CN1204419A - 采用电淀积方法制备用于生产高效太阳能电池的Cu In Ga Se (x=0-2,y=0-2,z=0-2,n=0-3) - Google Patents

采用电淀积方法制备用于生产高效太阳能电池的Cu In Ga Se (x=0-2,y=0-2,z=0-2,n=0-3) Download PDF

Info

Publication number
CN1204419A
CN1204419A CN96199008A CN96199008A CN1204419A CN 1204419 A CN1204419 A CN 1204419A CN 96199008 A CN96199008 A CN 96199008A CN 96199008 A CN96199008 A CN 96199008A CN 1204419 A CN1204419 A CN 1204419A
Authority
CN
China
Prior art keywords
deposition
electro
record
film
volt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96199008A
Other languages
English (en)
Other versions
CN1155111C (zh
Inventor
R·N·比哈塔查亚
M·A·科特里拉斯
J·科尼
A·L·坦纳特
J·R·图特利
K·拉曼纳塞
R·诺非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph And Nigli
Original Assignee
Joseph And Nigli
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph And Nigli filed Critical Joseph And Nigli
Publication of CN1204419A publication Critical patent/CN1204419A/zh
Application granted granted Critical
Publication of CN1155111C publication Critical patent/CN1155111C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • G03C1/22Methine and polymethine dyes with an even number of CH groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S205/00Electrolysis: processes, compositions used therein, and methods of preparing the compositions
    • Y10S205/915Electrolytic deposition of semiconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/93Ternary or quaternary semiconductor comprised of elements from three different groups, e.g. I-III-V

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)

Abstract

可用于生产太阳能电池的高质量铜—铟—镓—联硒的薄膜是通过在玻璃/Mo基材(12、14)上电淀积至少一种构成金属(18),接着通过物理气相淀积铜和硒或铟和硒来调整该薄膜的最终化学计量为接近Cu(In,Ga)Se2来制备的。在电淀积中采用1~100千赫的交流电和直流电可提高淀积薄膜的形态和生长速度。可以采用含有至少一部分有机溶剂的电淀积溶液,同时提高阴极电位来提高该电淀积薄膜的镓含量。

Description

采用电淀积方法制备用于生产高效太阳能电池的 CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3) 前体薄膜的方法
相关申请
本申请是1995年9月25日提交的No.60/004269号临时申请的部分继续。
本发明涉及薄膜半导体器件的制备方法。更具体地说,本发明涉及用于太阳能电池的铜-铟-镓-硒化物薄膜的电淀积方法。
铜-铟-联硒化物(CuInSe2)和铜-铟-镓-联硒化物(CuIn1-xGaxSe2)的黄铜矿三元薄膜通常是指Cu(In、Ga)Se2、CIGS或简单的CIS,近年来它们已经成为人们关注和对半导体器件的研究的重点。硫也可以并且有时代替硒,这样该化合物有时甚至通常是指Cu(In、Ga)(Se,S)2,以便包括所有可能的组合。这些装置也可以根据它们的组成元素族称I-III-VI2装置。
这些器件用作光电设备的器件或者太阳能电池吸收器是特别有利的。对于光电设备来说,p-型CIGS层与n-型CdS层结合,形成一个p-n异质结的CdS/CIGS器件。CIGS的直接禁带宽度产生一个大的光学吸收常数,反过来允许采用厚度1~2微米左右的薄层。CIGS器件的其它优点是它们的长期稳定性。
用于制备CIGS薄膜的各种方法已有报道。一些早期的技术包括在含硒气体包括H2Se存在情况下,在基材上加热铜和铟。在含硒气体存在情况下加热铜和铟膜已知称为硒化。采用H2Se进行硒化的一个缺点是H2Se气体的毒性大,因此对大规模生产环境中的人们非常危险。
Eberspacher等的US5045409公开了通过磁控管溅射淀积铜和铟膜,和通过热蒸发,接着通过在不同气体存在情况下加热淀积硒膜的方法。其它制备CIS膜的方法包括分子束外延,以一个步骤或多个步骤电淀积,和单晶和多晶膜的气相淀积。
尽管气相淀积技术已用于生产效率高至百分之十七(17%)的太阳能电池,气相淀积仍是昂贵的。因此,通过气相淀积生产的太阳能电池一般限于用在试验室试验的设备上,并且不适于进行大规模的生产。另一方面,采用电淀积技术制备的薄膜太阳能电池通常要便宜的多。但是,通过电淀积生产的太阳能电池通常效率低。例如,在Solar Cells with ImprovedEfficiency Based on Electrodeposited Copper Indium Diselenide ThinFilms,ADVANCED MATERIALS,Vol.6,No.5(1994),Guillemoles等指出通过电淀积生产的太阳能电池的效率为5.6%左右。
本发明的目的在于提供一种改进的方法,用于生产高质量的薄膜Cu(In,Ga)Se2太阳能电池。
本发明的另一个目的在于提供低成本高质量的并具有高转化效率的薄膜太阳能电池。
本发明还有一个目的是提供了一种方法,用于生产用于太阳能的和非太阳能的电池的Cu-In、Cu-Se、Cu-In-Se和Cu-In-Ga-Se金属薄膜。
本发明还有一个目的是提供一种方法,用于电淀积含镓金属薄膜太阳能电池前体。
为了达到与本发明有关的上述目的和其它目的以及有利效果,正如在此所作的具体的和概括的描述,本发明的方法包括电淀积一个CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)层,优选地采用直流电结合交流电,接着通过气相淀积另外的铜和硒或铟和硒,来调整使最终的组合物非常接近化学计量Cu(In,Ga)Se2。这种独特的两步薄膜淀积方法是使前体金属膜通过廉价的电淀积方法进行淀积,再采用更加昂贵但是技术更加精确的物理气相淀积方法调节最终的膜,使其在所需的化学计量范围内。太阳能电池也可以通过例如在CdS的化学浴淀积(CBD)之后溅射ZnO,并且加上双层金属接触器和任选地防反射层来完成。根据本发明方法生产的太阳能电池是一个效率为9.44%的装置。
本发明的其它目的、优点和新的特征一部分将在下面的说明书中说明,并且一部分对本领域的技术人员来说通过对下面说明和附图的研究是清楚的。
图1是根据本发明制备的CIGS光电设备的截面图。
图2是图1所示的导电氧化锌层28的截面图。
图3是根据本发明实施例3生产的CdS/CuInSe2太阳能电池的电流与电压的特性曲线图。
图4是实施例3的CdS/CuInSe2太阳能电池的相对量子效率与波长的曲线图。
本发明包括一个基本上是两个步骤的方法,用于生产高质量低成本的薄膜CIGS半导体器件,该器件具有光电特性并特别适合用于太阳能电池。在第一个步骤中,在基材上电淀积CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)的前体膜,该基材是例如用钼涂敷的玻璃。第一个步骤包括一个特定的方法和用于电淀积镓和其它元素的电淀积电解浴,以及交流电和直流电的特定用法。
第二个步骤是单独的或与Ga结合的Cu+Se或In+Se的物理气相淀积。在第二步中,精确控制整个膜的组成,以使生成的薄膜与化学计量Cu(In,Ga)Se2非常接近。这两个步骤都可在具有大表面积的基材上进行。因此本发明的方法可以有效地生产具有大面积、高效率的太阳能电池。
参考图1,CdS/CIGS光电设备10包括基材12,它可以是例如钠钙硅玻璃或者无定形7059玻璃。基材12还含有一个厚度约为1~2微米的钼的背面接触层14。钼可以采用直流电溅射方法从转筒磁控管对电极(CMAG)淀积。为了提高Mo层14和要被淀积的前体膜之间的粘着性,也可以通过电淀积淀积另一个粘合层16。在淀积Mo层14和任选地铜粘合层16之后,该基材可采用例如丙醇脱脂并在氮气流中干燥。
再通过电淀积淀积金属前体膜18。该前体膜含有一种或多种元素铜、铟、镓和硒。淀积这些金属,电淀积是比气相淀积更廉价的方法。但是,它不能在电淀积过程中根据需要控制被淀积金属的比例。因此,现有的完全通过电淀积方法淀积的CIGS层的转化效率低。在本发明中,结合电淀积步骤和其后的气相淀积步骤。这就使要被淀积的前体金属大部分采用廉价的电淀积步骤,接着进行气相淀积步骤,以精确控制最终的金属比例。这就是生产高效电池的廉价方法。金属前体膜18的组成通常被表示为CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)。金属前体膜18应淀积约1~3微米厚,厚度可通过库仑测定来控制。
已经发现采用交流电压和直流电压来电淀积膜产生改进的结果。交流电压改进了膜的形态。也可以认为交流电压通过产生其它成核中心来提高薄膜的成核(生长)。对于完全是水基的电镀溶液来说,可利用的直流电压范围是约1~5V,优选地电压约为2V。通过重叠1~100千赫的频率的0.2~5.0V的交流电压,优选的10~30千赫的频率的0.3~1.0V的交流电压可以获得改进的结果。发现约0.45V的交流电在约18.1千赫的频率会产生良好的结果。将电解溶液的pH调节至约为1.0~4.0,更优选地是约1.4~2.4。电解溶液优选地约为10℃~80℃,更优选地是约24℃。往电解槽中加入支持电解质可以再提高该电解溶液的导电性,进一步提高电淀积的速度。已经发现盐,例如NaCl、LiCl或者Na2SO4是可用于本发明某些实施方案的合适的支持电解质。
在整个水基溶液中,水分子的电解在约2~3伏时开始发生至不期望的程度。生成的O2-和OH-离子与淀积金属离子或淀积的金属结合,在前体膜18上形成不需要的金属氧化物和氢氧化物。为了克服上述缺陷,电解溶液中的水可以部分地或者全部被一种或多种有机溶剂,如二甲亚砜(DMSO)代替。提高电淀积溶液中的有机溶剂含量会提高阴极电位,而不会不利地提高金属氧化物和氢氧化物形成的速度。提高的阴极电位会增大前体膜的淀积速度。另一个优点是提高阴极电位会提高镓相对于其它淀积金属的淀积速度。因此,采用含有一种或多种有机溶剂的溶液会使阴极电位可以在宽范围内选择,以便使已淀积前体膜18具有所需的化学计量。当采用有机溶剂时,优选阴极电位约为3~10V的直流电和频率约为1~100千赫的0.2~5.0V交流电。约5V的直流电压和频率约18.1千赫的0.45V交流电压会产生良好的结果。
根据需要第二种电解溶液可用于在气相淀积阶段之前调节电淀积膜的化学计量。例如第一个电淀积步骤可以生成含有少于所需量的镓的CIGS前体膜。尽管在气相淀积阶段可以提高镓的含量,但采用第二种电淀积溶液淀积一定量的镓,以便在气相淀积步骤精确按化学计量调整之前粗略按化学计量调整,这样会使成本更低。另一种采用第二种电淀积溶液的可行方法是在淀积膜上形成一个组分梯度,这是Michelsen等在US4335266中提出的,其关于用于太阳能电池和其它用途的组成分级的CIGS薄膜的说明在此结合可作为参考。还有另一个在电淀积过程中使得组成分级的方法,即随着电淀积的进行改变工艺参数,如阴极电位、阳离子浓度、pH或者温度。
下面给出几个根据本发明生产的电淀积金属前体膜的实施例。这些实施例包括In-Se、Cu-Se和Cu-In-Se前体膜。对于这些前体膜,加入Ga以增加禁带宽度。可以通过分步电淀积来加入Ga,而优选地是在气相淀积步骤中通过蒸发元素镓来加入。还给出一个新溶液和方法的例子,即连同其它前体金属一起电淀积Ga,以便在一个步骤淀积Cu-In-Ga-Se前体膜。该溶液含有铜、铟、镓和硒各元素的离子。这些离子可以以可溶金属盐的形式采用。
在电淀积前体膜18之后,应将其清洗。适用的方法是采用去离子水清洗前体膜18,并在氮气流中将其干燥。在清洗前体膜18之后,通过物理气相淀积法淀积一个带有或者不带有镓的In+Se或Cu+Se的附加层20,以便将最终的膜组分调节为比例约为Cu=1~1.2∶(In,Ga)=1~1.2∶Se=2~2.5,最优选地是约为1∶1∶2。通过控制In/Ga的比例,CdS和CIGS之间的禁带宽度可以被调整到理想值或者接近理想值。约为1.45eV的禁带宽度被认为对地球上的太阳能转化是理想的,并且其是通过In/Ga比例约为3∶1达到的。基材(前体膜)的温度在PVD过程中为300~600℃,优选地约550℃。
在PVD之后,应对膜进行退火。退火改进了膜的均匀性和质量。高质量的CIGS膜在膜中没有会降低转化率的多余的铜核、空隙或者空位。在250~500℃的真空中对膜进行退火,接着以约3℃/分钟的速度冷却,以避免温度骤降,这样会产生良好的结果。因为硒具有比铜、铟或者镓更高的蒸汽压,硒在气相淀积和退火的高温步骤过程中会从膜中流失。作为补偿,这些步骤过程中的气体可以含有中等过压的硒。在优选的实施方案中,该膜在从PVD温度冷却到退火温度过程中以5~100埃/秒的速度进行硒化。
一旦CIGS层18和20共同淀积并退火,接下来淀积含有硫化镉的n-型半导体的薄层22。CdS层22优选地通过化学浴淀积(CBD)淀积,厚度为200~1000埃。CBD浴可以由0.08gmCdSO4、2.5gm硫脲和27.5gm NH4OH溶解在200毫升水中制备。淀积温度约为40~80℃。
接着淀积导电宽禁带n-型半导体材料的层28。在优选实施方案中,层28包括两个氧化锌层24和26,如图2所示。首先,采用RF溅射以约0.62瓦/cm2在压力为10毫乇的氩气等离子体中淀积氧化锌层24。其次,也采用RF溅射以约1.45瓦/cm2在压力为10毫乇的氩气等离子体中淀积含有约1~5%的掺有Al2O3的氧化锌的第二氧化锌层26。在典型实施方案中,第一层的电阻率为50~200欧姆/cm2的,第二层的电阻率为15~20欧姆/cm2。整体ZnO层的透射率为80~85%。
双层金属接点30可以采用电子束系统或其它技术制备。在典型实施方案中,第一个金属接点层是500~1000埃厚的Ni,第二个金属接点层是1~3微米厚的Al。金属接点30一般形成遍布器件的集电面的细格线,并与合适的电流集电极(未表示出)连接。制成器件的效率通过电子束加上抗反射涂层32,例如600~1000埃的MgF2的层而进一步提高。根据下面实施例3生产的器件的转化效率为9.44%。
实施例1
将In1-2Se1-3的金属前体膜电淀积在涂敷有厚度约为500埃的Mo或Mo/Cu层的玻璃基材上。采用含有溶解在200毫升水中的2.25gmInCl3和0.41gmH2SeO3的电镀溶液淀积该前体膜。采用稀HCl(10%体积)将溶液的pH调节到1.4~2.4。采用2~5伏直流电压和频率为18.1千赫的0.45伏交流电压淀积该膜。该膜的厚度为1~3微米并附着在基材上。
实施例2
采用含有溶解在300毫升水中的6.21gmCu(NO3)2·6H2O和1.6gmH2SeO3的电镀溶液,将Cu1-2Se1-3的金属前体膜电淀积在基材上。采用稀HCl(10%体积)将pH调节到1.4~2.4。采用2~5伏直流电压和频率为18.1千赫的0.45伏交流电压淀积该膜。该淀积层的厚度为1~3微米并附着在基材上。
实施例3
采用含有溶解在1050毫升水中的4.47gmCuCl2、5.67gmInCl3和3.39gmH2SeSO3的电镀溶液,将Cu1-2In1-2Se1-3的金属前体膜电淀积在基材上。采用稀HCl(10%体积)将pH调节到1.4~2.4,采用2~5伏直流电压和频率为18.1千赫的0.45伏交流电压淀积该膜。淀积层的厚度为1~3微米并附着在基材上。该电淀积膜含铟稍有不足。接着通过气相淀积来加入铟,将最终的含量调整至约CuInSe2。接着加入CdS和ZnO以制成太阳能电池。使制成的太阳能电池在25℃受到ASTM E892-87Global(1000Wm-2)标准放射光谱的作用。完成的太阳能电池的面积为0.4285cm2,其性能参数测定如下:
Voc=0.4138V        VPmax=0.3121V
Isc=15.40mA        IPmax=12.96mA
Jsc=35.94mAcm-2    Pmax=4.045mW
填充系数=63.47%   效率=9.44%
图3是该器件的I-V图。图4是该器件的相对量子效率图。该器件只含有Cu-In-Se,不含镓。该器件的效率没有抗反射层时为8.76%,加上抗反射层时效率是9.44%。可以认为通过加入镓,将生成电池的效率提高到百分之十四(14%)左右。
实施例4
采用含有溶解在450毫升水中的1.12gmCu(NO3)2·6H2O、12.0gmInCl3、4.60gmGa(NO3)3·xH2O和1.80gmH2SeO3的电镀溶液,将Cu1-2In1-2Ga0.01-1Se1-3的金属前体膜电淀积在基材上。这相当于约2.49gm/lCu(NO3)2·6H2O、26.7gm/lInCl3、10.2gm/lGa(NO3)3·xH2O和4.0gm/lH2SeO3和分别为大约0.0084、0.12、0.28和0.31摩尔浓度的铜、铟、镓和硒离子。采用稀HCl(10%体积)将pH调节到1.4~2.4。采用2~5伏的直流电压和频率为18.1千赫的0.45伏交流电压淀积该膜。该淀积层厚度为1~3微米并附着在基材上。
实施例5
采用含有溶解在450毫升DMSO中的1.496gmCu(NO3)·5H2O、14.929gmInCl3、1.523gmH2SeO3和7.192gmGa(NO3)3的电镀溶液,将Cu1-2In1-2Ga0.01-1Se1-3的金属前体膜电淀积在基材上。采用电压为5V的直流电在25℃和在50℃淀积该膜。
实施例6
采用含有溶解在400毫升DMSO和50毫升水的混合物中的1.496gmCu(NO3)·5H2O、14.929gmInCl3、1.523gmH2SeO3和7.192gmGa(NO3)3的电镀溶液,将Cu1-2In1-2Ga0.01-1Se1-3的金属前体膜电淀积在基材上。采用电压为5V的直流电在25℃和在50℃淀积该膜。
实施例7
采用含有溶解在400毫升DMSO和50毫升水的混合物中的1.496gmCu(NO3)·5H2O、14.929gmInCl3、1.523gmH2SeO3、7.192gmGa(NO3)3和10gmNa2SO4和20gmLiCl的电镀溶液,将Cu1-2In1-2Ga0.01-1Se1-3的金属前体膜电淀积在基材上。采用电压为5V的直流电在25℃和在50℃淀积该膜。
如上所述的本发明可以结合到各种用途中,例如将太阳能转变成电能用于基线发电。其它用途包括用于太阳能计算机、电池充电器,如高速公路紧急呼叫箱、光电眼、夜间安全灯活化剂、用于照相和其它用途的光源等等。
尽管本发明参照优选实施方案和附图以及实施例进行了详细说明,对本领域的技术人员来说,本发明的各种用途和变形可以不偏离本发明的实质和范围完成。因此,可以认为在此的详细说明书和附图不是对本发明范围的限定,它可以从下面的权利要求书推导出来,并且它们在法律上是等效的。

Claims (28)

1.一种制备金属薄膜的方法,该方法包括步骤:
在基材上电淀积CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)的层;
通过气相淀积在所说的CuxInyGazSen层上淀积足量的In+Se或Cu+Se,以在基材上生成Cu(In,Ga)Se2薄膜,其中所说的薄膜具有约为Cu=1~1.2∶(In,Ga)=1~1.2∶Se=2~2.5的化学计量比例。
2.权利要求1记载的方法,其中所说的CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)层含有In1-2Se1-3
3.权利要求1记载的方法,其中所说的CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)层含有Cu1-2Se1-3
4.权利要求1记载的方法,其中所说的CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)层含有Cu1-2In1-2Se1-3
5.权利要求1记载的方法,其中所说的CuxInyGazSen(x=0~2,y=0~2,z=0~2,n=0~3)层含有Cu1-2In1-2Ga0.01-1Se1-3(x=1~2,y=1~2,z=0.01~1,n=1~3)。
6.权利要求1记载的方法,其中气相淀积包括物理气相淀积。
7.权利要求6记载的方法,其中物理气相淀积在约550℃的温度下进行。
8.权利要求1的方法,其中电淀积是在约1-10伏的直流电压下进行。
9.权利要求8记载的方法,其中电淀积是在频率为1~100千赫约0.2~5.0伏的的交流电压进行。
10.权利要求9记载的方法,其中电淀积在水基电淀积溶液中进行,所说的直流电压约为1~5伏,所说的交流电压约为0.3~1.0伏,频率为10~30千赫。
11.权利要求10记载的方法,其中直流电压约为2伏,交流电压约为0.45伏,频率为18.1千赫。
12.权利要求8记载的方法,其中直流电压约为3~10伏,电淀积在含有至少一种有机溶剂的电淀积溶液中进行,并且电淀积进一步采用频率为1~100千赫的约0.2~5.0伏的交流电压进行。
13.权利要求12记载的方法,其中所说的交流电压约为0.45伏,频率约为18.1千赫。
14.权利要求1记载的方法,其中电淀积步骤是在含有至少一种用于提高电淀积溶液导电性并提高CuxInyGazSen层的淀积速度的支持电解质的电淀积溶液中进行。
15.权利要求14记载的方法,其中所说的支持电解质含有至少一种选自NaCl、LiCl和Na2SO4的化合物。
16.权利要求1记载的方法进一步包括下面的步骤:
通过化学浴淀积在基材上淀积CdS;和
通过RF溅射在基材上淀积ZnO。
17.一种设备,包括:
采用按照权利要求1记载的方法制备的金属薄膜制成的太阳能电池,该太阳能电池受到光作用时产生电能;
利用该太阳能电池的电势的电路。
18.用于电淀积太阳能电池前体薄膜的方法,该方法包括:
在基材上电淀积含有铜、铟、镓和硒的薄膜,该电淀积是在含有铜、铟、镓和硒离子的电淀积溶液中进行。
19.权利要求18记载的方法,其中所述的电淀积溶液含有浓度分别约为0.0084、0.12、0.28和0.31摩尔浓度的铜、铟、镓和硒离子。
20.权利要求19记载的方法,其中所说的电淀积溶液含有约2.49gm/l的Cu(NO3)2·6H2O,26.7gm/l的InCl3,10.2gm/l的Ga(NO3)3和4.0gm/l的H2SeO3
21.权利要求18记载的方法,其中电淀积溶液的pH约为1.0~4.0。
22.权利要求18记载的方法,其中电淀积在直流电压为1~10伏下进行。
23.权利要求22记载的方法,其中电淀积在交流电压约为0.2~5.0伏,频率为1~100千赫下进行。
24.权利要求23记载的方法,其中所说的交流电压的电压约为0.45伏,频率为18.1千赫。
25.权利要求18记载的方法,其中电淀积溶液进一步含有至少一种有机溶剂,电淀积的直流电压约为3~10伏。
26.一种制备太阳能电池前体薄膜的方法,该方法包括下面的步骤:
采用直流电压和约为0.1~5.0的交流电压在基材上电淀积金属前体薄膜。
27.权利要求26的方法,其中交流电压约为0.3~1.0伏,频率为10~30千赫。
28.权利要求27的方法,其中交流电压约为0.45伏,频率为18.1千赫。
CNB961990082A 1995-12-12 1996-12-11 制备太阳能电池前体薄膜的方法及太阳能电池 Expired - Fee Related CN1155111C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US571,150 1995-12-12
US08/571,150 US5730852A (en) 1995-09-25 1995-12-12 Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells

Publications (2)

Publication Number Publication Date
CN1204419A true CN1204419A (zh) 1999-01-06
CN1155111C CN1155111C (zh) 2004-06-23

Family

ID=24282508

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB961990082A Expired - Fee Related CN1155111C (zh) 1995-12-12 1996-12-11 制备太阳能电池前体薄膜的方法及太阳能电池

Country Status (14)

Country Link
US (3) US5730852A (zh)
EP (1) EP0956600B1 (zh)
JP (1) JP3753739B2 (zh)
KR (1) KR19990071500A (zh)
CN (1) CN1155111C (zh)
AU (1) AU705545B2 (zh)
BR (1) BR9612022A (zh)
CA (1) CA2239786C (zh)
DE (1) DE69621467T2 (zh)
HK (1) HK1023849A1 (zh)
IL (1) IL124750A0 (zh)
NO (2) NO320118B1 (zh)
SA (1) SA98190373B1 (zh)
WO (1) WO1997022152A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461460C (zh) * 2003-12-22 2009-02-11 绍于腾玻璃集团公司 处理粉末颗粒的方法
CN100466298C (zh) * 2003-07-26 2009-03-04 银太阳科技发展公司 太阳能电池吸收层的制造方法
CN100465351C (zh) * 2006-03-02 2009-03-04 桂林工学院 一种太阳能电池薄膜材料的电化学沉积制备工艺
CN101346823B (zh) * 2005-12-21 2010-06-23 壳牌可再生能源有限公司 制备薄膜光伏器件的方法和薄膜光伏器件
WO2011075967A1 (zh) * 2009-12-24 2011-06-30 四会市维力有限公司 搪瓷太阳能建筑墙板
CN101771099B (zh) * 2008-12-30 2011-08-17 中国电子科技集团公司第十八研究所 一种铜铟镓硒半导体薄膜的制备方法
CN101740660B (zh) * 2008-11-17 2011-08-17 北京华仁合创太阳能科技有限责任公司 铜铟镓硒太阳能电池、其吸收层薄膜及该薄膜的制备方法、设备
CN101475315B (zh) * 2009-02-03 2011-08-17 泉州创辉光伏太阳能有限公司 黄铜矿类铜铟镓的硒化物或硫化物半导体薄膜材料的制备方法
CN102268702A (zh) * 2011-07-07 2011-12-07 中南大学 铜铟镓硒薄膜的光电化学沉积制备法
CN102859046A (zh) * 2009-12-18 2013-01-02 索罗能源公司 Ib/iiia/via族薄膜太阳能吸收器的镀覆化学物

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508676C2 (sv) * 1994-10-21 1998-10-26 Nordic Solar Energy Ab Förfarande för framställning av tunnfilmssolceller
US5918111A (en) * 1995-03-15 1999-06-29 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacturing chalcopyrite semiconductor thin films
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
AU6786998A (en) * 1997-04-21 1998-11-13 Davis, Joseph & Negley Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
US6258620B1 (en) * 1997-10-15 2001-07-10 University Of South Florida Method of manufacturing CIGS photovoltaic devices
CN1087872C (zh) * 1998-01-16 2002-07-17 中国地质大学(北京) 制备CuInSe2半导体薄膜的溶胶-凝胶-Se化工艺
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
JP2000091603A (ja) * 1998-09-07 2000-03-31 Honda Motor Co Ltd 太陽電池
JP2000091601A (ja) * 1998-09-07 2000-03-31 Honda Motor Co Ltd 太陽電池
US6323417B1 (en) 1998-09-29 2001-11-27 Lockheed Martin Corporation Method of making I-III-VI semiconductor materials for use in photovoltaic cells
JP3089407B2 (ja) * 1998-10-09 2000-09-18 工業技術院長 太陽電池薄膜の作製方法
US6409907B1 (en) * 1999-02-11 2002-06-25 Lucent Technologies Inc. Electrochemical process for fabricating article exhibiting substantial three-dimensional order and resultant article
AU2249201A (en) 1999-11-16 2001-05-30 Midwest Research Institute A novel processing approach towards the formation of thin-film Cu(In,Ga)Se2
US6551483B1 (en) * 2000-02-29 2003-04-22 Novellus Systems, Inc. Method for potential controlled electroplating of fine patterns on semiconductor wafers
US7211175B1 (en) 2000-02-29 2007-05-01 Novellus Systems, Inc. Method and apparatus for potential controlled electroplating of fine patterns on semiconductor wafers
US20020189665A1 (en) * 2000-04-10 2002-12-19 Davis, Joseph & Negley Preparation of CIGS-based solar cells using a buffered electrodeposition bath
DE20021644U1 (de) * 2000-12-20 2002-05-02 ALANOD Aluminium-Veredlung GmbH & Co.KG, 58256 Ennepetal Solarkollektorelement
FR2820241B1 (fr) * 2001-01-31 2003-09-19 Saint Gobain Substrat transparent muni d'une electrode
US20040131792A1 (en) * 2001-03-22 2004-07-08 Bhattacharya Raghu N. Electroless deposition of cu-in-ga-se film
US6537846B2 (en) 2001-03-30 2003-03-25 Hewlett-Packard Development Company, L.P. Substrate bonding using a selenidation reaction
US7053294B2 (en) * 2001-07-13 2006-05-30 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
US6559372B2 (en) * 2001-09-20 2003-05-06 Heliovolt Corporation Photovoltaic devices and compositions for use therein
US6736986B2 (en) 2001-09-20 2004-05-18 Heliovolt Corporation Chemical synthesis of layers, coatings or films using surfactants
US6881647B2 (en) 2001-09-20 2005-04-19 Heliovolt Corporation Synthesis of layers, coatings or films using templates
WO2003026028A2 (en) * 2001-09-20 2003-03-27 Heliovolt Corporation Apparatus for the synthesis of layers, coatings or films
US6787012B2 (en) 2001-09-20 2004-09-07 Helio Volt Corp Apparatus for the synthesis of layers, coatings or films
US6500733B1 (en) 2001-09-20 2002-12-31 Heliovolt Corporation Synthesis of layers, coatings or films using precursor layer exerted pressure containment
US7371467B2 (en) * 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
WO2003105238A1 (en) * 2002-06-11 2003-12-18 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Polycrystalline thin-film solar cells
AU2003275239A1 (en) * 2002-09-30 2004-04-23 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells
WO2005006393A2 (en) * 2003-05-27 2005-01-20 Triton Systems, Inc. Pinhold porosity free insulating films on flexible metallic substrates for thin film applications
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US7605328B2 (en) * 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US7700464B2 (en) * 2004-02-19 2010-04-20 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from nanoflake particles
US8309163B2 (en) * 2004-02-19 2012-11-13 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
US20070163641A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
US7604843B1 (en) 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
US20070163639A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from microflake particles
US8846141B1 (en) 2004-02-19 2014-09-30 Aeris Capital Sustainable Ip Ltd. High-throughput printing of semiconductor precursor layer from microflake particles
US8372734B2 (en) * 2004-02-19 2013-02-12 Nanosolar, Inc High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles
US8623448B2 (en) * 2004-02-19 2014-01-07 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US20070163642A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic microflake articles
US8329501B1 (en) 2004-02-19 2012-12-11 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
US20060060237A1 (en) * 2004-09-18 2006-03-23 Nanosolar, Inc. Formation of solar cells on foil substrates
US20070169809A1 (en) * 2004-02-19 2007-07-26 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
JP5259178B2 (ja) * 2004-03-15 2013-08-07 ソロパワー、インコーポレイテッド 太陽電池製造のための半導体の薄層を堆積する方法および装置
US7736940B2 (en) * 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
US7611573B2 (en) * 2004-04-02 2009-11-03 Alliance For Sustainable Energy, Llc ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells
CH697007A5 (fr) * 2004-05-03 2008-03-14 Solaronix Sa Procédé pour produire un composé chalcopyrite en couche mince.
US7838868B2 (en) * 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
US7732229B2 (en) * 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US8541048B1 (en) 2004-09-18 2013-09-24 Nanosolar, Inc. Formation of photovoltaic absorber layers on foil substrates
US8927315B1 (en) 2005-01-20 2015-01-06 Aeris Capital Sustainable Ip Ltd. High-throughput assembly of series interconnected solar cells
US7582506B2 (en) * 2005-03-15 2009-09-01 Solopower, Inc. Precursor containing copper indium and gallium for selenide (sulfide) compound formation
FR2886460B1 (fr) * 2005-05-25 2007-08-24 Electricite De France Sulfurisation et selenisation de couches de cigs electrodepose par recuit thermique
CN101263588B (zh) * 2005-06-24 2013-03-20 科纳卡技术股份有限公司 制备电极的方法
KR20080050388A (ko) * 2005-07-12 2008-06-05 코나르카 테크놀로지, 인코포레이티드 광전지의 전달 방법
WO2007011742A2 (en) * 2005-07-14 2007-01-25 Konarka Technologies, Inc. Cigs photovoltaic cells
KR100850000B1 (ko) * 2005-09-06 2008-08-01 주식회사 엘지화학 태양전지 흡수층의 제조방법
WO2007041650A1 (en) * 2005-10-03 2007-04-12 Davis, Joseph And Negley Single bath electrodeposited cu(in,ga)se2 thin films useful as photovoltaic devices
US20070151862A1 (en) * 2005-10-03 2007-07-05 Dobson Kevin D Post deposition treatments of electrodeposited cuinse2-based thin films
US20070079866A1 (en) * 2005-10-07 2007-04-12 Applied Materials, Inc. System and method for making an improved thin film solar cell interconnect
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
US7713773B2 (en) * 2005-11-02 2010-05-11 Solopower, Inc. Contact layers for thin film solar cells employing group IBIIIAVIA compound absorbers
US7442413B2 (en) * 2005-11-18 2008-10-28 Daystar Technologies, Inc. Methods and apparatus for treating a work piece with a vaporous element
WO2007070880A1 (en) * 2005-12-15 2007-06-21 University Of Delaware Post-deposition treatments of electrodeposited cu(in-ga)se2-based thin films
US7507321B2 (en) * 2006-01-06 2009-03-24 Solopower, Inc. Efficient gallium thin film electroplating methods and chemistries
US20070160763A1 (en) 2006-01-12 2007-07-12 Stanbery Billy J Methods of making controlled segregated phase domain structures
US7767904B2 (en) 2006-01-12 2010-08-03 Heliovolt Corporation Compositions including controlled segregated phase domain structures
US8084685B2 (en) * 2006-01-12 2011-12-27 Heliovolt Corporation Apparatus for making controlled segregated phase domain structures
US20070215197A1 (en) * 2006-03-18 2007-09-20 Benyamin Buller Elongated photovoltaic cells in casings
CN101454486B (zh) * 2006-04-04 2013-03-13 索罗能源公司 用于卷绕处理光电薄膜的组分控制
US20070227633A1 (en) * 2006-04-04 2007-10-04 Basol Bulent M Composition control for roll-to-roll processed photovoltaic films
RU2435874C2 (ru) 2006-04-14 2011-12-10 СИЛИКА ТЕК, ЭлЭлСи Установка плазменного осаждения и способ изготовления солнечных элементов
EP2037006B9 (en) * 2006-05-24 2012-02-15 ATOTECH Deutschland GmbH Metal plating composition and method for the deposition of Copper-Zinc-Tin suitable for manufacturing thin film solar cell
US20080023059A1 (en) * 2006-07-25 2008-01-31 Basol Bulent M Tandem solar cell structures and methods of manufacturing same
JP5246839B2 (ja) * 2006-08-24 2013-07-24 独立行政法人産業技術総合研究所 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子
US8334450B2 (en) * 2006-09-04 2012-12-18 Micallef Joseph A Seebeck solar cell
US8066865B2 (en) * 2008-05-19 2011-11-29 Solopower, Inc. Electroplating methods and chemistries for deposition of group IIIA-group via thin films
US7892413B2 (en) * 2006-09-27 2011-02-22 Solopower, Inc. Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US20090183675A1 (en) * 2006-10-13 2009-07-23 Mustafa Pinarbasi Reactor to form solar cell absorbers
US20080175993A1 (en) * 2006-10-13 2008-07-24 Jalal Ashjaee Reel-to-reel reaction of a precursor film to form solar cell absorber
US20100139557A1 (en) * 2006-10-13 2010-06-10 Solopower, Inc. Reactor to form solar cell absorbers in roll-to-roll fashion
US20090050208A1 (en) * 2006-10-19 2009-02-26 Basol Bulent M Method and structures for controlling the group iiia material profile through a group ibiiiavia compound layer
US20080169025A1 (en) * 2006-12-08 2008-07-17 Basol Bulent M Doping techniques for group ibiiiavia compound layers
DE102007003554A1 (de) * 2007-01-24 2008-07-31 Bayer Materialscience Ag Verfahren zur Leistungsverbesserung von Nickelelektroden
US8034317B2 (en) 2007-06-18 2011-10-11 Heliovolt Corporation Assemblies of anisotropic nanoparticles
US20090013292A1 (en) * 2007-07-03 2009-01-08 Mentor Graphics Corporation Context dependent timing analysis and prediction
JP2011503847A (ja) 2007-11-02 2011-01-27 ワコンダ テクノロジーズ, インコーポレイテッド 結晶質薄膜光起電力構造およびその形成方法
JP4620105B2 (ja) * 2007-11-30 2011-01-26 昭和シェル石油株式会社 Cis系薄膜太陽電池の光吸収層の製造方法
US20120003786A1 (en) * 2007-12-07 2012-01-05 Serdar Aksu Electroplating methods and chemistries for cigs precursor stacks with conductive selenide bottom layer
US20100140098A1 (en) * 2008-05-15 2010-06-10 Solopower, Inc. Selenium containing electrodeposition solution and methods
US8409418B2 (en) * 2009-02-06 2013-04-02 Solopower, Inc. Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
US8425753B2 (en) * 2008-05-19 2013-04-23 Solopower, Inc. Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
CN101903567A (zh) * 2007-12-21 2010-12-01 关西涂料株式会社 表面处理的金属基材的制造方法和通过所述制造方法获得的表面处理的金属基材,以及金属基材的处理方法和通过所述方法处理的金属基材
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
US20090235987A1 (en) * 2008-03-24 2009-09-24 Epv Solar, Inc. Chemical Treatments to Enhance Photovoltaic Performance of CIGS
US20090272422A1 (en) * 2008-04-27 2009-11-05 Delin Li Solar Cell Design and Methods of Manufacture
US20090283411A1 (en) * 2008-05-15 2009-11-19 Serdar Aksu Selenium electroplating chemistries and methods
US20100226629A1 (en) * 2008-07-21 2010-09-09 Solopower, Inc. Roll-to-roll processing and tools for thin film solar cell manufacturing
US20100059385A1 (en) * 2008-09-06 2010-03-11 Delin Li Methods for fabricating thin film solar cells
KR101069109B1 (ko) * 2008-10-28 2011-09-30 재단법인대구경북과학기술원 박막 태양 전지 및 이의 제조 방법
AU2010211053A1 (en) * 2009-02-04 2010-08-12 Heliovolt Corporation Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films
US20100213073A1 (en) * 2009-02-23 2010-08-26 International Business Machines Corporation Bath for electroplating a i-iii-vi compound, use thereof and structures containing same
DE102009013904A1 (de) * 2009-03-19 2010-09-23 Clariant International Limited Solarzellen mit einer Verkapselungsschicht auf Basis von Polysilazan
KR20110138259A (ko) * 2009-03-25 2011-12-26 비코 인스트루먼츠 인코포레이티드 고증기압재료의 증착
US8247243B2 (en) * 2009-05-22 2012-08-21 Nanosolar, Inc. Solar cell interconnection
TW201042065A (en) * 2009-05-22 2010-12-01 Ind Tech Res Inst Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
EP2435248A2 (en) 2009-05-26 2012-04-04 Purdue Research Foundation Thin films for photovoltaic cells
KR20100130008A (ko) * 2009-06-02 2010-12-10 삼성전자주식회사 태양 전지 구조체
US20100310770A1 (en) * 2009-06-05 2010-12-09 Baosheng Sang Process for synthesizing a thin film or composition layer via non-contact pressure containment
AU2010279659A1 (en) * 2009-08-04 2012-03-01 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled stoichiometry
KR20120043050A (ko) * 2009-08-04 2012-05-03 프리커서 에너제틱스, 인코퍼레이티드. Caigas 알루미늄-함유 광기전체를 위한 중합체성 전구체
EP2462149A2 (en) * 2009-08-04 2012-06-13 Precursor Energetics, Inc. Polymeric precursors for cis and cigs photovoltaics
US8067262B2 (en) * 2009-08-04 2011-11-29 Precursor Energetics, Inc. Polymeric precursors for CAIGS silver-containing photovoltaics
TW201106488A (en) * 2009-08-11 2011-02-16 Jenn Feng New Energy Co Ltd A non-vacuum coating method for absorption layer of solar cell
CA2773709C (en) * 2009-09-08 2016-02-23 The University Of Western Ontario Electrochemical method of producing copper indium gallium diselenide (cigs) solar cells
US8256621B2 (en) * 2009-09-11 2012-09-04 Pro-Pak Industries, Inc. Load tray and method for unitizing a palletized load
US20110226323A1 (en) * 2009-09-14 2011-09-22 E.I. Du Pont De Nemours And Company Use of thermally stable, flexible inorganic substrate for photovoltaics
WO2011084171A1 (en) * 2009-12-17 2011-07-14 Precursor Energetics, Inc. Molecular precursors for optoelectronics
US8021641B2 (en) * 2010-02-04 2011-09-20 Alliance For Sustainable Energy, Llc Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom
KR101114685B1 (ko) 2010-02-08 2012-04-17 영남대학교 산학협력단 연속흐름반응법을 이용한 화합물 태양전지용 CuInS2 박막의 제조방법
TWI411121B (zh) * 2010-03-11 2013-10-01 Ind Tech Res Inst 光吸收層之製造方法及應用其之太陽能電池結構
FR2957365B1 (fr) * 2010-03-11 2012-04-27 Electricite De France Procede de preparation d'une couche mince d'absorbeur pour cellules photovoltaiques
WO2011146115A1 (en) 2010-05-21 2011-11-24 Heliovolt Corporation Liquid precursor for deposition of copper selenide and method of preparing the same
US8304272B2 (en) 2010-07-02 2012-11-06 International Business Machines Corporation Germanium photodetector
WO2012023973A2 (en) 2010-08-16 2012-02-23 Heliovolt Corporation Liquid precursor for deposition of indium selenide and method of preparing the same
US8545689B2 (en) 2010-09-02 2013-10-01 International Business Machines Corporation Gallium electrodeposition processes and chemistries
US20120055612A1 (en) * 2010-09-02 2012-03-08 International Business Machines Corporation Electrodeposition methods of gallium and gallium alloy films and related photovoltaic structures
US20120073637A1 (en) 2010-09-15 2012-03-29 Precursor Energetics, Inc. Deposition processes and photovoltaic devices with compositional gradients
JP2012079997A (ja) * 2010-10-05 2012-04-19 Kobe Steel Ltd 化合物半導体薄膜太陽電池用光吸収層の製造方法、およびIn−Cu合金スパッタリングターゲット
US8563354B1 (en) 2010-10-05 2013-10-22 University Of South Florida Advanced 2-step, solid source deposition approach to the manufacture of CIGS solar modules
WO2012173675A1 (en) * 2011-06-17 2012-12-20 Precursor Energetics, Inc. Deposition processes for photovoltaics
GB2493022B (en) 2011-07-21 2014-04-23 Ilika Technologies Ltd Vapour deposition process for the preparation of a phosphate compound
GB2493020B (en) * 2011-07-21 2014-04-23 Ilika Technologies Ltd Vapour deposition process for the preparation of a chemical compound
US8466001B1 (en) * 2011-12-20 2013-06-18 Intermolecular, Inc. Low-cost solution approach to deposit selenium and sulfur for Cu(In,Ga)(Se,S)2 formation
US9018032B2 (en) * 2012-04-13 2015-04-28 Tsmc Solar Ltd. CIGS solar cell structure and method for fabricating the same
US9105797B2 (en) 2012-05-31 2015-08-11 Alliance For Sustainable Energy, Llc Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se
GB201400274D0 (en) 2014-01-08 2014-02-26 Ilika Technologies Ltd Vapour deposition method for preparing amorphous lithium-containing compounds
GB201400276D0 (en) 2014-01-08 2014-02-26 Ilika Technologies Ltd Vapour deposition method for fabricating lithium-containing thin film layered structures
GB201400277D0 (en) * 2014-01-08 2014-02-26 Ilika Technologies Ltd Vapour deposition method for preparing crystalline lithium-containing compounds
US20180254363A1 (en) * 2015-08-31 2018-09-06 The Board Of Regents Of The University Of Oklahoma Semiconductor devices having matrix-embedded nano-structured materials
EP3472881B1 (en) 2016-06-15 2023-10-11 Ilika Technologies Limited Lithium borosilicate glass as electrolyte and electrode protective layer
GB201814039D0 (en) 2018-08-29 2018-10-10 Ilika Tech Ltd Method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530053A (en) * 1968-01-11 1970-09-22 Bell Telephone Labor Inc Method of preparing a cadmium sulfide thin film from an aqueous solution
US3978510A (en) * 1974-07-29 1976-08-31 Bell Telephone Laboratories, Incorporated Heterojunction photovoltaic devices employing i-iii-vi compounds
US4256544A (en) * 1980-04-04 1981-03-17 Bell Telephone Laboratories, Incorporated Method of making metal-chalcogenide photosensitive devices
US4335266A (en) * 1980-12-31 1982-06-15 The Boeing Company Methods for forming thin-film heterojunction solar cells from I-III-VI.sub.2
US4392451A (en) * 1980-12-31 1983-07-12 The Boeing Company Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI2 chalcopyrite compounds
US4376016A (en) * 1981-11-16 1983-03-08 Tdc Technology Development Corporation Baths for electrodeposition of metal chalconide films
US4581108A (en) * 1984-01-06 1986-04-08 Atlantic Richfield Company Process of forming a compound semiconductive material
US4611091A (en) * 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
US4798660A (en) * 1985-07-16 1989-01-17 Atlantic Richfield Company Method for forming Cu In Se2 films
US5045409A (en) * 1987-11-27 1991-09-03 Atlantic Richfield Company Process for making thin film solar cell
US5221660A (en) * 1987-12-25 1993-06-22 Sumitomo Electric Industries, Ltd. Semiconductor substrate having a superconducting thin film
US4915745A (en) * 1988-09-22 1990-04-10 Atlantic Richfield Company Thin film solar cell and method of making
US5112410A (en) * 1989-06-27 1992-05-12 The Boeing Company Cadmium zinc sulfide by solution growth
US5436204A (en) * 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5441897A (en) * 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5356839A (en) * 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466298C (zh) * 2003-07-26 2009-03-04 银太阳科技发展公司 太阳能电池吸收层的制造方法
CN100461460C (zh) * 2003-12-22 2009-02-11 绍于腾玻璃集团公司 处理粉末颗粒的方法
CN101346823B (zh) * 2005-12-21 2010-06-23 壳牌可再生能源有限公司 制备薄膜光伏器件的方法和薄膜光伏器件
CN100465351C (zh) * 2006-03-02 2009-03-04 桂林工学院 一种太阳能电池薄膜材料的电化学沉积制备工艺
CN101740660B (zh) * 2008-11-17 2011-08-17 北京华仁合创太阳能科技有限责任公司 铜铟镓硒太阳能电池、其吸收层薄膜及该薄膜的制备方法、设备
CN101771099B (zh) * 2008-12-30 2011-08-17 中国电子科技集团公司第十八研究所 一种铜铟镓硒半导体薄膜的制备方法
CN101475315B (zh) * 2009-02-03 2011-08-17 泉州创辉光伏太阳能有限公司 黄铜矿类铜铟镓的硒化物或硫化物半导体薄膜材料的制备方法
CN102859046A (zh) * 2009-12-18 2013-01-02 索罗能源公司 Ib/iiia/via族薄膜太阳能吸收器的镀覆化学物
WO2011075967A1 (zh) * 2009-12-24 2011-06-30 四会市维力有限公司 搪瓷太阳能建筑墙板
CN102268702A (zh) * 2011-07-07 2011-12-07 中南大学 铜铟镓硒薄膜的光电化学沉积制备法

Also Published As

Publication number Publication date
SA98190373B1 (ar) 2006-09-25
US5730852A (en) 1998-03-24
CA2239786A1 (en) 1997-06-19
JP3753739B2 (ja) 2006-03-08
US5871630A (en) 1999-02-16
NO982699D0 (no) 1998-06-11
JP2000501232A (ja) 2000-02-02
KR19990071500A (ko) 1999-09-27
HK1023849A1 (en) 2000-09-22
EP0956600B1 (en) 2002-05-29
NO982699L (no) 1998-08-11
AU705545B2 (en) 1999-05-27
MX9804620A (es) 1998-10-31
CN1155111C (zh) 2004-06-23
US5804054A (en) 1998-09-08
EP0956600A1 (en) 1999-11-17
BR9612022A (pt) 1999-06-15
IL124750A0 (en) 1999-01-26
EP0956600A4 (zh) 1999-11-17
NO20052210D0 (no) 2005-05-04
WO1997022152A1 (en) 1997-06-19
NO20052210L (no) 1998-08-11
AU1284997A (en) 1997-07-03
NO320118B1 (no) 2005-10-31
DE69621467T2 (de) 2002-11-07
DE69621467D1 (de) 2002-07-04
CA2239786C (en) 2006-03-14

Similar Documents

Publication Publication Date Title
CN1155111C (zh) 制备太阳能电池前体薄膜的方法及太阳能电池
US7560641B2 (en) Thin film solar cell configuration and fabrication method
US7297868B2 (en) Preparation of CIGS-based solar cells using a buffered electrodeposition bath
CN102652368B (zh) 太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法
CN1151560C (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
US20110132764A1 (en) Formation of a transparent conductive oxide film for use in a photovoltaic structure
EP2702615B1 (en) Method of preparing a solar cell
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
CN102496645B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
US20140261651A1 (en) PV Device with Graded Grain Size and S:Se Ratio
Bhattacharya 3.6%-CZTSS Device fabricated from ionic liquid electrodeposited Sn layer
CN114904744B (zh) 一种制备铜铟硒薄膜的刮涂方法及其应用
JPH07263735A (ja) 太陽電池およびその製造方法
CN108977860B (zh) 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods
Bhattacharya et al. CuIn1− XGaXSe2-Based Photovoltaic Cells From Electrodeposited Precursor Films
Tolan et al. Development of p, i and n-type CuInGa (Se2) layers for applications in thin film solar cells
Mandati et al. Economic pulse electrodeposition for flexible CuInSe
CN116230791A (zh) 一种宽带隙CGSe柔性薄膜太阳能电池及其制备方法
TW201311923A (zh) 利用氧化鋁鋅靶材製備多層薄膜之方法
Kumar Preparation and Characterisation of Copper Indium Selenide Thin Film Solar Cells
MXPA98004620A (en) Preparation of precursory films of cuxinygazsen (x = 0-2, y = 0-2, z = o-2, n = 0-3) through electrodeposition to manufacture solar cells of efficiency to
Bhattacharya et al. Culni. xGaySe₂-BASED PHOTOVOLTAIC CELLS FROM ELECTRODEPOSITED AND ELECTROLESS DEPOSITED PRECURSORS
MXPA99009621A (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CI01 Publication of corrected invention patent application

Correction item: The patent right of invention is granted to the joint patent holder

False: Joseph & Negley

Number: 25

Page: 483

Volume: 20

CI03 Correction of invention patent

Correction item: The patent right of invention is granted to the joint patent holder

False: Joseph & Negley

Number: 25

Page: The title page

Volume: 20

COR Change of bibliographic data

Free format text: CORRECT: GRANTING PATENT RIGHT OF INVENTION CO-PATENTEE; FROM: JOSEPH AND NIGELI TO: NONE

ERR Gazette correction

Free format text: CORRECT: GRANTING PATENT RIGHT OF INVENTION CO-PATENTEE; FROM: JOSEPH AND NIGELI TO: NONE

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee