CN108012572B - 电极组件及其制造方法 - Google Patents

电极组件及其制造方法 Download PDF

Info

Publication number
CN108012572B
CN108012572B CN201780002848.XA CN201780002848A CN108012572B CN 108012572 B CN108012572 B CN 108012572B CN 201780002848 A CN201780002848 A CN 201780002848A CN 108012572 B CN108012572 B CN 108012572B
Authority
CN
China
Prior art keywords
conductive material
anode
negative electrode
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780002848.XA
Other languages
English (en)
Other versions
CN108012572A (zh
Inventor
金赫洙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of CN108012572A publication Critical patent/CN108012572A/zh
Application granted granted Critical
Publication of CN108012572B publication Critical patent/CN108012572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本公开内容涉及防止在负极处产生副反应、抑制电阻增加、并且提高生产率。本公开内容提供一种电极组件,包括:负极,所述负极包括在其一端处设置有负极接片的负极集电器和形成在负极集电器的至少一个表面上的负极活性材料层;正极,所述正极包括在其一端处设置有正极接片的正极集电器和形成在正极集电器的至少一个表面上的正极活性材料层;以及插置在正极和负极之间的隔板,并且所述电极组件进一步包括导电材料涂层,所述导电材料涂层包含导电材料和聚合物粘合剂并且位于所述负极活性材料层的顶表面上,其中所述导电材料涂层与底端和形成有负极接片的顶端的每一个以预定距离间隔开。本公开内容还提供一种用于制造所述电极组件的方法。

Description

电极组件及其制造方法
技术领域
本申请要求于2016年1月19日在韩国提交的韩国专利申请第10-2016-0006371号的优先权,通过引用将上述专利申请的公开内容结合在此。本公开内容涉及一种电极组件及其制造方法。
背景技术
近来,储能技术受到越来越多的关注。随着储能技术的应用已延伸至手机、摄像机和笔记本电脑,甚至电动汽车的能源,对电化学装置的研究和开发做出的努力越来越多。在这方面,电化学装置最为突出。在这些电化学装置中,可充电二次电池的开发受到关注。
在可商购获得的二次电池中,在20世纪90年代早期开发的锂二次电池受到关注,因为它们相较于诸如Ni-MH电池、Ni-Cd电池和硫酸铅蓄电池之类的使用含水电解质的传统电池具有较高的驱动电压和明显更高的能量密度。
此外,为了实现高容量和高密度的目的,这种锂二次电池已被制造成具有大的表面积。为了改进导电性,已将导电材料添加至电极活性材料。然而,存在以下问题:这种导电材料不能均匀地分散或者在重复地使用电池之后发生副反应。为了解决上述问题,已建议在副反应主要发生的负极的至少一个表面上形成导电材料涂层,以抑制副反应的发生。然而,存在以下问题:由于这样的导电材料涂层使得电极组件的厚度增加,导致电阻增加。
为了形成这样的导电材料涂层,经常使用以下两种方法:一种方法是将包含负极活性材料的浆料涂覆至负极集电器的一个表面并进行干燥,并进一步涂覆用于形成导电材料涂层的浆料(下文中也被称为导电材料浆料);一种方法是将导电材料浆料涂覆至负极活性材料并同时实施干燥步骤。
然而,上述方法的问题在于:两步工序需要实施两次涂覆步骤,因而导致生产率下降,且在用于后续导电材料涂覆步骤的输送工序期间初步涂覆的负极活性材料会分离,而同时涂覆导电材料浆料的工序导致负极活性材料浆料与导电材料浆料的混合,因而可能无法控制导电材料涂层。
发明内容
技术问题
设计本公开内容以解决现有技术的问题,因此,本公开内容涉及提供一种使电极组件的厚度增加最小化并且抑制电极处的副反应的电极组件。
本公开内容还涉及提供一种不导致负极活性材料的分离、促进对导电材料涂层的控制并且提供改进的生产率的用于制造电极组件的方法。
技术方案
为了解决上述问题,本公开内容提供一种电极组件及其制造方法。根据本公开内容的第一实施方式,提供一种电极组件,包括:负极,所述负极包括在其一端处设置有负极接片的负极集电器和形成在负极集电器的至少一个表面上的负极活性材料层;正极,所述正极包括在其一端处设置有正极接片的正极集电器和形成在正极集电器的至少一个表面上的正极活性材料层;以及插置在正极和负极之间的隔板,并且所述电极组件进一步包括导电材料涂层,所述导电材料涂层包含导电材料和聚合物粘合剂并且设置在所述负极活性材料层的顶表面上,其中所述导电材料涂层与底端和形成负极接片的顶端的每一个以预定距离间隔开。
根据第二实施方式,提供第一实施方式所述的电极组件,其中所述导电材料涂层形成为与两端以预定距离间隔开。
根据第三实施方式,提供第一或第二实施方式所述的电极组件,其中所述预定距离为所述负极集电器的宽度的5-10%。
根据第四实施方式,提供第一至第三实施方式中任一个所述的电极组件,其中所述导电材料涂层具有1-5μm的厚度。
根据第五实施方式,提供第一至第四实施方式中任一个所述的电极组件,其中所述导电材料涂层进一步包括分散剂。
在本公开内容的另一方面中,还提供一种用于制造所述电极组件的方法。根据第六实施方式,提供一种用于制造电极组件的方法,所述方法包括以下步骤:(S100)制备负极、正极和隔板;(S200)将导电材料浆料涂覆至负极的表面;(S300)将正极、负极和隔板以隔板可插置在负极和正极之间这样的方式堆叠以制备堆叠结构;和(S400)对所述堆叠结构实施层压以获得电极组件。
根据第七实施方式,提供第六实施方式所述的用于制造电极组件的方法,其中导电材料浆料在进行涂覆的同时与负极集电器的顶端和底端的每一个以预定距离间隔开。
根据第八实施方式,提供第六或第七实施方式所述的用于制造电极组件的方法,其中所述层压在1-10kgf/cm2的压力下和50-150℃的温度下实施。
有益效果
根据本公开内容的设置有导电材料涂层的电极组件能够抑制电极处的副反应,同时使厚度增加最小化。
此外,根据本公开内容所述的方法,在包括设置有导电材料涂层的负极在内的电极组件的制造过程中不会发生负极活性材料的分离,能够容易地控制导电材料涂层,并且能够借助于简化的工序来改进电极组件的生产率。
附图说明
附图图示了本公开内容的优选实施方式,且与前述公开内容一起用以提供对本公开内容的技术精神的进一步理解,因而,本公开内容不应被解释为局限于这些附图。此外,为了更清楚描述的目的,附图中的一些元件的形状、尺寸、规模或比例可被放大。
图1a和图1b是图示根据本公开内容实施方式的设置有导电材料涂层的负极的示意图。
图1c是图示根据本公开内容实施方式的设置有导电材料涂层的负极的截面的示意图。
图2是图示根据本公开内容实施方式的用于制造电极组件的工序的示意性流程图。
具体实施方式
下文中,将参照附图详细地描述本公开内容的优选实施方式。在描述之前,应该理解的是,在说明书和所附权利要求书中所使用的术语不应解释为受限于一般和字典意义,而是应在以允许发明人为了最佳解释而适当地定义术语的原则的基础上基于对应于本公开内容技术方面的意义和概念来解释。因此,本文提出的描述只是为了说明目的的优选实施例而已,并不意欲限制本公开内容的范围,所以应理解的是:在不背离本公开内容的范围的情况下,可对其做出其他等同替换和修改。
在传统的锂二次电池中,锂离子经由电解质被传输至负极表面并扩散到负极活性材料中。当高反应性的锂离子过量时,发生副反应,使得相邻的电解质可能会发生还原分解而产生副产物。为了抑制负极处的这种副反应并且为了赋予导电性,已提出在负极的一个表面设置导电材料涂层的方法。然而,导电材料涂层的存在导致电极组件的整体厚度增加,且导电材料涂层充当电阻不期望地导致电池的整体电阻增加。
本公开内容集中于以下事实:由于相对较高的电流密度和产生气阱(gas trap)的可能性导致副反应主要发生在负极的中心部分。因此,根据本公开内容,导电材料涂层仅形成在负极的中心部分上,从而可使电极组件的厚度增加最小化并且可抑制负极处发生的副反应。
一方面,提供一种电极组件,所述电极组件包括负极、正极以及插置在负极和正极之间的隔板。在此,负极包括负极集电器和形成在负极集电器的至少一个表面上的负极活性材料层。此外,正极包括正极集电器和形成在正极集电器的至少一个表面上的正极活性材料层。在此,负极集电器和正极集电器分别在每一个集电器的一端处设置有负极接片和正极接片。在此,负极在负极表面上(即,负极活性材料层的表面上)进一步设置有包含导电材料和聚合物粘合剂的导电材料涂层。在此,所述导电材料涂层形成为可与负极接片以预定距离间隔开,因而当从负极平面看时(顶视图),所述导电材料涂层可不与负极接片重叠。根据本公开内容的负极在其副反应主要发生的中心部分处设置有导电材料涂层,并因此能够使由导电材料涂层导致的电阻增加最小化。
图1a和图1b是图示根据本公开内容实施方式的设置有导电材料涂层的负极的示意图。参照图1a,导电材料涂层11可形成为与负极10的顶端和底端的每一个间隔开。如在此使用的,顶端是指在负极中形成接片的集电器的端部,底端是指与顶端相对的边缘部分。此外,参照图1b,导电材料涂层11可与负极10的边缘以预定距离间隔开。在这种情况下,通过不连续地涂覆导电材料浆料,导电材料涂层11可仅形成在负极平面的中心部分处。根据本公开内容的一个实施方式,所述距离为集电器的宽度的5-10%。例如,所述距离可以为0.5-50mm、1-50mm、或5-50mm。
图1c示出了沿图1a的线A-A’截取的负极的截面。参照图1c,导电材料涂层的端部不与接片的端部重叠,而是两个端部彼此间隔开。如图1c中所示,从导电材料涂层的最靠近接片的一个边缘至负极平面垂直截取的线段B-B’并未穿过集电器的接片。
根据本公开内容的一个实施方式,导电材料涂层可具有1-50μm的厚度。
根据本公开内容的一个实施方式,导电材料涂层没有特别限制,只要其为在电化学装置中不引起化学变化的导电材料即可。一般来说,可使用炭黑、石墨、碳纤维、碳纳米管、金属粉末、导电金属氧化物、有机导电材料等。导电材料的市售产品包括乙炔黑(可购自Chevron Chemical Company、Gulf Oil Company等)、ketjen黑EC(可购自Armak Company)、Vulcan XC-72(可购自Cabot Company)、Super P(可购自MMM Company)、或类似物。导电材料的具体实例包括乙炔黑、炭黑、石墨、或类似物。
根据本公开内容的一个实施方式,聚合物粘合剂可以是选自由聚偏二氟乙烯(PVDF)、六氟丙烯(HFP)、聚偏二氟乙烯-共-六氟丙烯(polyvinylidene fluoride-co-hexafluoro propylene)、聚偏二氟乙烯-共-三氯乙烯(polyvinylidene fluoride-co-trichloroethylene)、聚甲基丙烯酸甲酯(polymethyl methacrylate)、聚丙烯酸丁酯(polybutyl acrylate)、聚丙烯腈(polyacrylonitrile)、聚乙烯吡咯烷酮(polyvinylpyrrolidone)、聚醋酸乙烯酯(polyvinylacetate)、聚乙烯-共-醋酸乙烯酯(polyethylene-co-vinyl acetate)、聚环氧乙烷(polyethylene oxide)、聚芳酯(polyarylate)、醋酸纤维素(cellulose acetate)、醋酸丁酸纤维素(cellulose acetatebutyrate)、醋酸丙酸纤维素(cellulose acetate propionate)、氰乙基普鲁兰多糖(cyanoethylpullulan)、氰乙基聚乙烯醇(cyanoethyl polyvinylalcohol)、氰乙基纤维素(cyanoethyl cellulose)、氰乙基蔗糖(cyanoethyl sucrose)、普鲁兰多糖(pullulan)、羧甲基纤维素(carboxymethyl cellulose)、丙烯腈-苯乙烯-丁二烯共聚物(acrylonitrile-styrene-butadiene copolymer)和聚酰亚胺(polyimide)所构成的群组中的任意一种或它们中的两种或多种的组合。
根据本公开内容的一个实施方式,所述导电材料涂层可进一步包括分散剂,从而可使导电材料均匀地分散以良好地形成导电网络。
正极集电器没有特别限制,只要其具有高导电性且在电池中不引起任何化学变化即可。正极集电器的具体实例可包括不锈钢、铝、镍、钛、焙烧碳、或经碳、镍、钛或银表面处理过的铝或不锈钢、或类似物。
正极活性材料可以是含锂氧化物,优选地可使用含锂过渡金属氧化物。含锂过渡金属氧化物具体实例可以是选自由LixCoO2(0.5<x<1.3)、LixNiO2(0.5<x<1.3)、LixMnO2(0.5<x<1.3)、LixMn2O4(0.5<x<1.3)、Lix(NiaCobMnc)O2(0.5<x<1.3,0<a<1,0<b<1,0<c<1,a+b+c=1)、LixNi1-yCoyO2(0.5<x<1.3,0<y<1)、LixCo1-yMnyO2(0.5<x<1.3,0≤≤y<1)、LixNi1-yMnyO2(0.5<x<1.3,O≤≤y<1)、Lix(NiaCobMnc)O4(0.5<x<1.3,0<a<2,0<b<2,0<c<2,a+b+c=2)、LixMn2-zNizO4(0.5<x<1.3,0<z<2)、LixMn2-zCozO4(0.5<x<1.3,0<z<2)、LixCoPO4(0.5<x<1.3)、和LixFePO4(0.5<x<1.3)所构成的群组中的任意一种或它们中的两种或多种的组合。含锂过渡金属氧化物可涂覆有金属,诸如铝(Al)或金属氧化物。除这些含锂过渡金属氧化物之外,亦可使用硫化物、硒化物和卤化物。
可通过以下方式形成正极活性材料层:将包含正极活性材料的浆料涂覆在正极集电器的一个表面上,随后进行干燥和辊压。
负极包括负极集电器和形成在所述负极集电器的至少一个表面上的负极活性材料层。
负极集电器没有特别限制,只要其具有导电性且在电池中不引起任何化学变化即可。负极集电器的具体实例可包括铜、不锈钢、铝、镍、钛、焙烧碳、或经碳、镍、钛、或银表面处理过的铜或不锈钢、铝镉合金或类似物。
负极活性材料能够实现锂离子嵌入/脱嵌,且负极活性材料的具体实例包括锂金属、碳质材料、金属氧化物、和它们的组合。
具体地,可使用低结晶碳和高结晶碳作为碳质材料。低结晶碳的典型实例包括软碳(soft carbon)和硬碳(hard carbon)。高结晶碳的典型实例包括Kish石墨(Kishgraphite)、热解碳(pyrolytic carbon)、中间相沥青基碳纤维(mesophase pitch basedcarbon fibers)、中间相碳微球(meso-carbon microbeads)、中间相沥青(mesophasepitches)、和诸如石油或煤焦油沥青衍生的焦炭(petroleum or coal tar pitch-derivedcokes)之类的高温焙烧碳。
金属氧化物的具体实例包括含有诸如Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr和Ba之类的至少一种金属元素的化合物。尽管这些金属氧化物可以以包括单质、合金、氧化物(TiO2、SnO2等)、氮化物、硫化物、硼化物和与锂的合金在内的任意一种形式使用,但是单质、氧化物和与锂的合金可具有高容量。具体地,包含选自Si和Sn的至少一种元素并且可包含选自Si、Ge和Sn的至少一种元素的金属化合物可提供具有更高容量的电池。
可通过以下方式形成负极活性材料层:将包含负极活性材料的浆料涂覆在负极集电器的一个表面上,随后进行干燥和辊压。
隔板可包括含有聚合物材料的多孔膜和/或无纺网。此外,所述聚合物材料可包括选自由聚烯烃聚合物树脂、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚酯、聚缩醛、聚酰胺、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚醚砜、聚苯醚、聚苯硫醚、和聚乙烯萘所构成的群组中的任意一种或它们中的两种或多种的组合。
此外,隔板可具有0.01-10μm的孔直径和5-300μm的厚度。
另一方面,提供一种用于制造上述电极组件的方法。所述方法包括以下步骤(S100)至(S400):
(S100)制备负极、正极和隔板;
(S200)将导电材料浆料涂覆至负极的表面;
(S300)将正极、负极和隔板以隔板可插置在负极和正极之间这样的方式堆叠以制备堆叠结构;和
(S400)对所述堆叠结构实施层压以获得电极组件。
根据本公开内容的一个实施方式,所述导电材料浆料是包括分散在分散介质中的导电材料和聚合物在内的液体浆料。
此外,根据本公开内容的一个实施方式,负极和/或正极可通过包括以下步骤在内的方法制备:
(S110)制备电极活性材料层浆料;
(S120)将所述浆料涂覆至集电器的至少一个表面;
(S130)干燥所述浆料;和
(S140)对在步骤(S130)中干燥的电极活性材料层进行辊压。
步骤(S140)可通过选自室温辊压、热辊压和冷辊压中的任意一种或上述辊压工序中的两种或多种的组合实施。
根据本公开内容,在将隔板插置在负极和正极之间以形成堆叠结构之后实施层压工序。在将所述堆叠结构层压之后,获得电极组件。根据本公开内容的一个实施方式,所述堆叠结构可具有隔板/负极/隔板/正极的布置。层压工序的目的是使电极与隔板贴合。当电极与隔板过度贴合时,电极和隔板的润湿性下降,导致隔板的空气渗透性降低。当电极与隔板较弱地贴合时,所得的二次电池可具有增加的电阻且加工性能可能下降。因此,优选地在适当的压力下和在适当的温度下保持粘附力,以改进电极和隔板之间的界面特性。在本文中,层压优选地在1-10kgf/cm2的压力下和50-150℃的温度下实施。
如上所述,导电材料浆料中包含的聚合物粘合剂在层压工序期间藉由压力和热量起到粘合剂的作用,因而可无需任何额外的粘合剂层或者负极活性材料层中的聚合物粘合剂的含量可降低。
根据本公开内容的一个实施方式,用于组装电极组件的方法可通过包括提供负极、正极和隔板的步骤在内的连续工序和层压工序来执行。这种连续工序可通过包括以下步骤在内的方法来实施:(S210)展开负极辊,所述负极辊上卷绕有在负极集电器的两个表面上具有负极活性材料的负极;(S220)将导电材料浆料涂覆至负极表面;(S230)展开正极辊,所述正极辊上卷绕有在正极集电器的两个表面上具有正极活性材料层的正极,并展开其上卷绕有隔板材料的隔板辊;(S240)实施堆叠以使隔板可插置在负极和正极之间,从而制备包括堆叠的负极、正极和隔板在内的堆叠结构;(S250)将所述堆叠结构引入层压单元中;和(S260)对所述层叠结构实施层压以获得电极组件。
如上所述,根据本公开内容,就在实施用于对电极和隔板进行堆叠和加压的层压步骤之前,将导电材料浆料涂覆至负极活性材料层。
根据现有技术,设置有导电材料涂层的电极通过以下方式获得:将包含负极活性材料的浆料涂覆至负极集电器的一个表面,随后进行干燥和辊压,以提供电极,然后将用于形成导电材料涂层的浆料涂覆至电极的表面并进一步实施干燥。将所获得的电极引入层压步骤以形成电极组件。在这种情况下,实施两次涂覆步骤以形成导电材料涂层。当通过上述方法制造电极组件时,连续地实施以下步骤:从其各自的放卷单元供应电极和隔板的步骤、将电极和隔板堆叠以形成堆叠结构的步骤、和将所述堆叠结构引入层压步骤的步骤。当通过这种连续工序形成导电材料涂层时,需要电极在层压步骤之前经历将导电材料浆料涂覆至电极表面并实施干燥的额外步骤。因此,电极的行驶距离被延长,整个工序被延迟,且生产效率下降。而且,这种延迟工序可能会导致活性材料与电极层分离。
同时,可以认为,恰在涂覆电极浆料之后涂覆导电材料浆料,然后同时干燥电极活性材料层和导电材料涂层,以便减少用于制造电极的方法的处理时间。然而,在这种情况下,在电极层和导电材料涂层固化之前,电极浆料可与导电材料浆料混合,由此使得难以将导电材料涂层均匀地设置在电极层的表面上。
在根据本公开内容的用于形成导电材料涂层的方法中,在形成电极之后实施层压步骤之前,将导电材料浆料涂覆至电极表面。因此,防止了导电材料涂层与电极活性材料层之间的混合。此外,在层压步骤期间干燥导电材料涂层以减少整个工序所需的时间。仅需要增加用于涂覆导电材料涂层的单元。无需提供对用于形成导电材料涂层的浆料进行干燥的独立单元。此外,由于将导电材料浆料涂覆至初步加压的电极,因此很容易控制导电材料涂层中的导电材料的含量。同时,加压电极的表面具有极低的表面粗糙度,因而对隔板显示出低粘附力。然而,当如本文所述在层压步骤中涂覆导电材料浆料时,可期望获得源自浆料的锚固效果(anchor effect)。此外,即使在未形成任何单独的粘合剂层的情况下,可期望获得源自包含在导电材料浆料中的粘合剂的粘附力的改进。
根据本公开内容,将电极辊和隔板辊展开并引入到层压单元,所述电极辊上卷绕有设置了电极活性材料层的电极,从而可在实施层压步骤之前将导电材料浆料涂覆至负极的一个表面。因而,无需单独的涂覆步骤。因此,不会发生由输送工序导致的负极活性材料的分离,生产率能够得到提高,并且能够容易地控制导电材料涂层。此外,包含在导电材料浆料中的聚合物粘合剂在层压工序期间用作粘合剂。因此,无需任何单独的粘合剂层,且负极活性材料层中的聚合物粘合剂的含量可减少。
图2是图示根据本公开内容实施方式的用于制造电极组件的方法的示意图。参照图2,通过利用导电材料涂覆单元400将导电材料浆料410涂覆至从负极辊100展开的负极的两个表面,并且将分别从正极辊200和隔板辊300展开的正极210和隔板310布置成隔板/负极/隔板/正极的结构。然后,将所述结构引入到层压单元500,从而获得电极组件。
导电材料浆料在进行涂敷的同时与负极集电器的顶端和底端的每一个以预定距离间隔开,或者导电材料浆料进行不连续地涂覆,从而可在负极的中心部分处形成导电材料涂层。
导电材料浆料可利用喷涂工艺、印刷工艺等进行涂覆,但不限于此。此外,优选地利用喷嘴涂覆导电材料浆料,从而可使其涂覆至较小的厚度。
已详细地描述了本公开内容。然而,应当理解的是,详细描述和具体实施例在表示本公开内容的优选实施方式的同时,仅仅是作为说明给出,且根据这些详细描述,对本领域的技术人员来说,本公开内容范围内的各种改变和修改将变得显而易见。
[附图标记说明]
10:负极 11:导电材料涂层
12:负极活性材料层 13:集电器
13t:电极接片 100:负极辊 110:负极
200:正极辊 210:正极 300:隔板辊
310:隔板 400:导电材料涂覆单元
410:用于形成导电材料涂层的浆料
500:层压单元。

Claims (7)

1.一种电极组件,包括:负极、正极、以及插置在所述正极和所述负极之间的隔板,其中所述负极包括在其一端处设置有负极接片的负极集电器和形成在所述负极集电器的至少一个表面上的负极活性材料层,包含导电材料和聚合物粘合剂的导电材料涂层设置在所述负极活性材料层的表面上,并且所述导电材料涂层形成为可与所述负极接片以预定距离间隔开并且可不与所述负极接片重叠,
其中所述导电材料涂层形成为与所述负极活性材料层中彼此面对的两端以预定距离间隔开。
2.根据权利要求1所述的电极组件,其中所述导电材料涂层与所述负极接片间隔开的距离为所述负极集电器的宽度的5-10%。
3.根据权利要求1所述的电极组件,其中所述导电材料涂层具有1-5μm的厚度。
4.根据权利要求1所述的电极组件,其中所述导电材料涂层进一步包括分散剂。
5.一种用于制造权利要求1至4中任一项所述的电极组件的方法,所述方法包括以下步骤:
(S100)制备负极、正极和隔板;
(S200)将导电材料浆料涂覆至所述负极的表面;
(S300)将所述正极、所述负极和所述隔板以所述隔板可插置在所述负极和所述正极之间这样的方式堆叠以制备堆叠结构;和
(S400)对所述堆叠结构实施层压以获得电极组件。
6.根据权利要求5所述的用于制造电极组件的方法,其中所述导电材料浆料在进行涂覆的同时与所述负极集电器的每一个端部边缘以预定距离间隔开。
7.根据权利要求5所述的用于制造电极组件的方法,其中(S400)的层压步骤在1-10kgf/cm2的压力下和50-150℃的温度下实施。
CN201780002848.XA 2016-01-19 2017-01-19 电极组件及其制造方法 Active CN108012572B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0006371 2016-01-19
KR20160006371 2016-01-19
PCT/KR2017/000687 WO2017126918A1 (ko) 2016-01-19 2017-01-19 전극조립체 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN108012572A CN108012572A (zh) 2018-05-08
CN108012572B true CN108012572B (zh) 2021-02-02

Family

ID=59362725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780002848.XA Active CN108012572B (zh) 2016-01-19 2017-01-19 电极组件及其制造方法

Country Status (7)

Country Link
US (1) US10665864B2 (zh)
EP (1) EP3331081B1 (zh)
JP (1) JP6664477B2 (zh)
KR (1) KR101941683B1 (zh)
CN (1) CN108012572B (zh)
PL (1) PL3331081T3 (zh)
WO (1) WO2017126918A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061111A (ko) * 2019-11-19 2021-05-27 주식회사 엘지화학 이차전지 제조방법 및 그의 제조설비
KR20220035741A (ko) * 2020-09-14 2022-03-22 주식회사 엘지에너지솔루션 초음파 절삭기를 포함하는 전극조립체 제조장치 및 이를 이용한 전극조립체 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127773A1 (en) * 2004-12-10 2006-06-15 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
US20100075225A1 (en) * 2005-09-02 2010-03-25 Ronnie Wilkins Nanocomposite electrodes and related devices
US20130309571A1 (en) * 2012-05-16 2013-11-21 Industry-University Cooperation Foundation Hanyang University Negative electrode for lithium battery, lithium battery including the same, and methods of manufacture thereof
US20150086868A1 (en) * 2013-09-26 2015-03-26 Semiconductor Energy Laboratory Co., Ltd. Secondary battery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570128B2 (ja) * 1996-12-05 2004-09-29 ソニー株式会社 非水電解液二次電池の製造方法
KR100490549B1 (ko) 2003-02-07 2005-05-17 삼성에스디아이 주식회사 카본 화합물이 흡착된 정극 활물질 및 이를 채용한 리튬전지
JP4516359B2 (ja) * 2004-05-28 2010-08-04 三井金属鉱業株式会社 非水電解液二次電池用負極
KR100601562B1 (ko) 2004-07-29 2006-07-19 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 리튬 이차 전지
JP5094013B2 (ja) * 2004-12-10 2012-12-12 キヤノン株式会社 リチウム二次電池用の電極構造体及び該電極構造体を有する二次電池
JP2006221955A (ja) 2005-02-10 2006-08-24 Toyota Motor Corp 燃料電池のセパレータ
JP5070680B2 (ja) * 2005-03-31 2012-11-14 大日本印刷株式会社 非水電解液二次電池用電極板、その製造方法、および非水電解液二次電池
US20070037060A1 (en) * 2005-08-12 2007-02-15 Lee Young G All-solid-state primary film battery and method of manufacturing the same
KR100659860B1 (ko) * 2005-09-23 2006-12-19 삼성에스디아이 주식회사 이차전지용 전극 및 이를 채용한 이차전지
CN101315993A (zh) 2007-05-28 2008-12-03 东莞新能源电子科技有限公司 一种叠片式锂离子电池的制造方法
JP5219449B2 (ja) * 2007-10-18 2013-06-26 パナソニック株式会社 非水電解液電池の製造方法
JP5439922B2 (ja) 2008-04-23 2014-03-12 日産自動車株式会社 リチウムイオン二次電池用電極およびこれを用いた電池
KR20100043727A (ko) * 2008-10-21 2010-04-29 주식회사 엘지화학 파우치형 이차전지
KR20120000708A (ko) * 2010-06-28 2012-01-04 주식회사 엘지화학 전기화학소자용 음극, 그 제조방법 및 이를 구비한 전기화학소자
JP2013077398A (ja) 2011-09-29 2013-04-25 Panasonic Corp 非水電解質二次電池用負極および非水電解質二次電池
JP2015064975A (ja) * 2013-09-24 2015-04-09 株式会社Gsユアサ 非水電解質二次電池
KR101595621B1 (ko) * 2013-09-27 2016-02-18 주식회사 엘지화학 전극조립체 제조방법
CN104332658A (zh) 2014-10-24 2015-02-04 东莞锂威能源科技有限公司 一种高安全性能锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127773A1 (en) * 2004-12-10 2006-06-15 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
US20100075225A1 (en) * 2005-09-02 2010-03-25 Ronnie Wilkins Nanocomposite electrodes and related devices
US20130309571A1 (en) * 2012-05-16 2013-11-21 Industry-University Cooperation Foundation Hanyang University Negative electrode for lithium battery, lithium battery including the same, and methods of manufacture thereof
US20150086868A1 (en) * 2013-09-26 2015-03-26 Semiconductor Energy Laboratory Co., Ltd. Secondary battery

Also Published As

Publication number Publication date
PL3331081T3 (pl) 2020-07-13
EP3331081A4 (en) 2018-06-27
WO2017126918A1 (ko) 2017-07-27
EP3331081B1 (en) 2020-04-01
JP2018535516A (ja) 2018-11-29
JP6664477B2 (ja) 2020-03-13
EP3331081A1 (en) 2018-06-06
KR101941683B1 (ko) 2019-01-23
KR20170087053A (ko) 2017-07-27
US20190013524A1 (en) 2019-01-10
US10665864B2 (en) 2020-05-26
CN108012572A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
US11901500B2 (en) Sandwich electrodes
KR101088073B1 (ko) 금속 장섬유를 포함하는 전극 구조를 갖는 전지 및 이의 제조 방법
EP3139426B1 (en) Electrode for secondary battery, method for manufacturing same, secondary battery comprising same, and cable-type secondary battery
CN107925061B (zh) 用于制造电极的方法
EP2662920A2 (en) Electrode assembly including asymmetrically coated separation membrane and electrochemical device including electrode assembly
CN109148797B (zh) 电极组件以及包括该电极组件的锂二次电池
KR20180055230A (ko) 다층 구조의 리튬-황 전지용 양극 및 이의 제조방법
KR102264546B1 (ko) 이차전지용 전극조립체
CN108012572B (zh) 电极组件及其制造方法
US20190173075A1 (en) Electrode Drying Method
KR20220061641A (ko) 음극 및 음극의 전리튬화 방법
KR102460813B1 (ko) 엠보형 분리막을 갖는 이차전지용 전극 조립체의 제조방법
EP3993089A1 (en) Method for manufacturing electrode on which resistance layer is formed
WO2021033469A1 (ja) 二次電池
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
KR102376138B1 (ko) 고로딩 전극 및 그의 제조방법
EP4024537A1 (en) Current collector comprising primer coating layer having improved adhesive strength, and manufacturing method for same
KR102606262B1 (ko) 정합성이 개선된 이차전지
KR20170061461A (ko) 리튬 이차전지
KR20220000064A (ko) 바인더층이 형성된 전극 및 이의 제조방법
KR20230001690A (ko) 절연 코팅부를 포함하는 이차전지용 전극, 이의 제조방법 및 이를 포함하는 이차전지
KR20120054143A (ko) 이차전지용 전극, 그 제조방법 및 이를 포함한 이차전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211230

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right