CN108977860B - 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法 - Google Patents

一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法 Download PDF

Info

Publication number
CN108977860B
CN108977860B CN201810627346.2A CN201810627346A CN108977860B CN 108977860 B CN108977860 B CN 108977860B CN 201810627346 A CN201810627346 A CN 201810627346A CN 108977860 B CN108977860 B CN 108977860B
Authority
CN
China
Prior art keywords
film
substrate
electrodeposition
deposition
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810627346.2A
Other languages
English (en)
Other versions
CN108977860A (zh
Inventor
张照景
敖建平
毕金莲
郭佳佳
高青
孙国忠
周志强
刘芳芳
张毅
孙云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201810627346.2A priority Critical patent/CN108977860B/zh
Publication of CN108977860A publication Critical patent/CN108977860A/zh
Application granted granted Critical
Publication of CN108977860B publication Critical patent/CN108977860B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,该方法通过在Mo衬底上制备出Cu纳米颗粒,使Cu纳米颗粒作为形核点辅助沉积Cu薄膜,从而在Mo衬底表面沉积出表面平整且晶粒细小的Cu薄膜。该方法一方面可修饰Cu薄膜的表面形貌,提升Cu薄膜的薄膜质量;另一方面能够显著降低在Mo衬底上电沉积Cu薄膜对Mo衬底表面形貌的严格要求,并降低对电镀溶液成分和沉积参数的要求。该方法简单易行、操作简便,大大降低了通过电沉积方法在Mo衬底上沉积高质量Cu薄膜的沉积难度。

Description

一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法
技术领域
本发明涉及电沉积金属薄膜制备的技术领域,特别涉及一种铜基薄膜太阳电池金属预制层的制备。
背景技术
高效率低成本太阳电池是解决目前能源危机、环境污染及生态破坏等一系列重大问题的最有效途径之一。薄膜太阳电池所需材料少(微米级厚度),较短的载流子扩散长度即可实现光电流的收集,对于实现高效率低成本太阳电池有巨大的优势。其中Cu2InGaSe4(CIGS)薄膜太阳电池是研究最为成熟的材料之一,已实现规模化生产和商品化运行。目前转换效率高达22.3%。此外,由于In、Ga为稀有元素且价格昂贵,将CIGS中的In、Ga替换为地壳储量丰富且廉价的Zn、Sn元素从而得到与CIGS性质相近的Cu2ZnSn(S,Se)4(CZTSSe),使得CZTSSe成为实现高效率低成本太阳电池大规模推广的理想候选材料。目前国际上CZTSSe薄膜太阳电池最高效率已经达到12.6%。在制作方法上,制备CIGS和CZTSSe薄膜的方法主要分为真空法与非真空法两种。真空法包括共蒸发沉积法和真空溅射金属预制层后硒化法,非真空法包括涂覆后硒化法和电沉积金属预制层后硒化法两种制备途径。相比于其他制备方法,电沉积法具有成本低、高通量、环境友好等优点,可大幅度降低生产成本,实现规模化生产。因此通过电沉积法制备CIGS和CZTSSe薄膜太阳电池是实现高效率低成本太阳电池的一个有效途径。
然而目前已经产业化的CIGS薄膜太阳电池仍然大多采用高成本的溅射法或者蒸发法,以产业化为目的开发的电沉积法却很少被用于产业化制备薄膜太阳电池,仍然以实验室研究为主。相比于溅射或者蒸发的真空制备方法,电沉积法很难获得致密平整、成分均匀且与衬底附着力良好的金属预制层薄膜,而且在沉积过程中薄膜的组分和形貌非常容易受到电镀溶液组分和衬底形貌变化的影响,这些问题严重限制了电沉积法制备Cu基薄膜太阳电池产业化的进一步发展。究其根本原因,这些问题是由电沉积法制备的金属薄膜的生长特性所决定的。在电沉积法制备的金属薄膜的生长过程中,金属晶粒优先在衬底表面能量更低的缺陷处(位错形成的台阶等)形核生长,并以此作为形核点不断生长长大,最终汇聚连接形成薄膜。但是衬底表面缺陷分布的不均匀性与随机性会造成形核点分布的不均匀性和随机性,使得局部位置金属晶粒快速长大,从而导致电沉积法制备的薄膜往往会出现附着力差、团簇状形貌、成分不均匀、重复性差等问题。例如,在电沉积法制备CIGS和CZTSSe薄膜太阳电池的过程中,由于Cu的还原性要比其他金属小,Cu薄膜总是首先被沉积在Mo衬底上。高质量的Cu薄膜对电镀溶液的温度、成分、PH值、Mo衬底的表面形貌都有着非常高的要求,在沉积过程中经常会出现树枝状形貌,并且同样的沉积参数可能会因为环境温度或者衬底形貌的略微改变而沉积出不同形貌的薄膜。低质量的Cu薄膜不仅会影响后续沉积的金属薄膜的形貌,而且会在最终制备出的CIGS或者CZTSSe薄膜内产生各种二次相和深能级缺陷,恶化太阳电池的器件性能。这些问题严重限制了电沉积法制备CIGS和CZTSSe薄膜太阳电池在大规模产业化上的应用。针对这一现状目前仍然没有行之有效的解决方法,国内外的研究机构与企业只是通过调控电镀溶液的成分或者电镀方法来优化电沉积法制备的薄膜的质量,并没有从根本上解决高质量的金属薄膜对沉积环境敏感度高、重复性差等问题。
发明内容
本发明的目的是解决在Mo衬底上沉积的Cu薄膜形貌差、沉积条件要求高、重复性低的问题,提供了一种简单有效的高质量Cu薄膜的沉积方法。该方法通过在Mo衬底表面制造大量的Cu纳米颗粒作为人工形核点,以此来弥补正常衬底表面形核点分布的不均匀性和随机性。从而从根本上改变电沉积过程中金属薄膜易受衬底表面形貌和环境影响的特性,大大提高了利用电沉积法制备高质量Cu薄膜的稳定性和重复性。该方法对Mo衬底的表面形貌与电沉积过程中的沉积参数要求极低,对于电沉积法制备CIGS和CZTSSe薄膜太阳电池大规模产业化的进一步发展具有非常重要的意义。
本发明的技术方案:
一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,包括以下步骤:
第1步、以Mo为衬底,在衬底上沉积一层使Mo衬底部分裸露的覆盖不完全的薄层Cu薄膜;
第2步、将第1步得到的覆盖不完全的薄层Cu薄膜浸泡在稀盐酸溶液中,生成Cu纳米颗粒;
第3步、选取第2步生成的表面覆盖有Cu纳米颗粒的Mo为衬底,在含有Cu元素的盐溶液中电沉积得到Cu薄膜。
所述的Mo衬底是以钙钠玻璃为基底,通过磁控溅射的方法在钙钠玻璃上制备而成。
所述覆盖不完全的薄层Cu薄膜通过电沉积、磁控溅射、化学气相沉积或蒸发的方法制备而成。
所述的Cu纳米颗粒通过将覆盖不完全的薄层Cu薄膜在稀盐酸溶液中浸泡制成;Cu纳米颗粒的尺寸与密度通过在盐酸溶液中浸泡的时间调控。
本方法的优点和积极效果:
本方法通过使用简单的化学方法在Mo衬底上制备出Cu纳米颗粒,这些Cu纳米颗粒在电沉积Cu薄膜的过程中可以作为形核点辅助沉积Cu薄膜,从而克服电沉积过程中形核点分布固有的不均匀性和随机性,使得沉积出表面平整且晶粒细小的高质量Cu薄膜。该方法工艺简单,易于实施,对Mo衬底的表面形貌与沉积参数要求低,能够有效降低随着沉积次数增加电镀溶液成分变化与沉积环境变化对Cu薄膜形貌的影响。
本发明的机理分析:
本方法利用Cu晶粒在含有氯离子的溶液中的自我溶解与自我生长作用,通过调节Mo衬底部分裸露的薄层Cu薄膜在稀盐酸溶液中的浸泡时间,制备出不同尺寸与密度的Cu纳米颗粒。当Cu纳米颗粒的尺寸很小时,在上面沉积的Cu晶粒就可以以这些纳米颗粒作为形核点生长长大,从而增加Cu薄膜的形核点数量与密度,使沉积得到的Cu薄膜更加平整致密,并提高制备高质量Cu薄膜的稳定性和重复性。其机理示意图如图1所示。
附图说明
图1为本方法所用的Cu纳米颗粒辅助沉积Cu薄膜的机理示意图。
图2为本方法所用的Mo衬底部分裸露的薄层Cu薄膜表面SEM图。
图3为本方法中薄层Cu薄膜在稀盐酸溶液中浸泡不同时间后的表面SEM图与EDS面扫描图。其中,图3a-e为薄层Cu薄膜分别在稀盐酸溶液中浸泡0Min、1Min、2Min、4Min、8Min后的表面SEM图;图3f-j为薄层Cu薄膜分别在稀盐酸溶液中浸泡0Min、1Min、2Min、4Min、8Min后的Cu元素EDS面扫描图
图4为本方法中有无Cu纳米颗粒辅助沉积,Mo衬底不同表面形貌下沉积得到的Cu薄膜的表面SEM变化图。其中,图4a为溅射气压0.4Pa条件下制备出的Mo衬底表面SEM形貌图;图4b为以图4a中的Mo为衬底,没有纳米颗粒辅助生长沉积得到的Cu薄膜表面SEM图;图4c为以图4a中的Mo为衬底,有纳米颗粒辅助生长沉积得到的Cu薄膜表面SEM图。
图5为本方法中有无Cu纳米颗粒辅助沉积,Mo衬底不同表面形貌下沉积得到的Cu薄膜的表面SEM变化图。其中,图5a为溅射气压0.8Pa条件下制备出的Mo衬底表面SEM形貌图;图5b为以图5a中的Mo为衬底,没有纳米颗粒辅助生长沉积得到的Cu薄膜表面SEM图;图5c为以图5a中的Mo为衬底,有纳米颗粒辅助生长沉积得到的Cu薄膜表面SEM图。
图6为本方法中有无Cu纳米颗粒辅助沉积,Mo衬底不同表面形貌下沉积得到的Cu薄膜的表面SEM变化图。其中,图6a为溅射气压1.6Pa条件下制备出的Mo衬底表面SEM形貌图;图6b为以图6a中的Mo为衬底,没有纳米颗粒辅助生长沉积得到的Cu薄膜表面SEM图;图6c为以图6a中的Mo为衬底,有纳米颗粒辅助生长沉积得到的Cu薄膜表面SEM图。
图7为本方法中Cu纳米颗粒辅助沉积,不同电流密度条件下沉积得到的Cu薄膜的表面SEM图。其中,图7a-f为电流密度分别为18.75mA.cm-2、37.5mA.cm-2、56.25mA.cm-2、75mA.cm-2、93.75mA.cm-2、112.5mA.cm-2沉积得到的Cu薄膜。
具体实施方式
下面结合附图和具体实施例对本发明所述的技术方案作进一步的详细说明。
实施例1:
一种以0.4Pa溅射气压条件下制备的Mo为衬底沉积得到的高质量Cu薄膜。
本实施例的高质量Cu薄膜通过以下方法制备得到:
1.在钙钠玻璃上采用磁控溅射的方法沉积出双层Mo薄膜作为衬底。第一层Mo薄膜沉积气压为1Pa,溅射功率为300W,提供高附着力;第二层Mo薄膜沉积气压为0.4Pa,溅射功率为300W,作为沉积Cu薄膜的衬底,其表面形貌如图4(a)所示。
2.以Mo为衬底,在含有Cu元素的简单盐溶液中电沉积得到使Mo衬底部分裸露的薄层Cu薄膜(如图2所示)。
3.将薄层Cu薄膜在盐酸溶液中分别浸泡0Min、1Min、2Min、4Min、8Min,生成Cu纳米颗粒(如图3所示)。选取浸泡4Min后的表面存在Cu纳米颗粒的Mo为衬底。
4.以上述步骤1制备的表面未经处理不存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小为62.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图4(b)所示;以上述步骤3制备的表面存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小为62.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图4(c)所示。
当采用第二层Mo薄膜沉积气压为0.4Pa,Cu薄膜的沉积电流密度为62.5mA.cm-2时,采用Cu纳米颗粒辅助沉积的Cu薄膜表面更加平整,晶粒也变得更加细小。
实施例2:
一种以0.8Pa溅射气压条件下制备的Mo为衬底沉积得到的高质量Cu薄膜。
本实施例的高质量Cu薄膜通过以下方法制备得到:
1.在钙钠玻璃上采用磁控溅射的方法沉积出双层Mo薄膜作为衬底。第一层Mo薄膜沉积气压为1Pa,溅射功率为300W,提供高附着力;第二层Mo薄膜沉积气压为0.8Pa,溅射功率为300W,作为沉积Cu薄膜的衬底,其表面形貌如图5(a)所示。
2.以Mo为衬底,在含有Cu元素的简单盐溶液中电沉积得到使Mo衬底部分裸露的薄层Cu薄膜(如图2所示)。
3.将薄层Cu薄膜在盐酸溶液中分别浸泡0Min、1Min、2Min、4Min、8Min,生成Cu纳米颗粒(如图3所示)。选取浸泡4Min后的表面存在Cu纳米颗粒的Mo为衬底。
4.以上述步骤1得到的表面未经处理不存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小为62.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图5(b)所示;以上述步骤3得到的表面存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小为62.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图5(c)所示。
当采用第二层Mo薄膜沉积气压为0.8Pa,Cu薄膜的沉积电流密度为62.5mA.cm-2时,采用Cu纳米颗粒辅助沉积的Cu薄膜表面更加平整,晶粒也变得更加细小。
实施例3:
一种以1.6Pa溅射气压条件下制备的Mo为衬底沉积得到的高质量Cu薄膜。
本实施例的高质量Cu薄膜通过以下方法制备得到:
1.在钙钠玻璃上采用磁控溅射的方法沉积出双层Mo薄膜作为衬底。第一层Mo薄膜沉积气压为1Pa,溅射功率为300W,提供高附着力;第二层Mo薄膜沉积气压为1.6Pa,溅射功率为300W,作为沉积Cu薄膜的衬底,其表面形貌如图6(a)所示。
2.以Mo为衬底,在含有Cu元素的简单盐溶液中电沉积得到使Mo衬底部分裸露的薄层Cu薄膜(如图2所示)。
3.将薄层Cu薄膜在盐酸溶液中分别浸泡0Min、1Min、2Min、4Min、8Min,生成Cu纳米颗粒(如图3所示)。选取浸泡4Min后的表面存在Cu纳米颗粒的Mo为衬底。
4.以上述步骤1得到的表面未经处理不存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小为62.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图6(b)所示;以上述步骤3得到的表面存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小为62.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图6(c)所示。
当采用第二层Mo薄膜沉积气压为1.6Pa,Cu薄膜的沉积电流密度为62.5mA.cm-2时,采用Cu纳米颗粒辅助沉积的Cu薄膜表面更加平整,晶粒也变得更加细小。
实施例4:
一种在不同电流密度条件下制备的高质量Cu薄膜。
本实施例的叠层结构的金属预制层通过以下方法制备得到:
1.在钙钠玻璃上采用磁控溅射的方法沉积出双层Mo薄膜作为衬底。第一层Mo薄膜沉积气压为1Pa,溅射功率为300W,提供高附着力;第二层Mo薄膜沉积气压为0.2Pa,溅射功率为300W,作为沉积Cu薄膜的衬底。
2.以Mo为衬底,在含有Cu元素的简单盐溶液中电沉积得到使Mo衬底部分裸露的薄层Cu薄膜(如图2所示)。
3.将薄层Cu薄膜在盐酸溶液中分别浸泡0Min、1Min、2Min、4Min、8Min,生成Cu纳米颗粒(如图3所示)。选取浸泡4Min后的表面存在Cu纳米颗粒的Mo为衬底。
4.以上述步骤3得到的表面存在Cu纳米颗粒的Mo为衬底,电沉积时电流密度大小分别为18.75mA.cm-2、37.5mA.cm-2、56.25mA.cm-2、75mA.cm-2、93.75mA.cm-2、112.5mA.cm-2,在含有Cu元素的简单盐溶液中电沉积得到Cu薄膜,如图7所示。
当采用表面存在Cu纳米颗粒的Mo为衬底沉积Cu薄膜时,无论电流密度怎么变化,沉积得到的Cu薄膜都表面平整且晶粒细小。没有出现实施例1-3中没有Cu纳米颗粒辅助沉积得到的Cu薄膜表面的树枝状形貌(图4b、图5b、图6b)。
综上,本发明提供了一种通过电沉积方法在Mo衬底上沉积高质量Cu薄膜的方法,通过在Mo衬底上使用简单方便的化学方法制备出Cu纳米颗粒,使这些Cu纳米颗粒在沉积Cu薄膜时作为形核点辅助Cu晶粒生长,人工制造的形核点使得Cu薄膜拥有足够多的形核点辅助生长,从而降低了在Mo衬底上电沉积Cu薄膜对Mo衬底表面形貌及各个沉积参数的苛刻要求,使制备出的Cu薄膜表面光滑平整且晶粒细小,显著提高了Cu薄膜的薄膜质量。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (4)

1.一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,其特征在于,包括以下步骤:
第1步、以Mo为衬底,在衬底上制备出覆盖不完全的薄层Cu薄膜;
第2步、将第1步覆盖不完全的薄层Cu薄膜浸泡在稀盐酸溶液中,生成Cu纳米颗粒;
第3步、以第2步生成的表面存在Cu纳米颗粒的Mo为衬底,在含有Cu元素的盐溶液中电沉积得到Cu薄膜。
2.根据权利要求1所述的一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,其特征在于,所述的Mo衬底是以钙钠玻璃为衬底,通过磁控溅射的方法在钙钠玻璃上制备而成。
3.根据权利要求1所述的一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,其特征在于,第1步所述覆盖不完全的薄层Cu薄膜通过电沉积、磁控溅射、化学气相沉积或蒸发的方法制备而成。
4.根据权利要求1所述的一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,其特征在于,第2步所述的Cu纳米颗粒的尺寸与密度通过在稀盐酸溶液中浸泡的时间调控。
CN201810627346.2A 2018-06-19 2018-06-19 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法 Expired - Fee Related CN108977860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810627346.2A CN108977860B (zh) 2018-06-19 2018-06-19 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810627346.2A CN108977860B (zh) 2018-06-19 2018-06-19 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法

Publications (2)

Publication Number Publication Date
CN108977860A CN108977860A (zh) 2018-12-11
CN108977860B true CN108977860B (zh) 2020-03-31

Family

ID=64540555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810627346.2A Expired - Fee Related CN108977860B (zh) 2018-06-19 2018-06-19 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法

Country Status (1)

Country Link
CN (1) CN108977860B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960493A (en) * 1988-07-22 1990-10-02 Hughes Aircraft Company Plating on metallic substrates
CN101012569A (zh) * 2006-12-29 2007-08-08 哈尔滨工业大学 一种锌合金压铸件直接无氰电镀铜的方法
CN102290484A (zh) * 2011-04-27 2011-12-21 南开大学 用于制备太阳电池的半导体薄膜的含Sb溶液体系及制备方法
CN102569508B (zh) * 2011-12-29 2014-10-22 中山大学 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
KR101389832B1 (ko) * 2012-11-09 2014-04-30 한국과학기술연구원 구리인듐셀레늄(cigs) 또는 구리아연주석황(czts)계 박막형 태양전지 및 그의 제조방법
CN104409566A (zh) * 2014-11-06 2015-03-11 云南师范大学 铜锌锡硫薄膜材料的两电极电化学制备方法
CN106757191B (zh) * 2016-11-23 2019-10-01 苏州昕皓新材料科技有限公司 一种具有高择优取向的铜晶体颗粒及其制备方法

Also Published As

Publication number Publication date
CN108977860A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN1155111C (zh) 制备太阳能电池前体薄膜的方法及太阳能电池
CN100452446C (zh) 一种脉冲电沉积铜铟镓硒半导体薄膜材料的方法
US7892413B2 (en) Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US20100140098A1 (en) Selenium containing electrodeposition solution and methods
US8187913B2 (en) Process for producing photoelectric conversion devices
CN104120467B (zh) 一种组成可控的铜锌锡薄膜材料和铜锌锡硫基太阳能电池及其两者的制备方法
CN101824638B (zh) 一种电化学沉积铜锌锡硒半导体薄膜材料的方法
US20090283411A1 (en) Selenium electroplating chemistries and methods
US20130112564A1 (en) Electroplating Solutions and Methods For Deposition of Group IIIA-VIA Films
CN102694068A (zh) 一种铜铟镓硒薄膜表面修饰的方法
US20070151862A1 (en) Post deposition treatments of electrodeposited cuinse2-based thin films
EP2245216A1 (en) Indium electroplating baths for thin layer deposition
US8409418B2 (en) Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
US9410259B2 (en) Electrodeposition of gallium for photovoltaics
CN102181893A (zh) 一种利用调节pH值电沉积制备富铟CuInSe2薄膜的方法
US20110186125A1 (en) Process for producing electrically conductive zinc oxide layered films and process for producing photoelectric conversion devices
WO2011075561A1 (en) Plating chemistries of group ib /iiia / via thin film solar absorbers
CN108977860B (zh) 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法
US20120288986A1 (en) Electroplating method for depositing continuous thin layers of indium or gallium rich materials
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
CN107507874A (zh) 一种用于化合物半导体薄膜及太阳电池的脉冲电沉积制备高质量铟薄膜的方法
CN112144086B (zh) 一种真空电化学沉积制备硒化物半导体的方法
Mandati et al. Economic pulse electrodeposition for flexible CuInSe
CN104538488B (zh) 一种铜铟镓硒薄膜及其制备方法
CN104362222A (zh) 一种基于光化学沉积制备铜铟镓硒薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200331

CF01 Termination of patent right due to non-payment of annual fee