JP6267266B2 - 酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 - Google Patents
酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 Download PDFInfo
- Publication number
- JP6267266B2 JP6267266B2 JP2016098289A JP2016098289A JP6267266B2 JP 6267266 B2 JP6267266 B2 JP 6267266B2 JP 2016098289 A JP2016098289 A JP 2016098289A JP 2016098289 A JP2016098289 A JP 2016098289A JP 6267266 B2 JP6267266 B2 JP 6267266B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- catalyst
- oxygenate
- primary
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/656—Manganese, technetium or rhenium
- B01J23/6562—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0207—Pretreatment of the support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0242—Coating followed by impregnation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/152—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/153—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
- C07C29/156—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
- C07C29/157—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
- C07C29/158—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/14—Silica and magnesia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
セルロース系バイオマスを原料とし、従来のエタノール発酵法を用いてバイオエタノールを製造するためには、セルロースを糖化させる必要がある。糖化方法としては、濃硫酸糖化法、希硫酸・酵素糖化法、水熱糖化法等があるが、安価にバイオエタノールを製造するためにはいまだ多くの課題が残されている。
さらに、水素と一酸化炭素との混合ガスは、天然ガス、石炭等の石油以外の資源からも得られるため、混合ガスから酸素化物を合成する方法は、石油依存を脱却する技術として研究されている。
水素と一酸化炭素との混合ガスからエタノール、アセトアルデヒド、酢酸等の酸素化物を得る方法としては、例えば、ロジウム、アルカリ金属及びマンガンを含む触媒に混合ガスを接触させる方法が知られている(例えば、特許文献1〜2)。
また、特許文献1及び2に記載の方法では、CO転化率が25%以下での酸素化物の合成方法が開示されているが、CO転化率が25%以上であっても、生成するエタノールの選択率を下げすぎない酸素化物合成用の触媒が求められている。
そこで、本発明は、水素と一酸化炭素との混合ガスから、酸素化物を効率的に合成できる酸素化物合成用の触媒の提供を目的とする。
[1]
水素と一酸化炭素とを含む混合ガスから、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群より選ばれる少なくとも一種の酸素化物を合成する酸素化物合成用の触媒において、
(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:チタンとを含み、
担体に前記(D)成分を担持させて一次担持体とした後、前記一次担持体に前記(A)〜(C)成分を担持させた、酸素化物合成用の触媒。
[2]前記酸素化物合成用の触媒が、下記式(I)で表される[1]に記載の酸素化物合成用の触媒。
aA・bB・cC・dD ・・・・(I)
[(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.05〜0.98、
b=0.0005〜0.67、
c=0.0005〜0.51、
d=0.002〜0.95である。]
[3]前記式(I)中のa、b、c及びdが以下の条件を満たす[2]に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.053〜0.98、
b=0.0006〜0.67、
c=0.00056〜0.51、
d=0.0024〜0.94。
[4]前記式(I)中のa、b、c及びdが以下の条件を満たす[2]に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.053〜0.98、
b=0.00059〜0.67、
c=0.00056〜0.51、
d=0.0024〜0.95。
[5]前記式(I)中のa、b、c及びdが以下の条件を満たす[2]に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.065〜0.98、
b=0.00075〜0.67、
c=0.0007〜0.51、
d=0.0024〜0.93。
[6]前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)〜(C)成分を担持させた[1]〜[5]のいずれか1つに記載の酸素化物合成用の触媒。
[7](A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:チタンとが担体に担持されている酸素化物合成用の触媒の製造方法であって、
前記酸素化物は、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群より選ばれる少なくとも一種であり、
前記担体に前記(D)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)〜(C)成分を担持させることを含む酸素化物合成用の触媒の製造方法。
[8][1]〜[6]のいずれか1つに記載の酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備える酸素化物の製造装置。
[9][1]〜[6]のいずれか1つに記載の酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酸素化物を得る酸素化物の製造方法。
本発明の酸素化物合成用の触媒(以下、単に触媒ということがある)は、(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:(D1)成分、(D2)成分又は(D3)成分と、を含むものである。
ここで、(D1)成分は、チタン、バナジウム及びクロムからなる群から選択される1種以上であり、(D2)成分は、周期表の第13族に属する元素であり、(D3)成分は、マグネシウム及びランタノイドからなる群から選択される1種以上である。
(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分を含むことで、酸素化物を効率的に合成することができる。
(D3)成分を含むことで酸素化物の合成効率が高まり、酸素化物中のエタノール量が高まる機構については明らかではないが、(D3)成分を含むことで、(A)〜(C)成分の分散性が高まるためと推測される。
aA・bB・cC・dD ・・・・(I)
(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.05〜0.98、
b=0.0005〜0.67、
c=0.0005〜0.51、
d=0.002〜0.95である。
(D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のbは、0.0006〜0.67が好ましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D1)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のcは、0.00056〜0.51が好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D1)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D)成分が、(D1)成分:チタン、バナジウム及びクロムからなる群から選択される1種以上である場合には、(I)式中のdは、0.0024〜0.94が好ましい。上記下限値未満であると(D1)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)〜(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D1)成分がチタンの場合、(I)式中、bは、0.0006〜0.67が好ましく、0.033〜0.57がより好ましく、0.089〜0.44がさらに好ましい。
(D1)成分がチタンの場合、(I)式中、cは、0.00056〜0.51が好ましく、0.026〜0.42がより好ましく、0.075〜0.33がさらに好ましい。
(D1)成分がチタンの場合、(I)式中、dは、0.0026〜0.94が好ましく、0.02〜0.48がより好ましく、0.039〜0.25がさらに好ましい。
(D1)成分がバナジウムの場合、(I)式中、bは、0.00068〜0.67が好ましく、0.034〜0.57がより好ましく、0.072〜0.45がさらに好ましい。
(D1)成分がバナジウムの場合、(I)式中、cは、0.00064〜0.51が好ましく、0.027〜0.42がより好ましく、0.063〜0.33がさらに好ましい。
(D1)成分がバナジウムの場合、(I)式中、dは、0.0024〜0.93が好ましく、0.017〜0.45がより好ましく、0.022〜0.41がさらに好ましい。
(D1)成分がクロムの場合、(I)式中、bは、0.0007〜0.67が好ましく、0.035〜0.57がより好ましく、0.073〜0.45がさらに好ましい。
(D1)成分がクロムの場合、(I)式中、cは、0.00065〜0.51が好ましく、0.027〜0.42がより好ましく、0.063〜0.33がさらに好ましい。
(D1)成分がクロムの場合、(I)式中、dは、0.0024〜0.93が好ましく、0.017〜0.44がより好ましく、0.022〜0.4がさらに好ましい。
(D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のbは、0.00059〜0.67が好ましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のcは、0.00056〜0.51が好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D2)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D)成分が、(D2)成分:周期表の第13族に属する元素から選択される1種以上である場合には、(I)式中のdは、0.0024〜0.95が好ましい。上記下限値未満であると(D2)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)〜(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D2)成分がホウ素の場合、(I)式中、bは、0.00065〜0.67が好ましく、0.015〜0.57がより好ましく、0.055〜0.39がさらに好ましい。
(D2)成分がホウ素の場合、(I)式中、cは、0.00061〜0.51が好ましく、0.013〜0.41がより好ましく、0.05〜0.28がさらに好ましい。
(D2)成分がホウ素の場合、(I)式中、dは、0.0024〜0.94が好ましく、0.028〜0.8がより好ましく、0.13〜0.57がさらに好ましい。
(D2)成分がアルミニウムの場合、(I)式中、bは、0.00059〜0.67が好ましく、0.026〜0.57がより好ましく、0.055〜0.45がさらに好ましい。
(D2)成分がアルミニウムの場合、(I)式中、cは、0.00056〜0.51が好ましく、0.022〜0.41がより好ましく、0.05〜0.33がさらに好ましい。
(D2)成分がアルミニウムの場合、(I)式中、dは、0.0024〜0.95が好ましく、0.028〜0.6がより好ましく、0.036〜0.57がさらに好ましい。
(D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のbは、0.00075〜0.67が好ましい。上記下限値未満であると(B)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(C)成分、(D3)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のcは、0.0007〜0.51が好ましい。上記下限値未満であると(C)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)成分、(B)成分、(D3)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D)成分が、(D3)成分:マグネシウム及びランタノイドからなる群から選択される1種以上である場合には、(I)式中のdは、0.0024〜0.93が好ましい。上記下限値未満であると(D3)成分の含有量が少なすぎて、酸素化物の合成効率が十分に高まらないおそれがあり、上記上限値超であると(A)〜(C)成分の含有量が少なくなりすぎて、酸素化物の合成効率が十分に高まらないおそれがある。
(D3)成分がマグネシウムの場合、(I)式中、bは、0.025〜0.57がより好ましく、0.052〜0.45がさらに好ましい。
(D3)成分がマグネシウムの場合、(I)式中、cは、0.021〜0.41がより好ましく、0.047〜0.33がさらに好ましい。
(D3)成分がマグネシウムの場合、(I)式中、dは、0.028〜0.63がより好ましく、0.036〜0.59がさらに好ましい。
(D3)成分がランタノイドの場合、(I)式中、bは、0.0014〜0.67がより好ましく、0.044〜0.58がさらに好ましく、0.092〜0.46が特に好ましい。
(D3)成分がランタノイドの場合、(I)式中、cは、0.0012〜0.51がより好ましく、0.033〜0.42がさらに好ましく、0.078〜0.34が特に好ましい。
(D3)成分がランタノイドの場合、(I)式中、dは、0.0024〜0.83がより好ましく、0.0068〜0.23がさらに好ましく、0.0087〜0.21が特に好ましい。
本発明の触媒は、(D)成分が(D2)成分である場合には、(A)〜(D2)成分がそれぞれ独立で存在していてもよいし、(A)〜(D2)成分が合金を形成していてもよい。
本発明の触媒は、(D)成分が(D3)成分である場合には、(A)〜(D3)成分がそれぞれ独立で存在していてもよいし、(A)〜(D3)成分が合金を形成していてもよい。
なお、「選択率」とは、混合ガス中の消費されたCOのモル数のうち、特定の酸素化物へ変換されたCのモル数が占める百分率である。例えば、下記(α)式によれば、酸素化物である酢酸の選択率は100モル%である。一方、下記(β)式によれば、酸素化物である酢酸の選択率は50モル%であり、酸素化物であるアセトアルデヒドの選択率も50モル%である。
2H2+2CO→CH3COOH ・・・・・(α)
5H2+4CO→CH3COOH+CH3CHO+H2O ・・・(β)
加えて、担体は、粒子径の分布が狭いものが好ましい。担体の平均粒子径は、特に限定されないが、0.5〜5000μmが好ましい。
なお、担体としては、比表面積、細孔径、細孔容量、粒子径の異なる種々のものが市販されており、担体の種類を適宜選択することで、触媒活性、生成物分布等を調整できる。
例えば、細孔径の小さい担体を選択すれば、担持される(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分の粒径がより小さくなったり、原料ガスを通流させ反応させたときに反応ガスや生成物の拡散速度が低下したりして、触媒活性や生成物分布が変化すると考えられる。
本発明の触媒を担持触媒とする場合、担体100質量部に対する(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分の合計量は、0.01〜10質量部が好ましく、0.1〜5質量部がより好ましい。上記下限値未満では、酸素化物の合成効率が低下するおそれがあり、上記上限値超では、(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分が均一かつ高分散な状態となりにくく、酸素化物の合成効率が低下するおそれがある。
触媒調製に用いられる(A)〜(D)成分の原料化合物としては、酸化物、塩化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等、(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分の化合物として、通常貴金属触媒を調製する際に用いられるものが挙げられる。
含浸液を担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられ、中でも、逐次法が好ましい。逐次法で得られた触媒は、酸素化物をより効率的に合成できる。
二次乾燥操作における乾燥方法は特に限定されず、例えば、二次含浸液が含浸された一次担持体を任意の温度で加熱する方法が挙げられる。二次乾燥操作における加熱温度は、二次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80〜120℃とされる。二次焼成操作における加熱温度は、例えば、300〜600℃とされる。二次焼成操作を行うことで、(A)〜(C)成分の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
還元処理における加熱時間は、例えば、1〜10時間が好ましく、2〜5時間がより好ましい。上記下限値未満では、(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分の還元が不十分となり、酸素化物の製造効率が低下するおそれがある。上記上限値超では、(A)〜(D)成分、(A)〜(D1)成分、(A)〜(D2)成分、又は(A)〜(D3)成分における金属粒子が凝集し、酸素化物の合成効率が低下したり、還元処理におけるエネルギーが過剰になり経済的な不利益が生じたりするおそれがある。
表面処理工程に用いられるアルカリ水溶液は、(D)成分、(D1)成分、(D2)成分、又は(D3)成分の種類や担体の種類等を勘案して決定でき、例えば、アンモニア水溶液等が挙げられる。アルカリ水溶液の濃度は、(D)成分、(D1)成分、(D2)成分、又は(D3)成分の種類や担体の種類等を勘案して決定でき、例えば、0.1〜3モル/Lとされる。
一次担持体にアルカリ水溶液を接触させる方法(接触方法)は、特に限定されず、例えば、アルカリ水溶液に一次担持体を浸漬する方法、アルカリ水溶液を一次担持体に噴霧等により塗布する方法等が挙げられる。
一次担持体にアルカリ水溶液を接触させる時間(接触時間)は、接触方法やアルカリ水溶液の濃度等を勘案して決定され、例えば、一次担持体をアルカリ水溶液に浸漬する場合には、0.1〜12時間が好ましく、1〜8時間がより好ましい。上記下限値未満では、本工程を設ける効果が得られにくく、上記上限値超としても、触媒活性のさらなる向上が図れないおそれがある。
表面処理工程におけるアルカリ水溶液の温度は、特に限定されないが、例えば、5〜40℃が好ましく、15〜30℃がより好ましい。上記下限値未満では、接触時間が長くなりすぎて、触媒の生産性が低下するおそれがあり、上記上限値超では、一次担持体に担持された(D)成分が溶解したり、変質するおそれがあるためである。
本発明の酸素化物の製造装置(以下、単に製造装置ということがある)は、本発明の触媒が充填された反応管と、混合ガスを反応管内に供給する供給手段と、反応管から生成物を排出する排出手段とを備えるものである。
反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
供給管3は、混合ガスを反応管1内に供給する供給手段であり、例えば、ステンレス製等の配管が挙げられる。
排出管4は、反応床2で合成された酸素化物を含む合成ガス(生成物)を排出する排出手段であり、例えば、ステンレス製等の配管が挙げられる。
温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよく、例えば、電気炉等が挙げられる。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
また、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
本発明の酸素化物の製造方法は、混合ガスを触媒に接触させるものである。本発明の酸素化物の製造方法の一例について、図1の製造装置を用いて説明する。
まず、反応管1内を任意の温度及び任意の圧力とし、混合ガス20を供給管3から反応管1内に流入させる。
混合ガス20として、バイオマスガスを用いる場合、混合ガス20を反応管1内に供給する前に、タール分、硫黄分、窒素分、塩素分、水分等の不純物を除去する目的で、ガス精製処理を施してもよい。ガス精製処理としては、例えば、湿式法、乾式法等、当該技術分野で知られる各方式を採用できる。湿式法としては、水酸化ナトリウム法、アンモニア吸収法、石灰・石膏法、水酸化マグネシウム法等が挙げられ、乾式法としては、圧力スイング吸着(PSA)法等の活性炭吸着法、電子ビーム法等が挙げられる。
水素/一酸化炭素で表される体積比(以下、H2/CO比ということがある)は、0.1〜10が好ましく、0.5〜3がより好ましく、1.5〜2.5がさらに好ましい。上記範囲内であれば、混合ガスから酸素化物が生成される反応において、化学量論的に適正な範囲となり、酸素化物をより効率的に製造できる。
なお、混合ガス20は、水素及び一酸化炭素の他に、メタン、エタン、エチレン、窒素、二酸化炭素、水等を含んでいてもよい。
従って、必要に応じて適宜反応温度を選択することで、エタノール又はアセトアルデヒドの生成量を調整できる。
例えば、反応温度300℃以上、特に反応温度300〜320℃では、エタノールの選択率が高まる傾向にあり、反応温度300℃未満、特に反応温度260〜280℃では、アセトアルデヒドの選択率が高まる傾向にある。
混合ガス20は、反応床2を流通する間、例えば、下記(1)〜(5)式で表される触媒反応により酸素化物を生成する。
3H2+2CO→CH3CHO+H2O ・・・(1)
4H2+2CO→CH3CH2OH+H2O ・・・(2)
H2+CH3CHO→CH3CH2OH ・・・(3)
2H2+2CO→CH3COOH ・・・(4)
2H2+CH3COOH→CH3CH2OH+H2O ・・・(5)
空間速度は、目的とする酸素化物に適した反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。
また、本発明では、エタノール以外の生成物(例えば、酢酸、アセトアルデヒド等、エタノールを除くC2化合物や酢酸エチル、酢酸メチル、ギ酸エチル等のエステル類)を水素化してエタノールに変換する工程(エタノール化工程)を設けてもよい。エタノール化工程としては、例えば、アセトアルデヒド、酢酸等を含む酸素化物を水素化触媒に接触させてエタノールに変換する方法が挙げられる。
ここで、水素化触媒としては、当該技術分野で知られる触媒が使用でき、銅、銅−亜鉛、銅−クロム、銅−亜鉛−クロム、鉄、ロジウム−鉄、ロジウム−モリブデン、パラジウム、パラジウム−鉄、パラジウム−モリブデン、イリジウム−鉄、ロジウム−イリジウム−鉄、イリジウム−モリブデン、レニウム−亜鉛、白金、ニッケル、コバルト、ルテニウム、酸化ロジウム、酸化パラジウム、酸化白金、酸化ルテニウム等が挙げられる。これらの水素化触媒は、本発明の触媒に用いられる担体と同様の担体に担持させた担持触媒であってもよく、担持触媒としては、銅、銅−亜鉛、銅−クロム又は銅−亜鉛−クロムをシリカ系担体に担持させた銅系触媒が好適である。担持触媒である水素化触媒の製造方法としては、本発明の触媒と同様に同時法又は逐次法が挙げられる。
あるいは、本発明では、アセトアルデヒドを高効率に得るために、生成物を気液分離器等で処理してエタノールを取り出し、このエタノールを酸化することによりアセトアルデヒドに変換する工程を設けてもよい。
エタノールを酸化する方法としては、エタノールを液化又は気化した後、金、白金、ルテニウム、銅又はマンガンを主成分とした金属触媒や、これら金属を2種以上含む合金触媒等の酸化触媒に接触させる方法等が挙げられる。これら酸化触媒は、本発明の触媒に用いられる担体と同様の担体に金属を担持させた担持触媒であってもよい。
加えて、本発明の触媒を用いることで、酸素化物中のエタノール量を高められる。
チタンラクテートアンモニウム塩(Ti(OH)2[OCH(CH3)COO−]2(NH4 +)2)0.0307gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m2/g、平均細孔径:14nm、細孔容量:1.1cm3/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl3)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl2・4H2O)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.565:0.155:0.078:0.202(モル比)であった。表A1〜A2中、本例における触媒の製造方法を「逐次法」と記載する。
二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は、実施例A1と同様にして触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.424:0.212:0.212:0.152(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
チタンラクテートアンモニウム塩0.0307gと、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLをシリカゲルに滴下して含浸させた。これを110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.424:0.212:0.212:0.152(モル比)であった。表A1中、本例における触媒の製造方法を「同時法」と記載する。
一次含浸液としてチタンラクテートアンモニウム塩0.0123gを含む水溶液1.08mLを用い、二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0432gとを含む水溶液1.08mLを用いた以外は、実施例A1と同様にして触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.417:0.313:0.208:0.062(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
一次含浸液としてチタンラクテートアンモニウム塩0.0920gを含む水溶液1.08mLを用いた以外は、実施例A2と同様にして触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.325:0.162:0.162:0.351(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
メタバナジウム酸アンモニウム(H4NO3V)0.0115gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.0300gと、塩化リチウム0.00028gと、塩化マンガン四水和物0.0044gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:V=0.581:0.160:0.080:0.179(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
硝酸クロム九水和物(Cr(NO3)3・9H2O)0.0385gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.0300gと、塩化リチウム0.00028gと、塩化マンガン四水和物0.0044gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Cr=0.583:0.160:0.080:0.177(モル比)であった。表A1中、本例における触媒の製造方法を「逐次法」と記載する。
2モル/Lのアンモニア水溶液に、一次担持体を6時間浸漬し、これを110℃にて2時間乾燥したものを二次含浸工程に供した以外は、実施例A2と同様にして、触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.424:0.212:0.212:0.152(モル比)であった。表A1中、本例における触媒の製造方法を「水酸化法」と記載する。
2モル/Lのアンモニア水溶液に、一次担持体を6時間浸漬し、これを110℃にて2時間乾燥したものを二次含浸工程に供した以外は、実施例A5と同様にして、触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Ti=0.325:0.162:0.162:0.351(モル比)であった。表A1中、本例における触媒の製造方法を「水酸化法」と記載する。
塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表A2中、本例における触媒の製造方法を「同時法」と記載する。
塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li=0.500:0.250:0.250(モル比)であった。表A2中、本例における触媒の製造方法を「同時法」と記載する。
各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L−触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
次いで、表A1〜A2中の反応温度、反応圧力2MPaの条件下で、混合ガス(H2/CO比=2)を表A1〜A2に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L−触媒/h)を算出し、これらの結果を表A1〜A2に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
実施例A1、A10〜A12と比較例A1、A3〜A5との比較において、いずれの反応温度においても、実施例における酸素化物の総生成量は、比較例における酸素化物の総生成量よりも高かった。
混合ガスの空間速度が6300L/L−触媒/hである、実施例A1、A6〜A7と比較例A1との比較において、実施例A1、A6〜A7は、比較例A1に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
また、混合ガスの空間速度が8400L/L−触媒/hである、実施例A2〜A5と比較例A2との比較において、実施例A2〜A5は、比較例A2に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
これらの結果から、本発明を適用することで、酸素化物の総生成量を高め、混合ガスから酸素化物を効率的に合成できることが判った。
さらに、実施例A2と実施例A8との比較、実施例A5と実施例A9との比較において、水酸化法で製造した実施例A8〜A9は、逐次法で製造した実施例A2、A5に比べて酸素化物の総生成量を高められていた。
一方、反応温度を260〜280℃とした実施例A10〜A11におけるアセトアルデヒドの選択率は49.2モル%以上であり、反応温度を300〜320℃とした実施例A1、A12におけるアセトアルデヒドの選択率よりも高かった。
これらの結果から、反応温度を変えることで、エタノール又はアセトアルデヒドの選択率を高められることが判った。
アンモニウムペンタボレートオクタハイドレート((NH4)2O・B10O16・8H2O)0.0252gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m2/g、平均細孔径:14nm、細孔容量:1.1cm3/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl3)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl2・4H2O)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:B=0.348:0.096:0.048:0.508(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は、実施例B1と同様にして触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:B=0.289:0.145:0.145:0.421(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
アンモニウムペンタボレートオクタハイドレート0.0252gと、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLをシリカゲルに滴下して含浸させた。これを110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:B=0.289:0.145:0.145:0.421(モル比)であった。表B1中、本例における触媒の製造方法を「同時法」と記載する。
一次含浸液としてアンモニウムペンタボレートオクタハイドレート0.0101gを含む水溶液1.08mLを用い、二次含浸液として塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0432gとを含む水溶液1.08mLを用いた以外は、実施例B1と同様にして触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:B=0.352:0.264:0.176:0.208(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
硝酸アルミニウム九水和物(Al(NO3)3・9H2O)0.0695gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Al=0.501:0.138:0.069:0.292(モル比)であった。表B1中、本例における触媒の製造方法を「逐次法」と記載する。
塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表B2中、本例における触媒の製造方法を「同時法」と記載する。
塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li=0.500:0.250:0.250(モル比)であった。表B2中、本例における触媒の製造方法を「同時法」と記載する。
各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L−触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
次いで、表B1〜B2中の反応温度、反応圧力2MPaの条件下で、混合ガス(H2/CO比=2)を表B1〜B2に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L−触媒/h)を算出し、これらの結果を表B1〜B2に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
さらに、実施例B1、B6〜B8と比較例B1、B3〜B5との比較において、いずれの反応温度でも、実施例における酸素化物の総生成量は、比較例における酸素化物の総生成量よりも高かった。
混合ガスの空間速度が6300L/L−触媒/hである、実施例B1、B5と比較例B1との比較において、実施例B1、B5は、比較例1に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
また、混合ガスの空間速度が8400L/L−触媒/hである、実施例B2〜B4と比較例B2との比較において、実施例B2〜B4は、比較例B2に比べて、酸素化物の総生成量及びエタノールの生成量が高まっていた。
これらの結果から、本発明を適用することで、酸素化物の総生成量を高め、混合ガスから酸素化物を効率的に合成できることが判った。
一方、反応温度を260〜280℃とした実施例B6〜B7におけるアセトアルデヒドの選択率は68.3モル%以上であり、反応温度を300〜320℃とした実施例B1、B8におけるアセトアルデヒドの選択率よりも高かった。
これらの結果から、反応温度を変えることで、エタノール又はアセトアルデヒドの選択率を高められることが判った。
硝酸マグネシウム六水和物(Mg(NO3)2・6H2O)0.0531gを含む水溶液(一次含浸液)1.08mLを、シリカゲル(比表面積:310m2/g、平均細孔径:14nm、細孔容量:1.1cm3/g)1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム(RhCl3)0.061gと、塩化リチウム(LiCl)0.0017gと、塩化マンガン四水和物(MnCl2・4H2O)0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Mg=0.484:0.133:0.067:0.316(モル比)であった。表C1中、本例における触媒の製造方法を「逐次法」と記載する。
硝酸ランタン六水和物(La(NO3)3・6H2O)0.0152gを含む水溶液(一次含浸液)1.08mLを、シリカゲル1.0gに滴下して含浸させた(一次含浸工程)。これを110℃にて3時間乾燥し(一次乾燥操作)、さらに450℃にて3時間焼成して一次担持体を得た(一次焼成操作,以上、一次担持工程)。塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液(二次含浸液)1.08mLを一次担持体に滴下して含浸させ(二次含浸工程)、110℃にて3時間乾燥し(二次乾燥操作)、さらに450℃にて3時間焼成して触媒を得た(二次焼成操作,以上、二次担持工程)。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:La=0.655:0.180:0.091:0.074(モル比)であった。表C1中、本例における触媒の製造方法を「逐次法」と記載する。
2モル/Lのアンモニア水溶液に、一次担持体を6時間浸漬し、これを110℃にて2時間乾燥したものを二次含浸工程に供した以外は、実施例C1と同様にして、触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Mg=0.484:0.133:0.067:0.316(モル比)であった。表C1中、本例における触媒の製造方法を「水酸化法」と記載する。
二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は実施例C3と同様にして、触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Mg=0.377:0.189:0.189:0.245(モル比)であった。表C1中、本例における触媒の製造方法を「水酸化法」と記載する。
一次含浸液として、硝酸マグネシウム六水和物0.158gを含む水溶液1.08mLを用い、二次含浸液として、塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを用いた以外は実施例C3と同様にして、触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li:Mg=0.253:0.126:0.126:0.495(モル比)であった。表C1中、本例における触媒の製造方法を「水酸化法」と記載する。
塩化ロジウム0.061gと、塩化リチウム0.0017gと、塩化マンガン四水和物0.0159gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li=0.708:0.194:0.098(モル比)であった。表C2中、本例における触媒の製造方法を「同時法」と記載する。
塩化ロジウム0.061gと、塩化リチウム0.0062gと、塩化マンガン四水和物0.0288gとを含む水溶液1.08mLを、シリカゲル1gに滴下して含浸させ、110℃にて3時間乾燥し、さらに450℃にて3時間焼成して触媒を得た。
得られた触媒は、ロジウム担持率=3質量%/SiO2、Rh:Mn:Li=0.500:0.250:0.250(モル比)であった。表C2中、本例における触媒の製造方法を「同時法」と記載する。
各例の触媒0.1gを直径2mm、長さ15cmのステンレス製の円筒型の反応管に充填して反応床を形成した。反応床に、常圧で水素を空間速度1200L/L−触媒/hで流通させながら、320℃で2.5時間加熱し、触媒に還元処理を施した。
次いで、表C1〜C2中の反応温度、反応圧力2MPaの条件下で、混合ガス(H2/CO比=2)を表C1〜C2に示す空間速度で反応床に流通させて、酸素化物を含む合成ガスの製造を行った。
混合ガスを反応床に3時間流通させ、得られた合成ガスを回収し、ガスクロマトグラフィーにより分析した。
得られたデータからCO転化率(モル%)、エタノール及びアセトアルデヒドの選択率(モル%)、エタノール及びアセトアルデヒドの生成量(g/L−触媒/h)を算出し、これらの結果を表C1〜C2に示す。なお、エタノール及びアセトアルデヒドの生成量は、単位時間当たりの単位触媒体積当たりの質量として表した値である。
これに対し、(D)成分を含まない比較例C1〜C2は、CO転化率が17.1モル%以下であった。
加えて、実施例C3、C6〜C8と比較例C1、C3〜C5との比較において、いずれの反応温度においても、実施例における酸素化物の総生成量は、比較例における酸素化物の総生成量よりも高かった。
これらの結果から、本発明を適用することで、酸素化物の総生成量を高め、混合ガスから酸素化物を効率的に合成できることが判った。
実施例C3に比べてMn及びLiの比率が高い実施例C4は、実施例C3よりもCO転化率が高いものであった。実施例C4に比べてMgの比率が高い実施例C5は、実施例C4に比べてCO転化率が高く、かつエタノールの選択率が高いものであった。
一方、反応温度を260〜280℃とした実施例C6〜C7におけるアセトアルデヒドの選択率は48.3モル%以上であり、反応温度を300〜320℃とした実施例C1、C8におけるアセトアルデヒドの選択率よりも高かった。
これらの結果から、反応温度を変えることで、エタノール又はアセトアルデヒドの選択率を高められることが判った。
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 製造装置
20 混合ガス
22 合成ガス
Claims (7)
- 水素と一酸化炭素とを含む混合ガスから、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群より選ばれる少なくとも一種の酸素化物を合成する酸素化物合成用の触媒において、
(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:チタンとを含み、
担体に前記(D)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)〜(C)成分を担持させた、酸素化物合成用の触媒。 - 前記酸素化物合成用の触媒が、下記式(I)で表される請求項1に記載の酸素化物合成用の触媒。
aA・bB・cC・dD ・・・・(I)
[(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、
Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.05〜0.98、
b=0.0005〜0.67、
c=0.0005〜0.51、
d=0.002〜0.95である。] - 前記式(I)中のa、b、c及びdが以下の条件を満たす請求項2に記載の酸素化物合成用の触媒。
a+b+c+d=1、
a=0.24〜0.8、
b=0.033〜0.57、
c=0.026〜0.42、
d=0.02〜0.48。 - (A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:チタンとが担体に担持されている酸素化物合成用の触媒の製造方法であって、
前記酸素化物は、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群より選ばれる少なくとも一種であり、 前記担体に前記(D)成分を担持させて一次担持体とし、前記一次担持体にアルカリ水溶液を接触させた後、前記一次担持体に前記(A)〜(C)成分を担持させることを含む酸素化物合成用の触媒の製造方法。 - 請求項1〜3のいずれか1項に記載の酸素化物合成用の触媒が充填された反応管と、前記混合ガスを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段とを備える酸素化物の製造装置。
- 請求項1〜3のいずれか1項に記載の酸素化物合成用の触媒に、水素と一酸化炭素とを含む混合ガスを接触させて酸素化物を得る酸素化物の製造方法。
- 水素と一酸化炭素とを含む混合ガスから、酢酸、エタノール、アセトアルデヒド、メタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチル及び酢酸エチルからなる群より選ばれる少なくとも一種の酸素化物を合成する酸素化物合成用の触媒において、
(A)成分:ロジウムと、(B)成分:マンガンと、(C)成分:アルカリ金属と、(D)成分:チタンとを含み、下記式(I):
aA・bB・cC・dD ・・・・(I)
[(I)式中、Aは(A)成分を表し、Bは(B)成分を表し、Cは(C)成分を表し、Dは(D)成分を表し、a、b、c及びdはモル分率を表し、
a+b+c+d=1、
a=0.24〜0.8、
b=0.033〜0.57、
c=0.026〜0.42、
d=0.02〜0.48である。]
で表される酸素化物合成用の触媒であって、
担体に前記(D)成分を担持させて一次担持体とした後、前記一次担持体に前記(A)〜(C)成分を担持させた、酸素化物合成用の触媒。
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011189052 | 2011-08-31 | ||
JP2011189053 | 2011-08-31 | ||
JP2011189052 | 2011-08-31 | ||
JP2011189056 | 2011-08-31 | ||
JP2011189056 | 2011-08-31 | ||
JP2011189053 | 2011-08-31 | ||
JP2012039009 | 2012-02-24 | ||
JP2012039008 | 2012-02-24 | ||
JP2012039009 | 2012-02-24 | ||
JP2012039007 | 2012-02-24 | ||
JP2012039008 | 2012-02-24 | ||
JP2012039007 | 2012-02-24 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013531231A Division JP6313597B2 (ja) | 2011-08-31 | 2012-08-22 | 酸素化物合成用の触媒 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016175082A JP2016175082A (ja) | 2016-10-06 |
JP6267266B2 true JP6267266B2 (ja) | 2018-01-24 |
Family
ID=47756090
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013531231A Expired - Fee Related JP6313597B2 (ja) | 2011-08-31 | 2012-08-22 | 酸素化物合成用の触媒 |
JP2016098289A Expired - Fee Related JP6267266B2 (ja) | 2011-08-31 | 2016-05-16 | 酸素化物合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 |
JP2017021712A Expired - Fee Related JP6329286B2 (ja) | 2011-08-31 | 2017-02-08 | 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013531231A Expired - Fee Related JP6313597B2 (ja) | 2011-08-31 | 2012-08-22 | 酸素化物合成用の触媒 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017021712A Expired - Fee Related JP6329286B2 (ja) | 2011-08-31 | 2017-02-08 | 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9272267B2 (ja) |
EP (2) | EP2752240B1 (ja) |
JP (3) | JP6313597B2 (ja) |
CN (3) | CN103764277B (ja) |
CA (1) | CA2845587A1 (ja) |
WO (1) | WO2013031598A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015163387A (ja) * | 2014-01-30 | 2015-09-10 | 積水化学工業株式会社 | 合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法 |
JP2015178101A (ja) * | 2014-02-28 | 2015-10-08 | 積水化学工業株式会社 | 酸素化物合成用の触媒、酸素化物合成用の触媒の製造方法、酸素化物の製造装置及び酸素化物の製造方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568333A (en) | 1979-06-28 | 1981-01-28 | Union Carbide Corp | Manufacture of two carbon atom oxidated compound minimizing formation of methane from synthetic gas |
CA1146592A (en) | 1979-06-28 | 1983-05-17 | Thomas P. Wilson | Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane |
US4235798A (en) | 1979-06-28 | 1980-11-25 | Union Carbide Corporation | Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane |
PT71476A (en) * | 1979-07-03 | 1980-08-01 | Sagami Chem Res | Process for producing oxygen-containing hydrocarbon compounds |
JPS5762230A (en) | 1980-10-03 | 1982-04-15 | Showa Denko Kk | Preparation of oxygen-containing hydrocarbon compound from synthesis gas |
FR2523957A1 (fr) * | 1982-03-26 | 1983-09-30 | Inst Francais Du Petrole | Procede de fabrication d'un melange de methanol et d'alcools superieurs, a partir de gaz de synthese |
JPS5978130A (ja) * | 1982-10-26 | 1984-05-04 | Agency Of Ind Science & Technol | 酸素含有炭化水素化合物の製造法 |
JPS6049617B2 (ja) * | 1983-08-03 | 1985-11-02 | 工業技術院長 | エタノ−ルなどの含酸素化合物を製造する方法 |
JPS6136731A (ja) | 1984-07-30 | 1986-02-21 | Matsushita Electric Ind Co Ltd | スリツト露光照明装置 |
JPS6136730A (ja) | 1984-07-30 | 1986-02-21 | Hokubu Tsushin Kogyo Kk | 色印刷原版用フイルム作成装置 |
GB2171925B (en) * | 1985-02-02 | 1988-10-19 | Agency Ind Science Techn | Process for the manufacture of ethanol based, oxygen-containing carbon compounds |
JP2519976B2 (ja) * | 1988-05-20 | 1996-07-31 | ダイセル化学工業株式会社 | 含酸素化合物の製造方法 |
CN1074304C (zh) * | 1996-09-04 | 2001-11-07 | 中国科学院大连化学物理研究所 | 一氧化碳加氢制二碳含氧化合物用催化剂及制备方法 |
CN1074306C (zh) * | 1996-09-25 | 2001-11-07 | 中国科学院大连化学物理研究所 | 一种用于一氧化碳加氢合成乙醇乙酸乙醛的铑基催化剂 |
DE19929281A1 (de) * | 1999-06-25 | 2000-12-28 | Basf Ag | Verfahren und Katalysator zur Herstellung von C¶2¶-Oxygenaten aus Synthesegas |
CN1251801C (zh) * | 2002-12-26 | 2006-04-19 | 中国科学院大连化学物理研究所 | 一种用大孔硅胶作载体的催化剂的制备方法 |
CN1724151A (zh) * | 2004-07-22 | 2006-01-25 | 中国科学院大连化学物理研究所 | 一种用于co加氢合成二碳含氧化合物的催化剂 |
GB0510356D0 (en) * | 2005-05-20 | 2005-06-29 | Bp Chem Int Ltd | Process for the conversion of synthesis gas to oxygenate |
CN102333748B (zh) * | 2009-02-12 | 2014-12-24 | 有限会社市川事务所 | 乙醇的制造方法 |
JP5578499B2 (ja) | 2010-03-16 | 2014-08-27 | 学校法人明治大学 | リン酸カルシウム/生分解性ポリマーハイブリッド材料並びにその製法及びハイブリッド材料を用いたインプラント |
US20120208695A1 (en) * | 2009-11-02 | 2012-08-16 | Dow Global Technologies Llc | Supported rhodium synthesis gas conversion catalyst compositions |
JP2011189056A (ja) | 2010-03-16 | 2011-09-29 | Tamagawa Seiki Co Ltd | パチスロ用ステップモータの制御方法 |
JP2011189053A (ja) | 2010-03-16 | 2011-09-29 | Sanyo Product Co Ltd | 遊技機 |
JP2012039009A (ja) | 2010-08-10 | 2012-02-23 | Renesas Electronics Corp | 半導体装置、および、半導体装置の製造方法 |
JP5832731B2 (ja) | 2010-08-10 | 2015-12-16 | 株式会社東芝 | 半導体素子 |
JP5678323B2 (ja) | 2010-08-10 | 2015-03-04 | Dowaメタルテック株式会社 | 半導体基板用放熱板 |
-
2012
- 2012-08-22 US US14/237,427 patent/US9272267B2/en not_active Expired - Fee Related
- 2012-08-22 JP JP2013531231A patent/JP6313597B2/ja not_active Expired - Fee Related
- 2012-08-22 CN CN201280041639.3A patent/CN103764277B/zh not_active Expired - Fee Related
- 2012-08-22 CA CA2845587A patent/CA2845587A1/en not_active Abandoned
- 2012-08-22 WO PCT/JP2012/071179 patent/WO2013031598A1/ja active Application Filing
- 2012-08-22 CN CN201710102549.5A patent/CN107020088A/zh active Pending
- 2012-08-22 EP EP12827075.8A patent/EP2752240B1/en not_active Not-in-force
- 2012-08-22 EP EP21155286.4A patent/EP3834929A1/en not_active Withdrawn
- 2012-08-22 CN CN201610533707.8A patent/CN106238048B/zh not_active Expired - Fee Related
-
2016
- 2016-05-16 JP JP2016098289A patent/JP6267266B2/ja not_active Expired - Fee Related
-
2017
- 2017-02-08 JP JP2017021712A patent/JP6329286B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP2752240A1 (en) | 2014-07-09 |
JP2017119278A (ja) | 2017-07-06 |
JP6313597B2 (ja) | 2018-04-18 |
CN106238048B (zh) | 2020-05-29 |
EP2752240B1 (en) | 2021-03-03 |
EP2752240A4 (en) | 2015-08-05 |
CA2845587A1 (en) | 2013-03-07 |
CN106238048A (zh) | 2016-12-21 |
EP3834929A1 (en) | 2021-06-16 |
CN103764277B (zh) | 2017-11-03 |
US20140187654A1 (en) | 2014-07-03 |
WO2013031598A1 (ja) | 2013-03-07 |
US9272267B2 (en) | 2016-03-01 |
CN103764277A (zh) | 2014-04-30 |
CN107020088A (zh) | 2017-08-08 |
JP6329286B2 (ja) | 2018-05-23 |
JPWO2013031598A1 (ja) | 2015-03-23 |
JP2016175082A (ja) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016043209A1 (ja) | ブタジエンの製造方法及びブタジエン製造装置 | |
JP6093780B2 (ja) | アルコール合成用の触媒、アルコールの製造装置及びアルコールの製造方法 | |
JP6329286B2 (ja) | 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法 | |
JP6408114B2 (ja) | 酸素化物の製造システム及び酸素化物の製造方法 | |
JP5999569B2 (ja) | C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法 | |
JP6183916B2 (ja) | 酸素化物合成用の触媒、酸素化物の製造装置、及び酸素化物の製造方法 | |
JP2013049023A (ja) | 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法 | |
JP5996423B2 (ja) | C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法 | |
JP6037305B2 (ja) | C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法 | |
JP2013063418A (ja) | 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法 | |
JP2016026864A (ja) | 酢酸エチル合成用の触媒、酢酸エチルの製造装置及び酢酸エチルの製造方法 | |
JP2013049024A (ja) | 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法 | |
JP2015163594A (ja) | 酸素化物の製造方法 | |
JP2015178101A (ja) | 酸素化物合成用の触媒、酸素化物合成用の触媒の製造方法、酸素化物の製造装置及び酸素化物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171128 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6267266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |