CN106757191B - 一种具有高择优取向的铜晶体颗粒及其制备方法 - Google Patents

一种具有高择优取向的铜晶体颗粒及其制备方法 Download PDF

Info

Publication number
CN106757191B
CN106757191B CN201611037367.6A CN201611037367A CN106757191B CN 106757191 B CN106757191 B CN 106757191B CN 201611037367 A CN201611037367 A CN 201611037367A CN 106757191 B CN106757191 B CN 106757191B
Authority
CN
China
Prior art keywords
copper
crystal particle
preferred orientation
concentration
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611037367.6A
Other languages
English (en)
Other versions
CN106757191A (zh
Inventor
张芸
王靖
朱自方
马涛
陈路明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiyouke (Suzhou) Semiconductor Materials Co.,Ltd.
Original Assignee
SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd filed Critical SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201611037367.6A priority Critical patent/CN106757191B/zh
Publication of CN106757191A publication Critical patent/CN106757191A/zh
Priority to KR1020187009564A priority patent/KR102095497B1/ko
Priority to US15/745,685 priority patent/US10604857B2/en
Priority to PCT/CN2017/103498 priority patent/WO2018095132A1/en
Priority to TW107109648A priority patent/TWI663296B/zh
Application granted granted Critical
Publication of CN106757191B publication Critical patent/CN106757191B/zh
Priority to US16/803,967 priority patent/US11613824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper

Abstract

本发明公开了一种具有高择优取向的铜晶体颗粒及其制备方法,其铜晶体颗粒为柱状晶粒,并呈现垂直于衬底方向的择优取向,该微观结构通过直流电镀来制备,所需要的电镀溶液包括基础溶液和镀铜添加剂两部分。本发明采用了普通的直流电镀,不需要脉冲电镀,能在较高的电流密度下制备,同时实现择优取向程度的可控,本发明降低了设备成本,可以选用常规的电镀设备,并可以获得优异的微观结构,从而大幅度降低生产成本。

Description

一种具有高择优取向的铜晶体颗粒及其制备方法
技术领域
本发明属于电镀领域,具体而言涉及一种通过直流电镀法获得铜晶体颗粒的制备方法。
背景技术
具有高择优取向的铜具有很多优异的特性,因为微观结构中铜晶体颗粒具有择优取向,所以其性能表现为各向异性,从微观角度来说,不同的晶面取向,其原子的排布密度不同,导致其热力学性能以及电磁学性能也存在一定的方向性差异。另外,从材料的化学性能来看,不同的晶面取向,也会由于原子排布密度的不同和晶面间距的不同,而呈现不同的反应速率,例如蚀刻速率在晶面不同的方向也会呈现一定的差异,这一点对于差分蚀刻来说,极其有利,即不需要对铜面实施相关的保护措施,如干膜保护或镀锡保护,而实现蚀刻的选择性,同时还可以控制蚀刻时候的“侧蚀”和“水池”效应。
但通常择优取向的铜镀层不太容易获得,尤其是用于微电子领域的具有明显择优取向的铜材料。目前相对可行的方法是选用电镀方法进行制备,但需要采用脉冲电沉积的方式获得,对设备要求极高,同时电流密度相对比较低,通常小于5A/dm2,生产效率非常低。另外,采用脉动电沉积的方式实现铜晶体颗粒择优取向,并不能很好地控制择优取向的程度,所以应用有很大的局限。
发明内容
为克服现有技术中的不足,本发明提供了一种具有高择优取向的铜晶体颗粒的制备方法,该不需要脉冲电镀,能在较高的电流密度下制备,同时实现择优取向程度的可控。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种具有高择优取向的铜晶体颗粒的制备方法,采用直流电镀的工艺,其电镀电流密度为3~30A/dm2的,电镀溶液包括镀铜添加剂和镀铜基础溶液;
所述镀铜基础溶液主要由硫酸铜与硫酸组合而成,且含有微量的盐酸或氯化钠,所述镀铜基础溶液中铜离子的浓度为40~60g/L,硫酸的浓度为80~120g/L,氯离子的浓度为40~60ppm;
所述镀铜添加剂主要由酸铜加速剂、酸铜抑制剂和非染料酸铜整平剂构成,所述酸铜加速剂在所述电镀溶液中的浓度为3~5mL/L,所述酸铜抑制剂在所述电镀溶液中的浓度为5~15mL/L;所述非染料酸铜整平剂在所述电镀溶液中的浓度为25~35mL/L。
优选的,所述酸铜加速剂的主要成为有机硫磺酸盐,所述酸铜抑制剂的主要成为聚乙二醇,所述非染料酸铜整平剂的主要成为季铵盐。
一种通过上述制备方法获得的具有高择优取向的铜晶体颗粒,所述铜晶体颗粒为柱状晶体颗粒,具有长轴方向和短轴方向,所述铜晶体颗粒的长轴方向尺寸为20nm~5μm,所述铜晶体颗粒的短轴方向尺寸为20nm~2μm。
所述铜晶体颗粒,微观形貌所呈现的铜晶体颗粒具有明显的择优取向,其中铜晶体颗粒的主择优取向是垂直于镀铜衬底的方向,即竖直方向,但并不非所有的铜晶体颗粒的长轴方向都平行于该竖直方向。除主择优取向外,还有其他方向择优程度不同的取向,即取向程度。取向程度决定于两个因素,其一是晶体颗粒长轴方向与竖直方向的夹角的大小,夹角的范围是0~45˚,当夹角为0时,即铜晶体颗粒的长轴方向和竖直方向保持平行;其二是形成该夹角的晶体颗粒数占据总晶体颗粒数的份额,其份额的范围是50~90% 。
进一步的,所述铜晶体颗粒通过退火工艺,也可以获得不同程度的晶面择优取向,退火温度范围为60~300˚C,退火时间10~300min。
本发明的有益效果是:
本发明采用硫酸铜-硫酸体系作为镀铜的基础溶液,以一定配比的镀铜添加剂,采用普通的直流电镀设备实现高速电镀,而且可以实现镀层微观结构呈现铜晶体颗粒择优取向,并且在晶体颗粒择优取向的程度上实现可控。
相对于现有技术,本发明的铜镀层,首先,采用普通的电镀工艺,降低了实现铜晶体颗粒择优取向的复杂程度;其次,生产时不需要复杂的脉冲整流设备,从而显著降低成本;再次,通过电镀工艺和退火条件的优选,实现择优取向的可控,从而达到镀层性能各向异性的可控;最后,镀铜添加剂的增加可以承载更高的电流密度,从而实现高速电镀,所以显著提高了生产效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明第一实施例中的铜镀层的XRD(X光衍射)图谱。
图2为本发明第一实施例中的通过FIB(聚焦离子束)制备的铜镀层截面显微结构图。
图3为本发明第二实施例中的铜镀层的XRD(X光衍射)图谱。
图4为本发明第二实施例中的通过FIB(聚焦离子束)制备的铜镀层截面显微结构图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
添加镀铜添加剂至镀铜基础溶液中,其中酸铜加速剂、酸铜抑制剂和非染料型酸铜整平剂三种添加剂在镀铜溶液中的浓度分别为3mL/L、12mL/L和30mL/L,所述镀铜基础溶液,由硫酸铜与硫酸组合而成,并添加微量的盐酸,其中,铜离子的浓度为50g/L,硫酸的浓度为100g/L,氯离子的浓度为40ppm,将溶液搅拌2小时,使其混合均匀。
利用上述配制而成的镀铜溶液,将待电镀的样品分别在5A/dm2、10A/dm2和15A/dm2三种不同的电流密度下,分别电镀15min、7.5min和5min。
电镀后样品利用X射线衍射仪测定晶面取向,三种不同电流密度下所制备的样品的XRD图谱见图1。
再利用FIB对样品制作截面切片,三种不同电流密度下所制备的样品的FIB电镜图片见图2。
实施例二
添加镀铜添加剂至镀铜基础溶液中,其中酸铜加速剂、酸铜抑制剂和非染料酸铜整平剂三种添加剂在镀铜溶液中的浓度分别为4mL/L、8mL/L和30mL/L,所述镀铜基础溶液,由硫酸铜与硫酸组合而成,并添加微量的氯化钠,其中,铜离子的浓度为60g/L,硫酸的浓度为80g/L,氯离子的浓度为50ppm,将溶液搅拌2小时,使其混合均匀。
利用上述配制而成的镀铜溶液,将两片待电镀的样品在10A/dm2电流密度下,电镀5min。取两片电镀后样品中的一片放在氮气保护的退火炉中,在230˚C下退火1h。
然后利用X射线衍射仪分别测定未退火样品和已退火样品的晶面取向,上述两种不同样品的XRD图谱见图3。
再利用FIB对两种样品制作截面切片,未退火和已退火的样品的FIB电镜图片见图4。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (5)

1.一种具有高择优取向的铜晶体颗粒的制备方法,采用直流电镀的工艺,其特征在于:电镀电流密度为3~30A/dm2的,电镀溶液包括镀铜添加剂和镀铜基础溶液;
所述镀铜基础溶液主要由硫酸铜与硫酸组合而成,且含有微量的盐酸或氯化钠,所述镀铜基础溶液中铜离子的浓度为40~60g/L,硫酸的浓度为80~120g/L,氯离子的浓度为40~60ppm;
所述镀铜添加剂主要由酸铜加速剂、酸铜抑制剂和非染料酸铜整平剂构成,所述酸铜加速剂在所述电镀溶液中的浓度为3~5mL/L,所述酸铜抑制剂在所述电镀溶液中的浓度为5~15mL/L;所述非染料酸铜整平剂在所述电镀溶液中的浓度为25~35mL/L。
2.根据权利要求1所述的种具有高择优取向的铜晶体颗粒的制备方法,其特征在于:所述酸铜加速剂的主要成分 为有机硫磺酸盐,所述酸铜抑制剂的主要成分 为聚乙二醇,所述非染料酸铜整平剂的主要成分 为季铵盐。
3.一种具有高择优取向的铜晶体颗粒,其特征在于:所述铜晶体颗粒为柱状晶体颗粒,具有长轴方向和短轴方向,所述铜晶体颗粒的长轴方向尺寸为20nm~5μm,所述铜晶体颗粒的短轴方向尺寸为20nm~2μm。
4.根据权利要求3所述的具有高择优取向的铜晶体颗粒,其特征在于:所述铜晶体颗粒的主择优取向是垂直于镀铜衬底的方向,即竖直方向。
5.根据权利要求3所述的具有高择优取向的铜晶体颗粒,其特征在于:所述铜晶体颗粒的其他方向择优程度不同的取向,即取向程度,所述取向程度决定于两个因素,其一是晶体颗粒长轴方向与竖直方向的夹角的大小,夹角的范围是0~45˚,当夹角为0时,即铜晶体颗粒的长轴方向和竖直方向保持平行;其二是形成所述夹角的晶体颗粒数占据总晶体颗粒数的份额,其份额的范围是50~90% 。
CN201611037367.6A 2016-11-23 2016-11-23 一种具有高择优取向的铜晶体颗粒及其制备方法 Active CN106757191B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201611037367.6A CN106757191B (zh) 2016-11-23 2016-11-23 一种具有高择优取向的铜晶体颗粒及其制备方法
KR1020187009564A KR102095497B1 (ko) 2016-11-23 2017-09-26 높은 우선 배향을 갖는 구리 결정 입자 및 그의 제조 방법
US15/745,685 US10604857B2 (en) 2016-11-23 2017-09-26 Copper crystal particles having a highly preferred orientation and a preparation method thereof
PCT/CN2017/103498 WO2018095132A1 (en) 2016-11-23 2017-09-26 Copper crystal particles having highly preferred orientation and preparation method thereof
TW107109648A TWI663296B (zh) 2016-11-23 2018-03-21 Electroplated copper layer with copper crystal particles and method for preparing copper crystal particles
US16/803,967 US11613824B2 (en) 2016-11-23 2020-02-27 Bamboo-like copper crystal particles having a highly preferred orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611037367.6A CN106757191B (zh) 2016-11-23 2016-11-23 一种具有高择优取向的铜晶体颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN106757191A CN106757191A (zh) 2017-05-31
CN106757191B true CN106757191B (zh) 2019-10-01

Family

ID=58974885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611037367.6A Active CN106757191B (zh) 2016-11-23 2016-11-23 一种具有高择优取向的铜晶体颗粒及其制备方法

Country Status (5)

Country Link
US (2) US10604857B2 (zh)
KR (1) KR102095497B1 (zh)
CN (1) CN106757191B (zh)
TW (1) TWI663296B (zh)
WO (1) WO2018095132A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396344B (zh) * 2018-03-19 2021-02-12 苏州昕皓新材料科技有限公司 具有扭曲带状无序缠绕微观结构的电解铜箔及其制备方法
CN108977860B (zh) * 2018-06-19 2020-03-31 南开大学 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法
CN109082697B (zh) * 2018-09-12 2020-05-19 河北工业大学 一种柱状铜颗粒膜的制备方法
CN109112580A (zh) * 2018-09-18 2019-01-01 苏州昕皓新材料科技有限公司 一种具有热力学各向异性的金属材料及其制备方法
CN113802155A (zh) * 2021-10-09 2021-12-17 南开大学 一种高晶面择优取向铜箔的室温电沉积制备方法
CN114086224B (zh) * 2021-12-21 2023-04-28 中国科学院深圳先进技术研究院 一种孪晶铜材料及制备方法和用途
KR20230121992A (ko) * 2022-02-11 2023-08-22 쑤저우 신하오 머티리얼즈 엘엘씨 나노 구리 결정입자 전기도금 방법
CN116043286A (zh) * 2022-12-29 2023-05-02 大连理工大学 一种镀铜层晶粒尺寸和取向可控的镀液及电镀方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510289A (ja) * 1996-12-16 2000-08-08 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 集積回路チップ上の電気めっき相互接続構造
CN101067210A (zh) * 2007-01-26 2007-11-07 湖北中科铜箔科技有限公司 一种低轮廓高性能电解铜箔及其制备方法
CN101481812A (zh) * 2008-12-31 2009-07-15 清华大学 一种集成电路铜布线电沉积用的电解液
CN102400188A (zh) * 2010-09-10 2012-04-04 中国科学院金属研究所 一种<111>织构纳米孪晶Cu块体材料及制备方法
CN103730445A (zh) * 2012-10-16 2014-04-16 财团法人交大思源基金会 具有双晶铜线路层的电路板及其制作方法
CN104532309A (zh) * 2014-12-31 2015-04-22 上海新阳半导体材料股份有限公司 能控制tsv深孔镀铜结晶及生长方式的添加剂b及其用途
CN105441993A (zh) * 2015-12-22 2016-03-30 苏州禾川化学技术服务有限公司 一种电镀线路板通孔盲孔的电镀液及电镀方法
CN105633038A (zh) * 2014-11-30 2016-06-01 中国科学院金属研究所 一种定向生长的铜柱凸点互连结构及其制备方法
CN105734623A (zh) * 2016-05-06 2016-07-06 广东利尔化学有限公司 一种高分散酸性镀铜添加剂及其制备方法与应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793796B2 (en) 1998-10-26 2004-09-21 Novellus Systems, Inc. Electroplating process for avoiding defects in metal features of integrated circuit devices
US6444110B2 (en) * 1999-05-17 2002-09-03 Shipley Company, L.L.C. Electrolytic copper plating method
US20040045832A1 (en) * 1999-10-14 2004-03-11 Nicholas Martyak Electrolytic copper plating solutions
US20030188975A1 (en) * 2002-04-05 2003-10-09 Nielsen Thomas D. Copper anode for semiconductor interconnects
DE10223957B4 (de) 2002-05-31 2006-12-21 Advanced Micro Devices, Inc., Sunnyvale Ein verbessertes Verfahren zum Elektroplattieren von Kupfer auf einer strukturierten dielektrischen Schicht
TW200500199A (en) * 2003-02-12 2005-01-01 Furukawa Circuit Foil Copper foil for fine patterned printed circuits and method of production of same
US20050014317A1 (en) 2003-07-18 2005-01-20 Pyo Sung Gyu Method for forming inductor in semiconductor device
TWI328622B (en) * 2005-09-30 2010-08-11 Rohm & Haas Elect Mat Leveler compounds
JP5442188B2 (ja) * 2007-08-10 2014-03-12 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 銅めっき液組成物
US7696093B2 (en) * 2008-08-12 2010-04-13 Advanced Micro Devices, Inc. Methods for forming copper interconnects for semiconductor devices
US20100206737A1 (en) * 2009-02-17 2010-08-19 Preisser Robert F Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
US8747643B2 (en) * 2011-08-22 2014-06-10 Rohm And Haas Electronic Materials Llc Plating bath and method
TWI432613B (zh) * 2011-11-16 2014-04-01 Univ Nat Chiao Tung 電鍍沉積之奈米雙晶銅金屬層及其製備方法
US20140299476A1 (en) * 2013-04-09 2014-10-09 Ebara Corporation Electroplating method
CN103924269B (zh) * 2013-12-26 2016-04-13 苏州昕皓新材料科技有限公司 一种非染料系整平剂的应用
US9551081B2 (en) * 2013-12-26 2017-01-24 Shinhao Materials LLC Leveling composition and method for electrodeposition of metals in microelectronics
KR101893338B1 (ko) * 2014-12-30 2018-08-30 쑤저우 신하오 머티리얼즈 엘엘씨 레벨러, 레벨링 조성물 및 마이크로전자공학에서 금속의 전착 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510289A (ja) * 1996-12-16 2000-08-08 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 集積回路チップ上の電気めっき相互接続構造
CN101067210A (zh) * 2007-01-26 2007-11-07 湖北中科铜箔科技有限公司 一种低轮廓高性能电解铜箔及其制备方法
CN101481812A (zh) * 2008-12-31 2009-07-15 清华大学 一种集成电路铜布线电沉积用的电解液
CN102400188A (zh) * 2010-09-10 2012-04-04 中国科学院金属研究所 一种<111>织构纳米孪晶Cu块体材料及制备方法
CN103730445A (zh) * 2012-10-16 2014-04-16 财团法人交大思源基金会 具有双晶铜线路层的电路板及其制作方法
CN105633038A (zh) * 2014-11-30 2016-06-01 中国科学院金属研究所 一种定向生长的铜柱凸点互连结构及其制备方法
CN104532309A (zh) * 2014-12-31 2015-04-22 上海新阳半导体材料股份有限公司 能控制tsv深孔镀铜结晶及生长方式的添加剂b及其用途
CN105441993A (zh) * 2015-12-22 2016-03-30 苏州禾川化学技术服务有限公司 一种电镀线路板通孔盲孔的电镀液及电镀方法
CN105734623A (zh) * 2016-05-06 2016-07-06 广东利尔化学有限公司 一种高分散酸性镀铜添加剂及其制备方法与应用

Also Published As

Publication number Publication date
KR20180071256A (ko) 2018-06-27
TW201915221A (zh) 2019-04-16
US10604857B2 (en) 2020-03-31
CN106757191A (zh) 2017-05-31
US11613824B2 (en) 2023-03-28
US20190338432A1 (en) 2019-11-07
KR102095497B1 (ko) 2020-04-01
US20200208286A1 (en) 2020-07-02
WO2018095132A1 (en) 2018-05-31
TWI663296B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN106757191B (zh) 一种具有高择优取向的铜晶体颗粒及其制备方法
JP2017150088A (ja) Al‐Mnおよびそれに類似する合金を含む、イオン溶液を用いて電着された多層合金におけるナノスケール結晶粒径分布の調整
Sharma et al. Influence of current density on microstructure of pulse electrodeposited tin coatings
CN102400188A (zh) 一种&lt;111&gt;织构纳米孪晶Cu块体材料及制备方法
Yang Preparation of Fe-Co-Ni ternary alloys with electrodeposition
Nguyen et al. The relationship between nano crystallite structure and internal stress in Ni coatings electrodeposited by watts bath electrolyte mixed with supercritical CO2
Lin et al. The ultrahigh-rate growth of nanotwinned copper induced by thiol organic additives
Cortes et al. Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties
Frolov et al. Synthesis, phase composition, and magnetic properties of iron nanowires prepared in the pores of polymer track-etched membranes
Sakamoto et al. Effects of 2-buthyne-1, 4-diol additive on electrodeposited Ni films from a Watts-type bath
Budi et al. The effects of saccharin on the electrodeposition of NiCoFe films on a flexible substrate
JP2007182623A (ja) 金属薄体の製造方法
Mardani et al. The effect of surfactant on the structure, composition and magnetic properties of electrodeposited CoNiFe/Cu microwire
Nik Rozlin et al. Electrochemical properties of electrodeposited nanocrystalline cobalt and cobalt–iron alloys in acidic and alkaline solutions
Zeng et al. Gradient magnetic binary alloy nanowire
Dryden et al. Nanowire formation is preceded by nanotube growth in templated electrodeposition of cobalt hybrid nanostructures
Zhang et al. Effects of pH on the Nickel coating microstructure and internal stress from an additive-free watts-type bath with phytic acid
Lange Improving lithium-ion battery power and energy densities using novel cathode architectures and materials
Idris et al. Nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition
Wang et al. Effect of aliphatic-amine ethoxy sulfonates (AESS) on micro copper columns fabrication by using localized electrochemical deposition
CN109112580A (zh) 一种具有热力学各向异性的金属材料及其制备方法
Yao et al. Electrochemical Preparation and Characterizations of Hierarchically Polycrystalline NiPb Dendrites
Karaağaç et al. Electrodeposited cobalt films: The effect of deposition potentials on the film properties
Mundotiya et al. Electrodeposition Approaches to Deposit the Single-Phase Solid Solution of Ag-Ni Alloy
Hayashi et al. Evaluation of self-annealing behavior of electrodeposited silver film by EBSP analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 215000 East Side of Chang'an Road, Wujiang Economic and Technological Development Zone, Suzhou City, Jiangsu Province (Science and Technology Pioneering Park)

Patentee after: Meiyouke (Suzhou) Semiconductor Materials Co.,Ltd.

Country or region after: China

Address before: 215000 East Side of Chang'an Road, Wujiang Economic and Technological Development Zone, Suzhou City, Jiangsu Province (Science and Technology Pioneering Park)

Patentee before: SUZHOU SHINHAO MATERIALS LLC

Country or region before: China