CN1274043C - 吸附有碳化合物的阴极活性物质及使用它的锂电池 - Google Patents

吸附有碳化合物的阴极活性物质及使用它的锂电池 Download PDF

Info

Publication number
CN1274043C
CN1274043C CNB200410001811XA CN200410001811A CN1274043C CN 1274043 C CN1274043 C CN 1274043C CN B200410001811X A CNB200410001811X A CN B200410001811XA CN 200410001811 A CN200410001811 A CN 200410001811A CN 1274043 C CN1274043 C CN 1274043C
Authority
CN
China
Prior art keywords
lithium
active material
cathode active
transition metal
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB200410001811XA
Other languages
English (en)
Other versions
CN1519966A (zh
Inventor
崔荣敏
咸龙男
朴晸浚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1519966A publication Critical patent/CN1519966A/zh
Application granted granted Critical
Publication of CN1274043C publication Critical patent/CN1274043C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种阴极活性物质以及使用该阴极活性物质的锂电池,所述阴极活性物质是通过以1∶1.0-1∶1.2的摩尔比混合过渡金属化合物和锂化合物,并在提供分压比为1∶0.001-1∶1000的CO2和O2的同时热处理该混合物而制备的。对于过充电,该锂电池可确保安全性,因为在不降低放电容量和循环寿命特征的前提下,可以有效地切断电流的过流(overflow)。

Description

吸附有碳化合物的阴极活性物质及使用它的锂电池
                         技术领域
本发明涉及一种含有碳化合物的阴极活性物质,以及使用它的锂电池,更具体地,本发明涉及一种阴极活性物质,其提供给锂电池以提高的放电容量和循环寿命特性,并在电池过充电时,通过切断电流而确保锂电池的安全性,以及使用该阴极活性物质的锂电池。
                         背景技术
由于便携式电子设备如可携式摄像机,移动电话,笔记本电脑等变得更小和更轻,虽然同时变得功能更强大,对作为这些便携式设备的电源的电池已进行了大量的研究。特别是,相对于传统的铅电池,镍-镉(Ni-Cd)电池,镍-氢电池,镍-锌电池等,可再充电的锂二次电池具有每单位重量大三倍的能量密度以及更高的充电速度。由于这些原因,锂二次电池已引起了更大的关注,并进行了深入的研究。
锂二次电池中广泛使用的阴极活性物质的例子包括锂复合氧化物如LiCoO2,LiNiO2,LiMnO2,LiMn2O4,LiFePO4,LiNixCo1-xO2,LiNi1-x-yCoxMnyO2等。通常使用的阳极活性物质的例子包括锂金属,锂金属合金,碳质材料,石墨材料等。
此外,锂二次电池包括用于使阴极与阳极绝缘的隔板,以及充当锂离子输运介质的电解液。作为电解液广泛使用的是碳酸酯基有机溶剂。
锂二次电池包括阴极,阳极,隔板,以及电解液,并用容器如不锈钢壳,铝壳等密封。因此,由于不正常的操作导致的电流溢出原因,当锂二次电池被过量充电时,锂二次电池中的电解液分解并形成气体,增加电池内部的压力并打破容器。
由于这个原因,将电流截止装置引入到锂二次电池中。例如,当电池的内部压力过度升高时,该电流截止装置工作并将阴极顶部与阴极集电体分离以切断电流。然而,该电流截止装置的工作取决于电池的内部压力,即仅当电池的内部压力上升到超过预定水平时才工作,如果没有明显的内部压力的升高,即使当温度上升超过正常范围,电流截止装置也可能不工作。
为了解决这个问题,美国专利第5427875号公开了在阴极制备中,添加0.5-15%重量的碳酸锂(Li2CO3),以允许电流截止装置响应电池内部温度的升高而工作,其中当电池内部温度升高时,阴极中的碳酸锂产生碳酸气体,增加内部压力并触发电流截止装置工作。在日本待审公开专利第2003-151155号中,采用由含有0.5%重量或更少的碳酸锂的阴极活性物质与含有0.5-5%重量的碳酸锂的阴极活性物质的混合物制成的阴极,以使电流截止装置更迅速地响应内部压力的升高而工作,并提高电池的性能如放电容量和循环寿命。
然而,上面的专利需要额外的把碳酸锂加入到阴极活性物质中的步骤。此外,上面专利公开的方法中,获得均匀分散的碳酸锂是困难的。
                       发明内容
本发明提供一种阴极活性物质,其在不损坏锂电池的放电容量和循环寿命的前提下,确保过充电时的安全。
本发明提供一种采用该阴极活性物质的锂电池。
一方面,本发明提供一种含有锂过渡金属复合氧化物的阴极活性物质,其中吸附有碳化合物,以使该锂过渡金属复合氧化物的碳含量为10-1000ppm。
另一方面,本发明提供一种制备上述阴极活性物质的方法,该方法包括:以1∶1.0-1∶1.2的摩尔比混合过渡金属化合物与锂化合物;及在提供分压比为1∶0.001-1∶1000的CO2和O2的同时,热处理该混合物。
再一方面,本发明提供一种锂电池,该锂电池包括:含有上述阴极活性物质的阴极;含有允许锂离子嵌入和脱出的碳质材料的阳极;置于阴极和阳极之间的隔板;含有溶解于非水溶剂中的电解质的电解液;及响应电池内部压力升高而工作的电流截止装置。
                           附图说明
参照附图,通过详细描述其中的示范性实施方案,本发明的上述及其他特点和优点将变得更明白,在附图中:
图1是本发明实施例1中制备的LiCoO2的扫描电子显微镜(SEM)照片(×12000);
图2是使用本发明的阴极活性物质制备的锂二次电池的放电容量的曲线图;
图3是本发明实施例4中制备的1800-mAh圆柱形锂二次电池的过充电特性的曲线图;及
图4是对比例1中制备的1800-mAh圆柱形锂二次电池的过充电特性的曲线图。
                      具体实施方式
下面将详述根据本发明的阴极活性物质,制备它的方法,以及使用该阴极活性物质的锂电池。
根据本发明的锂电池包括利用阴极活性物质制备的阴极,所述阴极活性物质含有锂过渡金属复合氧化物,所述锂过渡金属复合氧化物中吸附了碳化合物以使该锂过渡金属复合氧化物具有的碳含量为10-1000ppm。
当吸附了碳化合物的锂过渡金属复合氧化物用作阴极活性物质时,电流截止装置可以适时启动,归因于当由于操作失误或过充电引起的锂电池内部温度升高时,阴极活性物质中的碳化合物形成气体而导致的内部压力升高。因此,确保了锂电池的安全性。
当电池内部压力上升时,本发明中使用电流截止装置可以通过把阴极顶部从阴极集电体分离而切断电流。
如上所述,为了确保安全性,根据本发明的锂电池使用的阴极活性材料为锂过渡金属复合氧化物,在其中吸附了碳化合物以使该锂过渡金属复合氧化物具有的碳含量为10-1000ppm。如果吸附的碳化合物导致碳浓度小于10ppm,很难产生气体足够启动锂电池中的电流截止装置。如果吸附的碳化合物导致碳浓度大于1000ppm,电池的循环寿命特性变坏。该碳化合物可以具有10-5000m2/g的比表面积。
碳化合物可以氧化物或碳酸盐如CO,CO2,Li2CO3等形式存在于锂过渡金属复合氧化物的表面,该碳化合物源于锂过渡金属复合氧化物制备中使用的原料,外部提供的CO2或O2,或它们之间的反应产物。虽然将该碳化合物描述为吸附在锂过渡金属复合氧化物表面,但是它也可以通过化学键如共价键与锂过渡金属复合氧化物的表面相结合。因此,整个说明书中有关“碳化合物吸附到锂过渡金属复合氧化物表面”不应理解为不包括通过化学键与锂过渡金属复合氧化物相结合。
吸附碳化合物的锂过渡金属复合氧化物可以是至少一种选自LiNiO2,LiCoO2,LiMn2O4,LiFePO4,LiNixCo1-xO2(式中0<x<1),及LiNi1-x-yCoxMnyO2(式中0<x<1,0<y<1,且0<x+y<1)的氧化物。
现将描述本发明的制备其上吸附有碳化合物的锂过渡金属复合氧化物的方法。
该方法包括:以1∶1.0-1∶1.2的摩尔比混合过渡金属化合物与锂化合物;及在以1∶0.001到1∶1000的分压比提供CO2和O2的同时,热处理该混合物,热处理温度可以为600-1000℃。
上面方法中,优选过渡金属化合物与锂化合物之间以1∶1.0-1∶1.2的摩尔比进行混合。如果过渡金属化合物与锂化合物的混合摩尔比不在上述范围,则电池特性如使用寿命和高速充/放电特性恶化。
可以使用锂电池阴极活性物质制备中常用的任何锂化合物,没有任何限制。锂化合物的具体实例包括碳酸锂,氢氧化锂,硝酸锂,硫酸锂,乙酸锂,氧化锂等。
可以使用锂电池阴极活性物质制备中常用的任何过渡金属化合物,没有任何限制。过渡金属化合物的具体实例包括:过渡金属碳酸盐,过渡金属氢氧化物,过渡金属硝酸盐,过渡金属硫酸盐,过渡金属乙酸盐,过渡金属氧化物等。
如上所述,在其上吸附有碳化合物的锂过渡金属复合氧化物的制备中,需要调整热处理过程中提供的CO2和O2之间的分压比。CO2与O2可以1∶0.001到1∶1000,优选1∶1到1∶100,更优选1∶1到1∶10的分压比提供。如果CO2和O2之间的分压比不在上述范围,则不能获得所需要的晶体结构。在其进入反应器之前立即测量CO2和O2的分压比。
气体可以直接流进反应器。然而,气体也可以涡旋的形式流入反应器,以使反应容易。气体中涡旋的形成可以通过诱导对流而实现,例如,通过使用安装在反应器中的风扇。
对热处理的温度范围没有特殊的限制,只要能够合成锂过渡金属复合氧化物。然而,优选的热处理温度范围为600~1000℃。
本发明也提供一种锂电池,其包括:含有本发明上述阴极活性物质的阴极;含有允许锂离子嵌入和脱出的碳质材料的阳极;置于阴极和阳极之间的隔板;含有溶解于非水溶剂中的电解质的电解液;以及响应电池内部压力升高而工作的电流截止装置。
现在描述本发明的制备锂电池的方法。
首先,通过混合阴极活性物质,导电剂,粘合剂,及溶剂制备阴极活性物质组合物。将该阴极活性物质组合物直接涂布于铝集电体上并干燥,制得阴极板。作为选择,阴极板也可以通过层压铝集电体与阴极活性物质膜来制备,所述阴极活性物质膜是通过在载体上浇注阴极活性物质组合物,然后从中分离而预先形成的。
阴极活性物质为其中吸附有碳的锂过渡金属复合氧化物,其中,锂过渡金属复合氧化物是选自LiNiO2,LiCoO2,LiMn2O4,LiFePO4,LiNixCo1-xO2(式中0<x<1),以及LiNi1-x-yCoxMnyO2(式中0<x<1,0<y<1,且0<x+y<1)中的至少一种。导电剂的例子包括,但不限于,碳黑,乙炔黑,Ketjen黑等。粘合剂的例子包括,但不限于,偏二氟乙烯-六氟丙烯共聚物,聚偏二氟乙烯,聚丙烯腈,聚异丁烯酸甲脂,聚四氟乙烯,它们的混合物,以及苯乙烯-丁二烯共聚物橡胶。在阴极活性物质组合物的制备中使用的溶剂的例子包括,但不限于,N-甲基吡咯烷酮(NMP),丙酮,水等。由锂电池常规的标准决定阴极活性物质组合物中活性阴极材料,导电剂,粘合剂,及溶剂的用量。
与应用于制备阴极板的方式相似的方法,将阳极活性物质,导电剂,溶剂既可选的粘合剂混合制备阳极活性物质组合物。用阳极活性物质组合物直接涂布在铜集电体上或层压铜集电体与阳极活性物质膜制备阳极板,所述阳极活性物质膜是通过在载体上浇注阳极活性物质组合物,然后从中分离而预先形成的。锂金属,锂合金,碳质材料,或石墨可用为阳极活性物质。此外,上面列出的用于阴极活性物质组合物的导电剂,粘合剂,及溶剂的例子可以用于阳极活性物质组合物。在特定的情况下,在阴极和阳极活性物质组合物的每一种中可以进一步加入增塑剂以形成多孔阴极和阳极板。
同时,制造锂电池通常使用的任何隔板都可以用于本发明的锂电池。然而,优选用于隔板的材料允许包含在电解质离子在更小的阻力下迁移并具有保持更大数量的电解液的能力。此类隔板材料的具体实例包括玻璃纤维,聚酯,特氟隆,聚乙烯,聚丙烯,聚四氟乙烯(PTEE),以及前述材料的组合物,所述隔板可以是无纺形或纺织形。更详细地,由聚乙烯,聚丙烯等制造的能够卷曲的隔板可用于锂离子电池,以及能够保持更大数量有机电解液的隔板可用于锂离子聚合物电池。这些隔板可按如下方法制造。
首先,通过混合聚合物树脂,填充剂,及溶剂制备隔板组合物。将该隔板组合物直接涂布于电极上并干燥而形成隔板。作为选择,通过层压电极与隔板膜可形成隔板,所述隔板膜是通过在载体上浇注隔板组合物并干燥而预先形成的。
任何能被用作电极片之粘合剂的聚合物树脂都可以无限制地使用。聚合物树脂的例子包括聚偏二氟乙烯-六氟丙烯共聚物,聚偏二氟乙烯,聚丙烯腈,聚甲基丙烯酸酯,及前述材料的混合物。优选的聚合物树脂是含有8-25%重量六氟丙烯的偏二氟乙烯-六氟丙烯共聚物。
将隔板放置在如上制造的阴极板和阳极板之间形成电极组件。该电极组件是卷绕的或折叠的,然后密封在圆柱形或直角形电池壳中,接着在电池壳中注入非水电解液以制备完整的锂电池。作为选择,电极组件可以互相堆叠,形成双电池结构,浸于非水电解液中,并密封在电池壳中,制得完整的锂电池。
非水电解液可以是0.5-3.0摩尔锂盐于每升锂盐有机溶液中的溶液。锂盐的例子包括,但不限于,LiPF6,LiClO4,LiBF4,LiBF6,LiCF3SO3,LiAsF6,LiC4F9SO3,LiN(SO2CF3)2,LiN(SO2C2F5)2,及前述盐的混合物。
有机溶剂的例子包括,但不限于,碳酸亚乙酯,碳酸异丙烯酯,碳酸二甲酯,碳酸甲乙酯,碳酸二乙酯,碳酸甲丙酯,碳酸乙丙酯,四氢呋喃,2-甲基四氢呋喃,二乙氧基乙烷,甲酸甲酯,甲酸乙酯,三甘醇二甲醚,四甘醇二甲醚,氟苯,二氟苯,γ-丁内酯,及前述溶剂的混合物。
参考下面的实施例,将更详细地描述本发明。下面的实施例用于说明的目的,而不是限制本发明的范围。
锂电池的制备
将96%重量的LiCoO2,2%重量的聚偏二氟乙烯(PVDF)粘合剂,及2%重量的能促进电子迁移的碳质导电剂混合在一起,并向该混合物中剂如100mL的N-甲基吡咯烷酮(NMP)和陶瓷球,于200mL的塑料瓶中充分混合约10小时。用250μm间距的刮刀,在15μm厚的铝箔上由该混合物浇注阴极,在110℃的烘箱中干燥约12小时,以完全蒸发掉NMP,辊压,并切割成预定的尺寸,制得具有95μm的厚度的阴极板。
将96%重量的作为阳极活性物质的石墨粉,4%重量的PVdF粘合剂,及NMP混合在一起,并向该混合物中加入陶瓷球,充分混合约10小时。用300μm间距的刮刀,在19μm厚的铜箔上由该混合物浇注阳极,于90℃的烘箱中干燥约10小时,以完全蒸发掉NMP,辊压,并切割成预定的尺寸,制得具有120μm的厚度的阴极板。
使用微孔的20μm厚的聚乙烯-聚丙烯膜(美国Hoest Collanese有限公司提供)作为隔板。
将该隔板放置在通过上述方法制备的阴极板和阳极板之间,并盘绕成果冻卷一样的电极组件。将该电极组件放入圆柱形铝电池壳中,然后注入非水电解液并密封,形成1800-mAh的锂二次电池。
所述非水电解液是通过在5.3克体积比为30∶55∶5∶10的碳酸亚乙酯(EC),碳酸甲乙酯(EMC),碳酸异丙烯酯(PC),氟苯(FB)的混合有机溶剂中溶解1.1M的LiPF6而制备的。
利用下面实施例和对比例中制备的各种阴极活性物质(LiCoO2)制备多组锂电池。
                         实施例1
将碳酸锂和碳酸钴以1.05∶1的摩尔比混合,并在提供分压比为1∶1的CO2和O2的同时,于950℃热处理该混合物,得到用作阴极活性物质的LiCoO2
图1为阴极活性物质LiCoO2的扫描电子显微镜图(×12000)。在图1中,“1”所示的暗区是吸附有碳化合物的LiCoO2颗粒的表面区,及“2”所示的亮区是没有吸附碳化合物的LiCoO2颗粒的表面区。
作为采用LiCoO2颗粒而进行的色散能谱(energy dispersive spectrometry)的结果,在暗区1中检测到碳,然而在亮区几乎没有检测到碳。由此可以看出,碳化合物吸附到LiCoO2颗粒的部分表面上。从实施例1~4制备的LiCoO2颗粒中也观测到相同的结果。
在锂二次电池的制备中,使用通过上述方法得到LiCoO2颗粒。
                         实施例2
将碳酸锂和碳酸钴以1.02∶1的摩尔比混合,并在提供分压比为1∶2的CO2和O2的同时,在950℃热处理该混合物,得到用作阴极活性物质的LiCoO2。在锂二次电池的制备中,使用通过上述方法得到LiCoO2颗粒。
                         实施例3
将氢氧化锂和碳酸钴以1.01∶1的摩尔比混合,并在提供分压比为1∶1的CO2和O2的同时,在900℃热处理该混合物,得到用作阴极活性物质的LiCoO2。在锂二次电池的制备中,使用通过上述方法得到LiCoO2颗粒。
                         实施例4
将碳酸锂和碳酸钴以1.03∶1的摩尔比混合,并在提供分压比为1∶1的CO2和O2的同时,在950℃热处理该混合物,得到用作阴极活性物质的LiCoO2。在1800-mAh圆柱形锂二次电池的制备中,使用通过上述方法得到LiCoO2颗粒。
图3是于实施例4中制备的1800-mAh圆柱形锂二次电池的过充电特性曲线图。过充电试验是如此进行的:以900mA电流将锂二次电池充电到4.2V的电压,并以4.2V的恒压进一步充电2.5小时。在以1C(1800mA)的充电电流恒流充电/以12V的电压恒压充电2.5小时之后,对锂二次电池的电压和电流水平以及外观进行评价。从图3可以看出,达到12V之后,由于电流截止装置响应电池的内部压力升高而工作,因而不再有电流流动。
                        对比例1
将氢氧化锂和碳酸钴以1∶1的摩尔比混合,并在O2气氛下于900℃热处理该混合物以获得作为阴极活性物质使用的LiCoO2。在1800-mAh圆柱形锂二次电池的制备中,使用通过上述方法得到LiCoO2颗粒。与实施例4中同样的情形使用锂二次电池实施过充电试验。
图4是图解对比例1中制备的锂二次电池过充电特性图。从图4可以看出,即使在电池的电压达到12V后,由于电池中的电流截止装置没有工作,电流继续流动。
                        对比例2
将碳酸锂和碳酸钴以摩尔比1.3∶1混合,并在提供分压比为1∶1的CO2和O2时,在950℃热处理该混合物以获得作为阴极活性物质使用的LiCoO2。在1800-mAh圆柱形锂二次电池的制备中,使用通过上述方法得到LiCoO2颗粒。
       表1
  实例   碳含量(ppm)
  实施例1   420
  实施例2   319
  实施例3   341
  实施例4   398
  对比例1   8
  对比例2   1162
上表1显示的是利用热分析仪(Model CS-444,Leco Co.)在实施例1~4和对比例1与2中制备的LiCoO2颗粒上进行的测试结果以确定碳的量。如表1所示,在不考虑使用的锂化合物的种类时,通过调节CO2和O2之间的分压比可以改变碳含量。对比例1的锂电池含有太少的碳而不能提供根据本发明的效果。对比例2的锂电池含有太多的碳并使循环寿命特性变坏。
图2是在实施例1~3和对比例1和2中制备的锂二次电池的放电容量图。图2示出了1800mAh的标称容量(C)下以1C速度循环充放电200次之后锂二次电池放电容量的变化。根据本发明的实施例1~3中的锂二次电池保持了1620mAh或更多的放电容量,这是大于对比例1与2的锂二次电池的,并且具有更有效的循环寿命特性。
将图2的结果制成表2。在表2中,除了列出1800mAh的标称容量(C)下以1C速度循环充放电200次之后的实施例1~3和对比例1的锂二次电池的放电容量之外,还列出相对于标称容量的放电容量保持百分比。
                      表2
  实例   200次循环后的放电容量   200次循环后放电容量的保持率(%相对于1800mAh的标称容量)
  实施例1   1620mAh   90.0%
  实施例2   1630mAh   90.6%
  实施例3   1648mAh   91.6%
  对比例1   1471mAh   81.7%
  对比例2   1409mAh   78.3%
如表2所示,200次充/放电循环之后,根据本发明的实施例1~3中制备的锂二次电池分别保留了标称容量的90.0%,90.6%,和91.6%,相对于对比例1与2中分别具有81.7%和78.3%的充电保留的锂二次电池,提高了有效的循环寿命特性。结果很明显,当使用的阴极活性物质含有小于10ppm或大于1,000ppm的碳时,循环寿命特性变坏,所述的碳是被加入到化合物中并被吸附进碳活性物质表面中的碳。
如上所述,根据本发明的阴极活性物质含有吸附进其中的碳化合物,其中碳活性物质中的碳分布和含量可以通过改变制备阴极活性物质期间提供的CO2和O2的分压比而进行容易的控制。此外,没有与碳化合物混合的后处理过程,籍此简化了全部的制备过程并降低了制造费用。
当使用含有上面的吸附有碳的阴极活性物质之阴极板,根据本发明制造锂二次电池时,在不损害电池的放电容量和循环寿命特性的前提下,对于过充电,确保了安全性。这可归因于加到阴极活性物质中的碳化合物,当电池由于特定因素过充电时,其分解并形成气体,增加了电池的内部压力并适时地启动电流截止装置。
尽管已经参照其示范性实施方案详细示出和描述了本发明,但是本领域的普通技术人员应当明白,在不脱离下述权利要求书所规定的本发明的构思和范围的情况下,可以在形式上和内容上对本发明作出各种改变。

Claims (8)

1.一种含有锂过渡金属复合氧化物的阴极活性物质,其中吸附有碳的氧化物和/或碳酸锂,使得该锂过渡金属复合氧化物具有10-1000ppm的碳含量。
2.权利要求1的阴极活性物质,其中该锂过渡金属复合氧化物为选自LiNiO2,LiCoO2,LiMn2O4,LiFePO4,LiNixCo1-xO2(式中0<x<1),以及LiNi1-x-yCoxMnyO2(式中0<x<1,0<y<1,且0<x+y<1)中的至少一种。
3.权利要求1的阴极活性物质,其中所述碳的氧化物和/或碳酸锂具有10-5000m2/g的比表面积。
4.一种制备权利要求1的阴极活性物质的方法,该方法包括:
以1∶1.0-1∶1.2的摩尔比混合过渡金属化合物和锂化合物;及
在提供分压比为1∶1-1∶100的CO2和O2的同时,热处理该混合物。
5.权利要求4的方法,其中该混合物的热处理是在600-1000℃的温度下进行的。
6.权利要求4的方法,其中所述锂化合物选自碳酸锂,氢氧化锂,硝酸锂,硫酸锂,乙酸锂,及氧化锂。
7.权利要求4的方法,其中所述过渡金属化合物选自过渡金属碳酸盐,过渡金属氢氧化物,过渡金属硝酸盐,过渡金属硫酸盐,过渡金属乙酸盐,及过渡金属氧化物。
8.一种锂电池,包含:
含有权利要求1~3中任一项的阴极活性物质的阴极;
含有允许锂离子嵌入和脱出的碳质材料的阳极;
置于阴极和阳极之间的隔板;
含有溶解于非水溶剂中的电解质的电解液;及
响应电池内部压力升高而工作的电流截止装置。
CNB200410001811XA 2003-02-07 2004-01-14 吸附有碳化合物的阴极活性物质及使用它的锂电池 Expired - Lifetime CN1274043C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2003-0007759A KR100490549B1 (ko) 2003-02-07 2003-02-07 카본 화합물이 흡착된 정극 활물질 및 이를 채용한 리튬전지
KR7759/03 2003-02-07
KR7759/2003 2003-02-07

Publications (2)

Publication Number Publication Date
CN1519966A CN1519966A (zh) 2004-08-11
CN1274043C true CN1274043C (zh) 2006-09-06

Family

ID=32822658

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410001811XA Expired - Lifetime CN1274043C (zh) 2003-02-07 2004-01-14 吸附有碳化合物的阴极活性物质及使用它的锂电池

Country Status (4)

Country Link
US (1) US7314683B2 (zh)
JP (1) JP4995409B2 (zh)
KR (1) KR100490549B1 (zh)
CN (1) CN1274043C (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715860B2 (en) * 2004-03-03 2014-05-06 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP4779323B2 (ja) * 2004-08-24 2011-09-28 日産自動車株式会社 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
JP4815858B2 (ja) * 2005-04-27 2011-11-16 ソニー株式会社 二次電池
KR100826074B1 (ko) * 2005-11-17 2008-04-29 주식회사 엘지화학 과방전 방지용 전극 첨가제 및 이의 제조 방법
US8993138B2 (en) * 2008-10-02 2015-03-31 Samsung Sdi Co., Ltd. Rechargeable battery
JP4937405B1 (ja) * 2009-12-28 2012-05-23 住友化学株式会社 リチウム複合金属酸化物の製造方法
KR101243941B1 (ko) * 2010-01-25 2013-03-13 한국전기연구원 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지
US8202640B2 (en) * 2010-02-24 2012-06-19 Balachov Consulting, Llc Rapidly rechargeable battery
KR101084076B1 (ko) 2010-05-06 2011-11-16 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20130049517A (ko) * 2011-11-04 2013-05-14 제이에이치화학공업(주) 리튬 이차전지용 양극 활물질의 제조 방법
US9748561B2 (en) 2013-03-08 2017-08-29 Samsung Electronics Co., Ltd. Methods of forming carbon coatings
KR102124052B1 (ko) 2013-10-18 2020-06-17 삼성전자주식회사 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬 전지
AU2015226940B2 (en) * 2014-03-07 2018-07-12 A123 Systems, LLC High power electrode materials
CN108012572B (zh) * 2016-01-19 2021-02-02 株式会社Lg化学 电极组件及其制造方法
US10581109B2 (en) 2017-03-30 2020-03-03 International Business Machines Corporation Fabrication method of all solid-state thin-film battery
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
JP7343682B2 (ja) * 2019-07-03 2023-09-12 ユミコア 充電式リチウムイオン電池用の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物
CN116544615A (zh) * 2023-07-03 2023-08-04 宁德时代新能源科技股份有限公司 隔离膜、锂二次电池和用电装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427875A (en) 1991-04-26 1995-06-27 Sony Corporation Non-aqueous electrolyte secondary cell
JPH07245105A (ja) * 1994-03-04 1995-09-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池とその正極活物質
JP3811974B2 (ja) * 1994-11-22 2006-08-23 住友化学株式会社 リチウム二次電池用正極とその製造方法およびリチウム二次電池
US5707756A (en) * 1994-11-29 1998-01-13 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
JP3769871B2 (ja) * 1997-04-25 2006-04-26 ソニー株式会社 正極活物質の製造方法
JPH11167919A (ja) * 1997-12-05 1999-06-22 Nikki Chemcal Co Ltd 高安定性リチウムイオン二次電池用正極材、製造方法およびその用途
JP4061388B2 (ja) * 1999-04-21 2008-03-19 Dowaエレクトロニクス株式会社 非水二次電池用正極活物質、その製造方法、およびそれを用いた非水二次電池
US6692873B1 (en) * 1999-08-05 2004-02-17 Skc Co., Ltd. Composition for forming electrode active material of lithium secondary battery, composition for forming separator and method of preparing lithium secondary battery using the compositions
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
JP2002348121A (ja) * 2001-05-30 2002-12-04 Mitsubishi Chemicals Corp リチウムニッケル複合酸化物の製造方法
JP2003015115A (ja) 2001-07-04 2003-01-15 Kawaguchiko Seimitsu Co Ltd 高分子分散液晶表示素子
JP4050123B2 (ja) * 2002-09-25 2008-02-20 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質及びその製造方法

Also Published As

Publication number Publication date
CN1519966A (zh) 2004-08-11
JP2004241390A (ja) 2004-08-26
US7314683B2 (en) 2008-01-01
JP4995409B2 (ja) 2012-08-08
KR100490549B1 (ko) 2005-05-17
US20040157127A1 (en) 2004-08-12
KR20040071852A (ko) 2004-08-16

Similar Documents

Publication Publication Date Title
CN1209845C (zh) 非水电解质二次电池
CN110429252B (zh) 正极及电化学装置
CN1274043C (zh) 吸附有碳化合物的阴极活性物质及使用它的锂电池
CN1238917C (zh) 锂二次电池
CN1168172C (zh) 非水电解质蓄电池及其制造方法
CN1315224C (zh) 非水电解质二次电池
WO2013018486A1 (ja) 非水電解質二次電池用活物質及びその製造方法並びにそれを用いた負極
WO2011145301A1 (ja) リチウム二次電池
KR20080031151A (ko) 비수전해질 2차 전지 및 그의 제조방법
CN1258237C (zh) 非水电解质二次电池
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
CN1658413A (zh) 一种锂电池正极及其制备方法以及锂离子二次电池
CN1849725A (zh) 可循环性和/或高温安全性改进的非水锂二次电池
KR20160040117A (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN1627550A (zh) 锂离子电池正极材料及其制备方法
CN1198354C (zh) 非水电解质二次电池
CN1649193A (zh) 锂充电电池的阴极活性材料和使用该材料的锂充电电池
JP2007053083A (ja) 非水電解質二次電池及びその製造方法
CN1612383A (zh) 具有有效性能的锂电池
CN1435906A (zh) 非水电解质二次电池
CN1171349C (zh) 锂蓄电池及具有该电池的电池装置
CN1238925C (zh) 电池
CN1790799A (zh) 高功率锂离子电池及制备无定形碳包覆正极材料的方法
CN1835262A (zh) 正极活性材料组合物、正极片及锂离子电池
CN1630128A (zh) 非水电解质二次电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060906

CX01 Expiry of patent term