CN104409566A - 铜锌锡硫薄膜材料的两电极电化学制备方法 - Google Patents

铜锌锡硫薄膜材料的两电极电化学制备方法 Download PDF

Info

Publication number
CN104409566A
CN104409566A CN201410618846.1A CN201410618846A CN104409566A CN 104409566 A CN104409566 A CN 104409566A CN 201410618846 A CN201410618846 A CN 201410618846A CN 104409566 A CN104409566 A CN 104409566A
Authority
CN
China
Prior art keywords
copper
zinc
tin
sulfur film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410618846.1A
Other languages
English (en)
Inventor
王书荣
蒋志
刘涛
李志山
杨敏
段良飞
郝瑞亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN201410618846.1A priority Critical patent/CN104409566A/zh
Publication of CN104409566A publication Critical patent/CN104409566A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种采用两电极体系制备铜锌锡硫薄膜材料的方法,包含以下下步骤:(1)柔性钼箔片衬底的清洗,利用丙酮与乙醇去除钼箔片表面残留的油脂,再利用硝酸与盐酸的混合溶液去除钼箔片表面的保护膜;(2)电解液的配置,分别配置铜、锌、锡三种金属的电解液;(3)金属预制层的电化学沉积,采用两电极体系沉积铜锌锡金属预制层;(4)金属预制层的硫化与退火,铜锌锡金属预制层在氮气保护下硫化退火得到铜锌锡硫薄膜。(5)铜锌锡硫薄膜的清洗与干燥,在去离子水中超声清洗后,用氮气吹干。相比于传统的三电极体系,两电极体系在保证不降低铜锌锡硫薄膜品质的条件下具有便于操作与控制、设备简单、成本低廉等优点。

Description

铜锌锡硫薄膜材料的两电极电化学制备方法
技术领域
本发明涉及铜锌锡硫薄膜的电化学制备方法,属于光电材料新能源技术领域。
背景技术
随着各国加大对新型铜锌锡硫薄膜太阳电池材料的制备研究的投入,铜锌锡硫薄膜太阳电池的制备工艺及电池性能也得到了很大的发展,其中高质量铜锌锡硫薄膜材料的制备成为整个铜锌锡硫薄膜太阳电池研制的核心。目前,铜锌锡硫薄膜的制备方法包含真空法和非真空法,真空法所需设备复杂昂贵,制备成本较高,目前以真空法为基础研制的铜锌锡硫太阳电池最高光电转换效率已达到8.4%。
非真空法具有低成本、材料利用率高和易于大规模化生产等优点而受到广泛重视,目前以非真空法为基础研制的铜锌锡硫薄膜电池效率已高达11.1%。在所有非真空法中,电化学法的研究较多,目前普遍采用电化学工作站及三电极体系沉积铜锌锡硫薄膜的铜锌锡金属预制层,然后在硫的气氛下硫化并退火,最终制得铜锌锡硫薄膜。虽然在铜锌锡预制层的制备过程中采用电化学工作站及三电极体系可以实现对工艺过程的精确控制,但涉及到的设备复杂昂贵、工艺过程较为繁琐。并且要求较高的理论依据。使得电化学沉积技术在制备CZTS薄膜方面的应用受到限制。
鉴于采用三电级法制备铜锌锡预制层的复杂性,本领域的研究人员希望通过简化工艺难度、降低设备成本、提高工艺重复性来制备出优质的铜锌锡硫薄膜,进一步提高电化学沉积技术在制备铜锌锡硫薄膜方面的实用性。
发明内容
本发明的目的在于提供一种较为简便的以电化学法为基础的铜锌锡硫薄膜制备方法,从而简化铜锌锡硫薄膜的制备工艺、降低铜锌锡硫薄膜的制备成本。
本发明所涉及的一种电化学法制备铜锌锡硫薄膜的方法按以下步骤实施:
(1)轧制箔片或镀钼玻璃基片先后在丙酮、乙醇、去离子水、硝酸盐酸混合液、去离子水中超声浸泡,去除表面油脂及保护膜;
(2)按摩尔浓度(mol/l)计,硫酸铜、柠檬酸钠的浓度分别为0.02~0.06、0.4,硫酸亚锡、柠檬酸钠的浓度分别为0.04~0.06、0.4。分别配置铜、锡的电解液,最后加入适量酒石酸将铜、锡电解液的pH值调至4~5。以200~250ml的乙二醇或异丙醇作为溶剂,适量无水氯化锌为溶质,配置0.2~0.4mol/l的无水氯化锌电解液;
(3)调节极化电流先后沉积铜、锡、锌层,得到铜锌锡金属预置层;
(4)在570~590℃、通入氮气的石英硫化炉中硫化退火40~50分钟后得到铜锌锡硫薄膜;
(5)将铜锌锡硫薄膜放入去离子水中超声振荡,去除表面可能残留的杂质粒子和二次相,冲洗并吹干,得到最终的铜锌锡硫薄膜。
本发明一种采用两电极系统制备铜锌锡硫薄膜材料的方法,在步骤(1)中,裁剪得到的钼箔片长4cm、宽2cm。衬底的预处理要满足先去除钼箔片表面的油脂,再去除钼箔片表面的氧化膜。
本发明一种采用两电极系统制备铜锌锡硫薄膜材料的方法,在步骤(1)中,除去钼箔片表面保护膜的硝酸盐酸混合液中使用的浓硝酸和浓盐酸按体积比,硝酸:盐酸=1:3~4.5。
本发明一种采用两电极系统制备铜锌锡硫薄膜材料的方法,在步骤(2)中,
配置锌电解液时为了避免氢离子,需要使用有机物作为溶剂,推荐使用乙二醇或异丙醇。  
本发明一种采用两电极系统制备铜锌锡硫薄膜材料的方法,在步骤(3)中,三种金属的沉积顺序为铜→锡→锌,沉积电流分别保持在13~14mA,9~10mA,14~15mA。对应的沉积时间分别为160~140秒、210~200秒、960~900秒。
本发明一种采用两电极系统制备铜锌锡硫薄膜材料的方法,在步骤(4)中,铜锌锡金属预制层与硫粉共舟放置,且硫粉指向铜锌锡金属预制层的方向与氮气流向一致,在取出铜锌锡硫薄膜前,薄膜需在硫化炉低温区冷却至100℃左右,防止氧化。
本发明一种采用两电极系统制备铜锌锡硫薄膜材料的方法,在步骤(5)中,制备好的铜锌锡硫薄膜在去离子水中超声浸泡。
附图说明
图1为本发明制备的铜锌锡硫薄膜的XRD图
图2为本发明制备的铜锌锡硫薄膜的Raman图
图3为本发明制备的铜锌锡硫薄膜的SEM图
图4为本发明制备的铜锌锡硫薄膜的EDS图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
操作步骤如下:
(1)裁剪好长4cm,宽2cm的钼箔片;
 (2)首先将裁剪好的钼箔片依次在丙酮、酒精中超声浸泡,去除钼箔片表面油脂,取出后用去离子水冲洗。然后将钼片放入硝酸盐酸混合液中(按体积比,硝酸:盐酸=1:3.5)超声浸泡,去除其表面氧化膜;
(3)采用分析纯级的硫酸铜、硫酸亚锡、柠檬酸钠、酒石酸作为溶质,分别配置500ml的铜电解液与500ml的锡电解液。按摩尔浓度(mol/l)计,其中铜电解液中硫酸铜、柠檬酸钠的浓度分别为0.06、0.4,锡电解液中硫酸亚锡、柠檬酸钠的浓度分别为0.06、0.4,加入适量酒石酸将配置好的铜电解液与锡电解液的pH值调至5;
(4)取200ml的分析纯级乙二醇作为溶剂,加入适量分析纯级无水氯化锌并超声直至氯化锌完全溶解,配置成0.4mol/l的氯化锌溶液作为锌电解液;
(5)将第(2)步中得到的钼箔片作为阴极,用石墨片作为阳极。将三种金属按铜→锡→锌的顺序分别沉积,对应的沉积电流和时间分为14mA、9mA、15mA;140秒、210秒、900秒。制得铜锌锡金属预制层;
(6)将第(5)步得到的铜锌锡预制层与2g硫粉放入石英舟内,再将石英舟推入温度已达580℃的硫化炉内硫化退火40分钟,待铜锌锡硫薄膜逐渐冷却至100℃时从硫化炉中取出;
(7)将铜锌锡硫薄膜浸泡在去离子水中超声30秒钟后取出并吹干,得到最终的铜锌锡硫薄膜。
实施例2
(1)同实施例1中步骤(1);
(2)同实施例1中步骤(2);
(3)采用分析纯级的硫酸铜、硫酸亚锡、柠檬酸钠、酒石酸作为溶质,分别配置500ml的铜电解液与500ml的锡电解液。摩尔浓度(mol/l)计,其中铜电解液中硫酸铜、柠檬酸钠的浓度分别为0.04、0.4,锡电解液中硫酸亚锡、柠檬酸钠的浓度分别为0.04、0.4,加入适量酒石酸将配置好的铜电解液与锡电解液的pH值调至5;
(4)取200ml的分析纯级乙二醇作为溶剂,加入适量分析纯级无水氯化锌并超声直至氯化锌完全溶解,配置成0.3mol/L的氯化锌溶液作为锌电解液;
(5)将第(2)步中得到的钼片作为阴极,用石墨片作为阳极。将三种金属按铜→锡→锌的顺序沉积,对应的沉积电流和时间分为13.5mA,10mA,14mA。对应的沉积时间分别为150秒、200秒、920秒。制得铜锌锡金属预制层;
(6)将第(5)步得到的铜锌锡预制层与2g硫粉放入石英舟内,再将石英舟放入温度达到590℃的硫化炉内硫化退火50分钟,使铜锌锡硫薄膜冷却至100℃时从硫化炉中取出;
(7)同实施例1中步骤(7)。

Claims (8)

1.一种采用两电极体系制备铜锌锡硫薄膜材料的方法,其特征在于,制备步骤如下:
(1)钼箔片衬底的清洗:将钼箔片衬底放入有机溶剂中超声浸泡,去除其表面残留的油脂;
将洗净后的钼箔片放入硝酸与盐酸的混合溶液中超声浸泡除去包裹在钼箔片表面的氧化膜,最后用去离子水冲洗并吹干;
(2)配制金属预制层的电解液:首先配制铜与锡的电解液;
其次采用无水氯化锌与有机溶剂制备锌电解液;
(3)沉积金属预制层,采用两电极体系及恒电流源在钼箔片衬底上先后沉积铜、锡、锌层;
(4)在氮气保护与硫气氛下硫化并退火制得CZTS薄膜;
(5)清洗制备好的铜锌锡硫薄膜并吹干。
2.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(1)中,硝酸与盐酸的混合溶液中硝酸与盐酸的体积比为1:3~4.5。
3.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(2)中,以摩尔浓度(mol/l)计,铜电解液中硫酸铜、柠檬酸钠的浓度分别为0.02~0.06、0.4,锡电解液中硫酸亚锡、柠檬酸钠的浓度分别为0.04~0.06、0.4。
4.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(2)中,锌电解液中以乙二醇或异丙醇作为溶剂,将无水氯化锌溶于乙二醇或异丙醇,将无水氯化锌的浓度控制在0.2~0.4mol/l。
5.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(2)中,在制备锌电解液时,采用超声振荡加速无水氯化锌在乙二醇或异丙醇中的溶解。
6.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(3)中,沉积铜时,极化电流保持在13~14mA;沉积锡时,极化电流保持在9~10mA;沉积锌时,极化电流保持在14~15mA。
7.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(4)中,铜锌锡预制层与硫粉共同放入敞开的石英舟中,将石英舟推入温度为570~590℃并通入氮气保护的石英硫化炉中硫化并退火40~50分钟,然后将石英舟送至硫化炉低温区,待铜锌锡硫薄膜温度降至100℃左右时,从硫化炉中取出。
8.如权利要求1所述的铜锌锡硫薄膜材料的制备方法,其特征在于,所述步骤(5)中,将制备好的铜锌锡硫薄膜放入去离子水中,并在超声振荡下浸泡30秒,再用去离子水冲洗,最后用氮气吹干。
CN201410618846.1A 2014-11-06 2014-11-06 铜锌锡硫薄膜材料的两电极电化学制备方法 Pending CN104409566A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410618846.1A CN104409566A (zh) 2014-11-06 2014-11-06 铜锌锡硫薄膜材料的两电极电化学制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410618846.1A CN104409566A (zh) 2014-11-06 2014-11-06 铜锌锡硫薄膜材料的两电极电化学制备方法

Publications (1)

Publication Number Publication Date
CN104409566A true CN104409566A (zh) 2015-03-11

Family

ID=52647179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410618846.1A Pending CN104409566A (zh) 2014-11-06 2014-11-06 铜锌锡硫薄膜材料的两电极电化学制备方法

Country Status (1)

Country Link
CN (1) CN104409566A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862753A (zh) * 2015-04-18 2015-08-26 云南师范大学 铜锌锡硫薄膜吸收层的一种电化学制备方法
CN105648492A (zh) * 2016-01-13 2016-06-08 中国科学院上海技术物理研究所 一种铜锌锡硫薄膜的制备方法
CN108977860A (zh) * 2018-06-19 2018-12-11 南开大学 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016608A (zh) * 2007-02-07 2007-08-15 宜兴市宝登合金有限公司 一种超薄精密深拉成型的钼片轧制方法
WO2009120784A2 (en) * 2008-03-25 2009-10-01 Pavco Inc. Electrodeposited metallic finishes including antimicrobial agents
CN102832087A (zh) * 2012-07-30 2012-12-19 安徽霍山县万鑫电子科技有限公司 钢芯线取代钼丝的钨灯丝制作工艺
CN103915528A (zh) * 2014-03-28 2014-07-09 上海交通大学 一种铜锌锡硫-硫化铜-铜锡硫薄膜的合成方法
CN104032336A (zh) * 2013-03-07 2014-09-10 纳米及先进材料研发院有限公司 制造用于太阳能电池应用的吸光材料的非真空方法
CN104120467A (zh) * 2014-07-23 2014-10-29 陕西师范大学 一种组成可控的铜锌锡薄膜材料和铜锌锡硫基太阳能电池及其两者的制备方法
JP2015056421A (ja) * 2013-09-10 2015-03-23 富士フイルム株式会社 光電変換素子の製造方法および光水分解用電極

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016608A (zh) * 2007-02-07 2007-08-15 宜兴市宝登合金有限公司 一种超薄精密深拉成型的钼片轧制方法
WO2009120784A2 (en) * 2008-03-25 2009-10-01 Pavco Inc. Electrodeposited metallic finishes including antimicrobial agents
CN102832087A (zh) * 2012-07-30 2012-12-19 安徽霍山县万鑫电子科技有限公司 钢芯线取代钼丝的钨灯丝制作工艺
CN104032336A (zh) * 2013-03-07 2014-09-10 纳米及先进材料研发院有限公司 制造用于太阳能电池应用的吸光材料的非真空方法
JP2015056421A (ja) * 2013-09-10 2015-03-23 富士フイルム株式会社 光電変換素子の製造方法および光水分解用電極
CN103915528A (zh) * 2014-03-28 2014-07-09 上海交通大学 一种铜锌锡硫-硫化铜-铜锡硫薄膜的合成方法
CN104120467A (zh) * 2014-07-23 2014-10-29 陕西师范大学 一种组成可控的铜锌锡薄膜材料和铜锌锡硫基太阳能电池及其两者的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862753A (zh) * 2015-04-18 2015-08-26 云南师范大学 铜锌锡硫薄膜吸收层的一种电化学制备方法
CN105648492A (zh) * 2016-01-13 2016-06-08 中国科学院上海技术物理研究所 一种铜锌锡硫薄膜的制备方法
CN108977860A (zh) * 2018-06-19 2018-12-11 南开大学 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法

Similar Documents

Publication Publication Date Title
Li et al. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni 3 S 2 nanorod/nanowire arrays for high-performance supercapacitors
CN108063219B (zh) 一种高效液态碱金属合金电极及其制备方法和应用
CN103915630A (zh) 一种二硫化钼/介孔碳复合电极材料及其制备方法和应用
CN103367756B (zh) 一种基于多孔铜的锂离子电池负极材料的制备方法
CN111600036A (zh) 一种用于锂金属电池集流体的三维多孔氧化铜改性铜箔及其制备方法和应用
CN109841422B (zh) Co3O4/Co2P同轴异质结构材料及其制备方法和应用
CN105390702A (zh) 一种泡沫镍基碳纳米管掺杂Sn/SnO/SnO2层状三维多孔负极材料及其制备方法
CN104600249A (zh) 纳米多孔金属及纳米多孔金属锂硫电池正极材料制备方法
CN106328944A (zh) 一种铜箔表面原位制备无粘结剂锂/钠离子电池负极锑化二铜的方法
CN108950570A (zh) 一种锂离子电池负极集流体用多孔铜箔的制备方法
CN103606683B (zh) 一种线团状的锗纳米材料及其制备方法
CN110534798A (zh) 一种石榴石型固体电解质的改良方法
CN100353594C (zh) 采用电沉积-浸涂-热处理成型工艺制备掺杂物的金属氧化物电极材料
CN110760874B (zh) 一种利用废弃磷酸铁锂电池制备氧化铁光阳极薄膜的方法
Long et al. In-situ regulation of zinc metal surface for Dendrite-Free Zinc-ion hybrid supercapacitors
CN104409566A (zh) 铜锌锡硫薄膜材料的两电极电化学制备方法
CN102887504A (zh) 一种锂离子电池负极用碳材料的制备方法
CN106848257B (zh) 一种中空结构的碳包覆硅负极材料的制备方法
CN106981650A (zh) 一种纳米级单质铋的制备方法
CN104021947B (zh) 一种混合型超级电容器氧化钌电极的制备方法
CN102732921A (zh) 一种制备三维有序大孔锗硅、锗铝异质薄膜材料的离子液体电沉积方法
CN104862753A (zh) 铜锌锡硫薄膜吸收层的一种电化学制备方法
CN107275108B (zh) 一种制备镍钴的氧、硫化合物复合薄膜电极的方法
CN109768252B (zh) 一种改性的ncm622薄膜正极材料及其制备与应用
Zhang et al. Effect of aluminium doping amount on the electrochemical properties of ZnO nanoparticles as anode for lithium ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150311