CN1196190C - 防止半导体层弯曲的方法和用该方法形成的半导体器件 - Google Patents

防止半导体层弯曲的方法和用该方法形成的半导体器件 Download PDF

Info

Publication number
CN1196190C
CN1196190C CNB011238844A CN01123884A CN1196190C CN 1196190 C CN1196190 C CN 1196190C CN B011238844 A CNB011238844 A CN B011238844A CN 01123884 A CN01123884 A CN 01123884A CN 1196190 C CN1196190 C CN 1196190C
Authority
CN
China
Prior art keywords
layer
soi
oxide layer
groove
type substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB011238844A
Other languages
English (en)
Other versions
CN1339820A (zh
Inventor
安东浩
姜虎圭
裴金钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2000-0064715A external-priority patent/KR100390143B1/ko
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1339820A publication Critical patent/CN1339820A/zh
Application granted granted Critical
Publication of CN1196190C publication Critical patent/CN1196190C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • H01L21/76235Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls trench shape altered by a local oxidation of silicon process step, e.g. trench corner rounding by LOCOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Thin Film Transistor (AREA)

Abstract

这里公开了在沟槽侧壁氧化过程中,防止已构图的SOI层弯曲的各种方法,这些方法包括:提供至少具有一个沟槽的已构图的SOI层,所述已构图的SOI层设置在下面埋置的氧化硅层上;以及阻止氧在所述已构图的SOI和埋置的氧化硅层之间的扩散。

Description

防止半导体层弯曲的方法和用该方法形成的半导体器件
技术领域
本申请要求2000年8月17日申请的韩国专利申请No.2000-47585和2000年11月11日申请的韩国专利申请No.2000-64715的优先权,这里引入这两份申请的内容作为参考。
背景技术
本发明一般涉及在绝缘体上硅(SOI)型衬底上形成半导体器件的方法,以及由该方法形成的半导体器件。更具体地说,涉及当在SOI型衬底上进行沟槽器件隔离时,防止有源区周围的SOI层弯曲的方法,以及由该方法形成的半导体器件。
当形成了具有不同杂质类型的相邻半导体层时,层之间的界面起到隔离阻挡层的作用。由于在高压结表面电压-电阻特性弱,因此通常采用的结型隔离技术一般不适合于半导体层中的高压结。此外,由射线例如γ线引起的不希望的电流可能流过结耗尽层,使隔离技术在高辐射环境中无效。因此,通过绝缘层将器件区完全隔离的SOI型半导体器件经常用于高性能半导体器件中,例如中央处理单元(CPU)。
台面晶体管、硅的局部氧化(LOCOS)和浅沟槽隔离技术(STI)已经广泛用来在SOI型衬底上隔离器件。该STI技术防止了在LOCOS技术中出现的鸟嘴现象。该鸟嘴现象实际上减小了器件的形成面积。据此,该STI技术普遍应用于高度集成的半导体器件。
当STI技术用于SOI型衬底上的器件隔离时,由于衬底的结构特征,不希望的弯曲现象出现在包括有源区的硅层内。图1至图3说明了这个问题。
参考图1,典型的SOI型衬底可以包括顺序堆叠的下硅层10、埋置的氧化硅层11和SOI层13。该SOI层包括有源区。为了进行STI,在SOI型衬底的SOI层上顺序堆叠垫底氧化层15和作为蚀刻停止层的氮化硅层17。然后利用光致抗蚀剂层19,使氮化硅层17构图,以形成由氮化硅构成的图形。
参考图2,用氮化硅层17的图形做蚀刻掩模,蚀刻暴露的垫底氧化层15和它下面的SOI层,形成沟槽和已构图的SOI层23,因此,沟槽的底部由氧化硅层11形成。
参考图3,在沟槽的侧壁上形成侧壁氧化层25。该侧壁氧化层25是由于用于补救晶体缺陷的热处理而产生的。已构图的SOI层23’和埋置的氧化硅层11之间的界面作为氧扩散的通路。根据沟槽的形状,由于氧顺畅地传送到暴露的侧壁,在已构图的SOI层23’的底部上,氧化层从沟槽延伸到有源区。据此,楔形热氧化层24在SOI层23’和埋置的氧化硅层之间渗透。该热氧化物楔24的材料的体积比原来的硅更大,因此体积膨胀,从而将已构图的SOI层23’与沟槽紧邻的部分26抬起,因此,该SOI层弯曲。
当弯曲出现时,通过从沟槽侧壁的抬起力,给SOI层施加应力。如果接着进行随后的离子注入工艺,在SOI层中会产生晶体缺陷。由于抬起力,所产生的晶体缺陷很容易扩展,增加了结漏电流。即使在离子注入过程中没有出现晶体缺陷,由于弯曲,SOI层的高度部分改变了,而且离子注入的实际深度也改变了。这会导致阈电压的不稳定性(在1997年IEEE国际SOI会议的会刊(1997年10月)中可以找到导致应力的氧化和SIMOX中的缺陷以及粘接的SOI晶片方面的对比文献;应力诱发缺陷和线槽隔离SOI的晶体管漏电:1999年5月第20卷第5期的IEEE电子电器件通讯)。
在形成大约240厚的侧壁氧化层的情况下,可以将SOI层的一部分从侧壁沟槽抬起4000。根据侧壁氧化的程度和情况的不同,即使改变了弯曲现象,也不能完全制止。因此希望提供一种能消除或至少减轻这种弯曲的制造半导体器件的方法。
发明内容
这里所公开的是在沟槽侧壁氧化过程中,用于防止已构图的SOI层弯曲的方法,优选的方法包括:提供至少具有一个沟槽的已构图的SOI层,所述已构图的SOI层置于下层的埋置的氧化硅层上;阻挡氧在所述已构图的SOI和埋置的氧化硅层之间的扩散。
根据本发明的一个方面,提供了一种方法,其中在SOI型衬底中含有的SOI层和埋置的氧化硅层之间的整个界面上形成含氮层。然后进行浅沟槽隔离工艺。作为在整个SOI型衬底中形成含氮层的方法,即在形成SOI衬底的状态,在含氮的气体环境中进行淀积或氮化。也可以在形成STI衬底后,进行含氮离子注入。
根据优选方法,蚀刻SOI层,以便在SOI型衬底上形成沟槽。将具有沟槽的SOI型衬底倾斜一个角度并旋转。倾斜的角度一般保持恒定。然后进行含氮离子注入,以便在与沟槽邻接的区域的SOI层和埋置的氧化硅层之间的界面上形成含氮层。
根据本发明的另一方面,蚀刻SOI层以形成沟槽。在沟槽的侧壁上形成单晶硅层。优选在SOI型衬底上堆叠蚀刻停止层。形成暴露沟槽区的图形,利用该图形作为蚀刻掩模,蚀刻SOI型衬底的SOI层,以形成沟槽。将非晶硅层保形地堆叠到SOI型衬底的整个表面上。进行退火工艺以得到非晶硅层的固相外延生长(SPE),该非晶硅层与包括SOI层的沟槽的侧壁接触。堆叠埋置的氧化层,以填充该沟槽。进行平面化蚀刻工艺,以移去有源区上埋置的氧化层。换句话说,在SOI型衬底中形成沟槽,在非晶硅层上保形地堆叠临时的氧阻挡层。得到堆叠的非晶硅层的SPE。在这种情况下,埋置的氧化层通常为化学汽相淀积(CVD)氧化物。
根据本发明的再一个方面,为了器件隔离,蚀刻SOI层。形成沟槽,在形成沟槽的衬底的整个表面上保形地堆叠CVD氧化层。在这种情况下,作为氧阻挡层的衬层可以堆叠到沟槽的内壁上。通常,利用氮化硅层的CVD堆叠方式堆叠上述衬层。
根据本发明的又一方面,在SOI型衬底上形成用于器件隔离的沟槽,进行快速热处理(RTP)以形成氧化层。可以在该氧化层上形成作为氧阻挡层的衬层。通常利用氮化硅层的CVD堆叠方式堆叠上述衬层。
为了实现本发明的上述方面,提供了一种用于沟槽器件隔离的半导体器件。根据一种结构,该半导体器件包含在有源区上顺序堆叠的下硅层、埋置的氧化硅层和SOI层。至少在有源区附近,在埋置的氧化硅层和SOI层之间形成含氮层。
在优选的半导体器件中,在沟槽器件隔离层与有源区接触处的横向部分上形成氧化层,该氧化层通常由在炉中形成的热氧化物构成,但可以由CVD氧化物或快速热氧化的氧化物构成。除了该横向部分,沟槽器件隔离层的大部分由填充沟槽的氧化物构成。
根据用于沟槽器件隔离的半导体器件的另一方面,该半导体器件包含在有源区上顺序堆叠的下硅层、埋置的氧化硅层和SOI层。与沟槽器件隔离层接触的有源区的侧壁由通过SPE形成的单晶硅构成。在这种情况下,可以在单晶硅层上形成热氧化层和氮化硅衬层。
根据优选的方法,公开了用于防止绝缘体(SOI)上硅层的弯曲现象的方法,该方法包括SOI型衬底的形成,该SOI型衬底包含下硅层、埋置的氧化硅层、SOI层以及在埋置的氧化硅层和SOI层之间的含氮层;蚀刻SOI型衬底的SOI层以形成用于器件隔离的沟槽。
还公开了该方法的另一方面,其中在形成SOI型衬底的步骤中,通过注入氮离子形成含氮层。
还公开了该方法的再一个方面,其中在SOI层的表面上,在形成垫底氧化层的状态注入氮离子。
根据用于防止绝缘体(SOI)上硅层的弯曲现象的方法,所公开的方法包括蚀刻SOI型衬底的SOI层以形成沟槽,该SOI型衬底包含下硅层、埋置的氧化硅层和SOI层;使形成沟槽处的SOI型衬底倾斜,向其内注入离子,在与沟槽邻接的区域的SOI层和埋置的氧化硅层之间形成含氮层。
附图说明
图1至图3是截面流程图,显示了当在传统的SOI衬底上进行沟槽器件隔离时出现的弯曲现象。
图4至图6是截面流程图,显示了根据本发明第一实施例的特征。
图7是截面图,显示了根据本发明第二实施例的特征。
图8至图9是截面图,显示了根据本发明第三实施例的特征。
图10是截面图,显示了根据本发明第四实施例的特征。
图11至图14是截面图,显示了根据本发明第五实施例的流程。
图15至图18是截面图,显示了根据本发明第六实施例的流程。
具体实施方式
下面描述了用于防止SOI层弯曲的根据本发明实施例的六个优选方法和通过该方法形成的半导体器件。
第一方法
图4至6是流程图,显示了根据本发明第一方面,在SOI层和氧化硅层之间的界面上形成含氮层。
参考图4,SOI型衬底包括下硅层110、埋置的氧化硅层111和接着叠加的用于形成器件的SOI层113。在SOI型衬底的表面上形成垫底氧化层115。将含氮离子注入到SOI型衬底的整个表面内,形成含氮层131。
离子注入的能量能够使注入的离子在SOI层113和埋置的氧化硅层111之间的界面处具有峰值浓度。根据垫底氧化层115和SOI层113的厚度来改变离子注入能量,但通常在30-100keV的范围内。
参考图5,在SOI层上形成了垫底氧化层115处堆叠用于形成沟槽的氮化硅层117,该氮化硅层117用作蚀刻停止层。利用传统的(或其它合适的)光刻工艺,在氮化硅层117上形成露出器件隔离沟槽区域的光致抗蚀剂图形119,利用光致抗蚀剂图形119作为蚀刻掩模,蚀刻氮化硅层117和垫底氧化层。然后蚀刻SOI层,以露出埋置的氧化硅层。形成了已构图的SOI层123,就形成了沟槽。在蚀刻SOI层之前,可以移去光致抗蚀剂图形119。
参考图6,为了补救在沟槽蚀刻步骤中侵蚀沟槽侧壁形成的晶体缺陷,对SOI型衬底的形成沟槽处进行热氧化处理。例如可以在炉中900℃的温度下热氧化处理15分钟。在由已构图的SOI层123限定的沟槽的侧壁上形成一般厚度为200-300的热氧化层25。在已构图的SOI层123和埋置的氧化硅层111之间的界面处形成了含氮层131,例如氮化硅层或氮氧化硅层。由于氧在硅层和氮化硅层或氮氧化硅层之间不容易扩散,因此消除了作为氧扩散通路的界面。尽管未详细示出,顺便提醒一下,在沟槽侧壁上形成的厚的垫底氧化层115将扩展并使它上面的氮化硅层轻微弯曲。
在本实施例中,示出了在SOI层上的垫底氧化层115,但应当注意,形成垫底氧化层115并不是必须的。热氧化后,可以在沟槽上形成氮化硅衬层,然后将埋置的氧化层例如CVD氧化层填充沟槽,以实现器件的隔离。
第二方法
图7显示了将氮离子注入到形成在SOI衬底上的沟槽中的状态,所述SOI衬底包括下硅层110、埋置的氧化硅层111和已构图的SOI层123。利用蚀刻停止层的图形作为蚀刻掩模,蚀刻已构图的SOI层123,以形成沟槽。当向其中注入氮离子时,施加大约10keV的低能量。由于将形成沟槽处的衬底倾斜一个角度(通常大约15°),因此表示离子注入方向的箭头也倾斜。在离子注入工艺中,旋转衬底使得氮离子能够注入到沟槽的所有层的暴露的侧壁内。在这种情况下,SOI层和埋置的氧化硅层之间的部分区域是值得注意的,在与沟槽接触的有源区周围,注入氮离子,以便在其间形成含氮层。在下面的氧环境中的退火工艺中,含氮层将扩展穿过其间的界面。虽然宽度一定,但含氮层起着防止SOI层的下部的局部氧化的作用。
在侧壁上形成氧化层或氮化物层之后,用绝缘材料填充沟槽的其余部分。
第三方法
图8显示了利用CVD技术,在SOI型衬底的形成了的已构图的SOI层123和沟槽处的整个表面上堆叠氧化硅层的状态。该CVD技术是在大约700-750℃的温度下进行的低压化学汽相淀积(LPCVD)。在大约700℃或更高的温度下的LPCVD技术有利于补救由于蚀刻而引起的晶体缺陷。该CVD氧化层132起到沟槽侧壁的保护层的作用。然而,由于LPCVD工艺的低压和温度而没有形成楔形热氧化层,则不会出现弯曲现象。
参考图9,显示了进一步堆叠氧阻挡层133的可选的另一种工序。为了防止处于如图8所示状态的SOI层在后来的氧化中弯曲,在CVD层132上淀积了30-300厚的氧化阻挡层133。该氧化阻挡层133可以由Si3N4、SiON或AlO3制成。接着氧化,在有源区上形成屏氧化层和栅氧化层,包括离子注入到SOI层之前的已构图的SOI层123。另外,也可以进行随后的氧化,使多晶硅栅极的侧壁氧化。
第四方法
现在参考图10,在SOI型衬底的蚀刻和形成了沟槽处进行用于器件隔离的快速热氧化(RTO)。与传统的在炉中的热氧化不同,该热氧化是在硅层即已构图的SOI层123的侧壁上进行大约30-200秒,温度大约为950-1180℃。这样就形成了侧壁氧化层125。穿过氧化层和硅层之间的界面使硅层氧化的氧的扩散正比于加工的温度和时间。这样,由于缩短了加工时间,就减少了氧化和所产生的弯曲。
第五方法
参考图11,在通过蚀刻SOI层而形成的已构图的SOI层123和沟槽的SOI型衬底上有一用于形成沟槽的氮化硅层图形117’。然后将非晶硅层151保形地堆叠到所得到的结构的表面上,厚度大约50-300。
参考图12,在堆叠了非晶硅层的SOI型衬底上进行传统的沟槽侧壁氧化工序,在这种情况下,氧化的厚度比非晶硅层153的总厚度小。因此,使在堆叠的非晶硅层上与氧接触的表面氧化,形成大约30-250厚的表面氧化层161,并保留非晶硅层153。在非晶硅层153与已构图的SOI层123接触处(即沟槽侧壁),通过对热氧化施加的高温,可以补救SOI层的晶体缺陷,并且可以部分实现固相外延生长(SPE)。
参考图13,利用CVD技术,在表面氧化层161上堆叠填充沟槽的沟槽氧化层171。在形成沟槽氧化层171之前,可以堆叠薄氮化硅衬层(未示出)。在大约750-1150℃的温度下退火1小时,然后可以进行另一个退火过程,使沟槽氧化层171致密,并且降低湿蚀率。优选在氮气氛中进行退火。在一次退火过程中,在保留的硅层153与SOI层接触的部分,实现了SPE,形成扩展SOI图形123’。同时,在后面的工艺中,没有SPE的部分将作为氧化层。因此,避免了在那个区域中,由任何遗留的非晶硅层而导致的绝缘问题。
参考图14,用化学机械抛光(CMP)移去过量的沟槽氧化层,留下填充沟槽的器件隔离层173。然后,按照需要,可以移去作为蚀刻停止层的氮化硅层或垫底氧化层。
第六方法
参考图15,在通过蚀刻SOI层而形成的用于器件隔离的沟槽的SOI型衬底上,有一用于形成沟槽的氮化硅层图形117’。然后在得到的结构的表面上,保形地堆叠非晶硅层151,厚度大约50-300。
参考图16,如在传统的炉中或没有氧的超高真空系统(UHV)中(例如氮环境下),对堆叠了非晶硅层151的衬底进行退火,温度大约为550-700℃,退火时间为1小时。非晶硅层151再结晶,由于已构图的SOI层123的单晶结构的影响,在与已构图的SOI层123相邻的部分实现了SPE。结果,形成了扩展了的已构图的SOI层123’。
参考图17,然后进行侧壁氧化,形成表面氧化层161。堆叠沟槽氧化层171以填充沟槽。与传统的沟槽器件隔离工艺类似,一般接着给沟槽氧化层171退火。图16的部分原来的非晶硅层保持未氧化状态,视为遗留的硅层153。
参考图18,利用CMP技术,通过平面化蚀刻工艺,将已构图的SOI层123’,即有源区上的沟槽氧化层171移去。只留下其中的器件隔离层173。然后,移去在沟槽构图中作为蚀刻掩模的氮化硅层和垫底氧化层。在堆叠沟槽氧化层之前,可以保形堆叠氮化硅衬层(未示出)。
在用于SPE的退火工艺中,补救了SOI层的晶体缺陷。因此,经常希望摒除单独的侧壁热氧化。硅层、特别是在沟槽底部保留的硅层153,由于没有进行热氧化而可以保留。但在后续的氧化中,氧化保留的硅层153,避免了由此引起的绝缘问题。
应当理解,这里公开的所有物理量,除了另外明确表示的,都不应被解释为要精确地等于所公开的量,而是大约等于所公开的量。此外,仅仅缺少如“大约”等的限定词不应被解释为是精确的表示,即任何这样公开的物理量都是精确的量,不论这样的限定词是否用于这里公开的任何其它物理量。
在已经显示和描述了优选实施例的同时,在不离开本发明精神和范围的情况下,可以作出各种修改和代换。据此,应当理解,仅通过说明已经描述了本发明。这里所公开的说明和实施例不应被解释为是对权利要求的限制。

Claims (12)

1.一种用于防止在绝缘体上硅(SOI)层的弯曲现象的方法,该方法包括:
在SOI型衬底的SOI层中形成沟槽;以及
在沟槽的侧壁上形成单晶硅层。
2.根据权利要求1所述的方法,其中所述沟槽的形成包括:
在SOI型衬底上堆叠蚀刻停止层,形成露出沟槽区的图形;以及
用图形作腐蚀掩模,腐蚀SOI型衬底的SOI层,以形成沟槽,
其中形成单晶硅层的步骤包括:
在包含沟槽的SOI型衬底的整个表面上保形地堆叠非晶硅层;
对SOI型衬底退火,使在与沟槽侧壁接触的非晶硅层实现固相外延生长(SPE)
堆叠埋置的氧化层以填充沟槽;以及
进行平面蚀刻工艺,以移去有源区上的埋置氧化层。
3.根据权利要求2所述的方法,其中,退火是在堆叠埋置的氧化层之前进行的。
4.根据权利要求2所述的方法,其中,退火是在550-700℃的温度下,在氮环境中进行的。
5.根据权利要求2所述的方法,其中,退火是在超高真空(UHV)系统中进行的。
6.根据权利要求3所述的方法,其中,在堆叠埋置的氧化层之前,进行侧壁氧化工艺,在非晶硅层的表面上形成氧化层。
7.根据权利要求2所述的方法,其中,退火是在沟槽中堆叠非晶硅层之后进行的,在非晶硅层的表面上形成氧化层,用埋置的氧化层填充沟槽。
8.根据权利要求7所述的方法,其中,对埋置的氧化层进行退火。
9.根据权利要求7所述的方法,其中,退火是在750-1150℃的温度进行1小时。
10.一种沟槽器件隔离型半导体器件,包括:
在有源区中的埋置的氧化硅层和绝缘体上硅(SOI)层;
通过有源区的侧壁的固相外延生长(SPE)形成的单晶硅层,该有源区与沟槽的器件隔离层接触。
11.根据权利要求10所述的半导体器件,还包括在单晶硅层的基础上,在有源区的相对的侧面上的热氧化层。
12.根据权利要求11所述的半导体器件,还包括在热氧化层的基础上,在单晶硅层的相对的侧面上的氮化硅衬层。
CNB011238844A 2000-08-17 2001-08-09 防止半导体层弯曲的方法和用该方法形成的半导体器件 Expired - Lifetime CN1196190C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20000047585 2000-08-17
KR47585/2000 2000-08-17
KR10-2000-0064715A KR100390143B1 (ko) 2000-08-17 2000-11-01 소이층 밴딩 방지 방법 및 그 방법에 의해 형성되는반도체 장치
KR64715/2000 2000-11-01

Publications (2)

Publication Number Publication Date
CN1339820A CN1339820A (zh) 2002-03-13
CN1196190C true CN1196190C (zh) 2005-04-06

Family

ID=26638313

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011238844A Expired - Lifetime CN1196190C (zh) 2000-08-17 2001-08-09 防止半导体层弯曲的方法和用该方法形成的半导体器件

Country Status (7)

Country Link
US (2) US6881645B2 (zh)
JP (1) JP2002118165A (zh)
CN (1) CN1196190C (zh)
DE (1) DE10134484B4 (zh)
FR (1) FR2813144B1 (zh)
GB (1) GB2369494B (zh)
TW (1) TW541654B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834158A (zh) * 2010-04-13 2010-09-15 东南大学 绝缘体上硅深硅槽隔离结构的制备工艺
CN103137705B (zh) * 2011-12-05 2017-12-22 瑞萨电子株式会社 半导体装置及其制造方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172914B1 (en) * 2001-01-02 2007-02-06 Cypress Semiconductor Corporation Method of making uniform oxide layer
US7510927B2 (en) * 2002-12-26 2009-03-31 Intel Corporation LOCOS isolation for fully-depleted SOI devices
US6905941B2 (en) * 2003-06-02 2005-06-14 International Business Machines Corporation Structure and method to fabricate ultra-thin Si channel devices
US7316979B2 (en) * 2003-08-01 2008-01-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for providing an integrated active region on silicon-on-insulator devices
US20050277262A1 (en) * 2004-06-14 2005-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing isolation structures in a semiconductor device
US6955955B2 (en) * 2003-12-29 2005-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. STI liner for SOI structure
US7074692B2 (en) * 2004-03-23 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method for reducing a short channel effect for NMOS devices in SOI circuits
US7199021B2 (en) * 2004-06-22 2007-04-03 Texas Instruments Incorporated Methods and systems to mitigate etch stop clipping for shallow trench isolation fabrication
FR2872958B1 (fr) * 2004-07-12 2008-05-02 Commissariat Energie Atomique Procede de fabrication d'un film mince structure et film mince obtenu par un tel procede
US7473614B2 (en) * 2004-11-12 2009-01-06 Intel Corporation Method for manufacturing a silicon-on-insulator (SOI) wafer with an etch stop layer
JP4499623B2 (ja) * 2005-06-28 2010-07-07 Okiセミコンダクタ株式会社 半導体素子の製造方法
JP2007142134A (ja) * 2005-11-18 2007-06-07 Sumco Corp Soi基板の製造方法
JP2006140521A (ja) * 2006-01-10 2006-06-01 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
US20070224772A1 (en) * 2006-03-21 2007-09-27 Freescale Semiconductor, Inc. Method for forming a stressor structure
US20070249129A1 (en) * 2006-04-21 2007-10-25 Freescale Semiconductor, Inc. STI stressor integration for minimal phosphoric exposure and divot-free topography
US20070257310A1 (en) * 2006-05-02 2007-11-08 Honeywell International Inc. Body-tied MOSFET device with strained active area
US20080254590A1 (en) * 2007-04-10 2008-10-16 Vogt Eric E Fabrication process for silicon-on-insulator field effect transistors using high temperature nitrogen annealing
US7808028B2 (en) * 2007-04-18 2010-10-05 International Business Machines Corporation Trench structure and method of forming trench structure
US7846812B2 (en) * 2007-12-18 2010-12-07 Micron Technology, Inc. Methods of forming trench isolation and methods of forming floating gate transistors
US7892939B2 (en) * 2008-03-06 2011-02-22 Infineon Technologies Ag Threshold voltage consistency and effective width in same-substrate device groups
JP2010171144A (ja) * 2009-01-21 2010-08-05 Toshiba Corp 半導体装置
CN102013411B (zh) * 2009-09-07 2012-11-28 上海宏力半导体制造有限公司 浅沟槽隔离结构的制造方法
US8003482B2 (en) 2009-11-19 2011-08-23 Micron Technology, Inc. Methods of processing semiconductor substrates in forming scribe line alignment marks
US9029834B2 (en) 2010-07-06 2015-05-12 International Business Machines Corporation Process for forming a surrounding gate for a nanowire using a sacrificial patternable dielectric
EP2495762B1 (en) * 2011-03-03 2017-11-01 IMEC vzw Method for producing a floating gate semiconductor memory device
FR2972564B1 (fr) * 2011-03-08 2016-11-04 S O I Tec Silicon On Insulator Tech Procédé de traitement d'une structure de type semi-conducteur sur isolant
EP2573807A1 (en) * 2011-09-23 2013-03-27 Soitec Semiconductor structure and process for bird's beak reduction
US8445356B1 (en) * 2012-01-05 2013-05-21 International Business Machines Corporation Integrated circuit having back gating, improved isolation and reduced well resistance and method to fabricate same
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head
US9034754B2 (en) 2012-05-25 2015-05-19 LuxVue Technology Corporation Method of forming a micro device transfer head with silicon electrode
US8569115B1 (en) 2012-07-06 2013-10-29 LuxVue Technology Corporation Method of forming a compliant bipolar micro device transfer head with silicon electrodes
US8415768B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant monopolar micro device transfer head with silicon electrode
US8791530B2 (en) 2012-09-06 2014-07-29 LuxVue Technology Corporation Compliant micro device transfer head with integrated electrode leads
US8772143B2 (en) * 2012-11-14 2014-07-08 International Business Machines Corporation Field effect transistor devices with dopant free channels and back gates
US9255001B2 (en) 2012-12-10 2016-02-09 LuxVue Technology Corporation Micro device transfer head array with metal electrodes
US9236815B2 (en) 2012-12-10 2016-01-12 LuxVue Technology Corporation Compliant micro device transfer head array with metal electrodes
KR101779384B1 (ko) * 2013-03-05 2017-09-19 매그나칩 반도체 유한회사 반도체소자 제조방법
ES2952036T3 (es) 2013-06-12 2023-10-26 Rohinni Inc Teclado de retroiluminación con fuentes generadoras de luz depositadas
US9209040B2 (en) * 2013-10-11 2015-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Amorphorus silicon insertion for STI-CMP planarity improvement
RU2639612C1 (ru) * 2014-01-22 2017-12-21 Хуавей Текнолоджиз Ко., Лтд. Способ изготовления подложки "кремний на изоляторе" и подложка "кремний на изоляторе"
KR102404642B1 (ko) * 2015-07-17 2022-06-03 삼성전자주식회사 반도체 소자 및 이의 제조방법
CN108770368B (zh) 2016-01-15 2022-04-12 罗茵尼公司 透过设备上的罩盖进行背光照明的设备和方法
CN108054120A (zh) * 2017-12-13 2018-05-18 上海华虹宏力半导体制造有限公司 改善soi器件浮体效应的工艺方法
US20200203216A1 (en) * 2018-12-24 2020-06-25 Xia Tai Xin Semiconductor (Qing Dao) Ltd. Method of forming semiconductor structure

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631803A (en) * 1985-02-14 1986-12-30 Texas Instruments Incorporated Method of fabricating defect free trench isolation devices
US4775641A (en) * 1986-09-25 1988-10-04 General Electric Company Method of making silicon-on-sapphire semiconductor devices
US5130268A (en) * 1991-04-05 1992-07-14 Sgs-Thomson Microelectronics, Inc. Method for forming planarized shallow trench isolation in an integrated circuit and a structure formed thereby
EP0603106A2 (en) 1992-12-16 1994-06-22 International Business Machines Corporation Method to reduce stress from trench structure on SOI wafer
US5698885A (en) * 1994-03-17 1997-12-16 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
WO1996002070A2 (en) 1994-07-12 1996-01-25 National Semiconductor Corporation Integrated circuit comprising a trench isolation structure and an oxygen barrier layer and method for forming the integrated circuit
US5445989A (en) * 1994-08-23 1995-08-29 United Microelectronics Corp. Method of forming device isolation regions
JP2686735B2 (ja) * 1994-12-30 1997-12-08 現代電子産業株式会社 半導体装置の素子分離方法
KR100197648B1 (ko) * 1995-08-26 1999-06-15 김영환 반도체소자의 소자분리 절연막 형성방법
JPH09172061A (ja) 1995-12-18 1997-06-30 Fuji Electric Co Ltd 半導体装置の製造方法
US5646053A (en) * 1995-12-20 1997-07-08 International Business Machines Corporation Method and structure for front-side gettering of silicon-on-insulator substrates
US5811347A (en) * 1996-04-29 1998-09-22 Advanced Micro Devices, Inc. Nitrogenated trench liner for improved shallow trench isolation
US5825611A (en) * 1997-01-29 1998-10-20 Vishay Sprague, Inc. Doped sintered tantalum pellets with nitrogen in a capacitor
US5910018A (en) * 1997-02-24 1999-06-08 Winbond Electronics Corporation Trench edge rounding method and structure for trench isolation
US5920782A (en) * 1997-07-18 1999-07-06 United Microelectronics Corp. Method for improving hot carrier degradation
US5972777A (en) * 1997-07-23 1999-10-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming isolation by nitrogen implant to reduce bird's beak
JPH11111710A (ja) * 1997-10-01 1999-04-23 Nec Corp 半導体装置およびその製造方法
US5940718A (en) * 1998-07-20 1999-08-17 Advanced Micro Devices Nitridation assisted polysilicon sidewall protection in self-aligned shallow trench isolation
US6238998B1 (en) * 1998-11-20 2001-05-29 International Business Machines Corporation Shallow trench isolation on a silicon substrate using nitrogen implant into the side wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834158A (zh) * 2010-04-13 2010-09-15 东南大学 绝缘体上硅深硅槽隔离结构的制备工艺
CN103137705B (zh) * 2011-12-05 2017-12-22 瑞萨电子株式会社 半导体装置及其制造方法

Also Published As

Publication number Publication date
JP2002118165A (ja) 2002-04-19
US7112849B2 (en) 2006-09-26
US20050142706A1 (en) 2005-06-30
DE10134484B4 (de) 2006-06-29
GB2369494A (en) 2002-05-29
US6881645B2 (en) 2005-04-19
FR2813144A1 (fr) 2002-02-22
TW541654B (en) 2003-07-11
CN1339820A (zh) 2002-03-13
FR2813144B1 (fr) 2006-11-03
GB0117786D0 (en) 2001-09-12
GB2369494B (en) 2003-04-23
US20020022308A1 (en) 2002-02-21
DE10134484A1 (de) 2002-03-07

Similar Documents

Publication Publication Date Title
CN1196190C (zh) 防止半导体层弯曲的方法和用该方法形成的半导体器件
JP2644414B2 (ja) 集積回路の製造方法
CN1139973C (zh) 能减小寄生电容的半导体器件的制造方法
CN100346456C (zh) 一种mosfet半导体及其制造方法
CN1716563A (zh) 半导体装置的制造方法
CN102237401B (zh) 具有轻掺杂漏极区的高电子迁移率晶体管及其制造方法
JPH1131815A (ja) トレンチ構造を有する半導体装置及びその製造方法
CN1725515A (zh) 具有重叠栅电极的半导体器件及其制造方法
CN1672262A (zh) 部分耗尽硅基绝缘体器件结构的自对准主体结
CN1897306A (zh) 金属氧化物半导体场效应晶体管及其制造方法
KR100426482B1 (ko) 플래쉬 메모리 셀의 제조 방법
TWI270933B (en) Use of liner oxide implant to prevent dopant segregation from extensions
KR950012749A (ko) 반도체 장치와 그 제조방법
TWI834903B (zh) 半導體裝置與其形成方法與鰭狀場效電晶體的形成方法
JP3201221B2 (ja) 半導体装置の製造方法
CN1490882A (zh) 半导体器件和半导体器件的制造方法
US6566680B1 (en) Semiconductor-on-insulator (SOI) tunneling junction transistor
EP4270490A1 (en) Mosfet device and manufacturing method therefor
US7923330B2 (en) Method for manufacturing a semiconductor device
CN1767172A (zh) 半导体装置的制造方法
US8466019B2 (en) Semiconductor device and bipolar-CMOS-DMOS
US6774455B2 (en) Semiconductor device with a collector contact in a depressed well-region
CN1492515A (zh) Mos晶体管及其制造方法
US7504293B2 (en) Fabrication method for semiconductor device
CN100347833C (zh) 在一个加工步骤中形成不同厚度的高质量氧化物层的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20050406

CX01 Expiry of patent term