KR20120075827A - 화합물 반도체 태양전지의 광흡수층 제조방법 - Google Patents

화합물 반도체 태양전지의 광흡수층 제조방법 Download PDF

Info

Publication number
KR20120075827A
KR20120075827A KR1020100137694A KR20100137694A KR20120075827A KR 20120075827 A KR20120075827 A KR 20120075827A KR 1020100137694 A KR1020100137694 A KR 1020100137694A KR 20100137694 A KR20100137694 A KR 20100137694A KR 20120075827 A KR20120075827 A KR 20120075827A
Authority
KR
South Korea
Prior art keywords
precursor
solar cell
light absorption
absorption layer
compound semiconductor
Prior art date
Application number
KR1020100137694A
Other languages
English (en)
Other versions
KR101197228B1 (ko
Inventor
조효정
성시준
김대환
강진규
조현준
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020100137694A priority Critical patent/KR101197228B1/ko
Publication of KR20120075827A publication Critical patent/KR20120075827A/ko
Application granted granted Critical
Publication of KR101197228B1 publication Critical patent/KR101197228B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 화합물 반도체 태양전지의 광흡수층 제조방법은 In 전구체, Ga 전구체, Zn 전구체, 또는 Sn 전구체 중 하나 이상과, Cu 전구체를 용매와 혼합하여 제1 전구체 용액을 제조하는 단계, Se 전구체 또는 S 전극체 중 하나 이상이 상기 제1 전구체 용액에 혼합되어 제2 전구체 용액을 형성하는 단계, 바인더와 용매가 혼합된 잉크조성물을 형성하고, 상기 잉크조성물과 상기 제2 전구체 용액을 혼합하여 페이스트를 제조하는 단계, 상기 페이스트를 기재 상에 코팅하는 단계 및 상기 코팅된 페이스트에 대한 후열처리 공정이 이루어지는 단계를 포함한다.

Description

화합물 반도체 태양전지의 광흡수층 제조방법{Method for Manufacturing Light Absorbing Layer of Compound Semiconductor Solar Cell}
본 발명은 화합물 반도체 태양전지의 광흡수층 제조방법에 관한 것이다.
최근 환경문제와 에너지 고갈에 대한 관심이 높아지면서, 에너지 자원이 풍부하고 환경오염에 대한 문제점이 없으며 효율이 높은 태양전지에 대한 관심이 높아지고 있다.
태양전지는 흡수된 광자에 의해 생성된 전자와 정공을 이용함으로써 광 에너지를 전기에너지로 변환하는 방식을 기본원리로 하며, 현재 이에 대한 연구가 활발히 진행되고 있다.
태양전지의 연구 초기에는 결정질 실리콘을 이용하여 태양전지를 제조하였으나, 결정질 실리콘 태양전지의 두께는 수 백 μm 정도여서 효율이 떨어지고 원재료가 낭비된다는 등의 문제가 제기되어 수 μm 두께를 가진 박막 태양전지에 대한 연구가 활발히 진행되고 있다.
이러한 박막형 태양전지 중 CIS계 및 CIGS계 태양전지는 화합물 반도체 태양전지로서, 실리콘 태양전지, 염료감응형 태양전지, 고분자 태양전지와 같은 다른 태양전지에 비하여 우수한 광전변환효율을 보이며 광조사 등에 의한 열화가 없어 유망한 태양전지로 인정받고 있다.
여러 종류의 CIS계 또는 CIGS계 태양전지들 중 칼코게나이드(chalcogenide)계 태양전지를 구성하는 광흡수층의 제조방법은 크게 진공 증착을 이용하는 방법과 비진공에서 전구체 물질을 도포한 후에 도포된 전구체 물질을 고온 열처리하는 방법으로 나뉠 수 있다.
진공 증착에 의한 광흡수층의 제조방법은 고효율의 광흡수층을 제조할 수 있는 장점이 있는 반면에 대면적의 광흡수층 제조시에 균일성이 떨어지고 고가의 장비를 사용하여야 하는 단점을 가지고 있다. 전구체 물질의 도포에 대한 광흡수층의 제조방법은 대면적의 광흡수층을 균일하게 제조할 수 있으나, 광흡수층의 효율이 낮다는 단점을 가지고 있다.
전구체 물질의 도포에 대한 광흡수층의 제조방법은 합성된 나노 분말을 이용하여 광흡수층을 제조할 수 있다. 이 경우 나노 입자의 크기가 1 내지 10 nm이므로 박막 태양전지의 제조에 적용할 수 있다. 그러나 1 내지 10 nm의 나노 입자를 합성하는 과정이 매우 복잡하며 수율 또한 매우 낮다.
이러한 배경에서, 본 발명의 목적은 광흡수층의 효율이 높고 대면적을 균일하게 제조할 수 있을 뿐만 아니라 결정성이 향상된 광흡수층의 제조방법을 제공하기 위한 것이다.
전술한 목적을 달성하기 위하여, 일 측면에서, 본 발명의 화합물 반도체 태양전지의 광흡수층 제조방법은 In 전구체, Ga 전구체, Zn 전구체, 또는 Sn 전구체 중 하나 이상과, Cu 전구체를 용매와 혼합하여 제1 전구체 용액을 제조하는 단계, Se 전구체 또는 S 전극체 중 하나 이상이 상기 제1 전구체 용액에 혼합되어 제2 전구체 용액을 형성하는 단계, 바인더와 용매가 혼합된 잉크조성물을 형성하고, 상기 잉크조성물과 상기 제2 전구체 용액을 혼합하여 페이스트를 제조하는 단계, 상기 페이스트를 기재 상에 코팅하는 단계 및 상기 코팅된 페이스트에 대한 후열처리 공정이 이루어지는 단계를 포함한다.
이상에서 설명한 바와 같이 본 발명에 의하면, 고가의 장비없이 박막의 균일성이 향상된 대면적의 광흡수층을 형성할 수 있다. 이에 따라 고효율의 태양전지의 제조가 가능하다.
도 1은 본 발명의 실시예에 따른 광흡수층의 제조방법을 나타내는 순서도이다.
도 2는 본 발명의 실시예에 따른 제조방법에 의하여 형성된 광흡수층의 SEM (Scanning Electron Microscope) 사진이다.
도 3은 본 발명의 실시예에 따른 제조방법에 의하여 형성된 광흡수층에 대한 XRD (X-ray diffraction) 그래프이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도면을 참조하여 본 발명의 실시예에 따른 광흡수층의 제조 방법을 설명한다. 도 1은 본 발명의 실시예에 따른 광흡수층의 제조방법을 나타내는 순서도이다.
In 전구체, Ga 전구체, Zn 전구체, 또는 Sn 전구체 중 하나 이상과, Cu 전구체를 용매와 혼합하여 제1 전구체 용액을 제조한다(S110).
이 때 Cu 전구체는 CuCl2, Cu(acac)2, Cu(NO3)2?2H2O, CuSO4, 또는 Cu(CH3COO)2 중 하나가 선택될 수 있다. In 전구체는 InCl3, In(acac)3 In(NO3)3?xH2O, InSO4, 또는 In(CH3COO)2 중 하나가 선택될 수 있다. Ga 전구체는 GaCl3, Ga(acac)3, Ga(NO3)3?xH2O, 또는 Ga(CH3COO)2 중 하나가 선택될 수 있다. Zn 전구체는 ZnCl2, Zn(NO3)2?2H2O, ZnSO4, 또는 Zn(CH3COO)2 중 셋 이상이 선택될 수 있다. Sn 전구체는 SnCl2, Sn(NO3)2?xH2O, SnSO4, Sn(CH3COO)2 중 하나가 선택될 수 있다. 전구체를 용해할 수 있는 용매는 알코올계 유기용제일 수 있으며, 알코올계 유기용제는 methanol, ethanol, 2-propanol, 2-methoxyethanol, ethylene glycol, mono ethanolamine, tridecylalcohol, pentanol, 또는 proplene glycol 중 하나 이상을 포함할 수 있다.
Se 전구체 또는 S 전극체 중 하나 이상이 제1 전구체 용액에 혼합되어 제2 전구체 용액이 형성된다(S120). 이와 같은 과정을 통하여 이후의 열처리 과정에서 Se와 S의 손실을 방지할 수 있다. S 전구체는 thiourea, thioacetamide, 또는 Na2S 중 하나이고, Se 전구체는 Selenium powder, SeCl4, Na2SeO3, 또는 Na2Se 중 하나일 수 있다.
바인더와 용매가 혼합된 잉크조성물이 형성되고, 잉크조성물이 제2 전구체 용액과 혼합되어 페이스트(paste)가 제조된다(S130). 이 때 2μm 이내의 두께를 지닌 박막 광흡수층의 제조를 위한 잉크조성물 형성시 사용되는 에틸 셀룰로오스와 같은 바인더의 점도는 4 cP 이상 22 cP 이하일 수 있다. 또한 잉크조성물 형성시 사용되는 용매와 바인더의 중량비는 1:1일 수 있으며, 용매는 Ethanol과 alpha-terpineol을 포함할 수 있다.
이와 같이 형성된 페이스트에 대한 잉크조성물의 중량비는 20 중량% 이상 40 중량% 이하이고, 페이스트에 대한 제2 전구체 용액의 중량비는 60 중량% 이상 80 중량% 이하일 수 있다. 잉크조성물의 중량비와 제2 전구체 용액의 중량비의 합은 100 중량 %이다.
잉크조성물의 중량비가 40 중량%보다 크면 페이스트의 점도는 증가하나 광흡수층의 결정 형성을 방해할 수 있고 후열처리 후에 잉크조성물이 잔류물질로 존재할 수 있어 광흡수층의 막질이 불량해질 수 있다. 또한 잉크조성물의 중량비가 20 중량%보다 작으면 페이스트의 점도가 작아 적절한 두께로 페이스트가 코팅되지 않을 수 있다. 따라서 본 발명의 실시예에서 잉크조성물의 중량비는 20 중량% 이상 40 중량% 이하이고, 제2 전구체 용액의 중량비는 60 중량% 이상 80 중량% 이하인 경우 페이스트의 광흡수층의 결정 형성을 방해하지 않으면서도 적정 점도를 유지할 수 있다.
이와 같이 형성된 페이스트가 기재 상에 코팅된다(S140). 본 발명의 실시예에서 페이스트가 코팅되는 기재는 태양전지의 배면전극일 수 있다. 페이스트의 코팅 방법으로는 드롭-캐스팅법 (drop-casting), 스프레이법 (spray), 닥터블레이드 법(doctor blade) 등이 이용될 수 있다.
이와 같이 페이스트의 코팅에 의하여 광흡수층이 형성되므로 고가의 장비없이 균일성이 향상된 대면적의 광흡수층을 형성할 수 있다.
이와 같이 코팅된 페이스트에 대한 후열처리 공정이 이루어진다(S150). 후열처리 공정은 Se 또는 S 분위기 하에서 이루어질 수 있으며, 400 ℃ 이상 600 ℃ 이하에서 5 분 이상 30 분 이하동안 이루어질 수 있다. 후열처리 공정이 Se 또는 S 분위기 하에서 이루어지는 것은 후열처리이 이루어지는 과정에서 Se 또는 S의 손실을 보상하기 위해서이다.
도 2는 본 발명의 실시예에 따른 제조방법에 의하여 형성된 광흡수층의 SEM 사진이다. 도 2는 1.22 ㎛의 두께를 지닌 배면 전극 상에 1.28 ㎛의 두께를 지닌 광흡수층이 형성된 것을 나타내는 사진이다. 도 2에 도시된 바와 같이, 본 발명의 실시예에 따라 광흡수층이 제조될 경우 박막 태양전지의 제조가 가능하고, 결정이 형성됨에도 불구하고 광흡수층의 표면 굴곡이 적어 광흡수층의 저항이 감소할 수 있다. 이와 같이 광흡수층의 저항 감소로 인하여 태양전지의 효율이 증가할 수 있다.
이하, 실시예를 참조하여 본 발명을 상세히 설명하지만, 본 발명의 범주가 실시예에 한정되는 것은 아니다.
실시예
반응물 전구체로서 질산염 무수물이 치환된 Cu 0.25 g, In 0.8g, 할로겐원소가 치환된 Se 1.07 g과 함께 용매로서는 에탄올 3 ml를 첨가하여 충분히 교반함으로써 제2 전구체 용액이 형성된다.
점도 4 Cp의 에틸 셀룰로오즈가 페이스트의 형성을 위하여 바인더로 사용되며, 유사한 온도 내에서 쉽게 열분해 할 수 있도록 바인더와 끓는점이 유사한 alpha-terpineol이 용매로 사용되어 잉크조성물이 제조된다.
이때 바인더와 고비점 용매의 중량비는 1:1로 제작하고, 제2 용액 전구체와 잉크 조성물의 혼합시 페이스트 100 중량%를 기준으로 제2 전구체 용액은 60 중량% 이상 80 중량% 이하이고 잉크조성물은 20 중량% 이상 40 중량% 이하이다. Se 분위기 하에서 열처리를 통하여 CISe2를 포함하는 광흡수층이 제조되었다.
이와 같은 실시예에 따라 제조된 CISe2를 포함하는 광흡수층에 대한 XRD 그래프가 도 3에 도시된다.
본 발명의 실시예에 따른 광흡수층의 제조방법은 광흡수층의 결정성을 향상시키고 광흡수층을 포함하는 태양전지의 효율을 개선시킬 수 있다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. In 전구체, Ga 전구체, Zn 전구체, 또는 Sn 전구체 중 하나 이상과, Cu 전구체를 용매와 혼합하여 제1 전구체 용액을 제조하는 단계;
    Se 전구체 또는 S 전극체 중 하나 이상이 상기 제1 전구체 용액에 혼합되어 제2 전구체 용액을 형성하는 단계;
    바인더와 용매가 혼합된 잉크조성물을 형성하고, 상기 잉크조성물과 상기 제2 전구체 용액을 혼합하여 페이스트를 제조하는 단계;
    상기 페이스트를 기재 상에 코팅하는 단계; 및
    상기 코팅된 페이스트에 대한 후열처리 공정이 이루어지는 단계
    를 포함하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  2. 제1항에 있어서,
    상기 Cu 전구체는 CuCl2, Cu(acac)2, Cu(NO3)2?2H2O, CuSO4, 또는 Cu(CH3COO)2 중 하나가 선택되고,
    상기 In 전구체는 InCl3, In(acac)3 In(NO3)3?xH2O, InSO4, 또는 In(CH3COO)2 중 하나가 선택되며,
    상기 Ga 전구체는 GaCl3, Ga(acac)3, Ga(NO3)3?xH2O, 또는 Ga(CH3COO)2 중 하나가 선택되고,
    상기 Zn 전구체는 ZnCl2, Zn(NO3)2?2H2O, ZnSO4, 또는 Zn(CH3COO)2 중 셋 이상이 선택되며,
    상기 Sn 전구체는 SnCl2, Sn(NO3)2?xH2O, SnSO4, Sn(CH3COO)2 중 하나가 선택되는 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  3. 제1항에 있어서,
    상기 제1 전구체 용액의 용매는 알코올계 유기용제인 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  4. 제3항에 있어서,
    상기 알코올계 유기용제는 methanol, ethanol, 2-propanol, 2-methoxyethanol, ethylene glycol, mono ethanolamine, tridecylalcohol, pentanol, 또는 proplene glycol 중 하나 이상을 포함하는 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  5. 제1항에 있어서,
    상기 S 전구체는 thiourea, thioacetamide, 또는 Na2S 중 하나이고, 상기 Se 전구체는 Selenium powder, SeCl4, Na2SeO3, 또는 Na2Se 중 하나인 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  6. 제1항에 있어서,
    상기 바인더의 점도는 4 cP 이상 22 cP 이하인 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  7. 제1항에 있어서,
    상기 페이스트에 대한 상기 잉크조성물의 중량비는 20 중량% 이상 40 중량% 이하이고,
    상기 페이스트에 대한 상기 제2 전구체 용액의 중량비는 60 중량% 이상 80 중량% 이하인 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  8. 제1항에 있어서,
    상기 후열처리 공정은 Se 또는 S 분위기 하에서 이루어는 것을 특징으로 하는 화합물 반도체 태양전지의 광흡수층 제조방법.
  9. 제1항의 제조방법에 의하여 제조된 광흡수층을 포함하는 화합물 반도체 태양전지.
KR1020100137694A 2010-12-29 2010-12-29 화합물 반도체 태양전지의 광흡수층 제조방법 KR101197228B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100137694A KR101197228B1 (ko) 2010-12-29 2010-12-29 화합물 반도체 태양전지의 광흡수층 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100137694A KR101197228B1 (ko) 2010-12-29 2010-12-29 화합물 반도체 태양전지의 광흡수층 제조방법

Publications (2)

Publication Number Publication Date
KR20120075827A true KR20120075827A (ko) 2012-07-09
KR101197228B1 KR101197228B1 (ko) 2012-11-02

Family

ID=46709651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100137694A KR101197228B1 (ko) 2010-12-29 2010-12-29 화합물 반도체 태양전지의 광흡수층 제조방법

Country Status (1)

Country Link
KR (1) KR101197228B1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150016141A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
KR20150016136A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 태양전지 광흡수층 제조용 응집상 전구체 및 이의 제조방법
KR20150143297A (ko) * 2014-06-13 2015-12-23 주식회사 엘지화학 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
US9356168B2 (en) 2013-07-19 2016-05-31 Lg Chem, Ltd. Method of manufacturing CI(G)S nano particles for manufacturing light absorption layer and CI(G)S nano particles manufactured using the same
KR20160133672A (ko) * 2015-05-13 2016-11-23 주식회사 엘지화학 태양전지 광흡수층 제조용 전구체 및 이의 제조방법
US10191320B2 (en) 2013-04-16 2019-01-29 Boe Technology Group Co., Ltd. Filter sheet, manufacturing method thereof and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457486B1 (ko) 2013-09-30 2014-11-06 재단법인대구경북과학기술원 염료감응 태양전지 상대전극의 제조방법
KR101541449B1 (ko) * 2013-09-30 2015-08-03 재단법인대구경북과학기술원 다공성 czts계 박막의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989077B1 (ko) * 2008-02-27 2010-10-25 한국과학기술연구원 페이스트를 이용한 태양전지용 박막의 제조방법 및 이에의해 수득된 태양전지용 박막

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191320B2 (en) 2013-04-16 2019-01-29 Boe Technology Group Co., Ltd. Filter sheet, manufacturing method thereof and display device
US9356168B2 (en) 2013-07-19 2016-05-31 Lg Chem, Ltd. Method of manufacturing CI(G)S nano particles for manufacturing light absorption layer and CI(G)S nano particles manufactured using the same
KR20150016141A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
KR20150016136A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 태양전지 광흡수층 제조용 응집상 전구체 및 이의 제조방법
CN105324852A (zh) * 2013-08-01 2016-02-10 株式会社Lg化学 用于制备太阳能电池的光吸收层的金属硫族化合物纳米颗粒及其制备方法
US9887305B2 (en) 2013-08-01 2018-02-06 Lg Chem, Ltd. Agglomerated precursor for manufacturing light absorption layer of solar cells and method of manufacturing the same
KR20150143297A (ko) * 2014-06-13 2015-12-23 주식회사 엘지화학 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
KR20160133672A (ko) * 2015-05-13 2016-11-23 주식회사 엘지화학 태양전지 광흡수층 제조용 전구체 및 이의 제조방법
KR101869138B1 (ko) * 2015-05-13 2018-06-19 주식회사 엘지화학 태양전지 광흡수층 제조용 전구체 및 이의 제조방법

Also Published As

Publication number Publication date
KR101197228B1 (ko) 2012-11-02

Similar Documents

Publication Publication Date Title
US8617642B2 (en) Preparation of thin film for solar cell using paste
KR101197228B1 (ko) 화합물 반도체 태양전지의 광흡수층 제조방법
KR101075873B1 (ko) 페이스트 또는 잉크를 이용한 구리인듐셀렌계 또는 구리인듐갈륨셀렌계 박막의 제조 방법
TWI445778B (zh) 化合物半導體薄膜製造用印墨、使用該印墨而獲得之半導體薄膜、具備該化合物半導體薄膜之太陽能電池及該太陽能電池之製造方法
US8569102B2 (en) Method of manufacturing high density CIS thin film for solar cell and method of manufacturing thin film solar cell using the same
JP2009076842A (ja) 太陽電池の薄膜組成用インクとその製造方法、これを利用したcigs薄膜型太陽電池、及びその製造方法
KR102037130B1 (ko) 박막 광전지 소자를 위한 무기염-나노입자 잉크 및 이에 관련된 방법
JP2010512647A (ja) Ibiiiavia族化合物層のためのドーピング技術
KR101574658B1 (ko) 페로브스카이트 기반의 3차원 태양전지 및 이의 제조 방법
KR101865239B1 (ko) 높은 무크랙 한계를 갖는 cigs 나노 입자 잉크 제제
WO2012090938A1 (ja) 化合物半導体薄膜太陽電池及びその製造方法
KR20100034817A (ko) 태양전지 및 이의 제조방법
US8841160B2 (en) Methods for producing chalcopyrite compound thin films for solar cells using multi-stage paste coating
Dehghani et al. A novel low-temperature growth of uniform CuInS2 thin films and their application in selenization/sulfurization-free CuInS2 solar cells
US20140109966A1 (en) Bifacial thin film solar cell fabricated by paste coating method
Xue et al. Fabrication of Cu2ZnSn (SxSe1− x) 4 solar cells by ethanol-ammonium solution process
KR102225468B1 (ko) 알칼리 원소를 도입한 칼코파이라이트 화합물계 박막 및 그 제조 방법
KR102311750B1 (ko) 물분해 수소발생용 광전극 및 그 제조 방법
KR101172050B1 (ko) 박막 태양전지의 흡수층 제조방법
WO2013094935A1 (en) Solar cell and method of fabricating the same
KR20130054800A (ko) 박막 태양전지 광흡수층의 제조방법 및 이를 포함하는 박막 태양전지
TWI675890B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
JP2014167998A (ja) 化合物半導体薄膜、その製造方法、および太陽電池モジュール

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170918

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 7