CN1202723A - 制备有金属硅化物膜的半导体器件的方法 - Google Patents

制备有金属硅化物膜的半导体器件的方法 Download PDF

Info

Publication number
CN1202723A
CN1202723A CN98109731A CN98109731A CN1202723A CN 1202723 A CN1202723 A CN 1202723A CN 98109731 A CN98109731 A CN 98109731A CN 98109731 A CN98109731 A CN 98109731A CN 1202723 A CN1202723 A CN 1202723A
Authority
CN
China
Prior art keywords
film
titanium
metal
semiconductor substrate
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98109731A
Other languages
English (en)
Other versions
CN1108630C (zh
Inventor
田桑哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ps4 Russport Co ltd
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1202723A publication Critical patent/CN1202723A/zh
Application granted granted Critical
Publication of CN1108630C publication Critical patent/CN1108630C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

为了防止形成在接触孔或通孔中以及掩埋接触孔或通孔的绝缘膜上的厚金属氮化物膜的破裂或剥落,提供容易去除绝缘膜上的不需要金属膜、而同时留下形成在接触孔中的金属硅化物膜的方法。该方法包括以下步骤:用CVD在形成于绝缘膜中的孔中及绝缘膜上淀积钛膜,通过孔底部钛膜与半导体衬底反应形成金属硅化物膜,然后用含卤素的腐蚀气体选择去除金属硅化物膜以外的其它不需要的金属膜。

Description

制备有金属硅化物膜的半导体器件的方法
本发明涉及一种半导体器件的制造方法,特别涉及有金属硅化物膜的半导体器件的制造方法。
随着LSI的集成度的提高,接触孔的精细度也随之增加,用接触孔的深度与直径之比代表的接触孔高宽比也随之增大。当在半导体中使用溅射形成的常规金属膜如铝时,很难得到满意的台阶覆盖。因此连接电阻变大,并且布线有可能漏电。即使不可能形成布线,布线漏电的倾向仍然存在,因为在其间流过电流时导致铝的电迁移。为了解决这个问题,建议使用钨塞法,用化学汽相形成钨膜掩埋接触孔,并能提供很好的台阶覆盖。根据钨塞方法,用溅射形成由钛构成的阻挡金属和氮化钛,其中阻挡金属用来降低接触孔的连接电阻(接触电阻),氮化钛用来改善钛和钨之间的粘附性并防止钨迁移进半导体衬底中,此后,用化学汽相淀积形成钨膜,以用钨掩埋接触孔,并深腐蚀钨膜同时只让接触孔中留下钨,由此形成钨塞。
但是,根据该方法,当接触孔变得更细、高宽比更大时,不可能用溅射在接触孔中形成所需厚度的钛膜或氮化钛膜。因此接触电阻会变大、且半导体元件会被钨损坏。
为了解决这些问题,已经尝试用能提供更好台阶覆盖的化学汽相淀积(CVD)形成钛膜和氮化钛膜。具体地说,当过利用热反应的CVD形成常用的氮化钛膜时,其台阶覆盖很好。用CVD形成包括钛层、氮化钛膜、和钨膜的三层金属来掩埋接触孔。但是按此方法,制造步骤变复杂,且制造成本增加。为了解决这个问题,已经提出只用钛膜和氮化钛膜掩埋接触孔,去掉形成钨膜的步骤。
图4(a)到4(d)是半导体晶片的剖面图,用于表示掩埋接触孔的上述常规制造步骤。首先,在其上将形成元件的硅衬底301上,用CVD法形成含磷或硼的氧化硅膜形式的BPSG膜302作为层间绝缘膜。然后,用常规的光刻和干法刻蚀技术形成到达元件表面的接触孔(图4(a))。接触孔的直径可以约为0.4μm。
然后用等离子体CVD形成10到50nm厚的钛膜303、并用常规的热CVD形成0.3μm厚的氮化钛膜305,以此完全掩埋接触孔(图4(b))。将半导体衬底加热到500℃以上的温度,使钛膜303与硅衬底304反应并形成硅化钛膜304。
然后,通过氯气的干法刻蚀去除BPSG膜302上的钛膜303和氮化钛膜305,而仅在接触孔中留下硅化钛膜304和氮化钛膜305(图4(c))。
然后,通过溅射在BPSG膜302上淀积铝合金膜306,并用光刻和干法刻蚀技术将之构图为需要的形状,得到铝布线(图4(d))。
但是,在上述半导体器件常规制造方法中,当氮化钛膜很厚时,在通过CVD形成的掩埋接触孔的氮化钛膜上有8E10达因/cm2以上的张应力。而且,由热CVD形成的钛膜与氮化钛膜的粘附性不好。为此,氮化钛膜可能破裂、或从钛膜剥落。当氮化钛膜从钛膜上剥落时,下面的层间绝缘膜(BPSG膜)在随后的氮化钛膜腐蚀步骤中可能被异常腐蚀,使制造成品率降低,所得半导体器件的可靠性降低。而且,剥落的氮化钛膜部分成为外来物,这也将导致成品率的下降。当氮化钛膜破裂时,下面层发生异常腐蚀。
为了解决上述问题,如图4(b)所示,在钛膜303上淀积形成氮化钛膜305时,应该考虑:形成钛膜303和硅化钛膜304后,将钛膜303腐蚀掉,只剩下硅化钛膜304,然后淀积氮化钛膜305。
通过腐蚀仅选择去除钛膜303的常规方法,使用氨的水溶液和过氧化氢的水溶液的混合液。除几分钟的选择去除、腐蚀步骤后的清洗时间(约10分钟)、用甩干机的甩干时间(约5分钟)等之外,由于需要选择腐蚀,要花很长时间,而且,很明显的问题是产生大量的废液。
因此本发明的目的是提供制备半导体器件的方法,根据该方法可以腐蚀钛膜而留下硅化钛膜。
根据本发明,制备有金属硅化物膜和金属膜的半导体器件的方法的特点是:用含卤素的腐蚀气体选择去除金属膜。
此外,制备半导体器件的另一个方法的特点是:包括由化学汽相淀积形成金属膜和金属硅化物膜的步骤、和在化学汽相淀积方法中用含卤素的气体选择去除金属膜的步骤。
根据该方法,可以不用湿法而用干法选择去除金属膜。
从结合附图的下面说明可以更明白本发明的上述目的和其它目的、其优点和特性。
图1(a)到1(g)是半导体晶片的剖面图,分别表示本发明第一实施例的主要制造步骤;
图2是表示根据本发明用四氯化钛腐蚀钛衬底和硅化钛衬底的腐蚀速率的曲线图;
图3(a)到3(f)是半导体晶片的剖面图,分别表示本发明第二实施例的主要制造步骤;
图4(a)到4(d)是半导体晶片的剖面图,分别表示半导体器件的常规制造步骤;
图1(a)到1(g)是半导体晶片的剖面图,分别表示本发明第一实施例的主要制造步骤。
用CVD在其上形成有元件的硅衬底101上形成约1.5μm厚的BPSG膜102作为层间绝缘膜(图1(a))。然后,用涂敷形成光刻胶膜103,通过曝光步骤和显影步骤在光刻胶上要求位置形成直径约0.3μm的开口,用三氟甲烷(CF3)气体和一氧化碳(CO)气体的混合气体、用光刻胶膜103作为掩模将BPSG膜102干法腐蚀到硅衬底,以形成接触孔(图1(b))。
然后,去除光刻胶膜103,再后用CVD去除钛膜104(图1(c))。钛膜104有10到30nm的厚度,并在下面条件下形成:使用四氯化钛气体、氩气(Ar)和氢气,其流速分别为3到10sccm、200到500sccm和1000到2000sccm,在3到10Torr的压力下将硅衬底101加热到500至600℃,在衬底的相对电极之间加几百瓦的RF功率以产生等离子体。在这些条件下,形成在硅衬底上的钛膜104立即硅化形成有C49结构的硅化钛膜105,而形成在层间绝缘膜(氧化膜)如BPSG膜上的钛膜105为非硅化物膜。
然后,如图1(d)所示,用四氯化钛和氩气的混合气体选择腐蚀衬底,同时保持衬底的温度为500℃,以去除硅化钛膜105以外的其它钛膜。
除了RF功率为0瓦以外,即不产生等离子体,在和形成钛膜所用的相同条件下完成后面的腐蚀步骤。由于混合除四氯化钛发外的气体以稀释四氯化钛气体,所以可以提供任何能稀释四氯化钛气体的气体。因此,尽管该实施例中不用氢气,但混合气体中可以使用氢气。此时,由于RF功率为0瓦,没有氢基产生,不会发生钛膜的淀积。为了进一步防止钛膜的淀积,在该实施例中不用氢气。尽管为了说明方便,用CVD形成钛膜的步骤和去除不需要钛膜部分的步骤作为分开的步骤说明,但实际中可以更高效地连续进行这些步骤。
图2是表示用四氯化钛腐蚀钛衬底和硅化钛衬底的腐蚀速率与四氯化钛的流速的关系图。对于钛衬底,用四氯化钛的腐蚀速率通常很大,并随四氯化钛流速的增加而增大。另一方面,对于硅化钛衬底,用四氯化钛衬底基本不发生腐蚀,因此其腐蚀速率与四氯化钛流速没有依赖关系。即四氯化钛在钛衬底和硅化钛衬底之间有很高的选择性。
然后,如图1(e)所示,使用四氯化钛气体、氨气(NH3)和氮气(N2),其流速分别为30到50sccm、40到70sccm和30到50sccm,在15到30Torr的压力下将硅衬底加热到400至650℃,用热CVD形成0.2到0.3μm厚的氮化钛膜106,以掩埋接触孔。
用氯气腐蚀整个表面去除晶片平坦部分上的氮化钛膜106,以暴露BPSG膜102的表面,只在接触孔中留下氮化钛膜106(图1(f))。
然后,用溅射形成0.3到1.0μm的铝合金膜107,并用常规光刻和干法刻蚀技术将之构图为要求形状,形成铝布线(图1(g))。
下面说明该实施例的操作和效果。
根据本发明的制造方法,在用CVD形成的钛膜和硅化钛膜(在硅衬底上)期间,用四氯化钛和稀释气体的混合气体只选择去除钛膜。氮化钛与氧化膜之间的粘附性很好。因此,即使汽相外延氮化钛膜较厚,氮化钛膜不会破裂,也不会从氧化膜剥落。
而且,用CVD形成的钛膜的台阶覆盖很好,可以在接触孔的底部形成厚得足以降低接触电阻的钛膜。
另外,可以用四氯化钛作为处理气体用CVD进行去除导致氮化钛膜的剥落的钛膜的步骤。因此,可以在CVD连续处理后进行钛膜的去除步骤,提高效率。在该实施例中,尽管在形成钛膜后马上腐蚀不需要的钛膜,但是也可以将半导体衬底转移到另一个反应室如形成氮化钛膜的反应室中,在形成氮化钛膜之前进行去除步骤,由此可以得到相同的效果。
还有,在该实施例中,通过CVD用硅化钛膜105和氮化钛膜106掩埋接触孔,可以掩埋具有大高宽比的接触孔,并能容易地形成能提供与接触孔底部的硅衬底相有低接触电阻的布线。
对于四氯化钛以外的腐蚀气体,也可以用如三氯化钛、二氯化钛或一氯化钛等其它卤素气体。
图3(a)到3(f)是半导体晶片的剖面图,表示本发明第二实施例的半导体器件制造方法的主要步骤。该实施例表示将本发明应用到硅化物工艺的情况。
如图3(a)所示,用离子注入在P型硅衬底201的一个区域形成其中要形成P沟道绝缘栅晶体管的N阱202。然后,通过选择氧化在硅衬底的表面形成300nm厚的场绝缘氧化膜203。在被场绝缘氧化膜203围绕的有源区中形成6nm厚的栅氧化膜204,作为栅绝缘膜,然后生长150nm厚的多晶硅作为栅电极材料。然后用已知的光刻和干法刻蚀方法构图多晶硅,得到栅电极205。再后用光刻和离子注入方法形成低杂质浓度的N型杂质扩散层215、和低杂质浓度的P型杂质扩散层214。然后在整个晶片表面生长70nm厚的硅氧化膜,通过深腐蚀硅氧化膜在栅极205的侧面形成侧壁206。
然后,如图3(b)所示,用光刻和离子注入形成N型杂质扩散层207、P型杂质扩散层208、N型多晶硅栅209、和P型多晶硅栅210。离子注入后,在氮气气氛中,在900℃的温度下加热20分钟,修复硅的结晶性并激活杂质。由此形成N型源漏区207和P型源漏区208,使具有LDD结构。
然后,如图3(c)所示,用稀释的氢氟酸去除多晶硅表面上的自然氧化膜,该多晶硅是栅极并在半导体衬底的表面上,并用CVD在半导体衬底上淀积20nm厚的钛膜。使用四氯化钛(TiCl4)、氩气(Ar)和氢气(H2),它们的流速分别为3到15sccm、200到500sccm、和1000到2000sccm,使用3到10Torr的压力,同时将半导体衬底加热至500到600℃的温度,并在衬底的相对电极之间加几百瓦的RF功率,用热CVD形成钛膜。在这些条件下,硅衬底上的钛膜与多晶硅栅硅化为具有C49结构的硅化钛膜222,而层间绝缘膜(氧化膜)上的部分不硅化,变为钛膜221。
然后,如图3(d)所示,用四氯化钛与氩气的混合气体进行选择腐蚀来去除硅化钛膜222以外的不需要的钛膜221。
在最后的腐蚀中除了RF功率为0瓦以外,腐蚀所用条件与形成钛膜所用条件基本相同。但是由于加入四氯化钛以外的其它气体来稀释四氯化钛,可以用能够达到目的的任何气体。
然后,如图3(e)所示,在800℃以上进行RTA,将有C49结构的硅化钛222转化为有C54结构的硅化钛223,其电阻率低于硅化钛222的电阻率。
然后,如图3(f)所示,淀积不含杂质的硅氧化膜224作为层间绝缘膜,然后淀积含硼或磷等杂质的硅氧化膜225。通过在约800℃下的炉退火烘烤层间绝缘膜。
下面说明该实施例的操作和效果。
根据本发明的制造方法,在衬底温度为500℃以上,用钛CVD,通过减少四氯化钛在硅衬底上形成有C49结构的硅化钛膜。另一方面,在氧化膜上形成钛膜。如图2所示,由于四氯化钛对钛膜和硅化钛膜有很高的腐蚀选择特性,作为CVD工艺所用气体,所以可以在CVD工艺中连续去除钛膜。由此,与常规方法相比,实际上可以减少工艺步骤,并有很高的生产率。
如上所述,根据本发明的半导体器件的制造方法包括以下步骤:在500℃以上CVD淀积钛,使硅衬底上的钛成为硅化钛、并用含CVD中所用材料的四氯化钛的混合气体,选择腐蚀硅化物膜以外的其它钛或氧化钛,由此可以解决钛膜与氮化钛膜之间的粘附问题。因此,即使形成有很大厚度的氮化钛膜,也能防止氮化钛膜的破裂和剥落。所以,根据本发明可以用CVD形成厚的、有很好台阶覆盖的、低电阻氮化钛膜,并形成有很大高宽比的接触孔。另外由于降低了氮化钛膜的破裂和/或剥落的可能性,所以可以提高制造成品率和产品的可靠性。
而且,由于本发明利用了作为处理气体的四氯化钛气体的高选择腐蚀特性,可以用连续工艺在很短时间内制造半导体器件,而不需要转移半导体衬底。因此实际可以减少制造步骤的数目,并以高生产率制备半导体器件。
显然本发明不限于上述实施例,但在不偏离本发明精神实质的情况下可以有改变和变化。

Claims (10)

1.一种制造半导体器件的方法,在所说半导体器件的半导体衬底的第一区域和第二区域分别形成有金属硅化物膜和金属膜,该方法包括用含卤素的腐蚀气体选择去除所说金属膜的步骤。
2.一种制造半导体器件的方法,包括以下步骤:
在半导体衬底上形成绝缘膜;
在所说绝缘膜上形成开口部分,以暴露所说半导体衬底;
在所说开口部分和所说绝缘膜上淀积金属膜;
通过淀积在所说开口部分的所说金属膜与所说半导体衬底反应形成金属硅化物膜;
用含卤素的腐蚀气体选择去除所说金属硅化物膜以外的其它金属膜。
3.如权利要求1的半导体器件制造方法,其特征在于:所说金属膜为钛膜,所说金属硅化物膜为硅化钛膜。
4.如权利要求2的半导体器件制造方法,其特征在于:所说金属膜为钛膜,所说金属硅化物膜为硅化钛膜。
5.如权利要求3的半导体器件制造方法,其特征在于:所说腐蚀气体是含四氯化钛的气体。
6.如权利要求3的半导体器件制造方法,其特征在于:通过还原四氯化钛得到所说金属膜。
7.如权利要求4的半导体器件制造方法,其特征在于:所说腐蚀气体是含四氯化钛的气体。
8.如权利要求4的半导体器件制造方法,其特征在于:通过还原四氯化钛得到所说金属膜。
9.一种制造半导体器件的方法,包括步骤:
在半导体衬底上形成绝缘膜;
在所说绝缘膜上形成开口部分,以暴露所说半导体衬底;
在所说开口部分和所说绝缘膜上淀积金属膜,同时通过淀积在所说开口部分的所说钛膜与所说半导体衬底反应形成金属硅化物膜;
用含卤素的腐蚀气体选择去除未反应的所说钛膜。
10.如权利要求9的半导体器件制造方法,其特征在于:用化学汽相淀积形成所说钛膜,化学汽相淀积所用气体和所说腐蚀气体为含氯化钛的混合气体。
CN98109731A 1997-05-08 1998-05-08 制备有金属硅化物膜的半导体器件的方法 Expired - Fee Related CN1108630C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP118461/97 1997-05-08
JP118461/1997 1997-05-08
JP09118461A JP3129232B2 (ja) 1997-05-08 1997-05-08 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN1202723A true CN1202723A (zh) 1998-12-23
CN1108630C CN1108630C (zh) 2003-05-14

Family

ID=14737237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98109731A Expired - Fee Related CN1108630C (zh) 1997-05-08 1998-05-08 制备有金属硅化物膜的半导体器件的方法

Country Status (3)

Country Link
US (1) US6204170B1 (zh)
JP (1) JP3129232B2 (zh)
CN (1) CN1108630C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372063C (zh) * 2002-07-02 2008-02-27 日本电气株式会社 Ⅲ族氮化物半导体衬底及其生产工艺
CN101304843B (zh) * 2005-10-14 2013-01-09 六号元素(产品)(控股)公司 制造改性磨料复合片的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366805B2 (ja) * 2000-01-24 2009-11-18 東京エレクトロン株式会社 埋め込み方法
US6441434B1 (en) * 2000-03-31 2002-08-27 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact and method
US6525381B1 (en) 2000-03-31 2003-02-25 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact using shallow-doped source, and method
KR100407684B1 (ko) * 2000-06-28 2003-12-01 주식회사 하이닉스반도체 반도체 소자의 제조 방법
KR100578221B1 (ko) * 2004-05-06 2006-05-12 주식회사 하이닉스반도체 확산방지막을 구비하는 반도체소자의 제조 방법
KR100630695B1 (ko) 2004-08-04 2006-10-02 삼성전자주식회사 반도체 메모리 소자의 제조 방법
US7388248B2 (en) * 2004-09-01 2008-06-17 Micron Technology, Inc. Dielectric relaxation memory
US7575959B2 (en) 2004-11-26 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP5352081B2 (ja) * 2006-12-20 2013-11-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5211503B2 (ja) * 2007-02-16 2013-06-12 富士通セミコンダクター株式会社 半導体装置の製造方法
JP4650440B2 (ja) * 2007-03-07 2011-03-16 東京エレクトロン株式会社 成膜方法
JP6823533B2 (ja) 2017-04-24 2021-02-03 東京エレクトロン株式会社 チタンシリサイド領域を形成する方法
US10475654B2 (en) 2017-08-31 2019-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Wrap-around contact plug and method manufacturing same
US10662522B1 (en) * 2018-11-08 2020-05-26 Sandisk Technologies Llc Thermal metal chemical vapor deposition process
US10978354B2 (en) 2019-03-15 2021-04-13 Taiwan Semiconductor Manufacturing Co., Ltd. Selective dual silicide formation
US11233134B2 (en) 2019-12-19 2022-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistors with dual silicide contact structures
US11489057B2 (en) 2020-08-07 2022-11-01 Taiwan Semiconductor Manufacturing Co., Ltd. Contact structures in semiconductor devices

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619038A (en) * 1985-08-15 1986-10-28 Motorola, Inc. Selective titanium silicide formation
US4957590A (en) * 1988-02-22 1990-09-18 Texas Instruments Incorporated Method for forming local interconnects using selective anisotropy
JPH0622218B2 (ja) * 1988-08-06 1994-03-23 富士通株式会社 エッチング方法
JP2821613B2 (ja) * 1989-03-15 1998-11-05 ソニー株式会社 半導体装置の製造方法
JPH0393223A (ja) * 1989-09-06 1991-04-18 Hitachi Ltd 半導体装置の製造方法
KR100214036B1 (ko) * 1991-02-19 1999-08-02 이데이 노부유끼 알루미늄계 배선형성방법
JPH05211134A (ja) * 1991-10-07 1993-08-20 Sumitomo Metal Ind Ltd 薄膜の形成方法及び薄膜形成装置
JP3211352B2 (ja) * 1992-03-12 2001-09-25 ソニー株式会社 半導体装置におけるメタルプラグの形成方法
US5652180A (en) * 1993-06-28 1997-07-29 Kawasaki Steel Corporation Method of manufacturing semiconductor device with contact structure
JP2833684B2 (ja) * 1993-09-29 1998-12-09 セントラル硝子株式会社 薄膜形成装置のクリーニング方法
US5665640A (en) * 1994-06-03 1997-09-09 Sony Corporation Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
JP2809113B2 (ja) * 1994-09-29 1998-10-08 日本電気株式会社 半導体装置の製造方法
US5972790A (en) * 1995-06-09 1999-10-26 Tokyo Electron Limited Method for forming salicides
JPH0963988A (ja) * 1995-08-23 1997-03-07 Mitsubishi Electric Corp 高融点金属含有膜のエッチング方法並びにそれを用いた半導体装置およびその製造方法
JPH09111460A (ja) * 1995-10-11 1997-04-28 Anelva Corp チタン系導電性薄膜の作製方法
JPH09283463A (ja) * 1996-04-15 1997-10-31 Tokyo Electron Ltd バリヤメタル層及びその形成方法
US5744395A (en) * 1996-10-16 1998-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Low resistance, self-aligned, titanium silicide structures, using a single rapid thermal anneal procedure
US5926737A (en) * 1997-08-19 1999-07-20 Tokyo Electron Limited Use of TiCl4 etchback process during integrated CVD-Ti/TiN wafer processing
US5856237A (en) * 1997-10-20 1999-01-05 Industrial Technology Research Institute Insitu formation of TiSi2/TiN bi-layer structures using self-aligned nitridation treatment on underlying CVD-TiSi2 layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372063C (zh) * 2002-07-02 2008-02-27 日本电气株式会社 Ⅲ族氮化物半导体衬底及其生产工艺
CN101217110B (zh) * 2002-07-02 2010-10-13 日本电气株式会社 Ⅲ族氮化物半导体衬底及其生产工艺
CN101304843B (zh) * 2005-10-14 2013-01-09 六号元素(产品)(控股)公司 制造改性磨料复合片的方法

Also Published As

Publication number Publication date
JPH10308360A (ja) 1998-11-17
JP3129232B2 (ja) 2001-01-29
CN1108630C (zh) 2003-05-14
US6204170B1 (en) 2001-03-20

Similar Documents

Publication Publication Date Title
CN1108630C (zh) 制备有金属硅化物膜的半导体器件的方法
CN1204607C (zh) 扩散阻挡层的淀积方法
KR0179822B1 (ko) 반도체 장치의 배선 구조 및 그 제조 방법
US6830820B2 (en) Chemical vapor deposition of titanium
US7402512B2 (en) High aspect ratio contact structure with reduced silicon consumption
EP0631309A2 (en) Semiconductor device with contact structure and method of manufacturing the same
US5736455A (en) Method for passivating the sidewalls of a tungsten word line
JPS63205951A (ja) 安定な低抵抗コンタクト
JPH0573255B2 (zh)
JPH08213343A (ja) 半導体装置およびその製造方法
JPH08167717A (ja) 半導体装置の製造方法
JP3175721B2 (ja) 半導体装置の製造方法
JPH08115984A (ja) 半導体装置及びその製造方法
US20060202283A1 (en) Metal silicide adhesion layer for contact structures
US6136691A (en) In situ plasma clean for tungsten etching back
JP3027946B2 (ja) 半導体装置およびその製造方法
US6882052B2 (en) Plasma enhanced liner
US6222267B1 (en) Semiconductor device and manufacturing thereof
JP3252397B2 (ja) 配線形成方法
JPH05129231A (ja) 電極配線
US6291346B1 (en) Titanium silicide layer formation method
JPH1167688A (ja) シリサイド材料とその薄膜およびシリサイド薄膜の製造方法
EP0838848A1 (en) Plasma etching of a metal layer comprising copper
KR20030050652A (ko) 텅스텐막의 형성 방법
JPH05144951A (ja) 配線形成方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: NEC ELECTRONICS TAIWAN LTD.

Free format text: FORMER OWNER: NIPPON ELECTRIC CO., LTD.

Effective date: 20030404

C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20030404

Address after: Kawasaki, Kanagawa, Japan

Patentee after: NEC Corp.

Address before: Tokyo, Japan

Patentee before: NEC Corp.

ASS Succession or assignment of patent right

Owner name: ERBIDA MEMORY CO., LTD.

Free format text: FORMER OWNER: NEC ELECTRONICS TAIWAN LTD.

Effective date: 20040806

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040806

Address after: Tokyo, Japan

Patentee after: Elpida Memory Inc.

Address before: Kawasaki, Kanagawa, Japan

Patentee before: NEC Corp.

ASS Succession or assignment of patent right

Owner name: PS4 LASCO CO., LTD.

Free format text: FORMER OWNER: ELPIDA MEMORY INC.

Effective date: 20130822

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130822

Address after: Luxemburg Luxemburg

Patentee after: PS4 Russport Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Elpida Memory Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030514

Termination date: 20150508

EXPY Termination of patent right or utility model