CN109112580A - 一种具有热力学各向异性的金属材料及其制备方法 - Google Patents

一种具有热力学各向异性的金属材料及其制备方法 Download PDF

Info

Publication number
CN109112580A
CN109112580A CN201811090322.4A CN201811090322A CN109112580A CN 109112580 A CN109112580 A CN 109112580A CN 201811090322 A CN201811090322 A CN 201811090322A CN 109112580 A CN109112580 A CN 109112580A
Authority
CN
China
Prior art keywords
thermodynamics
metal material
preparation
concentration
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811090322.4A
Other languages
English (en)
Inventor
张芸
王靖
董培培
张星星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd
Original Assignee
SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd filed Critical SUZHOU XINHAO NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201811090322.4A priority Critical patent/CN109112580A/zh
Publication of CN109112580A publication Critical patent/CN109112580A/zh
Priority to PCT/CN2019/076687 priority patent/WO2020057060A1/en
Priority to US16/982,262 priority patent/US11242607B2/en
Priority to US17/571,287 priority patent/US11802345B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Abstract

一种具有热力学各向异性的金属材料,Z轴方向的硬度和X、Y轴方向硬度存在明显的差异,Z轴方向的蚀刻量是X轴或Y轴方向的蚀刻量的2~5倍,Z轴方向热膨胀系数为50×10‑6/K‑1000×10‑6/K,X轴或Y轴方向热膨胀系数为5×10‑6/K‑100×10‑6/K。其制备方法如下,首先,称取金属电镀盐类作为电镀的金属主盐,并选用对应的酸作为导电剂,将金属主盐与导电剂混合作为电镀基础溶液;然后,称取一定量的电镀添加剂;接着,将电镀添加剂与电镀基础溶液混合,配制成对应金属体系的电镀溶液;最后,采用直流电镀工艺,将电镀样品在一定的电流密度下电镀。该金属材料具有良好的热力学各向异性,尤其在热膨胀系数及抗蚀刻性方面明显。

Description

一种具有热力学各向异性的金属材料及其制备方法
技术领域
本发明属于金属材料学领域,具体而言涉及一种热力学特性具有明显各项异性的金属材料及实现具有各向异性特性的金属材料制备方法。
背景技术
单晶体在不同取向上性能差异较大,表现为各向异性,而金属材料不会表现出“各向异性”。实际金属材料往往是多晶体,各晶粒取向不同,整体上表现出各向同性(伪各向同性)。经过加工的金属各晶粒取向趋于一致,表现出各向异性。如轧制(尤其是热轧厚)钢板,往往由于其晶粒纤维随着轧制的方向而延展,沿轧制方向和垂直轧制方向会表现出各向异性。比如钢板在轧制方向和垂直于轧向上力学性能差别很大。
大部分金属都是一种多晶,所以通常不具有明显的各向异性,而对于机加工形成的具有一定各向异性的材料,但由于很难制作那些精细的材料,尤其不能用于微型马达,微型传感器领域,所以面对当前工业化精细制作的挑战,急需要新的各向异性金属材料去应用到相关领域。
目前在传感器领域,其核心器件通常都会用到各种各向同性的材料,而在微机电系统,物联网、智能家居等领域,大量会用到各种传感器。
发明内容
为克服现有技术中存在的问题,本发明旨在提供一种具有热力学各向异性的金属材料及其制备方法,该金属材料具有良好的热力学各向异性,尤其在热膨胀系数及抗蚀刻性方面明显。这种具有明显各向异性的材料的制备过程,原料易得,制备路线简单易行,适合规模化工业生产。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种具有热力学各向异性的金属材料,所述金属材料Z轴方向的硬度和X、Y轴方向硬度存在明显的差异,其中,所述X和Y轴方向的显微硬度为160~180HV,所述Z轴方向的硬度为180-250HV;所述Z轴方向的蚀刻量为0.10-0.25g/min,所述X轴和Y轴方向的蚀刻量为0.04-0.08 g/min,相差将近2~5倍;所述Z轴方向热膨胀系数为50×10-6/K -1000×10-6/K,而X轴或Y轴方向热膨胀系数为5×10-6/K -100×10-6/K,相差将近10-20倍;
所述具有热力学各向异性的金属材料的制备方法,包括以下步骤:
步骤1)称取金属电镀盐类作为电镀的金属主盐,并选用对应的酸作为导电剂,将所述金属主盐与所述导电剂混合作为电镀基础溶液;
步骤2)分别称取一定量的电镀添加剂,所述电镀添加剂主要包括光亮剂、运载剂、整平剂、表面活性剂和抗氧化剂;
步骤3)将所述电镀添加剂与所述电镀基础溶液混合,配制成对应金属体系的电镀溶液;
步骤4)采用直流电镀工艺,将电镀样品在一定的电流密度下电镀,即得。
进一步的,所述电镀基础溶液中,所述金属主盐的离子浓度为10-100g/L,所述酸的浓度为10-100g/L,实际可以根据离子积进行核算。
进一步的,所述金属主盐与所述酸溶液化学试剂均为超纯级。
进一步的,所述光亮剂主要成份为有机磺酸盐,在所述电镀溶液中的浓度为1-10mL/L;所述运载剂为环氧乙烷和环氧丙烷的共聚物,在所述电镀溶液中的浓度为10-20mL/L;所述整平剂为季铵盐,在所述电镀溶液中的浓度为10-20mL/L;所述表面活性剂为聚乙二醇为,在所述电镀溶液中的浓度为20-120mL/L;所述抗氧化剂为山梨酸、柠檬酸体系,在所述电镀溶液中的浓度为10g/L。
进一步的,所述直流电度工艺的电流密度的范围为2-30A/dm2,电镀的时间为根据厚度及相关电化学参数进行调整。
与现有技术相比,本发明的有益效果如下:
本发明通过采用金属主盐及酸性导电剂的基础溶液,采用特定的电镀添加剂及普通的直流电镀工艺,制备出了具有热力学各向异性的材料,具体而言具有以下优点:
首先,采用普通的电镀工艺,大大降低采用机械加工的方案的复杂度,而且精度可以达到微米级,设备简单;其次,电镀出的金属或合金材料具有良好的热力学各向异性,尤其在热膨胀系数及抗蚀刻性方面明显;最后,采用自主研发的镀铜添加剂,该添加剂可以承载较高的电流密度,从而实现高速电镀,所以显著提高了生产效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例详细说明如后。本发明的具体实施方式由以下实施例详细给出。
具体实施方式
下面将结合实施例,来详细说明本发明。
为叙述方便,实施例均以各向异性的铜材料作为实施例,但不局限于铜,还包括锡,银,镍,铬、钴等,而且还可以是上述金属组成的合金。
实施例1
一种具有各向异性材料,其材料的热力学性能具有明显的各向异性的特点,尤其是热膨胀系数、硬度及抗蚀刻特性在X轴和Y轴方向与Z轴方向表现明显。
一种具有热力学特性各向异性的金属或合金材料的制备方法,以金属铜材料为例,具体步骤如下:
将二价铜离子浓度为40g/L的硫酸铜溶液,硫酸浓度为120g/L硫酸溶液,以及氯离子浓度为50ppm的盐酸混合并搅拌两小时,使其混合均匀,配制成基础溶液。
选用新型酸铜加速剂,主要成分是有机硫磺酸盐;新型酸铜抑制剂,主要成分是聚乙二醇)和非染料型新型酸铜整平剂,这三种添加剂作为电镀添加剂。其中新型酸铜加速剂在整个电镀溶液中的浓度为4mL/L,新型酸铜抑制剂在整个电镀溶液中的浓度为15mL/L,非染料型新型酸铜整平剂在整个电镀溶液中的浓度为35mL/L。
将上述三种电镀添加剂与基础溶液混合,配制成电镀溶液。
将带电镀的样品在5A/dm2的电流密度下,电镀40min。
电镀后,将铜膜轻轻从衬底上揭下来,然后用显微硬度测试以分别对X轴和Y轴和Z轴的显微硬度进行测试,测试结果如下:X轴显微硬度为143.28HV,Y轴硬度为145.44HV,而Z轴显微硬度为201.47HV。表明所制备的铜材料具有明显的硬度各向异性。
实施例2
一种具有各向异性材料,其材料的热力学性能具有明显的各向异性的特点,尤其是热膨胀系数、硬度及抗蚀刻特性在X轴和Y轴方向与Z轴方向表现明显。
一种具有热力学特性各向异性的金属或合金材料的制备方法,以金属铜材料为例,具体步骤如下:
将二价铜离子浓度为50g/L的硫酸铜溶液,硫酸浓度为100g/L硫酸溶液,以及氯离子浓度为50ppm的盐酸混合并搅拌三小时,使其混合均匀,配制成基础溶液。
选用新型酸铜加速剂,主要成分是有机硫磺酸盐;新型酸铜抑制剂,主要成分是聚乙二醇)和非染料型新型酸铜整平剂,这三种添加剂作为电镀添加剂。其中新型酸铜加速剂在整个电镀溶液中的浓度为4mL/L,新型酸铜抑制剂在整个电镀溶液中的浓度为10mL/L,非染料型新型酸铜整平剂在整个电镀溶液中的浓度为70mL/L。
将上述三种电镀添加剂与基础溶液混合,配制成电镀溶液。
将带电镀的样品在10A/dm2的电流密度下,电镀20min。
电镀后,将铜膜从衬底上剥离,利用机械热膨胀分析仪(德国耐驰)对电镀样品测定X轴和Y轴以及Z轴方向的热膨胀系数,升温范围为20-400℃,通过热膨胀分析仪,测得在20-400℃温度范围内,所制备的样品在X轴的热膨胀系数为6.8×10-6/K,Y轴方向为6.9×10-6/K,而Z轴为91.7×10-6/K。
可以看到Z轴方向的热膨胀系数为X轴和Y轴方向的10倍以上。
利用上述制备的材料,可以作为温控微型马达的部件,由于Z轴方向具有较大的热膨胀系数,所以制备温控微型马达,其扭矩大,稳定,安全。可以广泛应用于微机电系统或智能家居等领域。
当然上述实例只是为了说明本发明的技术构思及特点所作的例举而非穷举,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。根据本发明主要技方案的精神实质所做的修饰,都涵盖在本发明的保护范围之内。

Claims (10)

1.一种具有热力学各向异性的金属材料,其特征在于:所述金属材料Z轴方向的硬度和X、Y轴方向硬度存在明显的差异,其中,所述X和Y轴方向的显微硬度为160~180HV,所述Z轴方向的硬度为180-250HV;所述Z轴方向的蚀刻量为0.10-0.25g/min,所述X轴和Y轴方向的蚀刻量为0.04-0.08 g/min;所述Z轴方向热膨胀系数为50×10-6/K -1000×10-6/K,而X轴或Y轴方向热膨胀系数为5×10-6/K -100×10-6/K。
2.根据权利要求1所述的具有热力学各向异性的金属材料的制备方法,其特征在于,包括以下步骤:
步骤1)称取金属电镀盐类作为电镀的金属主盐,并选用对应的酸作为导电剂,将所述金属主盐与所述导电剂混合作为电镀基础溶液;
步骤2)分别称取一定量的电镀添加剂,所述电镀添加剂主要包括光亮剂、运载剂、整平剂、表面活性剂和抗氧化剂;
步骤3)将所述电镀添加剂与所述电镀基础溶液混合,配制成对应金属体系的电镀溶液;
步骤4)采用直流电镀工艺,将电镀样品在一定的电流密度下电镀,即得。
3.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述电镀基础溶液中,所述金属主盐的离子浓度为10-100g/L,所述酸的浓度为10-100g/L。
4.根据权利要求2或3所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述金属主盐与所述酸溶液化学试剂均为超纯级。
5.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述光亮剂主要成份为有机磺酸盐,在所述电镀溶液中的浓度为1-10mL/L。
6.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述运载剂为环氧乙烷和环氧丙烷的共聚物,在所述电镀溶液中的浓度为10-20mL/L。
7.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述整平剂为苏州昕皓新材料科技有限公司合成的季铵盐,在所述电镀溶液中的浓度为10-20mL/L。
8.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述表面活性剂为聚乙二醇为,在所述电镀溶液中的浓度为20-120mL/L。
9.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述抗氧化剂为山梨酸、柠檬酸体系,在所述电镀溶液中的浓度为10g/L。
10.根据权利要求2所述的具有热力学各向异性的金属材料的制备方法,其特征在于:所述直流电镀工艺的电流密度的范围为2-30A/dm2
CN201811090322.4A 2018-09-18 2018-09-18 一种具有热力学各向异性的金属材料及其制备方法 Pending CN109112580A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811090322.4A CN109112580A (zh) 2018-09-18 2018-09-18 一种具有热力学各向异性的金属材料及其制备方法
PCT/CN2019/076687 WO2020057060A1 (en) 2018-09-18 2019-03-01 A metal material with thermodynamic anisotropy and a method of preparing the same
US16/982,262 US11242607B2 (en) 2018-09-18 2019-03-01 Metal material with thermodynamic anisotropy and a method of preparing the same
US17/571,287 US11802345B2 (en) 2018-09-18 2022-01-07 Metal material with thermodynamic anisotropy and a method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811090322.4A CN109112580A (zh) 2018-09-18 2018-09-18 一种具有热力学各向异性的金属材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109112580A true CN109112580A (zh) 2019-01-01

Family

ID=64859693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811090322.4A Pending CN109112580A (zh) 2018-09-18 2018-09-18 一种具有热力学各向异性的金属材料及其制备方法

Country Status (3)

Country Link
US (2) US11242607B2 (zh)
CN (1) CN109112580A (zh)
WO (1) WO2020057060A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057060A1 (en) * 2018-09-18 2020-03-26 Suzhou Shinhao Materials Llc A metal material with thermodynamic anisotropy and a method of preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924268A (zh) * 2013-12-26 2014-07-16 苏州昕皓新材料科技有限公司 一种酸铜整平剂的应用
CN103924269A (zh) * 2013-12-26 2014-07-16 苏州昕皓新材料科技有限公司 一种非染料系整平剂的应用
CN106521573A (zh) * 2016-11-23 2017-03-22 苏州昕皓新材料科技有限公司 制备具有择优取向生长结构的电镀铜层的方法及其应用
CN106757191A (zh) * 2016-11-23 2017-05-31 苏州昕皓新材料科技有限公司 一种具有高择优取向的铜晶体颗粒及其制备方法
CN108396344A (zh) * 2018-03-19 2018-08-14 苏州昕皓新材料科技有限公司 具有扭曲带状无序缠绕微观结构的电解铜箔及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111096A3 (en) * 1999-12-15 2004-02-11 Shipley Company LLC Seed layer repair method
JP4345958B2 (ja) * 2003-02-24 2009-10-14 独立行政法人物質・材料研究機構 異方性成形体の製造装置および異方性成形体の製造方法
GB0610272D0 (en) * 2006-05-24 2006-07-05 Auxetic Technologies Ltd A composite material
US8262894B2 (en) * 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
KR101893338B1 (ko) * 2014-12-30 2018-08-30 쑤저우 신하오 머티리얼즈 엘엘씨 레벨러, 레벨링 조성물 및 마이크로전자공학에서 금속의 전착 방법
CN109112580A (zh) * 2018-09-18 2019-01-01 苏州昕皓新材料科技有限公司 一种具有热力学各向异性的金属材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924268A (zh) * 2013-12-26 2014-07-16 苏州昕皓新材料科技有限公司 一种酸铜整平剂的应用
CN103924269A (zh) * 2013-12-26 2014-07-16 苏州昕皓新材料科技有限公司 一种非染料系整平剂的应用
CN106521573A (zh) * 2016-11-23 2017-03-22 苏州昕皓新材料科技有限公司 制备具有择优取向生长结构的电镀铜层的方法及其应用
CN106757191A (zh) * 2016-11-23 2017-05-31 苏州昕皓新材料科技有限公司 一种具有高择优取向的铜晶体颗粒及其制备方法
CN108396344A (zh) * 2018-03-19 2018-08-14 苏州昕皓新材料科技有限公司 具有扭曲带状无序缠绕微观结构的电解铜箔及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057060A1 (en) * 2018-09-18 2020-03-26 Suzhou Shinhao Materials Llc A metal material with thermodynamic anisotropy and a method of preparing the same
US11242607B2 (en) 2018-09-18 2022-02-08 Suzhou Shinhao Materials Llc Metal material with thermodynamic anisotropy and a method of preparing the same
US11802345B2 (en) 2018-09-18 2023-10-31 Suzhou Shinhao Materials Llc Metal material with thermodynamic anisotropy and a method of preparing the same

Also Published As

Publication number Publication date
US11242607B2 (en) 2022-02-08
WO2020057060A1 (en) 2020-03-26
US11802345B2 (en) 2023-10-31
US20220127742A1 (en) 2022-04-28
US20210017660A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
You et al. Electrochemical synthesis and characterization of Ni–P alloy coatings from eutectic–based ionic liquid
Akolkar et al. A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization
Moffat et al. Curvature enhanced adsorbate coverage model for electrodeposition
Beattie et al. Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries
Tsuda et al. Electrochemistry of copper (I) oxide in the 66.7–33.3 mol% urea–choline chloride room-temperature eutectic melt
Josell et al. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte
Yue et al. A promising method for electrodeposition of aluminium on stainless steel in ionic liquid
Zhang et al. Enhanced corrosion resistance of Co-Sn alloy coating with a self-organized layered structure electrodeposited from deep eutectic solvent
Tang et al. Copper bottom-up filling for through silicon via (TSV) using single JGB additive
Lühn et al. Monitoring the superfilling of blind holes with electrodeposited copper
Chen et al. Electrodeposition and characterization of nanocrystalline CoNiFe films
Kim et al. Pulse electrodeposition for improving electrical properties of Cu thin film
Tao et al. Synergistic effect of different additives on microvia filling in an acidic copper plating solution
Park et al. Electrodeposited Ni1− x Co x Nanocrystalline Thin Films: Structure–Property Relationships
Zhang et al. Competitive effect of leveler's electrochemical behavior and impurity on electrical resistance of electroplated copper
Kondo et al. Communication—Bottom-up TSV filling using sulfonated diallyl dimethyl ammonium bromide copolymer as a leveler
Li et al. Electrodeposition of nickel in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquids
Fedorov et al. Electrochemical deposition of Co (Cu)/Cu multilayered nanowires
Osaka et al. Effect of carbon content on the electrical resistivity of electrodeposited copper
CN109112580A (zh) 一种具有热力学各向异性的金属材料及其制备方法
Lee et al. Growth mechanism and application of nanostructures fabricated by a copper sulfate solution containing boric acid
Morsali et al. Mechanisms of localized pulsed electrodeposition (L-PED) for microscale 3D printing of nanotwinned metals
He et al. Electrochemical mechanism of Cr (III) reduction for preparing crystalline chromium coatings based on 1-ethyl-3-methylimidazolium bisulfate ionic liquid
Schaltin et al. Electrodeposition from a liquid cationic cuprous organic complex for seed layer deposition
Mercier et al. Study of copper electrodeposition mechanism on molybdenum substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190101