g of rhodium chloride (RhCl 3 ), 0.0017 g of lithium chloride (LiCl), and 0.0159 g of manganese chloride tetrahydrate (MnCl 2 .4H 2 O) 08 mL was dropped onto the primary support and impregnated (secondary impregnation step), dried at 110 °
  • the method for producing the catalyst in this example is referred to as “sequential method”.
  • Example A2 The catalyst was the same as in Example A1, except that 1.08 mL of an aqueous solution containing 0.061 g of rhodium chloride, 0.0062 g of lithium chloride, and 0.0288 g of manganese chloride tetrahydrate was used as the secondary impregnation solution.
  • the method for producing the catalyst in this example is referred to as “sequential method”.
  • the method for producing the catalyst in this example is described as “simultaneous method”.
  • the method for producing the catalyst in this example is referred to as “sequential method”.
  • Example A5 A catalyst was obtained in the same manner as in Example A2, except that 1.08 mL of an aqueous solution containing 0.0920 g of titanium lactate ammonium salt was used as the primary impregnation liquid.
  • the method for producing the catalyst in this example is referred to as “sequential method”.
  • Example A6 1.08 mL of an aqueous solution (primary impregnation liquid) containing 0.0115 g of ammonium metavanadate (H 4 NO 3 V) was dropped and impregnated on 1.0 g of silica gel (primary impregnation step). This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step).
  • primary impregnation liquid containing 0.0115 g of ammonium metavanadate (H 4 NO 3 V)
  • Example A7 Chromium nitrate nonahydrate (Cr (NO 3) 3 ⁇ 9H 2 O) aqueous solution containing 0.0385g (primary impregnation solution) 1.08 mL, was impregnated by dropping of silica gel 1.0 g (primary impregnation step) . This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step).
  • Example A8 The catalyst was prepared in the same manner as in Example A2 except that the primary carrier was immersed in a 2 mol / L aqueous ammonia solution for 6 hours and dried at 110 ° C. for 2 hours for the secondary impregnation step. Obtained.
  • the method for producing the catalyst in this example is described as “hydroxylation method”.
  • Example A9 The catalyst was prepared in the same manner as in Example A5 except that the primary carrier was immersed in a 2 mol / L aqueous ammonia solution for 6 hours and dried at 110 ° C. for 2 hours for the secondary impregnation step. Obtained.
  • the method for producing the catalyst in this example is described as “hydroxylation method”.
  • a reaction bed was formed by charging 0.1 g of the catalyst of each example into a stainless steel cylindrical reaction tube having a diameter of 2 mm and a length of 15 cm.
  • the hydrogen was passed through the reaction bed at normal pressure and a space velocity of 1200 L / L-catalyst / h and heated at 320 ° C. for 2.5 hours to reduce the catalyst.
  • the mixed gas was passed through the reaction bed for 3 hours, and the resultant synthesis gas was recovered and analyzed by gas chromatography.
  • the CO conversion (mol%), ethanol and acetaldehyde selectivity (mol%), and ethanol and acetaldehyde production (g / L-catalyst / h) were calculated from the obtained data. Shown in A2.
  • the production amounts of ethanol and acetaldehyde are values expressed as mass per unit catalyst volume per unit time.
  • the CO conversion was 15.2 mol% or more, and the total amount of oxygenates (total amount of acetaldehyde and ethanol) was 215 g. / L-catalyst / h or more.
  • the amount of ethanol produced was 106 g / L-catalyst / h or more.
  • the total amount of oxygenates produced in the Examples is higher than the total amount of oxygenates produced in the Comparative Examples at any reaction temperature. It was.
  • Examples A1 and A6 to A7 and Comparative Example A1 in which the space velocity of the mixed gas is 6300 L / L-catalyst / h are oxygenated compared to Comparative Example A1.
  • the total production amount of ethanol and the production amount of ethanol increased.
  • Examples A2 to A5 and Comparative Example A2 in which the mixed gas has a space velocity of 8400 L / L-catalyst / h show that the total amount of oxygenates is larger than that of Comparative Example A2.
  • the production amount and the production amount of ethanol increased. From these results, it was found that by applying the present invention, the total amount of oxygenated products generated can be increased, and oxygenated products can be efficiently synthesized from the mixed gas.
  • Example A2 produced by the sequential method had significantly increased ethanol production compared to Example 3 produced by the simultaneous method.
  • Example A8 to A9 produced by the hydroxylation method were compared with Examples A2 and A5 produced by the sequential method. As a result, the total amount of oxygenated products was increased.
  • the selectivity of ethanol in Examples A1 and A12 where the reaction temperature was 300 to 320 ° C. was 31.3 mol% or more, which was higher than the selectivity of ethanol in Examples A10 to A11 where the reaction temperature was 260 to 280 ° C. it was high.
  • the selectivity of acetaldehyde in Examples A10 to A11 in which the reaction temperature was 260 to 280 ° C. was 49.2 mol% or more, and the selectivity of acetaldehyde in Examples A1 and A12 in which the reaction temperature was 300 to 320 ° C. Higher than. From these results, it was found that the selectivity of ethanol or acetaldehyde can be increased by changing the reaction temperature.
  • Examples B1, B6 to B8 1.08 mL of an aqueous solution (primary impregnation solution) containing 0.0252 g of ammonium pentaborate octahydrate ((NH 4 ) 2 O ⁇ B 10 O 16 ⁇ 8H 2 O) was added to silica gel (specific surface area: 310 m 2 / g, average) Pore diameter: 14 nm, pore volume: 1.1 cm 3 / g) 1.0 g was dropped and impregnated (primary impregnation step). This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step). 1.
  • Example B2 The catalyst was the same as in Example B1, except that 1.08 mL of an aqueous solution containing 0.061 g of rhodium chloride, 0.0062 g of lithium chloride, and 0.0288 g of manganese chloride tetrahydrate was used as the secondary impregnation solution.
  • the method for producing the catalyst in this example is described as “sequential method”.
  • Example B4 Using 1.08 mL of an aqueous solution containing 0.0101 g of ammonium pentaborate octahydrate as the primary impregnation liquid, 0.061 g of rhodium chloride, 0.0062 g of lithium chloride, and 0.0432 g of manganese chloride tetrahydrate as the secondary impregnation liquid.
  • Rh: Mn: Li: B 0.352: 0.264: 0.176: 0.208 (molar ratio).
  • Example B5 Aluminum nitrate nonahydrate (Al (NO 3) 3 ⁇ 9H 2 O) an aqueous solution containing 0.0695g (primary impregnation solution) 1.08 mL, was impregnated by dropping of silica gel 1.0 g (primary impregnation step) . This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step).
  • a reaction bed was formed by charging 0.1 g of the catalyst of each example into a stainless steel cylindrical reaction tube having a diameter of 2 mm and a length of 15 cm.
  • the hydrogen was passed through the reaction bed at normal pressure and a space velocity of 1200 L / L-catalyst / h and heated at 320 ° C. for 2.5 hours to reduce the catalyst.
  • the mixed gas was passed through the reaction bed for 3 hours, and the resultant synthesis gas was recovered and analyzed by gas chromatography.
  • CO conversion (mol%), ethanol and acetaldehyde selectivity (mol%), ethanol and acetaldehyde production (g / L-catalyst / h) were calculated from the obtained data, and these results are shown in Table B1 to Shown in B2.
  • the production amounts of ethanol and acetaldehyde are values expressed as mass per unit catalyst volume per unit time.
  • the CO conversion is 18.4 mol% or more
  • the total amount of oxygenated products is 213 g / L. -Catalyst / h or more.
  • the amount of ethanol produced was 104 g / L-catalyst / h or more.
  • the total amount of oxygenates produced in the Examples is higher than the total amount of oxygenates produced in the Comparative Examples at any reaction temperature. it was high.
  • Example B2 produced by the sequential method had a higher total amount of oxygenated product and ethanol produced than Example B3 produced by the simultaneous method. .
  • the selectivity of ethanol in Examples B1 and B8 where the reaction temperature was 300 to 320 ° C. was 20.3 mol% or more, which was higher than the selectivity of ethanol in Examples B6 to B7 where the reaction temperature was 260 to 280 ° C. it was high.
  • the selectivity of acetaldehyde in Examples B6 to B7 in which the reaction temperature was 260 to 280 ° C. was 68.3 mol% or more
  • Example C1 1.08 mL of an aqueous solution (primary impregnation solution) containing 0.0531 g of magnesium nitrate hexahydrate (Mg (NO 3 ) 2 .6H 2 O) was added to silica gel (specific surface area: 310 m 2 / g, average pore diameter: 14 nm, Pore volume: 1.1 cm 3 / g) was dropped into 1.0 g and impregnated (primary impregnation step). This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step). 1.
  • aqueous solution primary impregnation solution
  • silica gel specific surface area: 310 m 2 / g, average pore diameter: 14 nm, Pore volume: 1.1 cm 3 / g
  • aqueous solution containing 0.061 g of rhodium chloride (RhCl 3 ), 0.0017 g of lithium chloride (LiCl), and 0.0159 g of manganese chloride tetrahydrate (MnCl 2 .4H 2 O) 08 mL was dropped onto the primary support and impregnated (secondary impregnation step), dried at 110 ° C. for 3 hours (secondary drying operation), and further calcined at 450 ° C. for 3 hours to obtain a catalyst (secondary Firing operation, secondary support step).
  • secondary impregnation solution containing 0.061 g of rhodium chloride (RhCl 3 ), 0.0017 g of lithium chloride (LiCl), and 0.0159 g of manganese chloride tetrahydrate (MnCl 2 .4H 2 O) 08 mL was dropped onto the primary support and impregnated (secondary impregnation step), dried at 110 °
  • the method for producing the catalyst in this example is referred to as “sequential method”.
  • Example C2 Lanthanum nitrate hexahydrate (La (NO 3) 3 ⁇ 6H 2 O) to an aqueous solution containing 0.0152g (primary impregnation solution) 1.08 mL, was impregnated by dropping of silica gel 1.0 g (primary impregnation step) . This was dried at 110 ° C. for 3 hours (primary drying operation), and further fired at 450 ° C. for 3 hours to obtain a primary support (primary firing operation, primary support step).
  • La (NO 3) 3 ⁇ 6H 2 O Lanthanum nitrate hexahydrate
  • Examples C3, C6 to C8 The catalyst was prepared in the same manner as in Example C1, except that the primary carrier was immersed in a 2 mol / L aqueous ammonia solution for 6 hours and dried at 110 ° C. for 2 hours for the secondary impregnation step. Obtained.
  • the method for producing the catalyst in this example is described as “hydroxylation method”.
  • Example C4 In the same manner as in Example C3, except that 1.08 mL of an aqueous solution containing 0.061 g of rhodium chloride, 0.0062 g of lithium chloride, and 0.0288 g of manganese chloride tetrahydrate was used as the secondary impregnation solution.
  • the method for producing the catalyst in this example is described as “hydroxylation method”.
  • a reaction bed was formed by charging 0.1 g of the catalyst of each example into a stainless steel cylindrical reaction tube having a diameter of 2 mm and a length of 15 cm.
  • the hydrogen was passed through the reaction bed at normal pressure and a space velocity of 1200 L / L-catalyst / h and heated at 320 ° C. for 2.5 hours to reduce the catalyst.

Abstract

 本発明は、水素と一酸化炭素とを含む混合ガスから酸素化物を合成する酸素化物合成用の触媒において、 (A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:(D1)成分、(D2)成分又は(D3)成分とを含み、 (D1)成分は、チタン、バナジウム及びクロムからなる群から選択される1種以上であり、(D2)成分は、周期表の第13族に属する元素であり、(D3)成分は、マグネシウム及びランタノイドからなる群から選択される1種以上である、酸素化物合成用の触媒に関する。 本発明によれば、水素と一酸化炭素とを含む混合ガスから酸素化物を効率的に合成することができる。

Description

酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法
 本発明は、酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法に関する。本願は、2011年8月31日に、日本に出願された特願2011-189052号、特願2011-189053号及び特願2011-189056号、ならびに、2012年2月24日に、日本に出願された特願2012-039007号、特願2012-039008号及び特願2012-039009号に基づき優先権を主張し、その内容をここに援用する。
 バイオエタノールは、石油代替燃料としての普及が進められている。バイオエタノールは、主にサトウキビやトウモロコシの糖化及び発酵によって製造されている。近年、食料や飼料と競合しない、廃木材や稲わら等の作物の未利用部分等の木質系及び草本系バイオマス(セルロース系バイオマスともいう)からバイオエタノールを製造する技術が開発されている。
 セルロース系バイオマスを原料とし、従来のエタノール発酵法を用いてバイオエタノールを製造するためには、セルロースを糖化させる必要がある。糖化方法としては、濃硫酸糖化法、希硫酸・酵素糖化法、水熱糖化法等があるが、安価にバイオエタノールを製造するためにはいまだ多くの課題が残されている。
 一方、セルロース系バイオマスを水素と一酸化炭素とを含む混合ガスに変換した後、この混合ガスからエタノールを合成する方法がある。この方法により、エタノール発酵法の適用が難しいセルロース系バイオマスから、効率的にバイオエタノールを製造する試みがなされている。加えて、この方法によれば、木質系・草本系バイオマスに限らず、動物の死骸や糞等由来の動物バイオマス、生ゴミ、廃棄紙、廃繊維といった多様なバイオマスを原料に用いることができる。
 さらに、水素と一酸化炭素との混合ガスは、天然ガス、石炭等の石油以外の資源からも得られるため、混合ガスから酸素化物を合成する方法は、石油依存を脱却する技術として研究されている。
 水素と一酸化炭素との混合ガスからエタノール、アセトアルデヒド、酢酸等の酸素化物を得る方法としては、例えば、ロジウム、アルカリ金属及びマンガンを含む触媒に混合ガスを接触させる方法が知られている(例えば、特許文献1~2)。
特公昭61-36730号公報 特公昭61-36731号公報
 しかしながら、酸素化物合成用の触媒には、酸素化物をより効率的に合成できることが求められている。
 また、特許文献1及び2に記載の方法では、CO転化率が25%以下での酸素化物の合成方法が開示されているが、CO転化率が25%以上であっても、生成するエタノールの選択率を下げすぎない酸素化物合成用の触媒が求められている。
 そこで、本発明は、水素と一酸化炭素との混合ガスから、酸素化物を効率的に合成できる酸素化物合成用の触媒の提供を目的とする。
 本発明は、以下に関する。
[1]水素と一酸化炭素とを含む混合ガスから酸素化物を合成する酸素化物合成用の触媒において、
(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:(D1)成分、(D2)成分又は(D3)成分とを含み、
(D1)成分は、チタン、バナジウム及びクロムからなる群から選択される1種以上であり、(D2)成分は、周期表の第13族に属する元素であり、(D3)成分は、マグネシウム及びランタノイドからなる群から選択される1種以上である、酸素化物合成用の触媒。
[2]前記酸素化物合成用の触媒が、下記式(I)で表される[1]に記載の酸素化物合成用の触媒。
aA・bB・cC・dD ・・・・(I)
[(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.05~0.98、
b=0.0005~0.67、
c=0.0005~0.51、
d=0.002~0.95である。]
[3]前記(D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である[1]又は[2]に記載の酸素化物合成用の触媒。
[4]前記(D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である[1]又は[2]に記載の酸素化物合成用の触媒。
[5]前記(D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である[1]又は[2]に記載の酸素化物合成用の触媒。
[6]前記式(I)中のa、b、c及びdが以下の条件を満たす[2]又は[3]に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.053~0.98、
b=0.0006~0.67、
c=0.00056~0.51、
d=0.0024~0.94。
[7]前記式(I)中のa、b、c及びdが以下の条件を満たす[2]又は[4]に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.053~0.98、
b=0.00059~0.67、
c=0.00056~0.51、
d=0.0024~0.95。
[8]前記式(I)中のa、b、c及びdが以下の条件を満たす[2]又は[5]に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.065~0.98、
b=0.00075~0.67、
c=0.0007~0.51、
d=0.0024~0.93。
[9]前記(A)~(D)成分は、担体に担持されている[1]~[8]のいずれか1つに記載の酸素化物合成用の触媒。
[10]前記(A)~(D1)成分は、担体に担持されている[1]、[2]、[3]、[6]又は[9]のいずれか1つに記載の酸素化物合成用の触媒。
[11]前記(A)~(D2)成分は、担体に担持されている[1]、[2]、[4]、[7]又は[9]のいずれか1つに記載の酸素化物合成用の触媒。
[12]前記(A)~(D3)成分は、担体に担持されている[1]、[2]、[5]、[8]又は[9]のいずれか1つに記載の酸素化物合成用の触媒。
[13][9]に記載の酸素化物合成用の触媒の製造方法であって、
 前記担体に前記(D)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)~(C)成分を担持させる酸素化物合成用の触媒の製造方法。
[14][10]に記載の酸素化物合成用の触媒の製造方法であって、
 前記担体に前記(D1)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)~(C)成分を担持させる酸素化物合成用の触媒の製造方法。
[15][11]に記載の酸素化物合成用の触媒の製造方法であって、
 前記担体に前記(D2)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)~(C)成分を担持させる酸素化物合成用の触媒の製造方法。
[16][12]に記載の酸素化物合成用の触媒の製造方法であって、
 前記担体に前記(D3)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)~(C)成分を担持させる酸素化物合成用の触媒の製造方法。
[17][1]~[12]のいずれか1つに記載の酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備える酸素化物の製造装置。
[18][1]~[12]のいずれか1つに記載の酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酸素化物を得る酸素化物の製造方法。
[19]酸素化物が、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群から選択される1種以上である[1]~[12]のいずれか1つに記載の酸素化物合成用の触媒。
[20]酸素化物が、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群から選択される1種以上である[13]~[16]又は[18]のいずれか1つに記載の酸素化物合成用の触媒。
[21]酸素化物が、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群から選択される1種以上である[17]に記載の酸素化物の製造装置。
 本明細書において酸素化物は、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル等、炭素原子と水素原子と酸素原子からなる分子を意味する。
 本発明の酸素化物合成用の触媒は、水素と一酸化炭素との混合ガスから、酸素化物を効率的に合成できる。
本発明の一実施形態にかかる酸素化物の製造装置の模式図である。
(酸素化物合成用の触媒)
 本発明の酸素化物合成用の触媒(以下、単に触媒ということがある)は、(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:(D1)成分、(D2)成分又は(D3)成分と、を含むものである。
 ここで、(D1)成分は、チタン、バナジウム及びクロムからなる群から選択される1種以上であり、(D2)成分は、周期表の第13族に属する元素であり、(D3)成分は、マグネシウム及びランタノイドからなる群から選択される1種以上である。
 (A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分を含むことで、酸素化物を効率的に合成することができる。
(C)成分は、アルカリ金属である。(C)成分としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が挙げられ、中でも、副生成物の発生を低減し、CO転化率を高め、酸素化物をより効率的に合成できる観点から、リチウムが好ましい。なお、「CO転化率」とは、「混合ガス中のCOのモル数のうち、消費されたCOのモル数が占める百分率」を意味する。
 (D)成分は、(D1)成分、(D2)成分又は(D3)成分のいずれかである。
 (D1)成分は、チタン(Ti)、バナジウム(V)及びクロム(Cr)からなる群から選択される1種以上である。(D1)成分としては、チタン、バナジウムが好ましく、チタンがより好ましい。触媒は、(D1)成分を含むことで、酸素化物を効率的に合成でき、さらに酸素化物中のエタノール量を高められる。(D1)成分を含むことで酸素化物の合成効率が高まり、酸素化物中のエタノール量が高まる機構については明らかではないが、(D1)成分を含むことで、(A)~(C)成分の分散性が高まるためと推測される。
 (D2)成分は、周期表の第13族に属する元素である。(D2)成分としては、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)が挙げられ、中でも、ホウ素、アルミニウムが好ましく、ホウ素がより好ましい。触媒は、(D2)成分を含むことで、酸素化物を効率的に合成できる。(D2)成分を含むことで酸素化物の合成効率が高まる機構については明らかではないが、(D2)成分を含むことで、(A)~(C)成分の分散性が高まるためと推測される。
 (D3)成分は、マグネシウム及びランタノイドからなる群から選択される1種以上である。ランタノイドは、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)等、原子番号が51~71であるランタンからルテニウム(Lu)までの元素である。(D3)成分としては、マグネシウム、ランタンが好ましい。触媒は、(D3)成分を含むことで、酸素化物を効率的に合成でき、さらに酸素化物中のエタノール量を高められる。
(D3)成分を含むことで酸素化物の合成効率が高まり、酸素化物中のエタノール量が高まる機構については明らかではないが、(D3)成分を含むことで、(A)~(C)成分の分散性が高まるためと推測される。
 本発明の触媒は、下記(I)式で表される組成であることが好ましい。
aA・bB・cC・dD ・・・・(I)
(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.05~0.98、
b=0.0005~0.67、
c=0.0005~0.51、
d=0.002~0.95である。
 (D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のaは、0.053~0.98が好ましい。上記下限値未満であると(A)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(B)~(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のbは、0.0006~0.67が好ましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D1)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のcは、0.00056~0.51が好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D1)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のdは、0.0024~0.94が好ましい。上記下限値未満であると(D1)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)~(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D1)成分がチタンの場合、(I)式中、aは、0.053~0.98が好ましく、0.24~0.8がより好ましく、0.32~0.67がさらに好ましい。
 (D1)成分がチタンの場合、(I)式中、bは、0.0006~0.67が好ましく、0.033~0.57がより好ましく、0.089~0.44がさらに好ましい。
 (D1)成分がチタンの場合、(I)式中、cは、0.00056~0.51が好ましく、0.026~0.42がより好ましく、0.075~0.33がさらに好ましい。
 (D1)成分がチタンの場合、(I)式中、dは、0.0026~0.94が好ましく、0.02~0.48がより好ましく、0.039~0.25がさらに好ましい。
 (D1)成分がバナジウムの場合、(I)式中、aは、0.06~0.98が好ましく、0.23~0.8がより好ましく、0.27~0.69がさらに好ましい。
 (D1)成分がバナジウムの場合、(I)式中、bは、0.00068~0.67が好ましく、0.034~0.57がより好ましく、0.072~0.45がさらに好ましい。
 (D1)成分がバナジウムの場合、(I)式中、cは、0.00064~0.51が好ましく、0.027~0.42がより好ましく、0.063~0.33がさらに好ましい。
 (D1)成分がバナジウムの場合、(I)式中、dは、0.0024~0.93が好ましく、0.017~0.45がより好ましく、0.022~0.41がさらに好ましい。
 (D1)成分がクロムの場合、(I)式中、aは、0.061~0.98が好ましく、0.23~0.8がより好ましく、0.28~0.69がさらに好ましい。
 (D1)成分がクロムの場合、(I)式中、bは、0.0007~0.67が好ましく、0.035~0.57がより好ましく、0.073~0.45がさらに好ましい。
 (D1)成分がクロムの場合、(I)式中、cは、0.00065~0.51が好ましく、0.027~0.42がより好ましく、0.063~0.33がさらに好ましい。
 (D1)成分がクロムの場合、(I)式中、dは、0.0024~0.93が好ましく、0.017~0.44がより好ましく、0.022~0.4がさらに好ましい。
 (D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のaは、0.053~0.98が好ましい。上記下限値未満であると(A)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(B)~(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のbは、0.00059~0.67が好ましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のcは、0.00056~0.51が好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D2)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のdは、0.0024~0.95が好ましい。上記下限値未満であると(D2)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)~(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D2)成分がホウ素の場合、(I)式中、aは、0.057~0.98が好ましく、0.12~0.78がより好ましく、0.22~0.55がさらに好ましい。
 (D2)成分がホウ素の場合、(I)式中、bは、0.00065~0.67が好ましく、0.015~0.57がより好ましく、0.055~0.39がさらに好ましい。
 (D2)成分がホウ素の場合、(I)式中、cは、0.00061~0.51が好ましく、0.013~0.41がより好ましく、0.05~0.28がさらに好ましい。
 (D2)成分がホウ素の場合、(I)式中、dは、0.0024~0.94が好ましく、0.028~0.8がより好ましく、0.13~0.57がさらに好ましい。
 (D2)成分がアルミニウムの場合、(I)式中、aは、0.053~0.98が好ましく、0.19~0.78がより好ましく、0.22~0.68がさらに好ましい。
 (D2)成分がアルミニウムの場合、(I)式中、bは、0.00059~0.67が好ましく、0.026~0.57がより好ましく、0.055~0.45がさらに好ましい。
 (D2)成分がアルミニウムの場合、(I)式中、cは、0.00056~0.51が好ましく、0.022~0.41がより好ましく、0.05~0.33がさらに好ましい。
 (D2)成分がアルミニウムの場合、(I)式中、dは、0.0024~0.95が好ましく、0.028~0.6がより好ましく、0.036~0.57がさらに好ましい。
 (D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のaは、0.065~0.98が好ましい。上記下限値未満であると(A)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(B)~(D3)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のbは、0.00075~0.67が好ましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D3)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のcは、0.0007~0.51が好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D3)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のdは、0.0024~0.93が好ましい。上記下限値未満であると(D3)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)~(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
 (D3)成分がマグネシウムの場合、(I)式中、aは、0.18~0.78がより好ましく、0.21~0.68がさらに好ましい。
 (D3)成分がマグネシウムの場合、(I)式中、bは、0.025~0.57がより好ましく、0.052~0.45がさらに好ましい。
 (D3)成分がマグネシウムの場合、(I)式中、cは、0.021~0.41がより好ましく、0.047~0.33がさらに好ましい。
 (D3)成分がマグネシウムの場合、(I)式中、dは、0.028~0.63がより好ましく、0.036~0.59がさらに好ましい。
 (D3)成分がランタノイドの場合、(I)式中、aは、0.11~0.98がより好ましく、0.27~0.83がさらに好ましく、0.33~0.71が特に好ましい。
 (D3)成分がランタノイドの場合、(I)式中、bは、0.0014~0.67がより好ましく、0.044~0.58がさらに好ましく、0.092~0.46が特に好ましい。
 (D3)成分がランタノイドの場合、(I)式中、cは、0.0012~0.51がより好ましく、0.033~0.42がさらに好ましく、0.078~0.34が特に好ましい。
 (D3)成分がランタノイドの場合、(I)式中、dは、0.0024~0.83がより好ましく、0.0068~0.23がさらに好ましく、0.0087~0.21が特に好ましい。
本発明の触媒は、(A)~(D)成分がそれぞれ独立して存在していてもよいし、(A)~(D)成分が合金を形成していてもよい。
 本発明の触媒は、(D)成分が(D1)成分である場合には、(A)~(D1)成分がそれぞれ独立で存在していてもよいし、(A)~(D1)成分が合金を形成していてもよい。
 本発明の触媒は、(D)成分が(D2)成分である場合には、(A)~(D2)成分がそれぞれ独立で存在していてもよいし、(A)~(D2)成分が合金を形成していてもよい。
 本発明の触媒は、(D)成分が(D3)成分である場合には、(A)~(D3)成分がそれぞれ独立で存在していてもよいし、(A)~(D3)成分が合金を形成していてもよい。
 本発明の触媒は、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分の集合物であってもよいし、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分が担体に担持された担持触媒であってもよく、担持触媒であることが好ましい。担持触媒とすることで、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分と混合ガスとの接触効率が高まり、酸素化物をより効率的に合成できる。
 担体としては、金属触媒の担体として周知のものを用いることができ、例えば、シリカ、チタニア、アルミナ、セリア等が挙げられ、中でも、触媒反応の選択率を高める観点、CO転化率を高める観点、比表面積や細孔径が異なる種々の製品が市場で調達できることから、シリカが好ましい。
 なお、「選択率」とは、混合ガス中の消費されたCOのモル数のうち、特定の酸素化物へ変換されたCのモル数が占める百分率である。例えば、下記(α)式によれば、酸素化物である酢酸の選択率は100モル%である。一方、下記(β)式によれば、酸素化物である酢酸の選択率は50モル%であり、酸素化物であるアセトアルデヒドの選択率も50モル%である。
 2H+2CO→CHCOOH ・・・・・(α)
 5H+4CO→CHCOOH+CHCHO+HO ・・・(β)
 担体としては、比表面積が10~1000m/gであり、かつ1nm以上の細孔径を有するものが好ましい。
 加えて、担体は、粒子径の分布が狭いものが好ましい。担体の平均粒子径は、特に限定されないが、0.5~5000μmが好ましい。
なお、担体としては、比表面積、細孔径、細孔容量、粒子径の異なる種々のものが市販されており、担体の種類を適宜選択することで、触媒活性、生成物分布等を調整できる。
 例えば、細孔径の小さい担体を選択すれば、担持される(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分の粒径がより小さくなったり、原料ガスを通流させ反応させたときに反応ガスや生成物の拡散速度が低下したりして、触媒活性や生成物分布が変化すると考えられる。
 本発明の触媒を担持触媒とする場合、担体100質量部に対する(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分の合計量は、0.01~10質量部が好ましく、0.1~5質量部がより好ましい。上記下限値未満では、酸素化物の合成効率が低下するおそれがあり、上記上限値超では、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分が均一かつ高分散な状態となりにくく、酸素化物の合成効率が低下するおそれがある。
 本発明の触媒は、従来公知の貴金属触媒の製造方法に準じて製造される。触媒の製造方法としては、例えば、含浸法、浸漬法、イオン交換法、共沈法、混練法等が挙げられ、中でも含浸法が好ましい。含浸法を用いることで、得られる触媒は、(A)~(D)成分がより均一に分散され、混合ガスとの接触効率がより高められ、酸素化物をより効率的に合成できる。
 触媒調製に用いられる(A)~(D)成分の原料化合物としては、酸化物、塩化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分の化合物として、通常貴金属触媒を調製する際に用いられるものが挙げられる。
 含浸法について説明する。まず、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分の原料化合物を水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ヘキサン、ベンゼン、トルエン等の溶媒に溶解し、得られた溶液(含浸液)に担体を浸漬する等して、含浸液を担体に付着させる。担体として多孔質体を用いる場合には、含浸液を担体の細孔内に十分浸透させた後、溶媒を蒸発させて触媒とする。
 含浸液を担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられ、中でも、逐次法が好ましい。逐次法で得られた触媒は、酸素化物をより効率的に合成できる。
逐次法としては、例えば、(D)成分、(D1)成分、(D2)成分、又は(D3)成分を含む溶液(一次含浸液)を担体に含浸させ(一次含浸工程)、これを乾燥して(D)成分、(D1)成分、(D2)成分、又は(D3)成分を担体に担持させた一次担持体を得(一次担持工程)、次いで(A)~(C)成分を含む溶液(二次含浸液)を一次担持体に含浸させ(二次含浸工程)、これを乾燥する(二次担持工程)方法が挙げられる。このように、(D)成分、(D1)成分、(D2)成分、又は(D3)成分を担体に担持させ、次いで(A)~(C)成分を担体に担持させることで、触媒は(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分がより高分散なものとなり、酸素化物をより効率的に合成できる。
 一次担持工程は、例えば、一次含浸液が含浸された担体を乾燥し(一次乾燥操作)、これを任意の温度で加熱して焼成する(一次焼成操作)方法が挙げられる。一次乾燥操作における乾燥方法は特に限定されず、例えば、一次含浸液が含浸された担体を任意の温度で加熱する方法が挙げられる。一次乾燥操作における加熱温度は、一次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80~120℃とされる。一次焼成操作における加熱温度は、例えば、300~600℃とされる。一次焼成操作を行うことで、(D)成分、(D1)成分、(D2)成分、又は(D3)成分の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
 二次担持工程は、例えば、二次含浸液が含浸された一次担持体を乾燥し(二次乾燥操作)、さらに任意の温度で加熱して焼成する(二次焼成操作)方法が挙げられる。
 二次乾燥操作における乾燥方法は特に限定されず、例えば、二次含浸液が含浸された一次担持体を任意の温度で加熱する方法が挙げられる。二次乾燥操作における加熱温度は、二次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80~120℃とされる。二次焼成操作における加熱温度は、例えば、300~600℃とされる。二次焼成操作を行うことで、(A)~(C)成分の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
 上述の方法によって調製された触媒は、通常、還元処理が施されて活性化され、酸素化物の合成に用いられる。還元処理としては、水素を含む気体に、触媒を接触させる方法が簡便で好ましい。この際、処理温度は、ロジウムが還元される程度の温度、即ち100℃程度であればよいが、好ましくは200~600℃とされる。加えて、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分を十分に分散させる目的で、低温から徐々にあるいは段階的に昇温しながら水素還元を行ってもよい。また、例えば、一酸化炭素と水との存在下、又はヒドラジン、水素化ホウ素化合物もしくは水素化アルミニウム化合物等の還元剤の存在下で、触媒に還元処理を施してもよい。
 還元処理における加熱時間は、例えば、1~10時間が好ましく、2~5時間がより好ましい。上記下限値未満では、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分の還元が不十分となり、酸素化物の製造効率が低下するおそれがある。上記上限値超では、(A)~(D)成分、(A)~(D1)成分、(A)~(D2)成分、又は(A)~(D3)成分における金属粒子が凝集し、酸素化物の合成効率が低下したり、還元処理におけるエネルギーが過剰になり経済的な不利益が生じたりするおそれがある。
 一次担持工程の後で二次含浸工程の前に、一次担持体にアルカリ水溶液を接触させて表面処理を施す表面処理工程が設けられていてもよい。表面処理工程を設けることで、一次担持体の表面の一部が水酸化物となり、(A)成分を含む金属粒子の分散性がより向上するものと推察される。
 表面処理工程に用いられるアルカリ水溶液は、(D)成分、(D1)成分、(D2)成分、又は(D3)成分の種類や担体の種類等を勘案して決定でき、例えば、アンモニア水溶液等が挙げられる。アルカリ水溶液の濃度は、(D)成分、(D1)成分、(D2)成分、又は(D3)成分の種類や担体の種類等を勘案して決定でき、例えば、0.1~3モル/Lとされる。
 一次担持体にアルカリ水溶液を接触させる方法(接触方法)は、特に限定されず、例えば、アルカリ水溶液に一次担持体を浸漬する方法、アルカリ水溶液を一次担持体に噴霧等により塗布する方法等が挙げられる。
 一次担持体にアルカリ水溶液を接触させる時間(接触時間)は、接触方法やアルカリ水溶液の濃度等を勘案して決定され、例えば、一次担持体をアルカリ水溶液に浸漬する場合には、0.1~12時間が好ましく、1~8時間がより好ましい。上記下限値未満では、本工程を設ける効果が得られにくく、上記上限値超としても、触媒活性のさらなる向上が図れないおそれがある。
 表面処理工程におけるアルカリ水溶液の温度は、特に限定されないが、例えば、5~40℃が好ましく、15~30℃がより好ましい。上記下限値未満では、接触時間が長くなりすぎて、触媒の生産性が低下するおそれがあり、上記上限値超では、一次担持体に担持された(D)成分が溶解したり、変質するおそれがあるためである。
(酸素化物の製造装置)
本発明の酸素化物の製造装置(以下、単に製造装置ということがある)は、本発明の触媒が充填された反応管と、混合ガスを反応管内に供給する供給手段と、反応管から生成物を排出する排出手段とを備えるものである。
 本発明の製造装置の一例について、図1を用いて説明する。図1は、本発明の一実施形態にかかる製造装置10を示す模式図である。製造装置10は、触媒が充填されて反応床2が形成された反応管1と、反応管1に接続された供給管3と、反応管1に接続された排出管4と、反応管1に接続された温度制御部5と、排出管4に設けられた圧力制御部6とを備えるものである。
 反応管1は、原料ガス及び合成された酸素化物に対して不活性な材料が好ましく、100~500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。
 反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
 供給管3は、混合ガスを反応管1内に供給する供給手段であり、例えば、ステンレス製等の配管が挙げられる。
 排出管4は、反応床2で合成された酸素化物を含む合成ガス(生成物)を排出する排出手段であり、例えば、ステンレス製等の配管が挙げられる。
 温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよく、例えば、電気炉等が挙げられる。
 圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
 また、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
(酸素化物の製造方法)
 本発明の酸素化物の製造方法は、混合ガスを触媒に接触させるものである。本発明の酸素化物の製造方法の一例について、図1の製造装置を用いて説明する。
 まず、反応管1内を任意の温度及び任意の圧力とし、混合ガス20を供給管3から反応管1内に流入させる。
 混合ガス20は、水素と一酸化炭素とを含むものであれば特に限定されず、例えば、天然ガス、石炭から調製されたものであってもよいし、バイオマスをガス化して得られるバイオマスガス等であってもよい。バイオマスガスは、例えば、粉砕したバイオマスを水蒸気の存在下で加熱(例えば、800~1000℃)する等、従来公知の方法で得られる。
 混合ガス20として、バイオマスガスを用いる場合、混合ガス20を反応管1内に供給する前に、タール分、硫黄分、窒素分、塩素分、水分等の不純物を除去する目的で、ガス精製処理を施してもよい。ガス精製処理としては、例えば、湿式法、乾式法等、当該技術分野で知られる各方式を採用できる。湿式法としては、水酸化ナトリウム法、アンモニア吸収法、石灰・石膏法、水酸化マグネシウム法等が挙げられ、乾式法としては、圧力スイング吸着(PSA)法等の活性炭吸着法、電子ビーム法等が挙げられる。
 混合ガス20は、水素と一酸化炭素とを主成分とするもの、即ち混合ガス20中の水素と一酸化炭素との合計が、50体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることがさらに好ましく、100体積%であってもよい。水素と一酸化炭素との含有量が多いほど、酸素化物の生成量をより高められ、酸素化物をより効率的に製造できる。
 水素/一酸化炭素で表される体積比(以下、H/CO比ということがある)は、0.1~10が好ましく、0.5~3がより好ましく、1.5~2.5がさらに好ましい。上記範囲内であれば、混合ガスから酸素化物が生成される反応において、化学量論的に適正な範囲となり、酸素化物をより効率的に製造できる。
 なお、混合ガス20は、水素及び一酸化炭素の他に、メタン、エタン、エチレン、窒素、二酸化炭素、水等を含んでいてもよい。
混合ガス20と触媒とを接触させる際の温度(反応温度)、即ち反応管1内の温度は、例えば、150~450℃が好ましく、200~400℃がより好ましく、250~350℃がさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、酸素化物をより効率的に製造できる。上記上限値以下であれば、酸素化物の合成反応を主反応とし、酸素化物をより効率的に製造できる。
また、反応温度によって、触媒活性や生成物分布等を調整できる。本発明の触媒は、反応温度が高いほど、メタン等の炭化水素の選択率が高まってエタノールの選択率とアルデヒドの選択率との合計が低くなるものの、CO転化率とエタノール選択率とが高まって、エタノールの生成量を高められる傾向にある。反応温度が低いほど、CO転化率が低くなるものの、エタノールの選択率とアセトアルデヒドの選択率との合計が高まり、特にアセトアルデヒドの選択率が高まって、アセトアルデヒドの生成量を高められる傾向にある。
 従って、必要に応じて適宜反応温度を選択することで、エタノール又はアセトアルデヒドの生成量を調整できる。
 例えば、反応温度300℃以上、特に反応温度300~320℃では、エタノールの選択率が高まる傾向にあり、反応温度300℃未満、特に反応温度260~280℃では、アセトアルデヒドの選択率が高まる傾向にある。
混合ガス20と触媒とを接触させる際の圧力(反応圧力)、即ち反応管1内の圧力は、例えば、0.5~10MPaが好ましく、1~7.5MPaがより好ましく、2~5MPaがさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、酸素化物をより効率的に製造できる。上記上限値以下であれば、酸素化物の合成反応を主反応とし、酸素化物をより効率的に製造できる。
 流入した混合ガス20は、反応床2の触媒と接触しながら流通し、その一部が酸素化物となる。
 混合ガス20は、反応床2を流通する間、例えば、下記(1)~(5)式で表される触媒反応により酸素化物を生成する。
3H+2CO→CHCHO+HO ・・・(1)
4H+2CO→CHCHOH+HO ・・・(2)
+CHCHO→CHCHOH ・・・(3)
2H+2CO→CHCOOH ・・・(4)
2H+CHCOOH→CHCHOH+HO ・・・(5)
 そして、この酸素化物を含む合成ガス22は、排出管4から排出される。合成ガス22は、酸素化物を含むものであれば特に限定されないが、酢酸、エタノール及びアセトアルデヒドから選択される1種以上を含むものが好ましく、エタノールを含むものがより好ましい。このようなC2化合物を製造する方法において、本発明の触媒の効果が顕著なためである。
 混合ガス20の供給速度は、例えば、反応床2における混合ガスの空間速度(単位時間当たりのガスの供給量を触媒量(体積換算)で除した値)が標準状態換算 で10~100000L/L-触媒/hとなるように調節されることが好ましい。
 空間速度は、目的とする酸素化物に適した反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。
 必要に応じ、排出管4から排出された合成ガス22を気液分離器等で処理し、未反応の混合ガス20と酸素化物とを分離してもよい。
 本実施形態では、固定床の反応床2に混合ガスを接触させているが、例えば、触媒を流動床又は移動床等、固定床以外の形態とし、これに混合ガスを接触させてもよい。
 本発明では、得られた酸素化物を蒸留等によって、必要成分毎に分離してもよい。
 また、本発明では、エタノール以外の生成物(例えば、酢酸、アセトアルデヒド等、エタノールを除くC2化合物や酢酸エチル、酢酸メチル、ギ酸エチル等のエステル類)を水素化してエタノールに変換する工程(エタノール化工程)を設けてもよい。エタノール化工程としては、例えば、アセトアルデヒド、酢酸等を含む酸素化物を水素化触媒に接触させてエタノールに変換する方法が挙げられる。
 ここで、水素化触媒としては、当該技術分野で知られる触媒が使用でき、銅、銅-亜鉛、銅-クロム、銅-亜鉛-クロム、鉄、ロジウム-鉄、ロジウム-モリブデン、パラジウム、パラジウム-鉄、パラジウム-モリブデン、イリジウム-鉄、ロジウム-イリジウム-鉄、イリジウム-モリブデン、レニウム-亜鉛、白金、ニッケル、コバルト、ルテニウム、酸化ロジウム、酸化パラジウム、酸化白金、酸化ルテニウム等が挙げられる。これらの水素化触媒は、本発明の触媒に用いられる担体と同様の担体に担持させた担持触媒であってもよく、担持触媒としては、銅、銅-亜鉛、銅-クロム又は銅-亜鉛-クロムをシリカ系担体に担持させた銅系触媒が好適である。担持触媒である水素化触媒の製造方法としては、本発明の触媒と同様に同時法又は逐次法が挙げられる。
 あるいは、本発明では、アセトアルデヒドを高効率に得るために、生成物を気液分離器等で処理してエタノールを取り出し、このエタノールを酸化することによりアセトアルデヒドに変換する工程を設けてもよい。
 エタノールを酸化する方法としては、エタノールを液化又は気化した後、金、白金、ルテニウム、銅又はマンガンを主成分とした金属触媒や、これら金属を2種以上含む合金触媒等の酸化触媒に接触させる方法等が挙げられる。これら酸化触媒は、本発明の触媒に用いられる担体と同様の担体に金属を担持させた担持触媒であってもよい。
 上述したように、本発明の触媒を用いることで、混合ガスから酸素化物を効率的に合成できる。
 加えて、本発明の触媒を用いることで、酸素化物中のエタノール量を高められる。
 以下に、実施例を示して本発明を説明するが、本発明は実施例によって限定されるものではない。
(実施例A1、10~12)
 チタンラクテートアンモニウム塩(Ti(OH)[OCH(CH)COO(NH )0.0307gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m/g、平均細孔径:14nm、細孔容量:1.1cm/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl・4HO)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.565:0.155:0.078:0.202(モル比)であった。表A1~A2中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例A2)
 二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は、実施例A1と同様にして触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.424:0.212:0.212:0.152(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例A3)
 チタンラクテートアンモニウム塩0.0307gと、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLをシリカゲルに滴下して含浸させた。これを110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.424:0.212:0.212:0.152(モル比)であった。表A1中、本例における触媒の製造方法を「同時法」と記載する。
(実施例A4)
 一次含浸液としてチタンラクテートアンモニウム塩0.0123gを含む水溶液1.08mLを用い、二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0432gとを含む水溶液1.08mLを用いた以外は、実施例A1と同様にして触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.417:0.313:0.208:0.062(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例A5)
 一次含浸液としてチタンラクテートアンモニウム塩0.0920gを含む水溶液1.08mLを用いた以外は、実施例A2と同様にして触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.325:0.162:0.162:0.351(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例A6)
 メタバナジウム酸アンモニウム(HNOV)0.0115gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.0300gと、塩化リチウム0.00028gと、塩化マンガン四水和物0.0044gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:V=0.581:0.160:0.080:0.179(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例A7)
 硝酸クロム九水和物(Cr(NO・9HO)0.0385gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.0300gと、塩化リチウム0.00028gと、塩化マンガン四水和物0.0044gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Cr=0.583:0.160:0.080:0.177(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例A8)
 2モル/Lのアンモニア水溶液に、一次担持体を6時間浸漬し、これを110℃にて2時間乾燥したものを二次含浸工程に供した以外は、実施例A2と同様にして、触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.424:0.212:0.212:0.152(モル比)であった。表A1中、本例における触媒の製造方法を「水酸化法」と記載する。
(実施例A9)
 2モル/Lのアンモニア水溶液に、一次担持体を6時間浸漬し、これを110℃にて2時間乾燥したものを二次含浸工程に供した以外は、実施例A5と同様にして、触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Ti=0.325:0.162:0.162:0.351(モル比)であった。表A1中、本例における触媒の製造方法を「水酸化法」と記載する。
(比較例A1、A3~A5)
 塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表A2中、本例における触媒の製造方法を「同時法」と記載する。
(比較例A2)
 塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.500:0.250:0.250(モル比)であった。表A2中、本例における触媒の製造方法を「同時法」と記載する。
(評価方法)
 各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L-触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
 次いで、表A1~A2中の反応温度、反応圧力2MPaの条件下で、混合ガス(H/CO比=2)を表A1~A2に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
 混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
 得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L-触媒/h)を算出し、これらの結果を表A1~A2に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
Figure JPOXMLDOC01-appb-T000001
                  
Figure JPOXMLDOC01-appb-T000002
                  
 表A1~A2に示すように、本発明を適用した実施例A1~A9は、CO転化率が15.2モル%以上であり、酸素化物の総生成量(アセトアルデヒドとエタノールの合計量)が215g/L-触媒/h以上であった。加えて、実施例A1~A9は、エタノールの生成量が106g/L-触媒/h以上であった。
 実施例A1、A10~A12と比較例A1、A3~A5との比較において、いずれの反応温度においても、実施例における酸素化物の総生成量は、比較例における酸素化物の総生成量よりも高かった。
 混合ガスの空間速度が6300L/L-触媒/hである、実施例A1、A6~A7と比較例A1との比較において、実施例A1、A6~A7は、比較例A1に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
 また、混合ガスの空間速度が8400L/L-触媒/hである、実施例A2~A5と比較例A2との比較において、実施例A2~A5は、比較例A2に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
 これらの結果から、本発明を適用することで、酸素化物の総生成量を高め、混合ガスから酸素化物を効率的に合成できることが判った。
 加えて、実施例A2と実施例A3との比較において、逐次法で製造した実施例A2は、同時法で製造した実施例3に比べて、エタノールの生成量を著しく高められていた。
 さらに、実施例A2と実施例A8との比較、実施例A5と実施例A9との比較において、水酸化法で製造した実施例A8~A9は、逐次法で製造した実施例A2、A5に比べて酸素化物の総生成量を高められていた。
 反応温度を300~320℃とした実施例A1、A12におけるエタノールの選択率は31.3モル%以上であり、反応温度を260~280℃とした実施例A10~A11におけるエタノールの選択率よりも高かった。
 一方、反応温度を260~280℃とした実施例A10~A11におけるアセトアルデヒドの選択率は49.2モル%以上であり、反応温度を300~320℃とした実施例A1、A12におけるアセトアルデヒドの選択率よりも高かった。
 これらの結果から、反応温度を変えることで、エタノール又はアセトアルデヒドの選択率を高められることが判った。
(実施例B1、B6~B8)
 アンモニウムペンタボレートオクタハイドレート((NHO・B1016・8HO)0.0252gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m/g、平均細孔径:14nm、細孔容量:1.1cm/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl・4HO)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:B=0.348:0.096:0.048:0.508(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例B2)
 二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は、実施例B1と同様にして触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:B=0.289:0.145:0.145:0.421(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例B3)
 アンモニウムペンタボレートオクタハイドレート0.0252gと、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLをシリカゲルに滴下して含浸させた。これを110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:B=0.289:0.145:0.145:0.421(モル比)であった。表B1中、本例における触媒の製造方法を「同時法」と記載する。
(実施例B4)
 一次含浸液としてアンモニウムペンタボレートオクタハイドレート0.0101gを含む水溶液1.08mLを用い、二次含浸液として塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0432gとを含む水溶液1.08mLを用いた以外は、実施例B1と同様にして触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:B=0.352:0.264:0.176:0.208(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例B5)
 硝酸アルミニウム九水和物(Al(NO・9HO)0.0695gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Al=0.501:0.138:0.069:0.292(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
(比較例B1、B3~B5)
 塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表B2中、本例における触媒の製造方法を「同時法」と記載する。
(比較例B2)
 塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.500:0.250:0.250(モル比)であった。表B2中、本例における触媒の製造方法を「同時法」と記載する。
(評価方法)
 各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L-触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
 次いで、表B1~B2中の反応温度、反応圧力2MPaの条件下で、混合ガス(H/CO比=2)を表B1~B2に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
 混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
 得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L-触媒/h)を算出し、これらの結果を表B1~B2に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
Figure JPOXMLDOC01-appb-T000003
                  
Figure JPOXMLDOC01-appb-T000004
                  
 表B1に示すように、本発明を適用した実施例B1~B5は、CO転化率が18.4モル%以上であり、酸素化物の総生成量(アセトアルデヒドとエタノールの合計量)が213g/L-触媒/h以上であった。加えて、実施例B1~B5は、エタノールの生成量が104g/L-触媒/h以上であった。
 さらに、実施例B1、B6~B8と比較例B1、B3~B5との比較において、いずれの反応温度でも、実施例における酸素化物の総生成量は、比較例における酸素化物の総生成量よりも高かった。
 混合ガスの空間速度が6300L/L-触媒/hである、実施例B1、B5と比較例B1との比較において、実施例B1、B5は、比較例1に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
 また、混合ガスの空間速度が8400L/L-触媒/hである、実施例B2~B4と比較例B2との比較において、実施例B2~B4は、比較例B2に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
 これらの結果から、本発明を適用することで、酸素化物の総生成量を高め、混合ガスから酸素化物を効率的に合成できることが判った。
 実施例B2と実施例B3との比較において、逐次法で製造した実施例B2は、同時法で製造した実施例B3に比べて、酸素化物の総生成量及びエタノールの生成量を高められていた。
 反応温度を300~320℃とした実施例B1、B8におけるエタノールの選択率は20.3モル%以上であり、反応温度を260~280℃とした実施例B6~B7におけるエタノールの選択率よりも高かった。
 一方、反応温度を260~280℃とした実施例B6~B7におけるアセトアルデヒドの選択率は68.3モル%以上であり、反応温度を300~320℃とした実施例B1、B8におけるアセトアルデヒドの選択率よりも高かった。
 これらの結果から、反応温度を変えることで、エタノール又はアセトアルデヒドの選択率を高められることが判った。
(実施例C1)
 硝酸マグネシウム六水和物(Mg(NO・6HO)0.0531gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m/g、平均細孔径:14nm、細孔容量:1.1cm/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl・4HO)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Mg=0.484:0.133:0.067:0.316(モル比)であった。表C1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例C2)
 硝酸ランタン六水和物(La(NO・6HO)0.0152gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:La=0.655:0.180:0.091:0.074(モル比)であった。表C1中、本例における触媒の製造方法を「逐次法」と記載する。
(実施例C3、C6~C8)
 2モル/Lのアンモニア水溶液に、一次担持体を6時間浸漬し、これを110℃にて2時間乾燥したものを二次含浸工程に供した以外は、実施例C1と同様にして、触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Mg=0.484:0.133:0.067:0.316(モル比)であった。表C1中、本例における触媒の製造方法を「水酸化法」と記載する。
(実施例C4)
 二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は実施例C3と同様にして、触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Mg=0.377:0.189:0.189:0.245(モル比)であった。表C1中、本例における触媒の製造方法を「水酸化法」と記載する。
(実施例C5)
 一次含浸液として、硝酸マグネシウム六水和物0.158gを含む水溶液1.08mLを用い、二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は実施例C3と同様にして、触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li:Mg=0.253:0.126:0.126:0.495(モル比)であった。表C1中、本例における触媒の製造方法を「水酸化法」と記載する。
(比較例C1、C3~C5)
 塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表C2中、本例における触媒の製造方法を「同時法」と記載する。
(比較例C2)
 塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
 得られた触媒は、ロジウム担持率=3質量%/SiO、Rh:Mn:Li=0.500:0.250:0.250(モル比)であった。表C2中、本例における触媒の製造方法を「同時法」と記載する。
(評価方法)
 各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L-触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
 次いで、表C1~C2中の反応温度、反応圧力2MPaの条件下で、混合ガス(H/CO比=2)を表C1~C2に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
 混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
 得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L-触媒/h)を算出し、これらの結果を表C1~C2に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
Figure JPOXMLDOC01-appb-T000005
                  
Figure JPOXMLDOC01-appb-T000006
                  
 表C1に示すように、本発明を適用した実施例C1~C5は、CO転化率が17.3モル%以上であり、酸素化物の総生成量(アセトアルデヒドとエタノールの合計量)が257g/L-触媒/h以上であった。加えて、実施例C1~C5は、エタノールの生成量が91g/L-触媒/h以上であった。
 これに対し、(D)成分を含まない比較例C1~C2は、CO転化率が17.1モル%以下であった。
 加えて、実施例C3、C6~C8と比較例C1、C3~C5との比較において、いずれの反応温度においても、実施例における酸素化物の総生成量は、比較例における酸素化物の総生成量よりも高かった。
 これらの結果から、本発明を適用することで、酸素化物の総生成量を高め、混合ガスから酸素化物を効率的に合成できることが判った。
 水酸化法で製造した実施例C3~C5は、逐次法で製造した実施例C1~C2に比べて酸素化物の総生成量を高められていた。
 実施例C3に比べてMn及びLiの比率が高い実施例C4は、実施例C3よりもCO転化率が高いものであった。実施例C4に比べてMgの比率が高い実施例C5は、実施例C4に比べてCO転化率が高く、かつエタノールの選択率が高いものであった。
 反応温度を300~320℃とした実施例C1、C8におけるエタノールの選択率は21.3モル%以上であり、反応温度を260~280℃とした実施例C6~C7におけるエタノールの選択率よりも高かった。
 一方、反応温度を260~280℃とした実施例C6~C7におけるアセトアルデヒドの選択率は48.3モル%以上であり、反応温度を300~320℃とした実施例C1、C8におけるアセトアルデヒドの選択率よりも高かった。
 これらの結果から、反応温度を変えることで、エタノール又はアセトアルデヒドの選択率を高められることが判った。
 本発明の酸素化物合成用の触媒は、水素と一酸化炭素との混合ガスから、酸素化物を効率的に合成できるため、例えば、セルロース系バイオマスからエタノールを合成する際に好適に利用することができる。
1 反応管
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 製造装置
20 混合ガス
22 合成ガス

Claims (12)

  1.  水素と一酸化炭素とを含む混合ガスから酸素化物を合成する酸素化物合成用の触媒において、
    (A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:(D1)成分、(D2)成分又は(D3)成分とを含み、
    (D1)成分は、チタン、バナジウム及びクロムからなる群から選択される1種以上であり、(D2)成分は、周期表の第13族に属する元素であり、(D3)成分は、マグネシウム及びランタノイドからなる群から選択される1種以上である、酸素化物合成用の触媒。
  2.  前記酸素化物合成用の触媒が、下記式(I)で表される請求項1に記載の酸素化物合成用の触媒。
    aA・bB・cC・dD ・・・・(I)
    [(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
    a+b+c+d=1、
    a=0.05~0.98、
    b=0.0005~0.67、
    c=0.0005~0.51、
    d=0.002~0.95である。]
  3.  前記(D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である請求項1又は2に記載の酸素化物合成用の触媒。
  4.  前記(D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である請求項1又は2に記載の酸素化物合成用の触媒。
  5.  前記(D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である請求項1又は2に記載の酸素化物合成用の触媒。
  6.  前記式(I)中のa、b、c及びdが以下の条件を満たす請求項2又は3に記載の酸素化物合成用の触媒。
    a+b+c+d=1、
    a=0.053~0.98、
    b=0.0006~0.67、
    c=0.00056~0.51、
    d=0.0024~0.94。
  7.  前記式(I)中のa、b、c及びdが以下の条件を満たす請求項2又は4に記載の酸素化物合成用の触媒。
    a+b+c+d=1、
    a=0.053~0.98、
    b=0.00059~0.67、
    c=0.00056~0.51、
    d=0.0024~0.95。
  8.  前記式(I)中のa、b、c及びdが以下の条件を満たす請求項2又は5に記載の酸素化物合成用の触媒。
    a+b+c+d=1、
    a=0.065~0.98、
    b=0.00075~0.67、
    c=0.0007~0.51、
    d=0.0024~0.93。
  9.  前記(A)~(D)成分は、担体に担持されている請求項1~8のいずれか1項に記載の酸素化物合成用の触媒。
  10.  請求項9に記載の酸素化物合成用の触媒の製造方法であって、
     前記担体に前記(D)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)~(C)成分を担持させる酸素化物合成用の触媒の製造方法。
  11.  請求項1~9のいずれか1項に記載の酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備える酸素化物の製造装置。
  12.  請求項1~9のいずれか1項に記載の酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酸素化物を得る酸素化物の製造方法。
PCT/JP2012/071179 2011-08-31 2012-08-22 酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 WO2013031598A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2845587A CA2845587A1 (en) 2011-08-31 2012-08-22 Catalyst for oxygenate synthesis and method for manufacturing same, device for manufacturing oxygenate, and method for manufacturing oxygenate
US14/237,427 US9272267B2 (en) 2011-08-31 2012-08-22 Catalyst for oxygenate synthesis and method for manufacturing same, device for manufacturing oxygenate, and method for manufacturing oxygenate
CN201280041639.3A CN103764277B (zh) 2011-08-31 2012-08-22 氧化物合成用催化剂及其制造方法、氧化物的制造装置以及氧化物的制造方法
EP12827075.8A EP2752240B1 (en) 2011-08-31 2012-08-22 Method for manufacturing catalyst for oxygenate synthesis and method for manufacturing oxygenate
EP21155286.4A EP3834929A1 (en) 2011-08-31 2012-08-22 Catalyst for oxygenate synthesis and method for manufacturing same, device for manufacturing oxygenate, and method for manufacturing oxygenate
JP2013531231A JP6313597B2 (ja) 2011-08-31 2012-08-22 酸素化物合成用の触媒

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011189056 2011-08-31
JP2011-189052 2011-08-31
JP2011-189056 2011-08-31
JP2011-189053 2011-08-31
JP2011189052 2011-08-31
JP2011189053 2011-08-31
JP2012039007 2012-02-24
JP2012-039008 2012-02-24
JP2012-039009 2012-02-24
JP2012-039007 2012-02-24
JP2012039008 2012-02-24
JP2012039009 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013031598A1 true WO2013031598A1 (ja) 2013-03-07

Family

ID=47756090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071179 WO2013031598A1 (ja) 2011-08-31 2012-08-22 酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法

Country Status (6)

Country Link
US (1) US9272267B2 (ja)
EP (2) EP3834929A1 (ja)
JP (3) JP6313597B2 (ja)
CN (3) CN106238048B (ja)
CA (1) CA2845587A1 (ja)
WO (1) WO2013031598A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163387A (ja) * 2014-01-30 2015-09-10 積水化学工業株式会社 合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法
JP2015178101A (ja) * 2014-02-28 2015-10-08 積水化学工業株式会社 酸素化物合成用の触媒、酸素化物合成用の触媒の製造方法、酸素化物の製造装置及び酸素化物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978130A (ja) * 1982-10-26 1984-05-04 Agency Of Ind Science & Technol 酸素含有炭化水素化合物の製造法
US4758600A (en) * 1985-02-02 1988-07-19 Agency Of Industrial Science And Technology Process for the manufacture of ethanol
JPH01294643A (ja) * 1988-05-20 1989-11-28 Daicel Chem Ind Ltd 含酸素化合物の製造方法
JP2001031602A (ja) * 1999-06-25 2001-02-06 Basf Ag 合成ガスからco2−オキシジェネートを製造するための方法および触媒
WO2006123146A2 (en) * 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenate
WO2010092819A1 (ja) * 2009-02-12 2010-08-19 有限会社市川事務所 エタノールの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235798A (en) 1979-06-28 1980-11-25 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
JPS568333A (en) 1979-06-28 1981-01-28 Union Carbide Corp Manufacture of two carbon atom oxidated compound minimizing formation of methane from synthetic gas
CA1146592A (en) 1979-06-28 1983-05-17 Thomas P. Wilson Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
PT71476A (en) * 1979-07-03 1980-08-01 Sagami Chem Res Process for producing oxygen-containing hydrocarbon compounds
JPS5762230A (en) * 1980-10-03 1982-04-15 Showa Denko Kk Preparation of oxygen-containing hydrocarbon compound from synthesis gas
FR2523957A1 (fr) * 1982-03-26 1983-09-30 Inst Francais Du Petrole Procede de fabrication d'un melange de methanol et d'alcools superieurs, a partir de gaz de synthese
JPS6049617B2 (ja) * 1983-08-03 1985-11-02 工業技術院長 エタノ−ルなどの含酸素化合物を製造する方法
JPS6136731A (ja) 1984-07-30 1986-02-21 Matsushita Electric Ind Co Ltd スリツト露光照明装置
JPS6136730A (ja) 1984-07-30 1986-02-21 Hokubu Tsushin Kogyo Kk 色印刷原版用フイルム作成装置
CN1074304C (zh) * 1996-09-04 2001-11-07 中国科学院大连化学物理研究所 一氧化碳加氢制二碳含氧化合物用催化剂及制备方法
CN1074306C (zh) * 1996-09-25 2001-11-07 中国科学院大连化学物理研究所 一种用于一氧化碳加氢合成乙醇乙酸乙醛的铑基催化剂
CN1251801C (zh) * 2002-12-26 2006-04-19 中国科学院大连化学物理研究所 一种用大孔硅胶作载体的催化剂的制备方法
CN1724151A (zh) * 2004-07-22 2006-01-25 中国科学院大连化学物理研究所 一种用于co加氢合成二碳含氧化合物的催化剂
JP5578499B2 (ja) 2010-03-16 2014-08-27 学校法人明治大学 リン酸カルシウム/生分解性ポリマーハイブリッド材料並びにその製法及びハイブリッド材料を用いたインプラント
BR112012010203A2 (pt) 2009-11-02 2019-09-24 Dow Global Technologies Inc composição catalisadora apoiada
JP2011189056A (ja) 2010-03-16 2011-09-29 Tamagawa Seiki Co Ltd パチスロ用ステップモータの制御方法
JP2011189053A (ja) 2010-03-16 2011-09-29 Sanyo Product Co Ltd 遊技機
JP5678323B2 (ja) 2010-08-10 2015-03-04 Dowaメタルテック株式会社 半導体基板用放熱板
JP5832731B2 (ja) 2010-08-10 2015-12-16 株式会社東芝 半導体素子
JP2012039009A (ja) 2010-08-10 2012-02-23 Renesas Electronics Corp 半導体装置、および、半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978130A (ja) * 1982-10-26 1984-05-04 Agency Of Ind Science & Technol 酸素含有炭化水素化合物の製造法
US4758600A (en) * 1985-02-02 1988-07-19 Agency Of Industrial Science And Technology Process for the manufacture of ethanol
JPH01294643A (ja) * 1988-05-20 1989-11-28 Daicel Chem Ind Ltd 含酸素化合物の製造方法
JP2001031602A (ja) * 1999-06-25 2001-02-06 Basf Ag 合成ガスからco2−オキシジェネートを製造するための方法および触媒
WO2006123146A2 (en) * 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenate
WO2010092819A1 (ja) * 2009-02-12 2010-08-19 有限会社市川事務所 エタノールの製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BURCH, R. ET AL.: "Investigation of the synthesis of oxygenates from carbon monoxide/hydrogen mixtures on supported rhodium catalysts", APPL. CATAL. A GEN., vol. 88, no. 1, 1 September 1992 (1992-09-01), pages 39 - 60, XP055142685 *
KUSAMA, H. ET AL.: "C02 hydrogenation to ethanol over promoted Rh/Si02 catalysts", CATALYSIS TODAY, vol. 28, no. 3, 25 May 1996 (1996-05-25), pages 261 - 266, XP055142684 *
MEI, D. ET AL.: "Ethanol synthesis from syngas over Rh-based/Si02 catalysts: A combined experimental and theoretical modeling study", JOURNAL OF CATALYSIS, vol. 271, no. 2, 19 March 2010 (2010-03-19), pages 325 - 342, XP027021153 *
MO, X. ET AL.: "La, V, and Fe promotion of Rh/ Si02 for CO hydrogenation: Effect on adsorption and reaction", JOURNAL OF CATALYSIS, vol. 267, no. 2, 16 September 2009 (2009-09-16), pages 167 - 176, XP026670320 *
SCHWARTZ, V. ET AL.: "EXAFS and FT-IR Characterization of Mn and Li Promoted Titania- Supported Rh Catalysts for CO Hydrogenation", ACS CATAL., vol. 1, no. 10, 22 August 2011 (2011-08-22), pages 1298 - 1306, XP055142686 *
See also references of EP2752240A4 *
WANG, Y. ET AL.: "Different Mechanisms for the Formation of Acetaldehyde and Ethanol on the Rh-Based Catalysts", J. CATAL., vol. 196, no. 1, 15 November 2000 (2000-11-15), pages 46 - 55, XP004465152 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163387A (ja) * 2014-01-30 2015-09-10 積水化学工業株式会社 合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法
JP2015178101A (ja) * 2014-02-28 2015-10-08 積水化学工業株式会社 酸素化物合成用の触媒、酸素化物合成用の触媒の製造方法、酸素化物の製造装置及び酸素化物の製造方法

Also Published As

Publication number Publication date
CN103764277B (zh) 2017-11-03
JP2016175082A (ja) 2016-10-06
EP2752240A4 (en) 2015-08-05
JP6267266B2 (ja) 2018-01-24
US9272267B2 (en) 2016-03-01
CN107020088A (zh) 2017-08-08
JP6313597B2 (ja) 2018-04-18
EP3834929A1 (en) 2021-06-16
US20140187654A1 (en) 2014-07-03
JP6329286B2 (ja) 2018-05-23
CN106238048A (zh) 2016-12-21
CA2845587A1 (en) 2013-03-07
EP2752240B1 (en) 2021-03-03
CN103764277A (zh) 2014-04-30
JP2017119278A (ja) 2017-07-06
EP2752240A1 (en) 2014-07-09
CN106238048B (zh) 2020-05-29
JPWO2013031598A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
EP3196181B1 (en) Method for producing butadiene and device for producing butadiene
JP6093780B2 (ja) アルコール合成用の触媒、アルコールの製造装置及びアルコールの製造方法
JP6329286B2 (ja) 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法
JP6408114B2 (ja) 酸素化物の製造システム及び酸素化物の製造方法
JP5999569B2 (ja) C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法
JP6183916B2 (ja) 酸素化物合成用の触媒、酸素化物の製造装置、及び酸素化物の製造方法
JP5996423B2 (ja) C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法
JP6037305B2 (ja) C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法
JP2013049023A (ja) 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法
JP2013063418A (ja) 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法
JP2016026864A (ja) 酢酸エチル合成用の触媒、酢酸エチルの製造装置及び酢酸エチルの製造方法
JP2015163594A (ja) 酸素化物の製造方法
JP2013049024A (ja) 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法
JP2015178101A (ja) 酸素化物合成用の触媒、酸素化物合成用の触媒の製造方法、酸素化物の製造装置及び酸素化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531231

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237427

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012827075

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2845587

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE