WO2016043209A1 - ブタジエンの製造方法及びブタジエン製造装置 - Google Patents

ブタジエンの製造方法及びブタジエン製造装置 Download PDF

Info

Publication number
WO2016043209A1
WO2016043209A1 PCT/JP2015/076254 JP2015076254W WO2016043209A1 WO 2016043209 A1 WO2016043209 A1 WO 2016043209A1 JP 2015076254 W JP2015076254 W JP 2015076254W WO 2016043209 A1 WO2016043209 A1 WO 2016043209A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ethanol
butadiene
primary product
primary
Prior art date
Application number
PCT/JP2015/076254
Other languages
English (en)
French (fr)
Inventor
友章 西野
稔人 御山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US15/509,059 priority Critical patent/US10358395B2/en
Priority to JP2016548905A priority patent/JP6698534B2/ja
Priority to EP15841605.7A priority patent/EP3196181B1/en
Publication of WO2016043209A1 publication Critical patent/WO2016043209A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2076Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)- moiety is eliminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides

Definitions

  • the present invention relates to a butadiene production method and a butadiene production apparatus.
  • This application claims priority based on Japanese Patent Application No. 2014-188263 filed in Japan on September 16, 2014 and 2014-188264 filed in Japan on September 16, 2014, the contents of which are hereby incorporated by reference Incorporated into.
  • Butadiene such as 1,3-butadiene is used as a raw material for styrene-butadiene rubber (SBR) and the like.
  • SBR styrene-butadiene rubber
  • butadiene is purified from a C4 fraction by-produced when ethylene is synthesized from petroleum.
  • bioethanol synthesized from biomass-derived raw materials has attracted attention as an alternative to petroleum.
  • Patent Document 1 proposes a method for producing butadiene in which ethanol (and acetaldehyde) is brought into contact with a specific catalyst to synthesize butadiene from ethanol (and acetaldehyde).
  • the invention of Patent Document 1 aims to improve the production efficiency of butadiene by increasing the selectivity of butadiene.
  • Raw ethanol such as bioethanol is usually stored in liquid form. For this reason, in the invention described in Patent Document 1, it is necessary to gasify the raw material ethanol and bring the gasified ethanol into contact with the catalyst. That is, when producing butadiene from ethanol, energy for gasifying ethanol is required. For this reason, the method for producing butadiene from ethanol is required to further improve energy efficiency.
  • the product containing ethanol is subjected to a distillation treatment or the like to purify ethanol.
  • butadiene is synthesized using purified ethanol and purified acetaldehyde.
  • a process for producing purified ethanol and a process for producing purified acetaldehyde are individually latent, and the production process exists.
  • the production efficiency of butadiene is low.
  • this invention aims at the manufacturing method of the butadiene which can improve energy efficiency and manufacturing efficiency more.
  • the method for producing butadiene according to the present invention includes a first synthesis step in which a mixed gas containing hydrogen and carbon monoxide is brought into contact with a first catalyst to obtain a primary product containing ethanol as an intermediate, and the primary production. And a second synthesis step of contacting the product with a second catalyst to obtain butadiene.
  • the primary product preferably further contains acetaldehyde as an intermediate.
  • the primary product preferably has a molar ratio represented by ethanol / acetaldehyde of 5/1 to 1/5.
  • the primary product is obtained as a gas
  • the butadiene production apparatus of the present invention comprises a first reaction tube filled with a first catalyst and a second reaction tube filled with a second catalyst, wherein the first catalyst is identical to hydrogen.
  • a primary product containing ethanol or ethanol and acetaldehyde as an intermediate is synthesized from a mixed gas containing carbon oxide, and the second catalyst synthesizes butadiene from the intermediate, and the second reaction tube. Is provided downstream of the first reaction tube, and the primary product is brought into contact with the second catalyst.
  • a first purifier that removes substances other than the intermediate from the primary product may be provided between the first reaction tube and the second reaction tube.
  • butadiene means 1,3-butadiene unless otherwise specified.
  • the butadiene production apparatus of the present invention includes a first reaction tube and a second reaction tube provided at a stage subsequent to the first reaction tube.
  • An embodiment of a butadiene production apparatus will be described with reference to FIG.
  • the butadiene production apparatus 1 in FIG. 1 includes a mixed gas supply source 2, a first reaction tube 10, a first purifier 20, and a second reaction tube 30.
  • the mixed gas supply source 2 and the first reaction tube are connected by a pipe 12.
  • the first reaction tube 10 and the first purifier 20 are connected by a pipe 14.
  • the pipe 14 includes a first pressure control unit 16.
  • a discharge pipe 24 is connected to the first refiner 20.
  • the discharge pipe 24 is connected to a collecting machine (not shown).
  • the first purifier 20 and the second reaction tube 30 are connected by a pipe 22.
  • a pipe 32 is connected to the second reaction tube 30.
  • the pipe 32 includes a second pressure control unit 34.
  • the mixed gas supply source 2 should just be what can supply the mixed gas containing hydrogen and carbon monoxide.
  • Examples of the mixed gas supply source 2 include a cylinder containing a mixed gas, a combination of a cylinder containing hydrogen and a cylinder containing carbon monoxide.
  • the mixed gas, hydrogen, and carbon monoxide contained in the cylinder may be, for example, those prepared from natural gas or coal, biomass gas obtained by gasifying biomass, waste plastic, waste paper, It may be obtained by gasifying organic waste such as waste clothing (hereinafter sometimes referred to as recycle gas).
  • Biomass gas and recycle gas can be obtained by a conventionally known method such as heating pulverized biomass or organic waste in the presence of water vapor (eg, 800 to 1000 ° C.).
  • the mixed gas supply source 2 may be a gasification furnace that generates biomass gas or recycle gas.
  • the gasification furnace By using the gasification furnace as the mixed gas supply source 2, the process of generating a mixed gas from biomass or the like and the process of producing butadiene from the mixed gas can be performed with one apparatus. Any gasification furnace may be used as long as it can generate a mixed gas by heating biomass or organic waste in the presence of water vapor.
  • a floating external heat type gasification type gasification furnace is preferable.
  • the gasification furnace of the floating external heat type gasification method is preferable in that the ratio of hydrogen and carbon monoxide is easily adjusted and impurities other than hydrogen and carbon monoxide are small.
  • a gas purifier is preferably provided between the mixed gas supply source 2 and the first reaction tube 10.
  • impurities such as tar, sulfur, nitrogen, chlorine, and moisture are removed from biomass gas and recycle gas.
  • the gas purifier for example, various types of gas purifiers known in the technical field such as a wet method and a dry method are employed. Examples of wet methods include sodium hydroxide method, ammonia absorption method, lime / gypsum method, magnesium hydroxide method, and dry methods include activated carbon adsorption method such as pressure swing adsorption (PSA) method, electron beam method, etc. Is mentioned.
  • PSA pressure swing adsorption
  • the piping 12 is preferably made of a material that is inert to the mixed gas, and examples thereof include stainless steel piping.
  • the first reaction tube 10 is filled with a first catalyst to form a first reaction bed 11.
  • the first reaction tube 10 is preferably made of a material inert to the mixed gas, ethanol and acetaldehyde.
  • the first reaction tube 10 preferably has a shape capable of withstanding heating of about 100 to 500 ° C. or pressurization of about 10 MPa.
  • An example of the reaction tube 1 is a substantially cylindrical member made of stainless steel.
  • the first reaction bed 11 may be a fixed bed, a moving bed, a fluidized bed, or the like.
  • the first catalyst is not particularly limited as long as it can synthesize ethanol as an intermediate or ethanol and acetaldehyde from hydrogen and carbon monoxide.
  • a primary product containing the intermediate for example, an ethanol-containing gas containing ethanol
  • the first catalyst include a so-called supported catalyst in which a hydrogenation active metal is supported on a porous carrier.
  • a hydrogenation active metal, or a hydrogenation active metal and an auxiliary metal described later hereinafter, the metal used in the first or second catalyst may be collectively referred to as a catalyst metal). It may be a collection.
  • a supported catalyst is preferable. If it is a supported catalyst, it is easy to control the ethanol concentration in the product and the ratio of ethanol and acetaldehyde.
  • the material of the porous carrier is not particularly limited, and examples thereof include silica, zirconia, titania, magnesia, etc. Among them, silica is preferable because various products having different specific surface areas and pore diameters can be procured on the market.
  • the size of the porous carrier is not particularly limited.
  • a silica porous carrier having a particle size of 0.5 to 5000 ⁇ m is preferable.
  • the particle size of the porous carrier is adjusted by sieving.
  • the porous carrier preferably has a narrowest particle size distribution.
  • the total pore volume (total pore volume) in the porous carrier is not particularly limited, but is preferably 0.01 to 1.0 mL / g, and more preferably 0.1 to 0.8 mL / g. If the total pore volume is less than the above lower limit, the specific surface area of the porous carrier becomes insufficient, the amount of catalyst metal supported becomes insufficient, and the CO conversion rate may be lowered. If the total pore volume exceeds the above upper limit, the diffusion rate of the mixed gas that is a raw material becomes too fast, the contact time between the catalyst and the mixed gas becomes insufficient, and the selectivity of the intermediate such as ethanol is low. May be lowered.
  • the total pore volume is a value measured by a water titration method.
  • the water titration method is a method in which water molecules are adsorbed on the surface of a porous carrier and the pore distribution is measured from the condensation of the molecules.
  • the “CO conversion rate” means the percentage of the number of moles of CO consumed in the number of moles of CO in the mixed gas.
  • Selectivity is the percentage of the number of moles of CO consumed in the gas mixture that is occupied by the number of moles of C converted to a specific compound. For example, according to the following formula ( ⁇ ), the selectivity of ethanol is 100 mol%. On the other hand, according to the following formula ( ⁇ ), the selectivity of ethanol is 50 mol%, and the selectivity of acetaldehyde is also 50 mol%.
  • the average pore diameter of the porous carrier is, for example, preferably 0.1 to 8 nm, and more preferably 3 to 6 nm. If the average pore diameter is less than the above lower limit, the amount of catalyst metal supported is reduced, and the CO conversion rate may be reduced. If the average pore diameter exceeds the above upper limit value, the diffusion rate of the mixed gas becomes too fast, the contact time between the catalyst metal and the mixed gas becomes insufficient, and the selectivity of the intermediate such as ethanol becomes low. . That is, when the average pore diameter is within the above range, the contact time between the catalyst metal and the mixed gas is a time suitable for efficiently producing the intermediate such as ethanol.
  • the average pore diameter is a value measured by the following method.
  • the average pore diameter is calculated from the total pore volume and the BET specific surface area.
  • the average pore diameter is measured by a mercury porosimetry porosimeter.
  • the total pore volume is a value measured by a water titration method
  • the BET specific surface area is a value calculated from the amount of adsorption and the pressure at that time using nitrogen as an adsorption gas.
  • mercury intrusion method mercury is pressurized and pressed into the pores of the porous carrier, and the average pore diameter is calculated from the pressure and the amount of mercury inserted.
  • the specific surface area of the porous carrier is not particularly limited, for example, preferably 1 ⁇ 1000m 2 / g, more preferably 10 ⁇ 800m 2 / g. If the specific surface area is not less than the above lower limit value, the amount of catalyst metal supported is sufficient, and the CO conversion rate is further increased. If the specific surface area is not more than the above upper limit value, the diffusion rate of the mixed gas becomes more appropriate, and the selectivity of the intermediate such as ethanol is further increased.
  • the specific surface area is a BET specific surface area measured by a BET gas adsorption method using nitrogen as an adsorption gas.
  • the product of the total pore volume and the specific surface area of the porous carrier is preferably 1 ⁇ 1000mL ⁇ m 2 / g 2, more preferably 100 ⁇ 500mL ⁇ m 2 / g 2. If it is more than the said lower limit, the load of catalyst metal will become sufficient and CO conversion rate will increase more. If it is below the said upper limit, the diffusion rate of mixed gas becomes more suitable and the selectivity of the said intermediates, such as ethanol, increases more.
  • any metal conventionally known as a metal that can synthesize ethanol (and acetaldehyde) from a mixed gas may be used.
  • an alkali metal such as lithium or sodium
  • These hydrogenation active metals may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the hydrogenation active metal from the viewpoint of further improving the CO conversion rate and further improving the selectivity of the intermediate such as ethanol, a combination of rhodium, manganese and lithium, ruthenium, rhenium and sodium A combination of rhodium or ruthenium, an alkali metal, and another hydrogenation active metal is preferable.
  • the amount of the hydrogenation active metal supported in the first catalyst is determined in consideration of the type of the hydrogenation active metal, the material of the porous carrier, and the like.
  • the supported amount of the hydrogenation active metal is preferably 0.001 to 30 parts by mass, more preferably 0.125 to 10 parts by mass with respect to 100 parts by mass of the porous carrier. If the amount is less than the lower limit, the amount of the hydrogenated active metal supported may be too small and the CO conversion rate may be reduced. If the amount exceeds the upper limit value, the hydrogenated active metal cannot be uniformly and highly dispersed, and the CO conversion rate is decreased. There is a possibility that the selectivity of the intermediate such as ethanol and ethanol may be lowered.
  • the supported amount of the hydrogenation active metal is preferably 0.001 to 30 parts by mass with respect to 100 parts by mass of the porous carrier, 0.25 More preferable is 10 parts by mass. If the amount is less than the lower limit, the amount of the hydrogenated active metal supported may be too small and the CO conversion rate may be reduced. If the amount exceeds the upper limit value, the hydrogenated active metal cannot be uniformly and highly dispersed, and the CO conversion rate is decreased. There is a possibility that the selectivity of the intermediate such as ethanol and ethanol may be lowered.
  • the supported amount of the hydrogenation active metal is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the porous carrier. 1 to 10 parts by mass is more preferable. If the amount is less than the lower limit, the amount of the hydrogenated active metal supported may be too small and the CO conversion rate may be reduced. If the amount exceeds the upper limit value, the hydrogenated active metal cannot be uniformly and highly dispersed, and the CO conversion rate is decreased. There is a possibility that the selectivity of the intermediate such as ethanol and ethanol may be lowered.
  • the amount of the hydrogenation active metal supported is determined in consideration of the composition, the kind of the porous carrier, and the like.
  • the supported amount of the hydrogenation active metal is preferably 0.05 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the porous carrier. If the amount is less than the lower limit, the CO conversion rate may decrease. If the amount exceeds the upper limit value, the hydrogenated active metal cannot be uniformly and highly dispersed, and the CO conversion rate and the selectivity of the intermediate such as ethanol are low. May decrease.
  • the supporting state of the hydrogenation active metal in the first catalyst is not particularly limited.
  • a powdered metal may be supported on the porous support, or may be supported on the porous support in the form of a metal element.
  • a state of being supported on a porous carrier in the form of a metal element is preferable. If it is in a state of being supported on the porous carrier in the form of a metal element, the contact area with the mixed gas is increased, and the selectivity for the intermediate such as CO conversion and ethanol can be further increased.
  • the first catalyst may carry an auxiliary metal in addition to the hydrogenation active metal.
  • the co-active metal include titanium, magnesium, vanadium and the like. Since the first catalyst supports these co-active metals, the CO conversion rate and the selectivity of the intermediate such as ethanol can be further increased.
  • the loading amount of the co-active metal in the first catalyst is determined in consideration of the type of co-active metal, the type of hydrogenation active metal, etc., for example, 0.01 to 20 with respect to 100 parts by mass of the porous carrier. Part by mass is preferable, and 1 to 10 parts by mass is more preferable. If the amount is less than the above lower limit value, the amount of the auxiliary active metal supported is too small, and it is difficult to further improve the CO conversion rate and the selectivity of the intermediate such as ethanol. Since it is excessively coated with the active metal, it is difficult to improve the CO conversion rate and the selectivity of the intermediate such as ethanol.
  • the supporting state of the co-active metal in the first catalyst is not particularly limited.
  • a powdered metal may be supported on the porous carrier, or may be in the form of a metal element on the porous carrier. It may be in a supported state, and among these, a state in which it is supported on a porous carrier in the form of a metal element is preferable. If it is in a state of being supported on the porous carrier in the form of a metal element, the contact area with the mixed gas is increased, and the selectivity for the intermediate such as CO conversion and ethanol can be further increased.
  • the amount of catalyst metal supported in the first catalyst is determined in consideration of the type and composition of the catalyst metal, the material of the porous carrier, and the like. For example, 0.05 to 30 parts by mass with respect to 100 parts by mass of the porous carrier. 1 to 10 parts by mass is more preferable. If the amount is less than the above lower limit value, the amount of catalyst metal supported is too small, and it is difficult to improve the CO conversion rate and the selectivity of the intermediate such as ethanol.
  • the activated metal cannot be made uniform and highly dispersed, and it is difficult to further improve the CO conversion rate and the selectivity of the intermediate such as ethanol.
  • a rhodium-based catalyst having a composition represented by the following formula (I) is preferable.
  • A represents rhodium
  • B represents manganese
  • C represents an alkali metal
  • D represents a promoter metal
  • a, b, c and d represent mole fractions
  • a + b + c + d 1 It is.
  • a is preferably 0.053 to 0.98, more preferably 0.24 to 0.8, and still more preferably 0.32 to 0.67.
  • b is preferably 0.0006 to 0.67, more preferably 0.033 to 0.57, and further preferably 0.089 to 0.44. If it is less than the above lower limit, the content of manganese is too small and the CO conversion rate may not be sufficiently increased, and if it exceeds the above upper limit, the content of other metals becomes too small, and CO conversion The rate may not be increased sufficiently.
  • c is preferably 0.00056 to 0.51, more preferably 0.026 to 0.42, and further preferably 0.075 to 0.33. If the amount is less than the lower limit, the alkali metal content is too small, and the CO conversion rate may not be sufficiently increased. If the amount exceeds the upper limit, the content of other metals becomes too small, and CO The conversion rate may not be sufficiently increased.
  • d may be 0 (that is, containing no promoter metal) or may be greater than 0 (that is, containing a promoter metal). When the co-active metal is contained, d is preferably 0.0026 to 0.94, more preferably 0.02 to 0.48, and further preferably 0.039 to 0.25.
  • the amount is less than the above lower limit, the content of the promoter metal is too small, and the CO conversion rate may not be sufficiently increased. If the amount exceeds the above upper limit, the content of other metals is too small. There is a possibility that the CO conversion rate cannot be sufficiently increased.
  • the first catalyst is produced according to a conventionally known method for producing a supported catalyst.
  • the method for producing the first catalyst include an impregnation method and an ion exchange method, and the impregnation method is preferable.
  • the obtained first catalyst has the catalyst metal more uniformly dispersed, the contact efficiency with the mixed gas is further increased, and the CO conversion rate and the selectivity of the intermediate such as ethanol are further increased. Enhanced.
  • the catalyst metal raw material compound used in the preparation of the first catalyst includes oxides, chlorides, sulfides, nitrates, carbonates and other inorganic salts, oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamine
  • catalyst metal compounds such as organic salts such as acetates or chelate compounds, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, alkyl compounds, and the like conventionally used when preparing metal catalysts.
  • chloride or sulfide is preferred.
  • the hydrogenated active metal and, if necessary, the starting compound of the auxiliary metal are dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene, toluene, and the resulting solution (impregnating solution) is dissolved.
  • the impregnating liquid is adhered to the porous carrier, for example, by immersing the porous carrier. After impregnating the impregnating solution sufficiently into the pores of the porous carrier, the solvent is evaporated to form a catalyst.
  • the mass ratio of each catalyst metal in the impregnation liquid is the mass ratio of each catalyst metal supported on the first catalyst. For this reason, the mass ratio of each catalyst metal in the first catalyst can be easily controlled by producing the first catalyst by the impregnation method.
  • a method of impregnating the impregnating liquid into the porous carrier a method of impregnating the carrier with a solution in which all raw material compounds are dissolved (simultaneous method), a solution in which each raw material compound is separately dissolved is prepared, and sequentially applied to the carrier. Examples include a method of impregnating each solution (sequential method).
  • a primary support in which a porous carrier is impregnated with a solution (primary impregnation liquid) containing an auxiliary metal (primary impregnation step) and dried to support the auxiliary metal on the porous carrier.
  • a solution containing a hydrogenation active metal secondary impregnation liquid
  • the first catalyst becomes a catalyst in which the catalyst metal is more highly dispersed.
  • the selectivity of the intermediate such as ethanol can be further increased.
  • Examples of the primary supporting step include a method of drying a porous carrier impregnated with the primary impregnating liquid (primary drying operation), and heating and firing it at an arbitrary temperature (primary baking operation).
  • the drying method in the primary drying operation is not particularly limited, and examples thereof include a method of heating the porous carrier impregnated with the primary impregnation liquid at an arbitrary temperature.
  • the heating temperature in the primary drying operation may be a temperature at which the solvent of the primary impregnation liquid can be evaporated, and is 80 to 120 ° C. if the solvent is water.
  • the heating temperature in the primary firing operation is, for example, 300 to 600 ° C.
  • Examples of the secondary supporting step include a method of drying the primary support impregnated with the secondary impregnating liquid (secondary drying operation), and further heating and baking at an arbitrary temperature (secondary baking operation).
  • the drying method in the secondary drying operation is not particularly limited, and examples thereof include a method of heating the primary carrier impregnated with the secondary impregnation liquid at an arbitrary temperature.
  • the heating temperature in the secondary drying operation may be a temperature at which the solvent of the secondary impregnation solution can be evaporated, and is 80 to 120 ° C. if the solvent is water.
  • the heating temperature in the secondary firing operation is, for example, 300 to 600 ° C.
  • the first catalyst prepared by the above-described method is usually activated by being subjected to a reduction treatment.
  • a reduction treatment a method of bringing the first catalyst into contact with a gas containing hydrogen is simple and preferable.
  • the treatment temperature is set to a temperature at which the hydrogenated active metal is reduced, for example, 100 ° C. or more, preferably 200 to 600 ° C. if the hydrogenated active metal is rhodium.
  • hydrogen reduction may be performed while gradually or stepwise increasing the temperature from a low temperature.
  • the first catalyst may be subjected to reduction treatment in the presence of carbon monoxide and water, or in the presence of a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound.
  • the heating time in the reduction treatment is preferably 1 to 10 hours, and more preferably 2 to 5 hours. If it is less than the said lower limit, reduction
  • the first catalyst may be composed of only a rhodium-based catalyst or may be a mixture of a rhodium-based catalyst and another catalyst.
  • the other catalyst include copper alone or a catalyst in which copper and a transition metal other than copper are supported on a carrier (hereinafter, sometimes referred to as a copper-based catalyst).
  • the copper-based catalyst can convert oxygenates other than ethanol into ethanol. For this reason, the 1st catalyst can raise the selectivity of ethanol by including a rhodium system catalyst and a copper system catalyst.
  • oxygenates include alcohols such as methanol, ethanol, and propanol, carboxylic acids such as acetic acid, aldehydes such as acetaldehyde, esters such as methyl formate, ethyl formate, methyl acetate, and ethyl acetate, and carbon and hydrogen atoms.
  • alcohols such as methanol, ethanol, and propanol
  • carboxylic acids such as acetic acid
  • aldehydes such as acetaldehyde
  • esters such as methyl formate, ethyl formate, methyl acetate, and ethyl acetate
  • carbon and hydrogen atoms carbon and hydrogen atoms.
  • eE ⁇ fF ⁇ (II) (II)
  • E represents copper
  • F represents a transition metal other than copper
  • e and f represent molar fractions
  • e + f 1.
  • F is preferably zinc or chromium.
  • F may be used individually by 1 type and may be used in combination of 2 or more type.
  • e is preferably 0.5 to 0.9, more preferably 0.5 to 0.7. If the amount is less than the above lower limit, the copper content is too small, and the efficiency of converting oxygenated substances other than ethanol into ethanol may be reduced.
  • f is preferably from 0.1 to 0.5, more preferably from 0.3 to 0.5. If it is less than the above lower limit, the content of F is too small, and the efficiency of converting oxygenates other than ethanol into ethanol may be reduced. If it exceeds the above upper limit, the content of copper is too small. The efficiency of converting oxygenates other than ethanol to ethanol may be reduced.
  • the rhodium-based catalyst does not include copper and the copper-based catalyst does not include rhodium.
  • the mass ratio represented by the copper catalyst / rhodium catalyst is, for example, preferably 1 or more, more preferably more than 1, and more than 1 to 10 or less. More preferably, 2.5 to 5 is particularly preferable. If the ratio represented by the copper-based catalyst / rhodium-based catalyst is less than the lower limit value, the CO conversion rate may be lowered at an early stage. If the ratio exceeds the upper limit value, the ethanol such as ethanol per unit mass of the first catalyst may be reduced. There is a possibility that the production amount of the intermediate is reduced and the production efficiency is lowered.
  • the piping 14 is preferably made of a material that is inert to the primary product such as ethanol-containing gas, and examples thereof include stainless steel piping.
  • the pipe 14 includes a first pressure control unit 16.
  • the 1st pressure control part 16 should just be what can make the pressure in the 1st reaction tube 10 arbitrary pressure, for example, a well-known pressure valve etc. are mentioned.
  • the first purifier 20 removes substances (for example, acetic acid, ethyl acetate, unreacted mixed gas, etc.) other than the intermediate from the primary product.
  • substances for example, acetic acid, ethyl acetate, unreacted mixed gas, etc.
  • the apparatus provided with the separation membrane is mentioned, for example.
  • the separation membrane include a separation membrane for acid gas-containing gas treatment described in International Publication No. 2014/080670, and a porous support-zeolite membrane composite described in International Publication No. 2013/125661. It is done.
  • the pipe 22 is preferably made of a material inert to the intermediate, and examples thereof include stainless steel pipes.
  • the second reaction tube 30 is filled with a second catalyst and a second reaction bed 31 is formed.
  • the second reaction tube 30 is preferably made of a material inert to the mixed gas, ethanol and acetaldehyde.
  • the second reaction tube 30 preferably has a shape capable of withstanding heating of about 100 to 500 ° C. or pressurization of about 10 MPa.
  • Examples of the second reaction tube 30 include a substantially cylindrical member made of stainless steel.
  • the second reaction bed 31 may be a fixed bed, a moving bed, a fluidized bed, or the like.
  • the second catalyst only needs to be able to synthesize butadiene from the intermediate (ethanol or ethanol and acetaldehyde).
  • a catalyst containing a group 4-13 metal oxide of the periodic table and magnesium oxide can be cited.
  • the second catalyst is preferably a catalyst obtained by joining a metal of group 4 to 13 of the periodic table and magnesium oxide with one or more selected from magnesia and silica.
  • the second catalyst is produced by a known method.
  • Examples of the method for producing the second catalyst include a method in which a catalyst sol is obtained by dispersing a catalyst metal sol in a sol in which at least one selected from silica and magnesia is dispersed, and the catalyst sol is calcined. It is done.
  • the piping 32 is preferably made of a material inert to butadiene, and examples thereof include stainless steel piping.
  • the pipe 32 includes a second pressure control unit 34.
  • the second pressure control unit 34 may be any unit that can adjust the pressure in the second reaction tube 30 to an arbitrary pressure, and includes, for example, a known pressure valve.
  • the butadiene production apparatus 1 may include a known device such as a gas flow rate control unit that adjusts a gas flow rate such as mass flow.
  • the butadiene production apparatus 1 may include an apparatus (second purifier) for purifying butadiene at the subsequent stage of the second reaction tube 30.
  • equipment for purifying butadiene include a gas-liquid separator.
  • the method for producing butadiene according to the present invention includes a first synthesis step in which a mixed gas containing hydrogen and carbon monoxide is brought into contact with a first catalyst to obtain a primary product containing ethanol as an intermediate, and the primary production. And contacting the product with a second catalyst to obtain a butadiene.
  • the first reaction bed 11 and the second reaction bed 31 are set to an arbitrary temperature and an arbitrary pressure.
  • the mixed gas is caused to flow into the first reaction tube 10 from the mixed gas supply source 2 via the pipe 12.
  • the mixed gas that has flowed into the first reaction tube 10 flows in contact with the first catalyst in the first reaction bed 11, and a part thereof becomes ethanol (and acetaldehyde). While the mixed gas flows through the first reaction bed 11, for example, ethanol and acetaldehyde are generated by a catalytic reaction represented by the following formulas (1) to (5).
  • the catalytic reaction represented by the formulas (2), (4) and (5) mainly proceeds.
  • the mixed gas flows through the first reaction bed 11 and becomes a primary product containing ethanol (or ethanol and acetaldehyde) as an intermediate.
  • the primary product is a gas such as ethanol-containing gas.
  • the primary product flows out from the first reaction tube 10 (the first synthesis step).
  • the mixed gas is mainly composed of hydrogen and carbon monoxide, that is, the total of hydrogen and carbon monoxide in the mixed gas is preferably 50% by volume or more, and 80% by volume or more. More preferably, it is more preferably 90% by volume or more, and may be 100% by volume.
  • the volume ratio represented by hydrogen / carbon monoxide (hereinafter sometimes referred to as H 2 / CO ratio) in the mixed gas is preferably 1/5 to 5/1, more preferably 1/2 to 3/1, More preferably, the ratio is 1/1 to 2.5 / 1.
  • the mixed gas may contain methane, ethane, ethylene, nitrogen, carbon dioxide, water, etc. in addition to hydrogen and carbon monoxide.
  • reaction temperature The temperature at which the mixed gas and the first catalyst are brought into contact (reaction temperature), that is, the temperature of the first reaction bed 11 is preferably 150 to 450 ° C., more preferably 200 to 400 ° C., and more preferably 250 to 350. More preferably. If it is more than the said lower limit, the speed
  • reaction pressure The pressure when the mixed gas and the first catalyst are brought into contact (reaction pressure), that is, the pressure in the first reaction tube 10 is, for example, preferably 0.5 to 10 MPa, more preferably 1 to 7.5 MPa, 2 to 5 MPa is more preferable. If it is more than the said lower limit, the speed
  • the space velocity of the mixed gas in the first reaction bed 11 (the value obtained by dividing the gas supply amount per unit time by the catalyst amount (volume conversion)) is 10 to 100,000 L / L-catalyst / h in standard conversion. Preferably, 1000 to 50000 L / L-catalyst / h is more preferable, and 3000 to 20000 L / L-catalyst / h is further preferable.
  • the space velocity is appropriately adjusted in consideration of the reaction pressure, the reaction temperature, and the composition of the mixed gas that is a raw material.
  • the primary product preferably contains acetaldehyde as an intermediate in addition to ethanol.
  • acetaldehyde By subjecting acetaldehyde together with ethanol to the second synthesis step, butadiene can be obtained with higher synthesis efficiency.
  • the molar ratio represented by ethanol / acetaldehyde in the primary product (hereinafter sometimes referred to as EtOH / AcH ratio) is preferably 1/5 to 5/1. When the EtOH / AcH ratio is within the above range, the synthesis efficiency of butadiene from ethanol and acetaldehyde can be further increased.
  • the EtOH / AcH ratio in the primary product is easily adjusted by a combination of the composition of the first catalyst, the average pore diameter of the support of the first catalyst, the reaction temperature, the reaction pressure, and the like. For example, increasing the reaction temperature increases the ethanol selectivity and increases the EtOH / AcH ratio.
  • acetaldehyde may be used so as to satisfy the EtOH / AcH ratio using a separately prepared one, it is more preferable to use the one obtained in the first synthesis step in terms of production efficiency.
  • the primary product contains unreacted hydrogen and carbon monoxide, and by-products such as acetic acid, methane, and ethyl acetate.
  • the content of the intermediate in the primary product (the amount of ethanol in the primary product or the total amount of ethanol and acetaldehyde) is not particularly limited, but is preferably 10% by mass or more, for example, 15% by mass or more. More preferred. If the content of the intermediate is not less than the above lower limit, the synthesis efficiency of butadiene can be further increased. The greater the content of the intermediate in the primary product, the higher the synthesis efficiency of butadiene.
  • the content of the intermediate in the primary product is easily adjusted by a combination of the composition of the first catalyst, the average pore diameter of the support of the first catalyst, the reaction temperature, the reaction pressure, and the like.
  • the primary product such as ethanol-containing gas flowing out from the first reaction tube 10 flows into the first purifier 20 via the pipe 14.
  • the primary product flowing into the first purifier 20 is purified by removing substances other than ethanol and acetaldehyde.
  • the removed substance is discharged out of the first purifier 20 from the discharge pipe 24 (first purification step).
  • the purified primary product flows into the second reaction tube 30 via the pipe 22.
  • the primary product that has flowed into the second reaction tube 30 flows in contact with the second catalyst in the second reaction bed 31, and a part thereof becomes butadiene.
  • the primary product flows through the second reaction bed 31 and becomes a secondary product containing butadiene.
  • the secondary product is a gas.
  • the secondary product flows out from the second reaction tube 30 (the second synthesis step).
  • the secondary product flowing out from the second reaction tube 30 flows into the storage tank or the like (not shown) via the pipe 32.
  • reaction temperature The temperature at which the primary product and the second catalyst are brought into contact (reaction temperature), that is, the temperature of the second reaction bed 31, is preferably 300 to 500 ° C., and more preferably 350 to 450 ° C., for example. If it is more than the said lower limit, the speed
  • the pressure (reaction pressure) when the primary product is brought into contact with the second catalyst that is, the pressure in the second reaction tube 30 is, for example, normal pressure to 1 MPa.
  • the space velocity of the primary product in the second reaction bed 31 is preferably 1000 to 50000 L / L-catalyst / h, more preferably 200 to 10000 L / L-catalyst / h, and more preferably 300 to 5000 L / L in terms of standard conditions. -Catalyst / h is more preferred.
  • the space velocity is appropriately adjusted in consideration of the reaction pressure, the reaction temperature, and the composition of the mixed gas that is a raw material.
  • Secondary products include unreacted ethanol and acetaldehyde, and by-products.
  • the manufacturing method of butadiene may have the process (2nd refinement
  • purification process the process which processes a secondary product with a gas-liquid separator, isolate
  • the manufacturing method of butadiene may have the process of liquefying a secondary product in the back
  • the method for producing butadiene of the present embodiment generates a gaseous primary product including an intermediate such as ethanol by the first synthesis step, and this gaseous primary product is converted into the second product.
  • the process of gasifying intermediates, such as ethanol becomes unnecessary, and the energy efficiency in the manufacturing method of butadiene can be improved more.
  • combination process it is not necessary to manufacture ethanol and acetaldehyde separately, and to refine
  • the energy efficiency in the manufacturing method of butadiene can be improved more.
  • the first synthesis step can adjust the EtOH / AcH ratio of the primary product to be suitable for the second synthesis step.
  • the primary product is supplied to the second synthesis step without adjusting the EtOH / AcH ratio of the primary product after the first synthesis step, so that the production efficiency of butadiene can be increased.
  • the first purification step is provided between the first synthesis step and the second synthesis step.
  • the substance which reduces the synthesis efficiency of a butadiene is removed from a primary product at a 2nd synthesis process, and the further improvement of the synthesis efficiency of a butadiene in a 2nd synthesis process can be aimed at.
  • the present invention is not limited to the embodiment described above.
  • the primary product is obtained as a gas, and the primary product is allowed to flow into the second reaction tube as a gas.
  • the present invention is not limited to this.
  • the primary product is obtained as a gas, and then the primary product is condensed into a liquid, and then the liquid primary product is gasified, A gas primary product may flow into the second reaction tube.
  • the primary product obtained as a gas flows into the second reaction tube as a gas.
  • the first refiner is a membrane separator, but the present invention is not limited to this.
  • the first purifier may be, for example, a gas / liquid separator, a distillation column, or the like.
  • the primary purifier is purified as a gas as the first purifier.
  • a membrane separator is preferred.
  • Rhodium chloride trihydrate (RhCl 3 .3H 2 O) 0.154 g, manganese chloride dihydrate (MnCl 2 .2H 2 O) 0.087 g, lithium chloride monohydrate (LiCl ⁇ H 2 O) )
  • 0.6 mL of an aqueous solution (secondary impregnating solution) containing 0.01 g was prepared.
  • 0.6 mL of the secondary impregnating solution is dropped onto the primary carrier to be impregnated (secondary impregnation step), and this is dried at 110 ° C. for 3 hours (secondary drying operation), and then at 400 ° C. for 4.5 hours.
  • the catalyst (A) was obtained by calcination (secondary calcination operation, secondary support step).
  • Rhodium chloride trihydrate (RhCl 3 .3H 2 O) 0.154 g, manganese chloride dihydrate (MnCl 2 .2H 2 O) 0.032 g, lithium chloride monohydrate (LiCl ⁇ H 2 O) )
  • 0.6 mL of an aqueous solution (secondary impregnating solution) containing 0.005 g was prepared.
  • 0.6 mL of the secondary impregnating solution is dropped onto the primary carrier to be impregnated (secondary impregnation step), and this is dried at 110 ° C. for 3 hours (secondary drying operation), and then at 400 ° C. for 4.5 hours.
  • the first catalyst (B) was obtained by calcination (secondary calcination operation, secondary support step).
  • Example 1 0.5 g of the first catalyst (A) obtained in Production Example 1 was packed into a stainless steel cylindrical reaction tube having a diameter of 1.5 inches (1.27 cm) and a length of 10 inches (25.4 cm). A first reaction bed was formed. The first catalyst (A) was subjected to a reduction treatment by heating at 320 ° C. for 2.5 hours while flowing hydrogen gas at 30 mL / min at normal pressure through the first reaction bed. Next, under the conditions of a reaction temperature of 286 ° C. and a reaction pressure of 2 MPa, a mixed gas (hydrogen: 60% by volume, carbon monoxide: 30% by volume, nitrogen: 10% by volume) was measured at a space velocity of 14400 L / L-catalyst / h.
  • a mixed gas hydrogen: 60% by volume, carbon monoxide: 30% by volume, nitrogen: 10% by volume
  • the mixture was passed through one reaction bed to obtain ethanol-containing gas (first synthesis step).
  • the mixed gas was passed through the first reaction bed for 3 hours, and the obtained ethanol-containing gas (gas) was recovered, and the composition of the ethanol-containing gas was analyzed by gas chromatography.
  • the CO conversion (mol%) and ethanol selectivity (mol%) were determined from the obtained data, and the results are shown below.
  • Ethanol selectivity 40.1 mol%.
  • Selectivity of acetaldehyde 27.7 mol%
  • Example 2 0.5 g of the first catalyst (B) obtained in Production Example 2 was packed into a stainless steel cylindrical reaction tube having a diameter of 1.5 inches (1.27 cm) and a length of 10 inches (25.4 cm). A first reaction bed was formed. The first catalyst (B) was subjected to a reduction treatment by heating at 320 ° C. for 2.5 hours while flowing hydrogen gas at 30 mL / min at normal pressure through the first reaction bed. Next, under the conditions of a reaction temperature of 277 ° C. and a reaction pressure of 2 MPa, a mixed gas (hydrogen: 60% by volume, carbon monoxide: 30% by volume, nitrogen: 10% by volume) was measured at a space velocity of 14400 L / L-catalyst / h.
  • a mixed gas hydrogen: 60% by volume, carbon monoxide: 30% by volume, nitrogen: 10% by volume
  • the primary product was obtained by passing through one reaction bed (first synthesis step).
  • the mixed gas was passed through the first reaction bed for 3 hours, and the resulting primary product (gas) was recovered, and the composition of the primary product was analyzed by gas chromatography.
  • the CO conversion (mol%), ethanol selectivity (mol%), and acetaldehyde selectivity (mol%) were determined from the obtained data, and the results are shown below.
  • Ethanol selectivity 35.9 mol%.
  • Selectivity of acetaldehyde 15.4 mol%.
  • Example 1 As described above, in Example 1 to which the present invention was applied, a primary product containing ethanol and acetaldehyde was obtained. In addition, the EtOH / AcH ratio of the primary product obtained was suitable for the synthesis of butadiene.
  • the porous carrier impregnated with the primary impregnation liquid was dried at 110 ° C. for 3 hours (primary drying operation), and further calcined at 400 ° C. for 4.5 hours to obtain a primary carrier (primary firing operation, Primary loading step).
  • Aqueous solution containing 0.304 g of copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) and 0.182 g of zinc nitrate hexahydrate (Zn (NO 3 ) 2 .6H 2 O) (2 (Next impregnation solution) 8.406 mL was prepared.
  • the catalyst (C) was obtained by calcination (secondary calcination operation, secondary support step).
  • Example 3 0.5 g of the first catalyst (A) obtained in Production Example 1 was packed into a stainless steel cylindrical reaction tube having a diameter of 1.5 inches (1.27 cm) and a length of 10 inches (25.4 cm). A first reaction bed was formed. Further, 3.5 g of the butadiene synthesis catalyst (C) obtained in Production Example 3 was filled in a stainless steel cylindrical reaction tube having a diameter of 1.5 inches (1.27 cm) and a length of 10 inches (25.4 cm). To form a second reaction bed. The first reaction bed was heated at 320 ° C. for 2.5 hours while hydrogen gas was passed at 30 mL / min at normal pressure, the first catalyst (A) was subjected to reduction treatment, and the second reaction bed The mixture was heated at 420 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 水素と一酸化炭素とを含む混合ガスを第一の触媒に接触させて、中間体としてエタノールを含む一次生成物を得る第一の合成工程と、前記一次生成物を第二の触媒に接触させて、ブタジエンを得る第二の合成工程とを有する、ブタジエンの製造方法。

Description

ブタジエンの製造方法及びブタジエン製造装置
 本発明は、ブタジエンの製造方法及びブタジエン製造装置に関する。
 本願は、2014年9月16日に日本に出願された特願2014-188263号及び2014年9月16日に日本に出願された2014-188264号に基づき優先権を主張し、その内容をここに援用する。
 1,3-ブタジエン等のブタジエンは、スチレン-ブタジエンゴム(SBR)等の原料として用いられている。
 一般に、ブタジエンは、石油からエチレンを合成する際に副生するC4留分から精製される。
 近年、バイオマス由来の原料から合成されたバイオエタノールが、石油代替原料として注目されている。
 例えば、特許文献1には、エタノール(及びアセトアルデヒド)を特定の触媒に接触させて、エタノール(及びアセトアルデヒド)からブタジエンを合成するブタジエンの製造方法が提案されている。特許文献1の発明は、ブタジエンの選択率を高めることで、ブタジエンの製造効率の向上を図っている。
国際公開第2013/125389号
 バイオエタノール等の原料エタノールは、通常、液体で保管される。このため、特許文献1に記載された発明においては、原料エタノールをガス化し、ガス化されたエタノールを触媒に接触させる必要がある。即ち、エタノールからブタジエンを製造する際には、エタノールをガス化するためのエネルギーが必要となる。このため、エタノールからブタジエンを製造する方法には、さらなるエネルギー効率の向上が求められている。
 また、通常、バイオマスからエタノールを製造する場合には、エタノールを含む生成物に蒸留処理等を施し、エタノールを精製している。バイオマスからアセトアルデヒドを製造する場合においても、アセトアルデヒドを含む生成物に蒸留処理等を施し、アセトアルデヒドを精製している。そして、精製されたエタノールと、精製されたアセトアルデヒドとを用いて、ブタジエンを合成する。
 このため、特許文献1に記載された発明においては、精製されたエタノールを製造する工程と、精製されたアセトアルデヒドを製造する工程とが個別に潜在しており、これらの製造工程が存在する分、ブタジエンの製造効率が低い。
 そこで、本発明は、エネルギー効率や製造効率をより高められるブタジエンの製造方法を目的とする。
 本発明のブタジエンの製造方法は、水素と一酸化炭素とを含む混合ガスを第一の触媒に接触させて、中間体としてエタノールを含む一次生成物を得る第一の合成工程と、前記一次生成物を第二の触媒に接触させて、ブタジエンを得る第二の合成工程とを有することを特徴とする。前記一次生成物は、さらに中間体としてアセトアルデヒドを含むことが好ましい。前記一次生成物は、エタノール/アセトアルデヒドで表されるモル比が、5/1~1/5であることが好ましい。前記第一の合成工程は、前記一次生成物をガスとして得、前記第二の合成工程は、前記一次生成物をガスのまま、前記第二の触媒に接触させることが好ましく、前記第一の合成工程と前記第二の合成工程との間に、前記一次生成物から前記中間体以外の物質を除去する第一の精製工程を有してもよい。
 本発明のブタジエン製造装置は、第一の触媒が充填された第一の反応管と、第二の触媒が充填された第二の反応管とを備え、前記第一の触媒は、水素と一酸化炭素とを含む混合ガスから、中間体としてエタノール、又はエタノールとアセトアルデヒドとを含む一次生成物を合成し、前記第二の触媒は、前記中間体からブタジエンを合成し、前記第二の反応管は、前記第一の反応管の後段に設けられ、前記一次生成物を前記第二の触媒に接触させることを特徴とする。前記第一の反応管と前記第二の反応管との間に、前記一次生成物から前記中間体以外の物質を除去する第一の精製機を備えてもよい。
 本発明のブタジエンの製造方法によれば、エネルギー効率やブタジエンの製造効率をより高められる。
本発明の一実施形態にかかるブタジエン製造装置の模式図である。
 本明細書全体を通じて、「ブタジエン」という用語は、とくに指定がない限り、1,3-ブタジエンを意味する。
 (ブタジエン製造装置)
 本発明のブタジエン製造装置は、第一の反応管と、第一の反応管の後段に設けられた第二の反応管とを備える。
 図1を用いて、ブタジエン製造装置の一実施形態について説明する。
 図1のブタジエン製造装置1は、混合ガス供給源2と、第一の反応管10と、第一の精製機20と、第二の反応管30とを備える。
 混合ガス供給源2と第一の反応管とは、配管12で接続されている。第一の反応管10と第一の精製機20とは、配管14で接続されている。配管14は、第一の圧力制御部16を備える。第一の精製機20には、排出管24が接続されている。排出管24は、図示されない回収機に接続されている。第一の精製機20と第二の反応管30とは、配管22で接続されている。第二の反応管30には、配管32が接続されている。配管32は、第二の圧力制御部34を備える。
 混合ガス供給源2は、水素と一酸化炭素とを含む混合ガスを供給できるものであればよい。
 混合ガス供給源2としては、例えば、混合ガスが収容されたボンベ、水素が収容されたボンベと一酸化炭素が収容されたボンベとの組み合わせ等が挙げられる。
 ボンベに収容される混合ガス、水素、一酸化炭素は、例えば、天然ガス、石炭から調製されたものでもよいし、バイオマスをガス化して得られるバイオマスガス等でもよいし、廃プラスチック、廃紙、廃衣料等の有機性廃棄物をガス化して得られるもの(以下、リサイクルガスということがある)でもよい。バイオマスガス、リサイクルガスは、例えば、粉砕したバイオマスや有機性廃棄物を水蒸気の存在下で加熱(例えば、800~1000℃)する等、従来公知の方法で得られる。
 また、例えば、混合ガス供給源2は、バイオマスガスやリサイクルガスを生成するガス化炉等でもよい。ガス化炉を混合ガス供給源2とすることで、バイオマス等から混合ガスを生成する工程と、混合ガスからブタジエンを製造する工程とを一装置で行える。
 ガス化炉としては、例えば、バイオマスや有機性廃棄物を水蒸気の存在下で加熱して、混合ガスを生成できるものであればよい。ガス化炉としては、浮遊外熱式ガス化方式のガス化炉が好ましい。浮遊外熱式ガス化方式のガス化炉は、水素と一酸化炭素との比率を調整しやすく、水素及び一酸化炭素以外の不純物が少ない点で好ましい。
 混合ガス供給源2がガス化炉である場合、混合ガス供給源2と第一の反応管10との間には、ガス精製機が設けられることが好ましい。ガス精製機が設けられることで、バイオマスガスやリサイクルガスは、タール分、硫黄分、窒素分、塩素分、水分等の不純物が除去される。
 ガス精製機としては、例えば、湿式法、乾式法等、当該技術分野で知られる各方式のガス精製機が採用される。湿式法としては、水酸化ナトリウム法、アンモニア吸収法、石灰・石膏法、水酸化マグネシウム法等が挙げられ、乾式法としては、圧力スイング吸着(PSA)法等の活性炭吸着法、電子ビーム法等が挙げられる。
 配管12は、混合ガスに対して不活性な材料が好ましく、例えば、ステンレス製の配管等が挙げられる。
 第一の反応管10は、第一の触媒が充填されて、第一の反応床11が形成されたものである。第一の反応管10は、混合ガス、エタノールやアセトアルデヒドに対して不活性な材料が好ましい。また、第一の反応管10は、100~500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
 第一の反応床11は、固定床、移動床、流動床等のいずれでもよい。
 第一の触媒は、水素と一酸化炭素とから、中間体としてのエタノール、又はエタノール及びアセトアルデヒドを合成できるものであればよい。第一の触媒を用いることで、混合ガスから、前記中間体を含む一次生成物(例えば、エタノールを含む含エタノールガス)を得られる。
 第一の触媒としては、多孔質担体に水素化活性金属が担持された、いわゆる担持触媒が挙げられる。また、第一の触媒としては、水素化活性金属、又は水素化活性金属と後述する助活性金属(以下、第一又は第二の触媒に用いられる金属を総じて触媒金属ということがある)との集合物でもよい。第一の触媒としては、担持触媒が好ましい。担持触媒であれば、生成物中のエタノール濃度やエタノールとアセトアルデヒドとの比率を制御しやすい。
 多孔質担体の材質は、特に限定されず、例えば、シリカ、ジルコニア、チタニア、マグネシア等が挙げられ、中でも、比表面積や細孔直径が異なる種々の製品が市場で調達できることから、シリカが好ましい。
 多孔質担体の大きさは特に限定されないが、例えば、シリカの多孔質担体であれば、粒子径0.5~5000μmのものが好ましい。多孔質担体の粒子径は、篩分けにより調節される。
 加えて、多孔質担体は、粒子径分布ができるだけ狭いものが好ましい。
 多孔質担体における細孔容積の合計(全細孔容積)は、特に限定されないが、例えば、0.01~1.0mL/gが好ましく、0.1~0.8mL/gがより好ましい。全細孔容積が上記下限値未満では、多孔質担体の比表面積が不十分となり、触媒金属の担持量が不十分となって、CO転化率が低下するおそれがある。全細孔容積が上記上限値超では、原料である混合ガスの拡散速度が速くなりすぎて、触媒と混合ガスとの接触時間が不十分となって、エタノール等の前記中間体の選択率が低くなるおそれがある。
 全細孔容積は、水滴定法により測定される値である。水滴定法とは、多孔質担体の表面に水分子を吸着させ、分子の凝縮から細孔分布を測定する方法である。
 なお、「CO転化率」とは、混合ガス中のCOのモル数のうち、消費されたCOのモル数が占める百分率を意味する。
 「選択率」とは、混合ガス中の消費されたCOのモル数のうち、特定の化合物へ変換されたCのモル数が占める百分率である。例えば、下記(α)式によれば、エタノールの選択率は100モル%である。一方、下記(β)式によれば、エタノールの選択率は50モル%であり、アセトアルデヒドの選択率も50モル%である。
 4H+2CO→CHCHOH+HO ・・・(α)
 7H+4CO→COH+CHCHO+2HO ・・・(β)
 多孔質担体の平均細孔直径は、例えば、0.1~8nmが好ましく、3~6nmがより好ましい。平均細孔直径が上記下限値未満では、触媒金属の担持量が少なくなって、CO転化率が低下するおそれがある。平均細孔直径が上記上限値超では、混合ガスの拡散速度が速くなりすぎて、触媒金属と混合ガスとの接触時間が不十分となって、エタノール等の前記中間体の選択率が低くなる。即ち、平均細孔直径が上記範囲内であれば、触媒金属と混合ガスとの接触時間が、エタノール等の前記中間体を効率的に生成するのに適した時間となる。
 平均細孔直径は、以下の手法で測定される値である。平均細孔直径が0.1nm以上10nm未満の場合、平均細孔直径は、全細孔容積とBET比表面積とから算出される。平均細孔直径が10nm以上の場合、平均細孔直径は、水銀圧入法ポロシメーターにより測定される。
 ここで、全細孔容積は、水滴定法により測定される値であり、BET比表面積は、窒素を吸着ガスとし、その吸着量とその時の圧力から算出される値である。
 水銀圧入法は、水銀を加圧して多孔質担体の細孔に圧入させ、その圧力と圧入された水銀量から平均細孔直径を算出するものである。
 多孔質担体の比表面積は、特に限定されないが、例えば、1~1000m/gが好ましく、10~800m/gがより好ましい。比表面積が上記下限値以上であれば、触媒金属の担持量が十分となって、CO転化率がより高まる。比表面積が上記上限値以下であれば、混合ガスの拡散速度がより適切になって、エタノール等の前記中間体の選択率がより高まる。
 比表面積は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積である。
 多孔質担体における全細孔容積と比表面積との積は、1~1000mL・m/gが好ましく、100~500mL・m/gがより好ましい。上記下限値以上であれば、触媒金属の担持量が十分となって、CO転化率がより高まる。上記上限値以下であれば、混合ガスの拡散速度がより適切になって、エタノール等の前記中間体の選択率がより高まる。
 水素化活性金属としては、従来、混合ガスからエタノール(及びアセトアルデヒド)を合成できる金属として知られているものであればよく、例えば、リチウム、ナトリウム等のアルカリ金属;マンガン、レニウム等、周期表の第7族に属する元素;ルテニウム等、周期表の第8族に属する元素;コバルト、ロジウム等、周期表の第9族に属する元素;ニッケル、パラジウム等、周期表の第10族に属する元素等が挙げられる。
 これらの水素化活性金属は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。例えば、水素化活性金属としては、CO転化率のさらなる向上、エタノール等の前記中間体の選択率のさらなる向上を図る観点から、ロジウム、マンガン及びリチウムを組み合わせたものや、ルテニウム、レニウム及びナトリウムの組み合わせたもの等、ロジウム又はルテニウムとアルカリ金属とその他の水素化活性金属とを組み合わせたものが好ましい。
 第一の触媒中の水素化活性金属の担持量は、水素化活性金属の種類や多孔質担体の材質等を勘案して決定される。
 水素化活性金属としてアルカリ金属を用いる場合、水素化活性金属の担持量は、多孔質担体100質量部に対して0.001~30質量部が好ましく、0.125~10質量部がより好ましい。上記下限値未満では、水素化活性金属の担持量が少なすぎてCO転化率が低下するおそれがあり、上記上限値超では、水素化活性金属を均一かつ高分散状態にできず、CO転化率やエタノール等の前記中間体の選択率が低下するおそれがある。
 水素化活性金属として、周期表の第7族に属する元素を用いる場合、水素化活性金属の担持量は、多孔質担体100質量部に対して0.001~30質量部が好ましく、0.25~10質量部がより好ましい。上記下限値未満では、水素化活性金属の担持量が少なすぎてCO転化率が低下するおそれがあり、上記上限値超では、水素化活性金属を均一かつ高分散状態にできず、CO転化率やエタノール等の前記中間体の選択率が低下するおそれがある。
 水素化活性金属として、周期表の第8族~第10族に属する元素を用いる場合、水素化活性金属の担持量は、多孔質担体100質量部に対して0.1~30質量部が好ましく、1~10質量部がより好ましい。上記下限値未満では、水素化活性金属の担持量が少なすぎてCO転化率が低下するおそれがあり、上記上限値超では、水素化活性金属を均一かつ高分散状態にできず、CO転化率やエタノール等の前記中間体の選択率が低下するおそれがある。
 2種以上の水素化活性金属を組み合わせて用いる場合、水素化活性金属の担持量は、その組成や多孔質担体の種類等を勘案して決定される。例えば、多孔質担体がシリカであれば、水素化活性金属の担持量は、多孔質担体100質量部に対して0.05~30質量部が好ましく、1~10質量部がより好ましい。上記下限値未満では、CO転化率が低下するおそれがあり、上記上限値超では、水素化活性金属を均一かつ高分散状態にできず、CO転化率やエタノール等の前記中間体の選択率が低下するおそれがある。
 第一の触媒における水素化活性金属の担持状態は、特に限定されず、例えば、粉体状の金属が多孔質担体に担持された状態でもよいし、金属元素の形態で多孔質担体に担持された状態でもよく、中でも、金属元素の形態で多孔質担体に担持された状態が好ましい。金属元素の形態で多孔質担体に担持された状態であれば、混合ガスとの接触面積が大きくなり、CO転化率やエタノール等の前記中間体の選択率をより高められる。
 第一の触媒には、水素化活性金属に加え、助活性金属が担持されていてもよい。
 助活性金属としては、例えば、チタン、マグネシウム、バナジウム等が挙げられる。第一の触媒は、これらの助活性金属が担持されていることで、CO転化率やエタノール等の前記中間体の選択率をより高められる。
 第一の触媒中の助活性金属の担持量は、助活性金属の種類や水素化活性金属の種類等を勘案して決定され、例えば、多孔質担体100質量部に対して0.01~20質量部が好ましく、1~10質量部がより好ましい。上記下限値未満では、助活性金属の担持量が少なすぎて、CO転化率やエタノール等の前記中間体の選択率のさらなる向上を図りにくく、上記上限値超では、多孔質担体の表面が助活性金属で過剰に被覆されてしまい、CO転化率やエタノール等の前記中間体の選択率の向上を図りにくい。
 第一の触媒における助活性金属の担持状態は、特に限定されず、例えば、粉体状の金属が多孔質担体に担持された状態であってもよいし、金属元素の形態で多孔質担体に担持された状態であってもよく、中でも、金属元素の形態で多孔質担体に担持された状態が好ましい。金属元素の形態で多孔質担体に担持された状態であれば、混合ガスとの接触面積が大きくなり、CO転化率やエタノール等の前記中間体の選択率をより高められる。
 第一の触媒における触媒金属の担持量は、触媒金属の種類や組成、多孔質担体の材質等を勘案して決定され、例えば、多孔質担体100質量部に対して0.05~30質量部が好ましく、1~10質量部がより好ましい。上記下限値未満では、触媒金属の担持量が少なすぎて、CO転化率やエタノール等の前記中間体の選択率の向上を図りにくく、上記上限値超では、助活性金属が多くなりすぎて水素化活性金属を均一かつ高分散状態にできず、CO転化率やエタノール等の前記中間体の選択率のさらなる向上を図りにくい。
 第一の触媒としては、下記(I)式で表される組成のロジウム系触媒が好ましい。
 aA・bB・cC・dD ・・・・(I)
 (I)式中、Aはロジウムを表し、Bはマンガンを表し、Cはアルカリ金属を表し、Dは助活性金属を表し、a、b、c及びdはモル分率を表し、a+b+c+d=1である。
 (I)式中のaは、0.053~0.98が好ましく、0.24~0.8がより好ましく、0.32~0.67がさらに好ましい。上記下限値未満であるとロジウムの含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
 (I)式中のbは、0.0006~0.67が好ましく、0.033~0.57がより好ましく、0.089~0.44がさらに好ましい。上記下限値未満であるとマンガンの含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
 (I)式中のcは、0.00056~0.51が好ましく、0.026~0.42がより好ましく、0.075~0.33がさらに好ましい。上記下限値未満であるとアルカリ金属の含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
 (I)式中のdは、0(即ち、助活性金属を含有しない)でもよいし、0超(即ち、助活性金属を含有する)でもよい。助活性金属を含有する場合、dは、0.0026~0.94が好ましく、0.02~0.48がより好ましく、0.039~0.25がさらに好ましい。上記下限値未満であると助活性金属の含有量が少なすぎて、CO転化率を十分に高められないおそれがあり、上記上限値超であると他の金属の含有量が少なくなりすぎて、CO転化率を十分に高められないおそれがある。
 第一の触媒は、従来公知の担持触媒の製造方法に準じて製造される。第一の触媒の製造方法としては、例えば、含浸法、イオン交換法等が挙げられ、中でも含浸法が好ましい。
 含浸法を用いることで、得られる第一の触媒は、触媒金属がより均一に分散され、混合ガスとの接触効率がより高められ、CO転化率やエタノール等の前記中間体の選択率をより高められる。
 第一の触媒の調製に用いられる触媒金属の原料化合物としては、酸化物、塩化物、硫化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等、触媒金属の化合物として、従来、金属触媒を調製する際に用いられるものが挙げられ、中でも、塩化物又は硫化物が好ましい。
 含浸法について説明する。まず、水素化活性金属、及び必要に応じて助活性金属の原料化合物を水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ヘキサン、ベンゼン、トルエン等の溶媒に溶解し、得られた溶液(含浸液)に多孔質担体を浸漬する等して、含浸液を多孔質担体に付着させる。含浸液を多孔質担体の細孔内に十分浸透させた後、溶媒を蒸発させて触媒とする。含浸法においては、含浸液中の各触媒金属の質量比が、第一の触媒に担持された各触媒金属の質量比となる。このため、含浸法で第一の触媒を製造することで、第一の触媒中の各触媒金属の質量比を容易に制御できる。
 含浸液を多孔質担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられる。
 逐次法としては、例えば、助活性金属を含む溶液(一次含浸液)を多孔質担体に含浸させ(一次含浸工程)、これを乾燥して助活性金属を多孔質担体に担持させた一次担持体を得(一次担持工程)、次いで水素化活性金属を含む溶液(二次含浸液)を一次担持体に含浸させ(二次含浸工程)、これを乾燥する(二次担持工程)方法が挙げられる。このように、助活性金属を多孔質担体に担持させ、次いで水素化活性金属を担体に担持させることで、第一の触媒は、触媒金属がより高度に分散されたものとなり、CO転化率やエタノール等の前記中間体の選択率をより高められる。
 一次担持工程は、例えば、一次含浸液が含浸された多孔質担体を乾燥し(一次乾燥操作)、これを任意の温度で加熱して焼成する(一次焼成操作)方法が挙げられる。
 一次乾燥操作における乾燥方法は特に限定されず、例えば、一次含浸液が含浸された多孔質担体を任意の温度で加熱する方法が挙げられる。一次乾燥操作における加熱温度は、一次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80~120℃とされる。一次焼成操作における加熱温度は、例えば、300~600℃とされる。一次焼成操作を行うことで、助活性金属の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、触媒活性をより高められる。
 二次担持工程は、例えば、二次含浸液が含浸された一次担持体を乾燥し(二次乾燥操作)、さらに任意の温度で加熱して焼成する(二次焼成操作)方法が挙げられる。
 二次乾燥操作における乾燥方法は特に限定されず、例えば、二次含浸液が含浸された一次担持体を任意の温度で加熱する方法が挙げられる。二次乾燥操作における加熱温度は、二次含浸液の溶媒を蒸発できる温度であればよく、溶媒が水であれば、80~120℃とされる。二次焼成操作における加熱温度は、例えば、300~600℃とされる。二次焼成操作を行うことで、水素化活性金属の原料化合物に含まれていた成分の内、触媒反応に寄与しない成分を十分に揮散し、第一の触媒の触媒活性をより高められる。
 上述の方法によって調製された第一の触媒は、通常、還元処理が施されて活性化される。還元処理としては、水素を含む気体に、第一の触媒を接触させる方法が簡便で好ましい。この際、処理温度は、水素化活性金属が還元される程度の温度、例えば、水素化活性金属がロジウムであれば100℃以上、好ましくは200~600℃とされる。加えて、水素化活性金属を十分に分散させる目的で、低温から徐々にあるいは段階的に昇温しながら水素還元を行ってもよい。また、例えば、一酸化炭素と水との存在下、又はヒドラジン、水素化ホウ素化合物もしくは水素化アルミニウム化合物等の還元剤の存在下で、第一の触媒に還元処理を施してもよい。
 還元処理における加熱時間は、例えば、1~10時間が好ましく、2~5時間がより好ましい。上記下限値未満では、触媒金属の還元が不十分となり、CO転化率やエタノール等の前記中間体の選択率が低くなるおそれがある。上記上限値超では、触媒金属が凝集し、CO転化率やエタノール等の前記中間体の選択率が低くなったり、還元処理におけるエネルギーが過剰になり経済的な不利益が生じたりするおそれがある。
 第一の触媒は、ロジウム系触媒のみで構成されてもよいし、ロジウム系触媒と他の触媒との混合物でもよい。
 他の触媒としては、銅単独又は銅と銅以外の遷移金属とが担体に担持された触媒(以下、銅系触媒ということがある)が挙げられる。銅系触媒は、エタノール以外の酸素化物をエタノールに変換できる。このため、第一の触媒は、ロジウム系触媒と銅系触媒とを含むことで、エタノールの選択率を高められる。
 なお、本稿において酸素化物は、メタノール、エタノール、プロパノール等のアルコール、酢酸等のカルボン酸、アセトアルデヒド等のアルデヒド、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル等のエステル等、炭素原子と水素原子と酸素原子とからなる分子を意味する。
 銅系触媒としては、下記(II)式で表されるものが好ましい。
 eE・fF ・・・・(II)
 (II)式中、Eは銅を表し、Fは、銅以外の遷移金属を表し、e及びfはモル分率を表し、e+f=1である。
 (II)式中、Fとしては、亜鉛、クロムが好ましい。Fは、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 (II)式中のeは、0.5~0.9が好ましく、0.5~0.7がより好ましい。上記下限値未満であると銅の含有量が少なすぎて、エタノール以外の酸素化物をエタノールに変換する効率が低下するおそれがあり、上記上限値超であるとFの含有量が少なくなりすぎて、エタノール以外の酸素化物をエタノールに変換する効率が低下するおそれがある。
 (II)式中のfは、0.1~0.5が好ましく、0.3~0.5がより好ましい。上記下限値未満であるとFの含有量が少なすぎて、エタノール以外の酸素化物をエタノールに変換する効率が低下するおそれがあり、上記上限値超であると銅の含有量が少なくなりすぎて、エタノール以外の酸素化物をエタノールに変換する効率が低下するおそれがある。
 第一の触媒がロジウム系触媒と銅系触媒とを含む場合、ロジウム系触媒は銅を含まず、銅系触媒はロジウムを含まないものが好ましい。
 第一の触媒がロジウム系触媒と銅系触媒とを含む場合、銅系触媒/ロジウム系触媒で表される質量比は、例えば、1以上が好ましく、1超がより好ましく、1超10以下がさらに好ましく、2.5~5が特に好ましい。銅系触媒/ロジウム系触媒で表される比が前記下限値未満では、早期にCO転化率が低下するおそれがあり、上記上限値超では、第一の触媒の単位質量当たりのエタノール等の前記中間体の生成量が少なくなり、製造効率が低下するおそれがある。
 配管14は、含エタノールガス等の一次生成物に対して不活性な材料が好ましく、例えば、ステンレス製の配管等が挙げられる。
 本実施形態において、配管14は第一の圧力制御部16を備える。第一の圧力制御部16は、第一の反応管10内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
 第一の精製機20は、一次生成物から前記中間体以外の物質(例えば、酢酸、酢酸エチル、未反応の混合ガス等)を除去するものである。
 第一の精製機20としては、例えば、分離膜を備えた装置が挙げられる。分離膜としては、例えば、国際公開第2014/080670号に記載された酸性ガス含有ガス処理用分離膜、国際公開第2013/125661号に記載された多孔質支持体-ゼオライト膜複合体等が挙げられる。
 配管22は、前記中間体に対して不活性な材料が好ましく、例えば、ステンレス製の配管等が挙げられる。
 第二の反応管30は、第二の触媒が充填されて、第二の反応床31が形成されたものである。第二の反応管30は、混合ガス、エタノールやアセトアルデヒドに対して不活性な材料が好ましい。また、第二の反応管30は、100~500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。第二の反応管30としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
 第二の反応床31は、固定床、移動床、流動床等のいずれでもよい。
 第二の触媒は、前記中間体(エタノール、又はエタノール及びアセトアルデヒド)からブタジエンを合成できるものであればよい。第二の触媒としては、例えば、周期表の第4~13族の金属の酸化物と酸化マグネシウムとを含有するものが挙げられる。
 例えば、第二の触媒としては、周期表の第4~13族の金属と酸化マグネシウムとがマグネシア及びシリカから選ばれる1種以上で接合されたものが好ましい。
 より好ましい第二の触媒としては、タンタル酸化物がマグネシア及びシリカで接合されたもの(Ta/MgO/SiO(質量比=2/83/15)、国際公開第2013/125389号参照)、ジルコニウム酸化物と亜鉛酸化物とが、酸化マグネシウムとシリカとの混合物に担持されたもの(ZrZn-MgO/SiO(MgO/SiOの質量比=85/15)、「Matthew D.Jones,Catalysis Communications 49(2014)、p.25-28」参照)、及びハフニウム酸化物、銅酸化物そして亜鉛酸化物がシリカに担持されたもの((HfCuZn/SiO)、「Dirk E. De Vos, Catalysis 5(2015)、p.3393-3397」参照)等が挙げられる。
 第二の触媒は、公知の方法により製造される。
 第二の触媒の製造方法としては、例えば、シリカ及びマグネシアから選ばれる1種以上が分散されたゾルに、触媒金属のゾルを分散して触媒ゾルを得、この触媒ゾルを焼成する方法が挙げられる。
 配管32は、ブタジエンに対して不活性な材料が好ましく、例えば、ステンレス製の配管等が挙げられる。
 本実施形態において、配管32は第二の圧力制御部34を備える。第二の圧力制御部34は、第二の反応管30内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
 ブタジエン製造装置1は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。加えて、ブタジエン製造装置1は、第二の反応管30の後段に、ブタジエンを精製する機器(第二の精製機)を備えてもよい。ブタジエンを精製する機器としては、例えば、気液分離器等が挙げられる。
 (ブタジエンの製造方法)
 本発明のブタジエンの製造方法は、水素と一酸化炭素とを含む混合ガスを第一の触媒に接触させて、中間体としてエタノールを含む一次生成物を得る第一の合成工程と、前記一次生成物を第二の触媒に接触させて、ブタジエンを得る第二の合成工程とを有する。
 本発明のブタジエンの製造方法の一例について、図1の製造装置を用いて説明する。
 まず、第一の反応床11及び第二の反応床31を任意の温度及び任意の圧力とする。混合ガスを混合ガス供給源2から配管12を経由させて、第一の反応管10に混合ガスを流入させる。
 第一の反応管10に流入した混合ガスは、第一の反応床11の第一の触媒と接触しながら通流し、その一部がエタノール(及びアセトアルデヒド)となる。
 混合ガスは、第一の反応床11を通流する間、例えば、下記(1)~(5)式で表される触媒反応により、エタノール及びアセトアルデヒドを生成する。本発明においては、主に、(2)、(4)及び(5)式で表される触媒反応が進行する。
2H+2CO→CHCOOH・・・(1)
3H+2CO→CHCHO+HO ・・・(2)
2H+CHCOOH→CHCHOH+HO ・・・(3)
+CHCHO→CHCHOH ・・・(4)
4H+2CO→CHCHOH+HO ・・・(5)
 こうして、混合ガスは、第一の反応床11を通流し、中間体としてエタノール(又はエタノール及びアセトアルデヒド)を含む一次生成物となる。本実施形態において、一次生成物は、含エタノールガス等のガスである。一次生成物は、第一の反応管10から流出する(以上、第一の合成工程)。
 混合ガスは、水素と一酸化炭素とを主成分とするもの、即ち混合ガス中の水素と一酸化炭素との合計が、50体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることがさらに好ましく、100体積%であってもよい。水素と一酸化炭素との含有量が多いほど、エタノール(及びアセトアルデヒド)の生成量をより高められる。
 混合ガスにおける水素/一酸化炭素で表される体積比(以下、H/CO比ということがある)は、1/5~5/1が好ましく、1/2~3/1がより好ましく、1/1~2.5/1がさらに好ましい。H/CO比が上記範囲内であれば、CO転化率やエタノール(及びアセトアルデヒド)の選択率をより高められる。
 なお、混合ガスは、水素及び一酸化炭素の他に、メタン、エタン、エチレン、窒素、二酸化炭素、水等を含んでいてもよい。
 混合ガスと第一の触媒とを接触させる際の温度(反応温度)、即ち第一の反応床11の温度は、例えば、150~450℃が好ましく、200~400℃がより好ましく、250~350℃がさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、エタノール(及びアセトアルデヒド)をより効率的に製造できる。上記上限値以下であれば、エタノール(及びアセトアルデヒド)の合成反応を主反応とすると共に、エタノール(及びアセトアルデヒド)の選択率を高められる。
 混合ガスと第一の触媒とを接触させる際の圧力(反応圧力)、即ち第一の反応管10内の圧力は、例えば、0.5~10MPaが好ましく、1~7.5MPaがより好ましく、2~5MPaがさらに好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、エタノール(及びアセトアルデヒド)をより効率的に製造できる。上記上限値以下であれば、エタノール(及びアセトアルデヒド)の合成反応を主反応とすると共に、エタノール(及びアセトアルデヒド)の選択率を高められる。
 第一の反応床11における混合ガスの空間速度(単位時間当たりのガスの供給量を触媒量(体積換算)で除した値)は、標準状態換算で、10~100000L/L-触媒/hが好ましく、1000~50000L/L-触媒/hがより好ましく、3000~20000L/L-触媒/hがさらに好ましい。空間速度は、反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。
 前記一次生成物は、中間体としてエタノールに加えてアセトアルデヒドを含むことが好ましい。アセトアルデヒドをエタノールと共に第二の合成工程に付すことにより、より高い合成効率で、ブタジエンを得ることができる。
 一次生成物におけるエタノール/アセトアルデヒドで表されるモル比(以下、EtOH/AcH比ということがある)は、1/5~5/1が好ましい。EtOH/AcH比が上記範囲内であれば、エタノールとアセトアルデヒドとからのブタジエンの合成効率をより高められる。
 一次生成物におけるEtOH/AcH比は、第一の触媒の組成、第一の触媒の担体の平均細孔直径、反応温度、反応圧力等の組み合わせにより、容易に調節される。例えば、反応温度を高めると、エタノールの選択率が高まり、EtOH/AcH比は大きくなる。
 なお、アセトアルデヒドは、別途調整したものを使用して前記EtOH/AcH比を満たすようにしても良いが、製造効率上、第一の合成工程で得られたものを使用することがより好ましい。
 通常、一次生成物中には、未反応の水素及び一酸化炭素、副生物である酢酸、メタン、酢酸エチル等が含まれる。
 一次生成物中の前記中間体の含有量(一次生成物中のエタノールの量又はエタノールとアセトアルデヒドとの合計量)は、特に限定されないが、例えば、10質量%以上が好ましく、15質量%以上がより好ましい。前記中間体の含有量が上記下限値以上であれば、ブタジエンの合成効率をより高められる。一次生成物中の前記中間体の含有量は、多い程、ブタジエンの合成効率を高められる。
 なお、一次生成物中の前記中間体の含有量は、第一の触媒の組成、第一の触媒の担体の平均細孔直径、反応温度、反応圧力等の組み合わせにより、容易に調節される。
 第一の反応管10から流出した含エタノールガス等の一次生成物は、配管14を経由して、第一の精製機20に流入する。第一の精製機20に流入した一次生成物は、エタノール及びアセトアルデヒド以外の物質が除去されて、精製される。除去された物質は、排出管24から第一の精製機20外に排出される(第一の精製工程)。
 精製された一次生成物は、配管22を経由して第二の反応管30に流入する。第二の反応管30に流入した一次生成物は、第二の反応床31の第二の触媒と接触しながら通流し、その一部がブタジエンとなる。
 こうして、一次生成物は、第二の反応床31を通流し、ブタジエンを含む二次生成物となる。本実施形態において、二次生成物は、ガスである。二次生成物は、第二の反応管30から流出する(以上、第二の合成工程)。第二の反応管30から流出した二次生成物は、配管32を経由して、貯留槽等(不図示)に流入する。
 一次生成物と第二の触媒とを接触させる際の温度(反応温度)、即ち第二の反応床31の温度は、例えば、300~500℃が好ましく、350~450℃がより好ましい。上記下限値以上であれば、触媒反応の速度を十分に高め、ブタジエンをより効率的に製造できる。上記上限値以下であれば、第二の触媒の劣化の抑制を図れる。
 一次生成物と第二の触媒とを接触させる際の圧力(反応圧力)、即ち第二の反応管30内の圧力は、例えば、常圧~1MPaとされる。
 第二の反応床31における一次生成物の空間速度は、標準状態換算で、1000~50000L/L-触媒/hが好ましく、200~10000L/L-触媒/hがより好ましく、300~5000L/L-触媒/hがさらに好ましい。空間速度は、反応圧力、反応温度、及び原料である混合ガスの組成を勘案して、適宜調整される。
 二次生成物(含ブタジエン生成物)には、未反応のエタノール及びアセトアルデヒドや、副生物が含まれる。
 このため、ブタジエンの製造方法は、第二の合成工程の後段に、二次生成物を精製する工程(第二の精製工程)を有してもよい。
 第二の精製工程としては、二次生成物を気液分離器で処理して、ブタジエンとブタジエン以外の物質とを分離し、ブタジエンを回収する工程が挙げられる。
 また、ブタジエンの製造方法は、第二の合成工程の後段に、二次生成物を液化する工程を有してもよい。
 以上、説明した通り、本実施形態のブタジエンの製造方法は、第一の合成工程によって、エタノール等の中間体を含むガス状の一次生成物を生成し、このガス状の一次生成物を第二の触媒に接触させる。このため、エタノール等の中間体をガス化する工程が不要となり、ブタジエンの製造方法におけるエネルギー効率をより高められる。
 また、第一の合成工程によって、中間体としてエタノール及びアセトアルデヒドを含む一次生成物を生成する場合には、エタノールとアセトアルデヒドとを個別に製造し、かつこれらを個別に精製する必要がない。このため、エタノールとアセトアルデヒドとを個別に製造し、精製するのに比べ、ブタジエンの製造方法におけるエネルギー効率をより高められる。加えて、第一の合成工程は、一次生成物のEtOH/AcH比を第二の合成工程に適したものに調節できる。このため、第一の合成工程の後に一次生成物のEtOH/AcH比を調節することなく、第二の合成工程に一次生成物を供給して、ブタジエンの製造効率を高められる。
 本実施形態のブタジエンの製造方法によれば、第一の合成工程と第二の合成工程との間に第一の精製工程が設けられている。このため、第二の合成工程でブタジエンの合成効率を低減する物質が一次生成物から除去されて、第二の合成工程におけるブタジエンの合成効率のさらなる向上を図れる。
 本発明は、上述の実施形態に限定されるものではない。
 上述の実施形態では、一次生成物をガスとして得、一次生成物をガスのまま第二の反応管に流入させている。しかしながら、本発明はこれに限定されず、例えば、第一の合成工程で一次生成物をガスとして得、その後、一次生成物を凝縮して液体とし、次いで、液体の一次生成物をガス化し、ガスの一次生成物を第二の反応管に流入させてもよい。ただし、ブタジエンの製造効率を高める観点からは、ガスとして得られた一次生成物をガスのまま第二の反応管に流入させるのが好ましい。
 上述の実施形態では、第一の精製機が膜式分離器であるが、本発明はこれに限定されない。第一の精製機は、例えば、気液分離器、蒸留塔等でもよい。ただし、一次生成物を液化することなく、第二の反応管に流入させられ、ブタジエンの製造効率のさらなる向上を図れる観点からは、第一の精製機としては、一次生成物をガスのまま精製できる、膜式分離器が好ましい。
 (製造例1)第一の触媒(A)の製造
 チタンラクテートアンモニウム塩(Ti(OH)[OCH(CH)COO(NH )0.049gを含む水溶液(一次含浸液)1.22mLを調製した。一次含浸液1.22mLを多孔質担体(材質:シリカ、粒子径:1.18~2.36mm、平均細孔直径:5.7nm、全細孔容積:0.61mL/g、比表面積:430m2/g)2.0gに滴下し、一次含浸液を多孔質担体に含浸させた(一次含浸工程)。一次含浸液が含浸された多孔質担体を、110℃にて3時間乾燥し(一次乾燥操作)、さらに400℃にて4.5時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム三水和物(RhCl・3HO)0.154gと、塩化マンガン二水和物(MnCl・2HO)0.087gと、塩化リチウム一水和物(LiCl・HO)0.01gとを含む水溶液(二次含浸液)0.6mLを調製した。二次含浸液0.6mLを一次担持体に滴下して含浸させ(二次含浸工程)、これを110℃にて3時間乾燥し(二次乾燥操作)、次いで400℃にて4.5時間焼成して触媒(A)を得た(二次焼成操作,以上、二次担持工程)。
 一次含浸液と二次含浸液との合計において、水素化活性金属のモル比は、ロジウム:マンガン=1:0.75、ロジウム:リチウム=1:0.275、マンガン:リチウム=1:0.667である。
 (製造例2)第一の触媒(B)の製造
 チタンラクテートアンモニウム塩(Ti(OH)[OCH(CH)COO(NH )0.123gを含む水溶液(一次含浸液)2.16mLを調製した。一次含浸液2.16mLを多孔質担体(材質:シリカ、粒子径:0.7~2.0mm、平均細孔直径:13.7nm、全細孔容積:1.1mL/g、比表面積:310m2/g)2.0gに滴下して、一次含浸液を多孔質担体に含浸させた(一次含浸工程)。一次含浸液が含浸された多孔質担体を、110℃にて3時間乾燥し(一次乾燥操作)、さらに400℃にて4.5時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。塩化ロジウム三水和物(RhCl・3HO)0.154gと、塩化マンガン二水和物(MnCl・2HO)0.032gと、塩化リチウム一水和物(LiCl・HO)0.005gとを含む水溶液(二次含浸液)0.6mLを調製した。二次含浸液0.6mLを一次担持体に滴下して含浸させ(二次含浸工程)、これを110℃にて3時間乾燥し(二次乾燥操作)、次いで400℃にて4.5時間焼成して第一の触媒(B)を得た(二次焼成操作,以上、二次担持工程)。一次含浸液と二次含浸液との合計において、水素化活性金属のモル比は、ロジウム:マンガン=1:0.275、ロジウム:リチウム=1:0.138、マンガン:リチウム=1:0.5である。
 (実施例1)
 製造例1で得られた第一の触媒(A)0.5gを直径1.5インチ(1.27cm)、長さ10インチ(25.4cm)のステンレス製の円筒型の反応管に充填して第一の反応床を形成した。
 第一の反応床に、常圧で水素ガスを30mL/分で通流させながら、320℃で2.5時間加熱し、第一の触媒(A)に還元処理を施した。
 次いで、反応温度286℃、反応圧力2MPaの条件下で、混合ガス(水素:60体積%、一酸化炭素:30体積%、窒素:10体積%)を空間速度14400L/L-触媒/hで第一の反応床に通流させて、含エタノールガスを得た(第一の合成工程)。
 混合ガスを第一の反応床に3時間通流させ、得られた含エタノールガス(ガス)を回収し、含エタノールガスの組成をガスクロマトグラフィーによって分析した。
 得られたデータからCO転化率(モル%)、エタノールの選択率(モル%)を求め、その結果を以下に示す。
 CO転化率:34.9モル%。
 エタノールの選択率:40.1モル%。
 アセトアルデヒドの選択率:27.7モル%
 (実施例2)
 製造例2で得られた第一の触媒(B)0.5gを直径1.5インチ(1.27cm)、長さ10インチ(25.4cm)のステンレス製の円筒型の反応管に充填して第一の反応床を形成した。
 第一の反応床に、常圧で水素ガスを30mL/分で通流させながら、320℃で2.5時間加熱し、第一の触媒(B)に還元処理を施した。
 次いで、反応温度277℃、反応圧力2MPaの条件下で、混合ガス(水素:60体積%、一酸化炭素:30体積%、窒素:10体積%)を空間速度14400L/L-触媒/hで第一の反応床に通流させて、一次生成物を得た(第一の合成工程)。
 混合ガスを第一の反応床に3時間通流させ、得られた一次生成物(ガス)を回収し、一次生成物の組成をガスクロマトグラフィーによって分析した。
 得られたデータからCO転化率(モル%)、エタノールの選択率(モル%)、アセトアルデヒドの選択率(モル%)を求め、その結果を以下に示す。
 CO転化率:6.5モル%。
 エタノールの選択率:35.9モル%。
 アセトアルデヒドの選択率:15.4モル%。
 上述の通り、本発明を適用した実施例1は、エタノールとアセトアルデヒドとを含む一次生成物を得られた。加えて、得られた一次生成物のEtOH/AcH比は、ブタジエンの合成に適するものであった。
(製造例3)ブタジエン合成触媒(C)の製造
 塩化ハフニウム(HfCl)0.431gを含む水溶液(一次含浸液)8.351mLを調製した。一次含浸液8.351mLを多孔質担体(材質:シリカ、粒子径:1.18~2.36mm、平均細孔直径:16.3nm、全細孔容積:0.99mL/g、比表面積:195m2/g)2.0gに滴下し、一次含浸液を多孔質担体に含浸させた(一次含浸工程)。一次含浸液が含浸された多孔質担体を、110℃にて3時間乾燥し(一次乾燥操作)、さらに400℃にて4.5時間焼成して一次担持体とした(一次焼成操作,以上、一次担持工程)。硝酸銅三水和物(Cu(NO)・3HO)0.304gと、硝酸亜鉛六水和物(Zn(NO・6HO)0.182gとを含む水溶液(二次含浸液)8.406mLを調製した。二次含浸液8.406mLを一次担持体に滴下して含浸させ(二次含浸工程)、これを110℃にて3時間乾燥し(二次乾燥操作)、次いで400℃にて4.5時間焼成して触媒(C)を得た(二次焼成操作,以上、二次担持工程)。
 一次含浸液と二次含浸液との合計において、水素化活性金属のモル比は、銅:亜鉛=1.00:0.49、銅:ハフニウム=1.00:1.07、亜鉛:ハフニウム=0.49:1.07である。
(実施例3)
 製造例1で得られた第一の触媒(A)0.5gを直径1.5インチ(1.27cm)、長さ10インチ(25.4cm)のステンレス製の円筒型の反応管に充填して第一の反応床を形成した。さらに、製造例3で得られたブタジエン合成触媒(C)3.5gを直径1.5インチ(1.27cm)、長さ10インチ(25.4cm)のステンレス製の円筒型の反応管に充填して第二の反応床を形成した。
 第一の反応床に、常圧で水素ガスを30mL/分で通流させながら、320℃で2.5時間加熱し、第一の触媒(A)に還元処理を施し、第二の反応床に常圧で窒素ガスを70mL/分で通流させながら、420℃で2.5時間加熱した。
 次いで、第一の反応床では反応温度275℃、反応圧力0.900MPaの条件下で、混合ガス(水素:60体積%、一酸化炭素:30体積%、窒素:10体積%)を空間速度10800L/L-触媒/hで通流させて、一次生成物を得た(第一の合成工程)。つづいて、得られた一次生成物(ガス)をそのまま常圧で第二の反応床へ通流させて二次生成物を得た。第二の反応床に3時間通流させ、得られた二次生成物(ガス)を回収し、二次生成物の組成をガスクロマトグラフィーによって分析した。
 得られたデータからCO転化率(モル%)、エタノールの選択率(モル%)、アセトアルデヒドの選択率(モル%)を求め、その結果を以下に示す。
 CO転化率:17.5モル%。
 BDの選択率:12.1モル%。
 本発明によれば、エネルギー効率やブタジエンの製造効率を高めることが可能なブタジエンの製造方法及びブタジエン製造装置を提供することができる。
1 ブタジエン製造装置
10 第一の反応管
20 第一の精製機
30第二の反応管

Claims (7)

  1.  水素と一酸化炭素とを含む混合ガスを第一の触媒に接触させて、中間体としてエタノールを含む一次生成物を得る第一の合成工程と、前記一次生成物を第二の触媒に接触させて、ブタジエンを得る第二の合成工程とを有する、ブタジエンの製造方法。
  2.  前記一次生成物がさらに中間体としてアセトアルデヒドを含む、請求項1に記載のブタジエンの製造方法。
  3.  前記一次生成物は、エタノール/アセトアルデヒドで表されるモル比が、5/1~1/5である、請求項2に記載のブタジエンの製造方法。
  4.  前記第一の合成工程は、前記一次生成物をガスとして得、前記第二の合成工程は、前記一次生成物をガスのまま、前記第二の触媒に接触させる、請求項1~3のいずれかに記載のブタジエンの製造方法。
  5.  前記第一の合成工程と前記第二の合成工程との間に、前記一次生成物から前記中間体以外の物質を除去する第一の精製工程を有する、請求項1~4のいずれか一項に記載のブタジエンの製造方法。
  6.  第一の触媒が充填された第一の反応管と、第二の触媒が充填された第二の反応管とを備え、
     前記第一の触媒は、水素と一酸化炭素とを含む混合ガスから、中間体としてエタノール、又はエタノールとアセトアルデヒドとを含む一次生成物を合成し、
     前記第二の触媒は、前記中間体からブタジエンを合成し、
     前記第二の反応管は、前記第一の反応管の後段に設けられ、前記一次生成物を前記第二の触媒に接触させる、ブタジエン製造装置。
  7.  前記第一の反応管と前記第二の反応管との間に、前記一次生成物から前記中間体以外の物質を除去する第一の精製機を備える、請求項6に記載のブタジエン製造装置。
PCT/JP2015/076254 2014-09-16 2015-09-16 ブタジエンの製造方法及びブタジエン製造装置 WO2016043209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/509,059 US10358395B2 (en) 2014-09-16 2015-09-16 Method for producing butadiene and device for producing butadiene
JP2016548905A JP6698534B2 (ja) 2014-09-16 2015-09-16 ブタジエンの製造方法及びブタジエン製造装置
EP15841605.7A EP3196181B1 (en) 2014-09-16 2015-09-16 Method for producing butadiene and device for producing butadiene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014188263 2014-09-16
JP2014-188263 2014-09-16
JP2014188264 2014-09-16
JP2014-188264 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016043209A1 true WO2016043209A1 (ja) 2016-03-24

Family

ID=55533245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076254 WO2016043209A1 (ja) 2014-09-16 2015-09-16 ブタジエンの製造方法及びブタジエン製造装置

Country Status (4)

Country Link
US (1) US10358395B2 (ja)
EP (1) EP3196181B1 (ja)
JP (1) JP6698534B2 (ja)
WO (1) WO2016043209A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008248A (ja) * 2016-07-15 2018-01-18 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
WO2019131890A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 触媒及びその製造方法並びに前記触媒を用いたジエン化合物の製造方法
WO2019139071A1 (ja) * 2018-01-12 2019-07-18 積水化学工業株式会社 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法
WO2019142865A1 (ja) * 2018-01-17 2019-07-25 積水化学工業株式会社 触媒、及び前記触媒を用いたジエン化合物の製造方法
JP2020199502A (ja) * 2020-09-02 2020-12-17 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
CN114163320A (zh) * 2021-12-17 2022-03-11 福建南平龙晟香精香料有限公司 一种龙涎酮中间体制备方法及其装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102021018172A2 (pt) * 2021-09-13 2023-03-28 Petróleo Brasileiro S.A. - Petrobras Método de preparo do catalisador para produção de butadieno a partir do etanol em uma etapa, catalisador e uso

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121939A (ja) * 2011-12-12 2013-06-20 Ichikawa Office Inc ブタジエンの製造方法
WO2014199349A2 (en) * 2013-06-13 2014-12-18 Basf Se Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2506065A (en) * 1948-01-02 1950-05-02 Phillips Petroleum Co Production of diolefins and motor fuel from carbon monoxide and hydrogen
CH545259A (de) 1969-07-02 1973-12-15 Bayer Ag Verfahren zur Herstellung von Allylalkohol
EP0361372A1 (en) * 1988-09-26 1990-04-04 UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (a New York corporation) Anhydrous diluents for the isobutylene oxidation reaction to methacrolein and methacrolein oxidation to methacrylic acid
JP5598910B2 (ja) * 2010-06-14 2014-10-01 独立行政法人産業技術総合研究所 フッ素化合物の製造方法
JP6084963B2 (ja) 2012-02-20 2017-02-22 株式会社ダイセル 1,3−ブタジエンの製造方法
KR102017483B1 (ko) * 2012-02-24 2019-09-03 미쯔비시 케미컬 주식회사 다공질 지지체-제올라이트막 복합체
FR3014097B1 (fr) * 2013-11-29 2016-01-01 IFP Energies Nouvelles Procede de production de 1,3-butadiene a partir d'une charge comprenant de l'ethanol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121939A (ja) * 2011-12-12 2013-06-20 Ichikawa Office Inc ブタジエンの製造方法
WO2014199349A2 (en) * 2013-06-13 2014-12-18 Basf Se Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE BAERDEMAEKER, TREES ET AL.: "Bimetallic Zn and Hf on Silica Catalysts for the Conversion of Ethanol to 1,3-Butadiene", ACS CATALYSIS, vol. 5, no. Iss. 6, 2015, pages 3393 - 3397, XP055278030, ISSN: 2155-5435 *
JONES, MATTHEW D. ET AL.: "Investigations into the conversion of ethanol into 1,3-butadiene", CATALYSIS SCIENCE & TECHNOLOGY, 2011, pages 267 - 271, XP055089320, ISSN: 2044-4753 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008248A (ja) * 2016-07-15 2018-01-18 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
US11446635B2 (en) 2017-12-27 2022-09-20 Sekisui Chemical Co., Ltd. Catalyst and method for producing same, and method for producing diene compound using said catalyst
JPWO2019131890A1 (ja) * 2017-12-27 2021-01-14 積水化学工業株式会社 触媒及びその製造方法並びに前記触媒を用いたジエン化合物の製造方法
WO2019131890A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 触媒及びその製造方法並びに前記触媒を用いたジエン化合物の製造方法
JP7197507B2 (ja) 2017-12-27 2022-12-27 積水化学工業株式会社 触媒及びその製造方法並びに前記触媒を用いたジエン化合物の製造方法
WO2019139071A1 (ja) * 2018-01-12 2019-07-18 積水化学工業株式会社 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法
JPWO2019139071A1 (ja) * 2018-01-12 2021-01-21 積水化学工業株式会社 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法
US11465128B2 (en) 2018-01-12 2022-10-11 Sekisui Chemical Co., Ltd. Catalyst, method for producing same, and method for producing diene compound using said catalyst
JP7305558B2 (ja) 2018-01-12 2023-07-10 積水化学工業株式会社 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法
WO2019142865A1 (ja) * 2018-01-17 2019-07-25 積水化学工業株式会社 触媒、及び前記触媒を用いたジエン化合物の製造方法
JPWO2019142865A1 (ja) * 2018-01-17 2021-01-14 積水化学工業株式会社 触媒、及び前記触媒を用いたジエン化合物の製造方法
JP2020199502A (ja) * 2020-09-02 2020-12-17 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
CN114163320A (zh) * 2021-12-17 2022-03-11 福建南平龙晟香精香料有限公司 一种龙涎酮中间体制备方法及其装置
CN114163320B (zh) * 2021-12-17 2023-12-12 福建南平龙晟香精香料有限公司 一种龙涎酮中间体制备方法及其装置

Also Published As

Publication number Publication date
EP3196181B1 (en) 2021-03-17
EP3196181A1 (en) 2017-07-26
EP3196181A4 (en) 2018-05-30
JPWO2016043209A1 (ja) 2017-06-22
US20170260112A1 (en) 2017-09-14
US10358395B2 (en) 2019-07-23
JP6698534B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2016043209A1 (ja) ブタジエンの製造方法及びブタジエン製造装置
JP6093780B2 (ja) アルコール合成用の触媒、アルコールの製造装置及びアルコールの製造方法
JP5999569B2 (ja) C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法
JP6408114B2 (ja) 酸素化物の製造システム及び酸素化物の製造方法
JP6329286B2 (ja) 酸素化物合成用の触媒の製造方法、及び酸素化物の製造方法
JP6183916B2 (ja) 酸素化物合成用の触媒、酸素化物の製造装置、及び酸素化物の製造方法
JP2016026864A (ja) 酢酸エチル合成用の触媒、酢酸エチルの製造装置及び酢酸エチルの製造方法
JP6037305B2 (ja) C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法
JP5996423B2 (ja) C2酸素化物合成用の触媒、c2酸素化物の製造装置及びc2酸素化物の製造方法
JP2015163387A (ja) 合成用の触媒及びその製造方法、酸素化物の製造装置ならびに酸素化物の製造方法
JP2013049023A (ja) 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法
JP2015163594A (ja) 酸素化物の製造方法
JP2013063418A (ja) 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法
JP2015139770A (ja) アルコール合成用の触媒及びその製造方法、アルコールの製造装置ならびにアルコールの製造方法
JP2015178101A (ja) 酸素化物合成用の触媒、酸素化物合成用の触媒の製造方法、酸素化物の製造装置及び酸素化物の製造方法
JP2013049024A (ja) 酸素化物合成用の触媒、酸素化物の製造装置及び酸素化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548905

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015841605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15509059

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE