TWI411121B - 光吸收層之製造方法及應用其之太陽能電池結構 - Google Patents

光吸收層之製造方法及應用其之太陽能電池結構 Download PDF

Info

Publication number
TWI411121B
TWI411121B TW099107168A TW99107168A TWI411121B TW I411121 B TWI411121 B TW I411121B TW 099107168 A TW099107168 A TW 099107168A TW 99107168 A TW99107168 A TW 99107168A TW I411121 B TWI411121 B TW I411121B
Authority
TW
Taiwan
Prior art keywords
precursor
light absorbing
absorbing layer
solar cell
layer
Prior art date
Application number
TW099107168A
Other languages
English (en)
Other versions
TW201131796A (en
Inventor
Yueh Chun Liao
mei wen Huang
Yen Chih Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099107168A priority Critical patent/TWI411121B/zh
Priority to US12/980,610 priority patent/US20110220204A1/en
Publication of TW201131796A publication Critical patent/TW201131796A/zh
Application granted granted Critical
Publication of TWI411121B publication Critical patent/TWI411121B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

光吸收層之製造方法及應用其之太陽能電池結構
本發明是有關於一種光吸收層之製造方法及應用其之太陽能電池結構,且特別是有關於一種以兩層前驅物所製成之光吸收層之製造方法及應用其之太陽能電池結構。
太陽能電池係透過轉換太陽光的方式來提供電能。一般來說,太陽能電池之光吸收層的製程乃為主要的技術核心之一。光吸收層的化學組成及組成分佈往往左右著能隙(band gap)的大小,使得太陽能電池的光電轉換效率更進而受到影響。
早期多以例如是共蒸鍍(Co-evaporation)、有機金屬化學氣相磊晶(Metal Organic Chemical Vapor Deposition,MOCVD)或濺渡(sputtering)之真空製程配合高溫鍛燒來形成光吸收層。然而,真空製程及高溫鍛燒之製造成本高且製程複雜。
此外,在完成鍛燒之後,能隙小的元素往往分佈在光吸收層之表層,且能隙大的元素往往分佈在光吸收層之底層,使得光吸收層出現底層與表層的組成分佈不一的情況。如此一來,具有此光吸收層的太陽能電池的開路電壓(Voc)可能低於0.4V。也就是說,此太陽能電池的光電轉換效率低。因此,如何提供一種製造光吸收層的方法,以有效地節省成本及提高太陽能電池的光電轉換效率,乃為相關業者努力之課題之一。
本發明主要係提供一種光吸收層之製造方法及應用其之太陽能電池結構,其以濕式塗佈調控前驅物於底層前驅物上,且進行熱處理,以形成光吸收層。如此一來,根據本發明所形成之光吸收層的組成係可均勻地分佈,以提高應用光吸收層之太陽能電池結構的光電轉換效率。
根據本發明,提出一種光吸收層之製造方法,包括以下之步驟。濕式塗佈一調控前驅物於一底層前驅物上。調控前驅物的能隙係大於底層前驅物的能隙。調控前驅物係為一I-III-VI族化合物,且I-III-VI族化合物的組成範圍係為Cua (In1-b-c Gab Alc )(Se1-d Sd )2 ,0<a,0≦b≦1,0≦c≦1,0<b+c≦1,且0≦d≦1。接著,進行熱處理,使得底層前驅物及調控前驅物係形成一光吸收層。
根據本發明,再提出一種太陽能電池結構,包括一基板、一金屬層、一光吸收層、一緩衝層、一視窗層、一導電層及數個導線。金屬層配置於基板上。光吸收層配置於金屬層上。光吸收層係以下述之步驟製成,包括:濕式塗佈一調控前驅物於一底層前驅物上,調控前驅物的能隙係大於底層前驅物的能隙,調控前驅物係為一I-III-VI族化合物,且I-III-VI族化合物的組成範圍係為Cua (In1-b-c Gab Alc )(Se1-d Sd )2 ,0<a,0≦b≦1,0≦c≦1,0<b+c≦1,且0≦d≦1;以及進行熱處理,使得底層前驅物及調控前驅物係形成光吸收層。緩衝層配置於光吸收層上。視窗層配置於緩衝層上。導電層配置於視窗層上。導線配置於導電層上。
為讓本發明之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:
以下係舉出實施例,配合圖式詳細說明本發明之光吸收層之製造方法及應用其之太陽能電池結構。然而,熟悉此技藝者當可明瞭,此些圖式與文字僅為說明之用,並不會對本發明之欲保護範圍造成限縮。
請參照第1圖,其繪示根據本發明一較佳實施例之太陽能電池結構之示意圖。太陽能電池結構100包括基板110、金屬層120、光吸收層130、緩衝層140、視窗層150、導電層160及數個導線170。各層之配置方式係說明如下。金屬層120配置於基板110上。光吸收層130配置於金屬層120上。緩衝層140配置於光吸收層130上。視窗層150配置於緩衝層140上。導電層160配置於視窗層150上。導線170配置於導電層160上。
請參照第2圖,其繪示根據本發明一較佳實施例之光吸收層之製造方法的流程圖。本實施例的光吸收層130例如是以第2圖中的製造方法所製成。
於步驟S201中,濕式塗佈調控前驅物於底層前驅物上。步驟S201可例如是以刮刀、噴霧或印刷的方式將為奈米漿料的調控前驅物塗佈在底層前驅物上。於本實施例中,底層前驅物可例如是I-III-VI族硒化物,或者是含銅、銦、鋁或鎵之金屬、合金、氧化物、氫氧化物、硫化物或硒化物。另外,調控前驅物係為I-III-VI族化合物,且I-III-VI族化合物的組成範圍係為Cua (In1-b-c Gab Alc )(Se1-d Sd )2 ,0<a,0≦b≦1,0≦c≦1,0<b+c≦1,且0≦d≦1。此處之調控前驅物的厚度例如是1~3000奈米(nm),且粒徑例如是大於或等於1奈米。較佳地,本實施例之調控前驅物之能隙係大於底層前驅物之能隙。
接著,於步驟S203中,進行熱處理,使得底層前驅物及調控前驅物燒結長晶而形成光吸收層130。此處的熱處理可例如是以300~700℃之溫度進行鍛燒或硒化,或添加其他之氣氛。
如此一來,經過上述之步驟所形成的光吸收層130的組成係均勻地分佈,使得光吸收層130的能隙大小係可有效地調控。進一步來說,光吸收層130之表層係具有高Ga/In比值,使得光吸收層130的晶面[112]/[103]之最大繞射峰所對應的繞射角度係往高角度偏移而大於26.7°。如此一來,具有光吸收層130之太陽能電池結構100的開路電壓可大於0.4V。
此處更進一步以底層前驅物係為Cu(In0.7 Ga0.3 )Se2 ,且調控前驅物係為CuGaSe2 (也就是I-III-VI族化合物Cua (In1-b-c Gab Alc )(Se1-d Sd )2 中之a=1,b=1,c=0,且d=0)為例子來說明本實施例之光吸收層的製造方法。
首先,在基板上濺鍍例如是鉬之金屬層。
然後,藉由刮刀塗佈的方式將固含量約為10%之Cu(In0.7 Ga0.3 )Se2 的奈米漿料備製成厚度約2.5微米(μm)之Cu(In0.7 Ga0.3 )Se2 的乾膜於金屬層上。
接著,使用固含量為4%的CuGaSe2 的奈米漿料,經刮刀塗佈成厚度約150nm之CuGaSe2 的乾膜於前述之Cu(In0.7 Ga0.3 ) Se2 的乾膜上。
然後,以550℃的溫度於無氧並含硒蒸氣的氣氛下進行鍛燒20分鐘,使得Cu(In0.7 Ga0.3 ) Se2 的乾膜及CuGaSe2 的乾膜形成光吸收層。
此處藉由X光繞射分析儀(X-ray Diffractometer,XRD)分析與比較未塗佈CuGaSe2 (調控前驅物)而形成之光吸收層與塗佈有CuGaSe2 而形成之光吸收層的特性。請參照第3圖,其繪示未塗佈CuGaSe2 而形成之光吸收層與塗佈有CuGaSe2 而形成之光吸收層的XRD圖。於第3圖中,未塗佈CuGaSe2 而形成之光吸收層的晶面[112]/[103]的最大繞射峰所對應的繞射角度約為26.85°,且塗佈有CuGaSe2 而形成之光吸收層的晶面[112]/[103]的最大繞射峰所對應的繞射角度約為27.07°。因此,由上述的結果可得知,塗佈有CuGaSe2 而形成之光吸收層具有較高的Ga/In比值,使得光吸收層的晶面[112]/[103]之最大繞射峰所對應的繞射角度係往高角度偏移而大於26.7°。
之後,依序形成緩衝層、視窗層、導電層及導線於光吸收層上,以完成太陽能電池結構之製作。此處的緩衝層例如是硫化鎘、視窗層例如是氧化鋅,導電層例如是鋁氧化鋅(AZO)。經過太陽能電池結構之量測可得知,具有塗佈有CuGaSe2 而形成的光吸收層的太陽能電池結構的開路電壓(Voc)係為0.53V。相較之下,具有未塗佈CuGaSe2 而形成的光吸收層的太陽能電池結構的開路電壓係為0.39V。也就是說,本實施例之太陽能電池結構的光電轉換效率係藉由以兩層前驅物製造光吸收層之方法來有效地提升。
本發明上述實施例所揭露之光吸收層之製造方法及應用其之太陽能電池結構,其以濕式塗佈調控前驅物於底層前驅物上,且進行熱處理,以形成光吸收層。如此一來,本實施例之光吸收層的組成係可均勻地分佈,以提高應用光吸收層之太陽能電池結構的光電轉換效率。另外,由於本實施例中之調控前驅物例如是為奈米漿料之形式,因此,調控前驅物在厚度上的控制係相當地容易。此外,化合物前驅物之熱安定性高於金屬前驅物,使得進行熱處理之步驟後所形成之光吸收層的組成較易於控制。再者,以金屬氧化物作為調控前驅物所形成之光吸收層往往容易在高溫處理後有金屬氧化物殘留的情況。相較之下,本實施例之光吸收層係可有效地避免金屬氧化物殘留的情況。
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100...太陽能電池結構
110...基板
120...金屬層
130...光吸收層
140...緩衝層
150...視窗層
160...導電層
170...導線
S201~S203...流程步驟
第1圖繪示根據本發明一較佳實施例之太陽能電池結構之示意圖。
第2圖繪示根據本發明一較佳實施例之光吸收層之製造方法的流程圖。
第3圖繪示未塗佈CuGaSe2 而形成之光吸收層與塗佈有CuGaSe2 而形成之光吸收層的XRD圖。
S201~S203...流程步驟

Claims (11)

  1. 一種光吸收層之製造方法,包括:濕式塗佈一調控前驅物於一底層前驅物上,該調控前驅物的能隙係大於該底層前驅物的能隙,該調控前驅物係為一I-III-VI族化合物,且該I-III-VI族化合物的組成範圍係為Cua (In1-b-c Gab Alc )(Se1-d Sd )2 ,0<a,0≦b≦1,0≦c≦1,0<b+c≦1,且0≦d≦1;以及進行熱處理,使得該底層前驅物及該調控前驅物係形成一光吸收層。
  2. 如申請專利範圍第1項所述之光吸收層之製造方法,其中該底層前驅物係為一I-III-VI族硒化物。
  3. 如申請專利範圍第1項所述之光吸收層之製造方法,其中該調控前驅物的厚度係為1~3000奈米(nm)。
  4. 如申請專利範圍第1項所述之光吸收層之製造方法,其中該調控前驅物的粒徑係大於或等於1奈米。
  5. 如申請專利範圍第1項所述之光吸收層之製造方法,其中進行熱處理之該步驟的溫度係為300~700℃。
  6. 一種太陽能電池結構,包括:一基板;一金屬層,配置於該基板上;一光吸收層,配置於該金屬層上,該光吸收層係以下述之步驟製成,包括:濕式塗佈一調控前驅物於一底層前驅物上,該調控前驅物的能隙係大於該底層前驅物的能隙,該調控前驅物係為一I-III-VI族化合物,且該I-III-VI族化合物的組成範圍係為Cua (In1-b-c Gab Alc )(Se1-d Sd )2 ,0<a,0≦b≦1,0≦c≦1,0<b+c≦1,且0≦d≦1;以及進行熱處理,使得該底層前驅物及該調控前驅物係形成該光吸收層;一緩衝層,配置於該光吸收層上;一視窗層,配置於該緩衝層上;一導電層,配置於該視窗層上;以及複數個導線,配置於該導電層上。
  7. 如申請專利範圍第6項所述之太陽能電池結構,其中該光吸收層的晶面[112]/[103]之最大繞射峰所對應的繞射角度係大於26.7°。
  8. 如申請專利範圍第6項所述之太陽能電池結構,其中該底層前驅物係為一I-III-VI族硒化物。
  9. 如申請專利範圍第6項所述之太陽能電池結構,其中該調控前驅物的厚度係為1~3000奈米(nm)。
  10. 如申請專利範圍第6項所述之太陽能電池結構,其中該調控前驅物的粒徑係大於或等於1奈米。
  11. 如申請專利範圍第6項所述之太陽能電池結構,其中進行熱處理之該步驟的溫度係為300~700℃。
TW099107168A 2010-03-11 2010-03-11 光吸收層之製造方法及應用其之太陽能電池結構 TWI411121B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099107168A TWI411121B (zh) 2010-03-11 2010-03-11 光吸收層之製造方法及應用其之太陽能電池結構
US12/980,610 US20110220204A1 (en) 2010-03-11 2010-12-29 Method of Forming Light Absorption Layer and Solar Cell Structure Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099107168A TWI411121B (zh) 2010-03-11 2010-03-11 光吸收層之製造方法及應用其之太陽能電池結構

Publications (2)

Publication Number Publication Date
TW201131796A TW201131796A (en) 2011-09-16
TWI411121B true TWI411121B (zh) 2013-10-01

Family

ID=44558801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099107168A TWI411121B (zh) 2010-03-11 2010-03-11 光吸收層之製造方法及應用其之太陽能電池結構

Country Status (2)

Country Link
US (1) US20110220204A1 (zh)
TW (1) TWI411121B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299446A (zh) * 2008-05-30 2008-11-05 南开大学 硒化物前驱薄膜与快速硒硫化热处理制备薄膜电池方法
US20090226717A1 (en) * 2008-02-08 2009-09-10 Solopower, Inc. Method for forming copper indium gallium chalcogenide layer with shaped gallium profile

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335266A (en) * 1980-12-31 1982-06-15 The Boeing Company Methods for forming thin-film heterojunction solar cells from I-III-VI.sub.2
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
AP2180A (en) * 2003-08-14 2010-11-29 Univ Johannesburg Group I-III-VI quaternary or higher alloy semiconductor films.
PL1711164T3 (pl) * 2004-01-21 2010-09-30 Merck Sharp & Dohme Sposób leczenia ostrego zapalenia zatok przynosowych
US7115304B2 (en) * 2004-02-19 2006-10-03 Nanosolar, Inc. High throughput surface treatment on coiled flexible substrates
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US8197703B2 (en) * 2007-04-25 2012-06-12 Solopower, Inc. Method and apparatus for affecting surface composition of CIGS absorbers formed by two-stage process
US8383451B2 (en) * 2009-03-09 2013-02-26 Aqt Solar, Inc. Deposition of photovoltaic thin films by plasma spray deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226717A1 (en) * 2008-02-08 2009-09-10 Solopower, Inc. Method for forming copper indium gallium chalcogenide layer with shaped gallium profile
CN101299446A (zh) * 2008-05-30 2008-11-05 南开大学 硒化物前驱薄膜与快速硒硫化热处理制备薄膜电池方法

Also Published As

Publication number Publication date
US20110220204A1 (en) 2011-09-15
TW201131796A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP5956397B2 (ja) 銅・インジウム・ガリウム・セレニウム(cigs)または銅・亜鉛・錫・硫黄(czts)系薄膜型太陽電池及びその製造方法
US8617642B2 (en) Preparation of thin film for solar cell using paste
EP2309548A2 (en) Photoelectric conversion device, method for producing the same and solar battery
US20130045565A1 (en) Method of manufacturing high density cis thin film for solar cell and method of manufacturing thin film solar cell using the same
US20120180870A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
KR101865239B1 (ko) 높은 무크랙 한계를 갖는 cigs 나노 입자 잉크 제제
KR20120075827A (ko) 화합물 반도체 태양전지의 광흡수층 제조방법
Badgujar et al. Cu (In, Ga) Se2 thin film solar cells produced by atmospheric selenization of spray casted nanocrystalline layers
Ikeda et al. A superstrate solar cell based on In2 (Se, S) 3 and CuIn (Se, S) 2 thin films fabricated by electrodeposition combined with annealing
TWI502762B (zh) 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
JP5278778B2 (ja) カルコゲナイト系化合物半導体及びその製造方法
TWI411121B (zh) 光吸收層之製造方法及應用其之太陽能電池結構
CN102468367B (zh) 光吸收层的制造方法及应用其的太阳能电池结构体
JP2016056084A (ja) 薄膜カルコゲナイド層の形成方法
Bu Interconnected ZnO branches as an effective electron transfer layer in perovskite solar cells
KR20140122326A (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
Oliveira et al. In-situ sol-gel synthesis and thin film deposition of Cu (In, Ga)(S, Se) 2 solar cells
JP6239473B2 (ja) 光電変換素子、太陽電池および多接合型太陽電池
TW201621068A (zh) 銅銦鎵硒之表面硫化的製程方法
KR101160487B1 (ko) 후막형 cigs 태양전지 및 그 제조방법
CN108172660A (zh) Czts太阳能电池制作方法
Punathil et al. Annealing Temperature and Post Sulphurizaton/Seleniation Effects on Solution-Based CZTS Devices
TWI675890B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
Hassan et al. Multi band gap Cu (In, Ga)(S, Se) 2 thin films deposited by spray pyrolysis for high performance solar cell devices
JP2983117B2 (ja) 薄膜太陽電池の製造方法