CN114107984A - 用于衬底表面金属化的新颖粘着促进方法 - Google Patents

用于衬底表面金属化的新颖粘着促进方法 Download PDF

Info

Publication number
CN114107984A
CN114107984A CN202111401153.3A CN202111401153A CN114107984A CN 114107984 A CN114107984 A CN 114107984A CN 202111401153 A CN202111401153 A CN 202111401153A CN 114107984 A CN114107984 A CN 114107984A
Authority
CN
China
Prior art keywords
metal
substrate
plating
metal oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111401153.3A
Other languages
English (en)
Inventor
刘志明
付海罗
色拉·汉格那
卢茨·勃兰特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Publication of CN114107984A publication Critical patent/CN114107984A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3697Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one metallic layer at least being obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1667Radiant energy, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • C23C18/1694Sequential heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本申请涉及用于衬底表面金属化的新颖粘着促进方法。本发明提供一种用于非导电衬底金属化的方法,其提供沉积金属对于衬底材料的高粘着性并且由此形成持久粘结。所述方法施用经活化并且随后镀敷金属的金属氧化物粘着促进剂。所述方法提供非导电衬底对于镀敷金属层的高粘着性。

Description

用于衬底表面金属化的新颖粘着促进方法
本申请是申请日为2014年9月22日,申请号为201480052346.4,发明名称为“用于衬底表面金属化的新颖粘着促进方法”的申请的分案申请。
技术领域
本发明涉及通过施用催化活性金属氧化物组合物使如玻璃、陶瓷和硅基半导体类型表面的非导电衬底金属化的新颖方法。所述方法产生在玻璃或陶瓷衬底与镀敷金属之间展示高粘着性、而同时使光滑衬底表面保持完整的金属镀敷表面。
本发明可适用于印刷电子电路(如用于信号分布的在玻璃和陶瓷上的细线电路(倒装芯片玻璃中介层))、平板显示器和射频识别(RFID)天线的领域。一种典型应用领域是高级封装工业。又,其可适用于硅基半导体衬底的金属镀敷。
背景技术
所属领域中已知用于使衬底金属化的各种方法。
可通过各种湿式化学镀敷方法(例如电镀或无电电镀)以另一种金属直接镀敷导电性衬底。所述方法在所属领域中已完全得到确认。通常对衬底表面进行清洁预处理,之后进行湿式化学镀敷方法以确保可靠的镀敷结果。
已知用于涂布非导电表面的各种方法。在湿式化学方法中,将欲金属化的表面在适当初步处理后首先进行催化,并且随后以无电方式金属化,并且此后如果必要,那么进行电解金属化。随着引入更高级的技术,迄今所用的有机衬底因其相对较差的尺寸稳定性和共面性而不太适合,这就输入/输出(I/O)间距来说使其受限。由硅或玻璃制得的无机中介层使得中介层的热膨胀系数与硅芯片可直接匹配。硅具有成熟的制造基地,但与玻璃相比仍具有一些不利情况。特定地,玻璃本身具有比硅优越的电学特性并且提供了使用较大面积面板尺寸的可能性,这导致相对于基于晶片的平台来说显著节约成本。用于使铜与玻璃良好粘着的可靠镀敷技术是在电子封装市场上使用玻璃衬底的重要先决条件。
然而,这存在挑战性,因为使表面粗糙度<10nm的极光滑玻璃金属化比在有机衬底上镀敷显著更具挑战性。测试仅取决于从衬底粗糙化进行机械锚定的方法的粘着性能。
然而,这要求衬底表面剧烈粗糙化,这将不利影响金属化表面的功能,例如在印刷电子电路或射频识别(RFID)天线中。
可以含有HF的酸性介质或含有热NaOH、KOH或LiOH的碱性介质进行湿式化学蚀刻来对非导电衬底,尤其玻璃或陶瓷类型衬底进行清洁和粗糙化。随后由粗糙化表面的其它锚定部位来提供粘着。
在EP 0 616 053 A1中,揭示一种用于使非导电表面直接金属化的方法,其中表面首先以清洁剂/调节剂溶液进行处理、其后以活化剂溶液(例如胶状钯溶液)进行处理、以锡化合物稳定并且随后以含有比锡更贵的金属化合物以及碱金属氢氧化物与成络合物剂的溶液进行处理。此后,可在含有还原剂的溶液中处理表面,并且最后可电解金属化。
WO 96/29452涉及一种用于选择性或部分电解金属化由非导电材料制得的衬底表面的方法,为达成涂布方法的目的所述非导电材料紧固于塑料涂布的固持组件。提出的方法包涵以下步骤:a)以含有氧化铬(VI)的蚀刻溶液初步处理表面;继而即刻b)以钯/锡化合物的胶状酸性溶液处理表面,谨慎防止与吸收促进溶液提前接触;c)以含有能被锡(II)化合物还原的可溶性金属化合物、碱金属或碱土金属氢氧化物和金属的络合物形成剂的溶液以至少足以防止金属氢氧化物沉淀的量处理表面;d)以电解金属化溶液处理表面。
或者,可在非导电表面上形成导电聚合物以提供用于表面的后续金属镀敷的第一导电层。
US 2004/0112755 A1描述非导电衬底表面的直接电解金属化,其包含使衬底表面与水溶性聚合物(例如,噻吩)接触;以高锰酸盐溶液处理衬底表面;以含有至少一种噻吩化合物和至少一种选自包含甲烷磺酸、乙烷磺酸和乙烷二磺酸的群组的烷磺酸的含水基质的酸性水溶液或酸性微乳液处理衬底表面;电解金属化衬底表面。
US 5,693,209涉及一种使具有非导体表面的电路板直接金属化的方法,其包括使非导体表面与碱性高锰酸盐溶液反应以形成在非导体表面上化学吸收的二氧化锰;形成弱酸与吡咯或吡咯衍生物和其可溶性寡聚物的水溶液;使含有吡咯单体和其寡聚物的水溶液与其上化学吸附有二氧化锰的非导体表面接触以在非导体表面上沉积粘附性、导电的不溶性聚合物产物;和在其上形成有不溶性粘附性聚合物产物的非导体表面上直接电沉积金属。在室温与溶液凝固点之间的温度下,在含有0.1到200g/l吡咯单体的水溶液中有利地形成寡聚物。
孙仁德(Ren-De Sun)等人(电化学学会志(Journal of the ElectrochemicalSociety),1999,146:2117-2122)教示通过喷雾热解、继而进行湿式化学Pd活化并且无电沉积Cu来在玻璃上沉积薄ZnO层。其报道在沉积铜层与玻璃衬底之间的适度粘着。沉积铜的厚度是约2μm。
EP 2 602 357 A1涉及一种用于衬底金属化的方法,其提供沉积金属对于衬底材料的高粘着性并且由此形成持久粘结。所述方法在金属化之前施用包含纳米尺寸氧化物粒子的新颖粘着促进剂。所述粒子选自具有至少一个带有适合于与衬底结合的化学官能团的连接基团的二氧化硅、氧化铝、二氧化钛、氧化锆、氧化锡和氧化锌粒子中的一或多者。所述粒子通过具有至少一个带有适合于与衬底结合的化学官能团的连接基团而官能化。这些纳米尺寸粒子附着到衬底并且在后续金属镀层附着到衬底表面之前保持化学性质不变。
JP H05-331660 A涉及在具有氧化锌层的衬底上形成氧化铜膜。所述方法包含以下步骤:i)向衬底表面涂覆乙酸锌溶液,ii)向衬底表面上沉积铜层,iii)在约300到500℃温度下在含氧气氛中使镀铜层氧化以形成氧化铜,iv)部分还原铜表面和v)形成电解铜涂层。所述方法并非针对形成用于促进粘着的金属氧化物层。取决于衬底表面的化学性质、镀敷金属的类型和金属镀层的厚度,金属镀层与所述表面的粘着可能呈现问题。举例来说,粘着性可能过低而无法在金属层与下层衬底之间提供可靠粘结。
此外,所述方法倾向于在衬底制备中需要额外步骤,所述步骤对于均匀的表面粗糙度来说典型地不容易控制。
此外,玻璃(CTE=3-8ppm)与后续镀敷的金属(典型地为铜(CTE=约16ppm))之间的较大CTE(热膨胀系数)失配问题尚未解决,这通常导致与裸玻璃分层。
本发明的目标
总的来说,工业上强烈驱使陶瓷和玻璃衬底用于电子应用,其需要不会不利地改变衬底特性并且在经济上可行的用于镀铜的合适粘着促进剂。
因此,本发明的目标在于提供一种用于衬底金属化的方法,其提供沉积金属(优选为铜)对于衬底材料的高粘着性并且由此形成持久粘结,而实质上不增加表面的粗糙度。
此外,本发明的目标在于能够完全或选择性地使衬底表面金属化。
发明内容
所述目标通过一种用于向非导电衬底上镀敷金属的湿式化学方法而得以解决,其包含以下步骤:
i.在非导电衬底表面的至少一部分上沉积一层选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的金属氧化物化合物,并且其后
ii.加热非导电衬底并且由此在衬底表面的至少一部分上形成金属氧化物化合物的粘着层;并且其后
iii.通过应用湿式化学镀敷方法至少金属镀敷具有金属氧化物化合物的粘着层的衬底表面;并且其后
iv.将金属镀层加热到150与500℃之间的最大温度。
这种方法提供在非导电衬底上展示沉积金属对于衬底材料的高粘着性并且由此形成持久粘结的金属沉积物。根据本发明的方法获得金属氧化物薄层,其可用作牢固的具有成本效益的粘着层,尤其适合极光滑的玻璃衬底。
附图说明
图1展示具有根据本发明方法获得的氧化锌层的玻璃衬底的FIB图像。在FEIHelios NanoLab 650双束(Dual Beam)FIB上进行FIB/SEM分析。用于FIB切割的所关注区域溅涂有约10nm钯(Pd,其为进行FIB测量所需)。
图2展示具有根据本发明方法获得的氧化锌层和后续无电电镀铜层的玻璃衬底的FIB图像。圆圈指示铜渗透氧化锌层的纳米孔,这使得玻璃衬底与金属层之间可强烈化学粘结。在FEI Helios NanoLab 650双束FIB上进行FIB/SEM分析。用于FIB切割的所关注区域溅涂有约10nm钯(Pd,其为进行FIB测量所需)。
图3展示玻璃衬底上的金属镀层的粘着强度相对于根据本发明的方法(具有氧化锌金属层)和对照例实例(无氧化锌金属层)处理的衬底的表面粗糙度的关系曲线。柱状体中展示最大值(上线)和平均值(下线)。
图4以示意图形式展示界面层形成。金属氧化物已沉积于玻璃衬底上并且随后进行后续烧结。金属氧化物由此变成结晶并且在衬底与金属氧化物层之间形成金属、二氧化硅与氧化物的三元合金的界面层。
图5展示镀铜层的粘着强度与金属氧化物层厚度的依赖性。
图6展示对于分别在步骤ii)中在300℃下加热3h(图底部)、在400℃下加热1h(图中间)和在500℃下加热1h(图顶部)的三种不同衬底来说,在具有Cu k-α辐射源(波长1.54A)的SIEMENS D500仪器(现为布鲁克AXS(Bruker AXS))上获得的正入射X光衍射(XRD)光谱。所述信号是指分别在31.8、34.5和36.3 2θ下的ZnO平面定向100、002和101。在300℃下烧结3h的衬底不展示结晶并且允许0N/cm的剥离强度。在400℃下烧结1h的衬底产生1.5N/cm的剥离强度并且展示一定程度的结晶,而在500℃下烧结1h的衬底大部分结晶并且产生6N/cm的剥离强度。
然而,相对强度与关于“非定向”ZnO粉末的JCPDS(粉末衍射标准联合委员会,joint committee of powder diffraction standards)数据库中所引用的彼等强度不同,其中101信号展示最高强度。在本发明中,总是002信号具有最高强度的事实表示结晶的优选定向。
信号强度随烧结温度增加而增加还指示ZnO层的结晶度的增加程度。因此,烧结温度与结晶度和可达成的剥离强度直接相关。对于这组实验条件来说,建议约400℃的优选烧结温度用于形成机械稳定ZnO层。根据实例3c,使用不同的ZnO烧结温度来加工样品。
具体实施方式
本发明提供一种用于非导电衬底金属化的金属镀敷方法。
适合以根据本发明的镀敷方法进行处理的非导电衬底包含玻璃、陶瓷和硅基半导体材料(还表示为晶片衬底)。
玻璃衬底的实例包含二氧化硅玻璃(非晶形二氧化硅材料)、碱石灰玻璃、漂浮玻璃、氟化物玻璃、铝硅酸盐、磷酸盐玻璃、硼酸盐玻璃、硼硅酸玻璃、硫属玻璃、玻璃-陶瓷材料、氧化铝、具有氧化表面的硅。这种类型的衬底例如用作微芯片封装等的中介层。以根据本发明的方法处理玻璃衬底尤其优选,尤其处理表面粗糙度小于50nm的光滑玻璃。
硅基半导体材料用于晶片工业中。
陶瓷衬底包含工业陶瓷(如基于氧化物的氧化铝、氧化铍、二氧化铈、二氧化锆氧化物)或基于钡的陶瓷(如BaTiO3)和非氧化物(如碳化物、硼化物、氮化物和硅化物)。
所述非导电衬底(尤其玻璃和晶片衬底)常具有光滑表面。非导电衬底的“光滑表面”在本文中根据ISO 25178,由如光学干扰显微法所测定的表面的平均表面粗糙度Sa来定义。对于玻璃衬底来说,“光滑表面”的参数Sa的值优选地在0.1到200nm、更优选地在1到100nm并且甚至更优选地在5到50nm的范围内。对于陶瓷衬底来说,表面粗糙度常更高。其可高达1000nm的Sa值,例如在400到600nm之间的范围内。
具有所述光滑表面并且Sa值是0.1到200nm的衬底(如玻璃和晶片衬底)尤其优选。最优选地是玻璃衬底。
非导电衬底优选地在与金属氧化物前体化合物接触前经清洁。适合的清洁方法包含将衬底浸没于包含表面活性物质的溶液中、将衬底浸没于极性有机溶剂或极性有机溶剂的混合物中、将衬底浸没于碱性溶液中和两种或两种以上前述清洁方法的组合。
玻璃衬底例如可通过浸没于30wt.%NH4OH、30wt.%H2O2与水的混合物中历时30min,继而浸没于35wt.%HCl、30wt.%H2O2与水的混合物中历时30min来进行清洁。此后,将衬底在去离子水(DI water)中冲洗并干燥。
如本文所定义的金属氧化物化合物是选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的化合物。金属离子的价数可变化。然而,一些金属主要以一种价数出现,例如锌几乎总是锌(II),因此形成Zn(II)O氧化物物质。
金属氧化物前体化合物在本文中定义为充当相应金属氧化物来源的化合物。前体化合物在加热时能够在非导电衬底表面上形成金属氧化物薄层。通常,在加热时形成相应金属氧化物的所有金属盐均适合。加热优选地在氧气存在下。通常不直接施用相应金属氧化物本身,因为其在水溶液以及有机溶剂中仅具较差的可溶性,并且因此难以均匀涂覆到衬底表面。
相应氧化物最常通过加热金属氧化物前体化合物来获得。热解是一种在氧气存在下的热处理过程。金属氧化物前体化合物热解导致形成相应金属氧化物化合物。
典型的金属氧化物前体化合物包含对应金属的可溶性盐。金属氧化物前体化合物可以是有机金属盐并且例如是烷氧基化物(例如甲氧基化物、乙氧基化物、丙氧基化物和丁氧基化物)、乙酸盐和乙酰基丙酮酸盐。或者,金属氧化物前体化合物可以是无机金属盐,并且例如是硝酸盐、卤化物,尤其是氯化物、溴化物和碘化物。
金属氧化物前体化合物与根据EP 2 602 357 A1的纳米尺寸氧化物粒子的不同之处在于未经具有至少一个带有适合于与衬底结合的化学官能团的连接基团官能化。
金属氧化物前体化合物的金属选自由锌、钛、锆、铝、硅和锡或前述各物的混合物组成的群组。
金属氧化物化合物或金属氧化物前体化合物可通常以10-9wt.%到10wt.%的含量掺杂有锗、铝、硼、砷或磷。所述掺杂为所属领域的技术人员所熟知并且使金属氧化物层的电导率增加。当电导率足够高时,金属氧化物层可由所属领域中已知并且在本文中描述的湿式化学镀敷方法直接电镀。
在上述步骤ii.中形成的金属氧化物化合物优选地选自由ZnO、TiO2、ZrO2、Al2O3、SiO2、SnO2或前述各物的混合物组成的群组。
氧化锌是欲应用于本发明方法中的最优选金属氧化物化合物。典型的氧化锌前体化合物是乙酸锌、硝酸锌、氯化锌、溴化锌和碘化锌。另一种优选氧化物是氧化铝。典型的氧化铝前体化合物是铝的乙酸盐、硝酸盐、氯化物、溴化物和碘化物。
金属氧化物前体化合物通常溶解于适合溶剂中,之后涂覆到非导电衬底表面。这有利于化合物在衬底表面上的均匀表面分布。适合溶剂包含水、极性有机溶剂,尤其醇类,如乙醇、丙醇、异丙醇、甲氧基-乙醇或丁醇以及二醇类。
其它极性有机溶剂包含如1-甲氧基-2-丙醇的二醇类的烷基醚,乙二醇、二乙二醇、丙二醇的单烷基醚、酮类(如甲基乙基酮、甲基异丁基酮、异佛尔酮);酯类和醚类(如乙酸2-乙氧基乙酯、2-乙氧基乙醇)、芳香族物(如甲苯和二甲苯)、含氮溶剂(如二甲基甲酰胺和N-甲基吡咯烷酮)以及前述各物的混合物。
或者,溶剂可以是水基溶剂。其还可以是水与有机溶剂的混合物。
尤其在使用水基溶剂时,溶液可另外含有一或多种润湿剂以改良非导电衬底表面的润湿。适合的润湿剂或其混合物包括非离子剂,如非离子性烷基酚聚乙氧基加合物或烷氧基化聚亚烷基类和阴离子性润湿剂(如有机磷酸酯或膦酸酯)以及二酯。至少一种润湿剂的量在溶液的0.0001到5wt.%、更优选地在0.0005到3wt.%的范围内。
金属乙酸盐的乙醇溶液是根据本发明的一种优选实施例,以乙酸锌或乙酸铝为最优选。金属氧化物前体化合物可包含不同盐的混合物,但优选为仅一种盐。
或者,金属氧化物化合物可直接沉积到非导电衬底的表面上。有机溶剂以及水性介质均可使用。金属氧化物化合物通常不易溶解于大多数常用溶剂中并且因此通常以胶状分散液的形式涂覆到表面。所述胶状分散液典型地由表面活性剂或聚合物稳定化。所属领域的技术人员已知如何制备所述胶状分散液。
在根据本发明的方法中,优选地沉积金属氧化物前体化合物。
至少一种金属氧化物化合物或金属氧化物前体化合物的浓度优选地在0.005到1.5mol/l、更优选地在0.01到1.00mol/l并且最优选地在0.1到0.75mol/l的范围内。
根据本发明的含有金属氧化物化合物或金属氧化物前体化合物的溶液或分散液可通过如浸涂、旋涂、喷涂、帘式涂布、辊涂、印刷、丝网印刷、喷墨印刷和刷涂的方法涂覆到非导电衬底。所述方法在所属领域中已知并且可适用于根据本发明的镀敷方法。所述方法在非导电衬底表面上产生具有确定厚度的均匀膜。
在步骤i.中与溶液或分散液的接触时间是历时10秒钟到20分钟、优选地30秒钟与5分钟之间并且甚至更优选地1分钟与3分钟之间的时间。涂覆温度取决于所用的涂覆方法。举例来说,对于浸涂、辊涂或旋涂方法来说,涂覆温度典型地在5到90℃之间、优选地在10与80℃之间并且甚至更优选地在20与60℃之间的范围内。涂覆可进行一次或数次,例如两次、三次、四次、五次或多达十次。涂覆步骤的数目可变并且取决于所需金属氧化物化合物层的最终厚度。通常三到五个涂覆步骤应足够。建议在涂覆下一层之前通过去除溶剂至少部分干燥涂层。适合温度取决于所用溶剂和其沸点以及层厚度并且可由所属领域的技术人员通过常规实验来选择。通常150到高达350℃之间、优选地200与300℃之间的温度应足够。在个别涂覆步骤之间对涂层进行这种干燥或部分干燥是有利的,因为形成了稳定的非晶金属氧化物以防溶解于含有金属氧化物化合物或金属氧化物前体化合物的溶液或分散液的溶剂中。
在步骤ii)中进行加热。
这种加热可在一或多个步骤中进行。在某一阶段,需要温度大于350℃,优选地大于400℃。高温加热导致金属氧化物冷凝而在衬底表面上形成机械稳定的金属氧化物层。这种金属氧化物通常为结晶状态(还参见图6)。对于ZnO来说,这个加热步骤中的温度等于或超过400℃。
加热步骤ii)有时还称为烧结。烧结是通过加热但不使材料熔化到液化点来形成材料的固态机械稳定层的过程。加热步骤ii)在350到1200℃、更优选地在350到800℃并且最优选地在400到600℃范围内的温度下进行。
处理时间优选地是1min到180min、更优选地是10到120min并且最优选地是30到90min。
在本发明的一个实施例中,可能使用温度斜坡进行加热。这个温度斜坡可以是线性或非线性的。线性温度斜坡在本发明的上下文中应理解为从较低温度开始连续加热并且使温度稳定上升直到到达最终温度。根据本发明的非线性温度斜坡可包括改变温度上升速度(即,随时间改变温度)并且可包括无温度变化的时间并且由此使衬底保持同一温度持续一定时间。非线性温度斜坡还可包括线性温度斜坡。无论何种类型的温度斜坡,其后均可进行无任何温度变化的最终加热步骤。在温度斜坡之后,可使衬底例如在500℃下保持1h。
在一个实施例中,非线性温度斜坡可包括如本文所述的若干个加热步骤,如可选的干燥步骤和必需的烧结步骤,在彼等步骤之间存在温度上升。
在涂覆金属氧化物前体化合物来形成金属氧化物层时,所述步骤优选地包含:
ia.使衬底与适合于在加热时形成金属氧化物化合物的金属氧化物前体化合物接触,并且其后
ib.加热非导电衬底并且由此在衬底表面的至少一部分上由金属氧化物前体化合物形成金属氧化物化合物的粘着层。
在步骤ia)中加热金属氧化物前体化合物导致转化为相应金属氧化物。有时这种加热还称为热解。热解是在具有或不具有氧气的情形下,材料在高温下的热化学分解。
如果金属氧化物前体化合物是含氧化合物,如乙酸盐,那么加热步骤ia)不必要求存在含氧气氛,但可以在含氧气氛中进行。如果金属氧化物前体化合物非含氧化合物,如卤化物,那么加热步骤ia)要求存在含氧气氛。
如果将金属氧化物前体化合物涂覆到衬底,那么第一次加热优选地在高温下(步骤ia)并且通常在低于烧结温度的温度下进行。温度范围取决于欲形成的金属氧化物、涂覆模式和所用的前体化合物。所属领域的技术人员将根据所属领域中已知的方法选择用于特定金属氧化物和前体化合物的适当温度范围。
举例来说,加热步骤ia)在100到600℃、更优选地在150到400℃并且最优选地在200到300℃的范围中进行。
处理时间优选地是1min到180min,更优选地是10到120min并且最优选地是20到60min。
以如上所述的温度和时间进行加热步骤ii)。
或者,热解和烧结可在加热步骤ii中单步骤进行。通常在这种情形下,使温度缓慢增加以在热解步骤期间例如通过应用如上所述的温度斜坡,继而烧结首先由金属氧化物前体化合物形成金属氧化物化合物。
非导电衬底上的金属氧化物膜的厚度优选地是5nm到500nm,更优选地是10nm到300nm,最优选地是20nm到200nm。
根据本发明方法获得的金属氧化物膜的厚度可经优化以例如在具有15μm厚度的镀铜层上达成约10到12N/cm的极高粘着性。在较低膜厚度(10到50nm)下观测到对膜厚度的相当依赖性,在约75nm厚度以上可见稳定性能(图5)。然而,甚至极薄的膜仍提供4到5N/cm以上的粘着值,发现其对于在如通孔填充与细线图案化的下游步骤中的良好性能来说已足够。
金属氧化物的结晶尺寸通常具有5到40nm范围内的平均直径,较厚的膜倾向于较大尺寸。
不受这个理论约束,相信在金属氧化物前体化合物转化为相应金属氧化物时,可能发生金属氧化物相互扩散到衬底中并且形成金属氧化物与衬底的桥粘结。还观测到金属氧化物的烧结。所形成的金属氧化物(以金属氧化物化合物的形式直接涂覆时以及以金属氧化物前体化合物的形式涂覆并且在步骤ii.中转变为相应氧化物化合物时)良好粘附到非导电衬底表面。举例来说,如果非导电衬底是玻璃衬底,那么经由OH基团缩合在玻璃衬底与金属氧化物之间形成共价键。
烧结的金属氧化物层在玻璃上形成机械稳定的多孔层。如由图像处理软件(ImageJ 1.44o)识别的孔隙率在20-40vol%的范围内,个别孔的直径在5到30nm范围内。孔尺寸通常随层厚度而增加。此外,多孔结构为电镀铜提供机械锚定。这种强烈相互作用是后续镀敷的金属涂层在玻璃上良好粘着的基础。图1展示玻璃衬底上的金属氧化物层具有允许后续镀敷的金属层(例如,铜)形成机械粘结的纳米多孔结构。这使得玻璃衬底与金属层之间的粘着性增加。此外,铜与金属氧化物层的产生的相互渗透充当CTE缓冲,克服铜与衬底之间的CTE失配。
在分析根据实例5获得的氧化锌层时,通过使SiO2(玻璃衬底)扩散到氧化锌层中形成约10到20nm的相互扩散层,其中形成新物质ZnSiO3和ZnSiO4(图4)。通过这相互扩散,金属氧化物层与衬底共价键结。
如下文论述,尽管存在这种强烈相互作用,但金属氧化物层仍可容易在蚀刻剂溶液中从衬底去除并且与图案化应用兼容。
由此获得的表面的平均表面粗糙度Sa取决于加工条件在5nm与60nm之间的范围内。
测试10nm到1000nm的玻璃衬底机械粗糙化对玻璃与铜之间的粘着强度的影响。在涂覆金属氧化物层之前进行粗糙化。对于根据本发明的方法来说,由此预期极有限的影响,因为良好粘着的主要机制并非基于玻璃界面的机械锚定。根据本发明方法处理的样品展示高于8N/cm的极高剥离强度,无需衬底粗糙化(图3)。所述测试的加工次序是根据实例5中所用和下文描述的次序。在高于8N/cm时,可见剥离强度随粗糙度升高而适度增加,可能是由于较高的玻璃表面积导致更多用于共价键结的位置。未经根据本发明的方法处理并且在玻璃衬底与金属层之间不具有金属氧化物层的对照样品展示极少粘着到无粘着,而与衬底粗糙度无关。
所述方法任选地可包含在方法步骤ii之后进行的另一步骤。
iia.使衬底与酸性水溶液或碱性水溶液接触。
这个额外步骤使表面粗糙度增加约10到50nm,但不超过200nm。所增加的粗糙度在一定范围内以增加金属层对于非导电衬底表面的粘着性,但不负面影响其功能。
酸性水溶液优选地是pH值在pH=1到5之间的酸性水溶液。可使用各种酸,例如硫酸、盐酸或如乙酸的有机酸。
或者,碱性水溶液是pH值在pH=10到14之间的碱性水溶液。可使用各种碱性来源,例如氢氧化物盐,如氢氧化钠、氢氧化钾、氢氧化钙或碳酸盐。
金属氧化物层根据本发明的方法获得并且形成可催化向如玻璃的衬底上无电和电解金属镀敷(例如)铜的多孔膜。其利用化学和机械锚定来充当例如玻璃与铜之间的中间层。这个中间层:
(a)在玻璃界面处形成足够牢固以使镀敷金属膜锚定到所述界面的强共价键;
(b)在铜界面处充当多孔机械锚定站以供在上面以高粘着性镀铜;
(c)从金属氧化物部分到铜界面逐渐增加CTE而充当CTE缓冲区。
其后,在上述步骤iii.中应用湿式化学镀敷方法对具有粘着层的非导电衬底表面进行金属镀敷。
湿式化学镀敷方法为所属领域的技术人员所熟知。典型的湿式化学镀敷方法是施用外电路电流的电解电镀、使用待沉积金属与衬底表面上的金属的氧化还原电势差异的浸渍电镀或使用镀敷溶液中所含化学还原剂的无电电镀方法。
在本发明的优选实施例中,湿式化学镀敷方法包含具有以下步骤的无电电镀方法:
iiia.使衬底与包含催化性金属的水溶液接触,并且其后
iiib.使衬底与包含待镀敷的金属离子的来源和还原剂的无电金属镀敷水溶液接触。
对于无电电镀来说,使衬底与例如含有Cu-、Ni-、Co-或Ag-离子的无电电镀浴接触。典型还原剂包含甲醛、如次磷酸钠的次磷酸盐、乙醛酸、DMAB(二甲氨基硼烷)或NaBH4
在步骤iiia中,使具有金属氧化物化合物粘着层的非导电衬底与包含催化性金属的水溶液接触。需要催化性金属(步骤iiia.)来引发根据步骤iiib对金属层的无电电镀。
金属氧化物化合物的粘着层经选自包含铜、银、金、钌、铑、钯、锇、铱和铂的群组的催化性金属活化。最优选的催化性金属是钯。
催化性金属可以离子形式或以胶状体形式沉积到金属氧化物化合物的粘着层上。
在使用离子形式的催化性金属时,衬底表面仅经活化用于在由金属氧化物化合物层组成的彼等衬底表面区域上进行连续无电电镀。因此,不需要如图案化光阻剂的屏蔽用于步骤iiib.中根据本发明的镀敷方法的选择性无电沉积。
在单独步骤中,通过使衬底与包含还原剂(如次磷酸根离子和/或硼烷化合物(如硼烷-烷基胺加合物或硼氢化钠))的溶液(优选为水溶液)接触使离子形式的所述催化性金属还原为其金属状态。
包含离子形式催化性金属的活化剂和其用途在所属领域中已知并且因此可用于根据本发明的镀敷方法中。
以胶状体形式提供的催化性金属通过吸附而沉积到整个衬底表面上。如果金属层欲在步骤iiib.中通过无电电镀选择性沉积,那么在沉积胶状体形式的催化性金属之前,在步骤iiib.中不应沉积金属层的彼等衬底表面部分应以如图案化光阻剂的屏蔽遮盖。如果所述部分衬底未被遮盖,那么在步骤iiib.中将向整个衬底表面上沉积金属层。在这种情形下,在无电电镀后需要应用蚀刻方法来获得图案化的金属层。
提供离子形式或胶状体形式的催化性金属的适用活化剂组合物例如揭示于ASM手册,第5卷:表面工程学(Surface Engineering),第317到318页中。
步骤iiib.中的无电金属镀敷溶液优选地是适合于沉积相应金属或金属合金的铜、铜合金、镍或镍合金浴组合物。
铜或铜合金最优选地在湿式化学金属沉积期间沉积,无电电镀是用于湿式化学金属沉积的最优选方法。
铜无电电镀电解质通常包含铜离子来源、pH改质剂、络合剂(如EDTA)、烷醇胺或酒石酸盐、加速剂、稳定剂添加剂和还原剂。在大多数情形下,使用甲醛作为还原剂,其它常用还原剂是次磷酸盐、二甲氨基硼烷和硼氢化物。用于无电镀铜电解质的典型稳定剂添加剂是如以下的化合物:巯基苯并噻唑、硫脲、各种其它硫化合物、氰化物和/或亚铁氰化物和/或钴氰化物盐、聚乙二醇衍生物、杂环氮化合物、甲基丁炔醇和丙腈。另外,通常通过使稳定空气流穿过铜电解质而使用分子氧作为稳定剂添加剂(ASM手册,第5卷:表面工程学,第311到312页)。
用于无电金属和金属合金镀敷电解质的其它重要实例是用于沉积镍和其合金的组合物。所述电解质常基于作为还原剂的次磷酸盐化合物并且另外含有选自包含VI族元素(S、Se、Te)化合物、含氧阴离子(AsO2 -、IO3 -、MoO4 2-)、重金属阳离子(Sn2+、Pb2+、Hg+、Sb3+)和不饱和有机酸(马来酸、衣康酸)的群组的稳定剂添加剂的混合物(无电电镀:基本原理与应用(Electroless Plating:Fundamentals and Applications),编者:G.O.马洛里(G.O.Mallory),J.B.哈伊杜(J.B.Hajdu),美国电镀和表面精饰协会(AmericanElectroplaters and Surface Finishers Society),翻印版,第34到36页)。
在后续加工步骤中,无电沉积的金属层可进一步结构化到电路中。
在本发明的一替代性实施例中,可在UV光下由无电金属镀敷水溶液来沉积金属层,由此避免催化剂活化步骤并且包含以下步骤:
iiia.使衬底与包含待镀敷的金属离子的来源和还原剂的无电金属镀敷水溶液接触以沉积金属层并且在镀敷过程期间以UV光照射衬底一段时间。
在镀敷过程期间以UV光照射衬底一段时间可意味着照射可在整个镀敷过程期间或仅在镀敷过程的初始阶段。一般来说,仅在镀敷过程的第一阶段期间照射衬底即足够,例如在镀敷过程的首个1到5、10、20或30分钟期间直到形成金属的首个成核部位。
UV光的波长可在200nm与450nm之间、优选地在300nm与400nm之间变化。UV光的能量可针对衬底来调节并且可在宽范围内变化,例如在0.1到300mW/cm2之间、优选地在1到100mW/cm2之间并且最优选地在2到75mW/cm2之间。
在本发明的一个实施例中,通过在步骤iiib.中获得的金属或金属合金层的上电镀来沉积至少另一层金属或金属合金。
应用湿式化学镀敷方法对衬底进行金属镀敷的一种尤其优选的实施例包含:
iiib.使衬底与无电金属镀敷溶液接触;和
iiic.使衬底与电解金属镀敷溶液接触。
对于电解金属化来说,在步骤iiic.中可能使用任何需要的电解金属沉积浴,例如用于沉积镍、铜、银、金、锡、锌、铁、铅或其合金。所述沉积浴为所属领域的技术人员所熟悉。
典型地使用瓦特镍浴(Watts nickel bath)作为亮镍浴,这个浴包含硫酸镍、氯化镍和硼酸,并且还包含糖精作为添加剂。用作亮铜浴的组合物的实例是包含硫酸铜、硫酸、氯化钠和有机硫化合物(其中硫为低氧化态,例如有机硫化物或二硫化物)作为添加剂的组合物。
在又一实施例中,当沉积的粘着性金属氧化物层固有地具高导电性时(如ZnO/Al2O3),金属氧化物层可直接电解电镀而无需中间无电金属化步骤:
i.在非导电衬底表面的至少一部分上沉积选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的金属氧化物化合物,并且其后
ii.加热非导电衬底并且由此在衬底表面的至少一部分上形成金属氧化物化合物的粘着层;其其后直接
iii.应用湿式化学电解电镀方法至少金属镀敷带有金属氧化物化合物粘着层的衬底表面,并且其后
iv.将金属镀层加热到150与500℃之间的最大温度。
本发明者已发现,热处理沉积金属层极大地增加了金属层与下层非导电衬底的剥离强度(PS)。增加程度令人惊讶。所述热处理还称作退火。退火是一种改变金属的材料特性的已知处理方法,并且例如增加其延展性、释放内部应力并且通过去除挥发物和缺陷来纯化各层而改进金属结构。不明显的是所述退火还导致沉积金属层与非导电衬底表面之间的剥离强度大幅增加。另外,本发明还允许沉积具有良好剥离强度的较厚金属层,这另外将导致分层。
根据本发明的方法,在最后的金属镀敷步骤之后,在步骤iv.中进行所述热处理:
iv.将金属镀层加热到150与500℃之间的最大温度。
对于这种热处理来说,将衬底缓慢加热到150与500℃之间的最大温度,优选地高达400℃的最大温度并且甚至更优选地高达350℃的最大温度。处理时间视衬底材料、镀敷金属和镀敷金属层的厚度而变化并且可由所属领域的技术人员由常规实验来确定。处理时间通常在5与120分钟之间、优选地在10与60分钟之间的范围内,并且甚至更优选地至多20分钟、30分钟或40分钟的处理时间即足够。
甚至更有利的是在两个、三个或甚至更多个步骤中进行热处理,相继增加在个别步骤期间的保持温度。所述逐步处理导致镀敷金属层与非导电衬底之间的剥离强度值尤其高。
典型温度概况可如下:
a)100到200℃历时10到60min,并且其后150到400℃历时10到120min,或
b)100到150℃历时10到60min,并且其后任选地150到250℃历时10到60min,并且其后230到500℃历时10到120min。
如果根据本发明的方法包含无电金属镀敷步骤和电解金属镀敷步骤,那么建议在每一金属镀敷步骤后应用热处理步骤。无电金属镀敷步骤后的热处理可如上所述进行。通常在高达100与250℃之间的最大温度下进行单步骤热处理历时10到120分钟已足够。
实例
以下实验欲说明本发明的益处,而不限制其范围。
处理以下三种市售样品(全部:1.5×4.0cm载片):
硼硅酸玻璃(Sa<10nm)。
陶瓷衬底,Al2O3(Sa=450nm)。
如下文所述清洁和处理样品。
在实验中,在表1中列举并且识别不同的实验条件。
实例1(对照例)
制备连续溅涂有20nm Ti粘着层和400nm Cu晶种层的玻璃样品(如上所述)。
使Cu溅镀玻璃样品在180℃温度下退火30分钟并且在周围温度下以稀硫酸(5%)自氧化物清洁1分钟。
在1.5ASD的电流密度下由市售的电解镀铜浴(丘帕拉西德(Cupracid),安美特公司(Atotech Deutschland GmbH))镀敷电解(酸)铜直到厚度是15μm并且在120℃温度下历时10min并且其后在180℃温度下历时30min逐步退火。对第二衬底同样镀敷金属并且其后在120℃温度下历时10min、其后在180℃下历时30min并且最后在250℃温度下历时30min逐步退火。
未观测到铜与衬底分离(如起泡)。加热到180℃温度的第一样品展示0.69N/cm的PS(剥离强度或粘着强度)。加热到250℃温度的样品展示1.00N/cm的PS。
实例2(对照例)
如实例1中所述清洁两种样品玻璃和陶瓷(Al2O3)。
其后在25℃的温度下以胶状体形式的含有50ppm Pd和2.5g/L SnCl2的市售Pd/Sn催化剂(Adhemax活化剂(Activator),安美特公司)处理衬底历时5分钟,继而进行去离子水冲洗和典型地用于增加Pd催化剂的催化活性加速步骤(Adhemax加速剂(Accelerator),安美特公司)。
此后,在37℃温度下将衬底完全浸没于无电镀Cu浴(含有硫酸铜作为铜离子来源和甲醛作为还原剂)中历时4分钟,产生约0.25μm Cu的镀敷厚度。使样品首先在120℃温度下退火10分钟并且随后在180℃温度下退火30分钟。
通过使思高(Scotch)胶带(约2N/cm)附着于无电Cu层并且以90°角快速移动将其剥除来测试镀层的粘着性。如果可从铜金属层去除胶带而不剥除金属层,那么金属层的粘着强度超过2N/cm。对于所有样品类型来说,无电铜层均与衬底完全分离,PS低于2N/cm(“失败”)。
在1.5ASD的电流密度下,将电解铜(来自可购自安美特公司,丘帕拉西德的市售酸性电解镀铜浴)镀敷到15μm Cu厚度并且导致镀层完全分层。因此,不进行额外的退火实验。
实例3
如上所述清洁玻璃衬底并且以ZnO浸涂。
对于浸涂来说,在周围温度下将衬底垂直浸没于0.5mol/l Zn(OAc)2×2H2O的EtOH溶液中并且以10cm/min的速度垂直去除。接着将其在250℃的温度下干燥15分钟。重复这个过程3次。随后使衬底经受4℃/min的加热斜坡直到达到500℃的最终温度。随后使其在空气中在500℃的温度下烧结一小时。ZnO层的厚度是约150nm。
冷却到周围温度后,继而以含有Na2PdCl4(100ppm)的水溶液处理30秒钟。这种溶液充当无电催化剂溶液。不需要将钯离子还原为钯金属的还原步骤。
随后在37℃温度下使衬底完全浸没于可购自安美特公司的含有硫酸铜作为铜离子来源并且含有甲醛作为还原剂的无电镀Cu浴中历时5分钟,仅在涂布区域(结构化的衬底表面)产生400nm的无电铜层。未涂布的载片部分保持未镀敷。
使无电电镀的样品首先在120℃温度下退火10分钟,并且其后在180℃下退火30分钟。
其后,在1.5ASD的电流密度下将电解铜(可购自安美特公司的市售电解镀铜浴)镀敷到15μm的厚度。在退火和不退火的情形下评估粘着性。
对三种样品以不同的温度概况逐步进行退火:
a)120℃/10min和180℃/30min
b)120℃/10min、180℃/30min和250℃/30min,和
c)120℃/10min、180℃/30min和350℃/30min。
在电解铜沉积后不退火的情形下,PS仅为约0.3N/cm(测量下限)。使退火样品冷却到周围温度。在根据概况a)退火后,获得PS是1.1N/cm的沉积金属层,在根据概况b)退火后,获得PS是2.7N/cm的沉积金属层并且在根据概况c)退火后,获得PS是5.5N/cm的沉积金属层。这证实退火对剥离强度(PS)的有益作用。
在260℃温度下回焊后,退火样品不分层并且保持初始的PS。进行这个回焊测试来仿真回焊期间的组件附着热应力。
实例4(UV-活化)
如上所述清洁玻璃衬底并且以ZnO浸涂。
对于浸涂来说,在周围温度下将衬底垂直浸没于0.5mol/l Zn(OAc)2×2H2O的EtOH溶液中并且以10cm/min的速度垂直去除。接着将其在250℃的温度下干燥15分钟。重复这个过程3次。随后使衬底从室温开始经受4℃/min加热斜坡的加热步骤直到达到500℃。最后,使其热解并且在空气中在500℃的温度下烧结一小时。ZnO层的厚度是约150nm。
随后在37℃温度下使衬底完全浸没于可购自安美特公司的含有硫酸铜作为铜离子来源并且含有甲醛作为还原剂的无电镀Cu浴中,同时以UV光(波长365nm,能量2.65mW/cm2)照射以供活化。10分钟后关闭UV光。照射期间,在衬底上沉积具有足以促进进一步镀敷的厚度的无电铜薄层。再继续进行无电镀Cu 15min,仅在涂布区域中产生1μm的无电铜层。未涂布的载片部分保持未镀敷。
使无电电镀的样品首先在120℃温度下退火10分钟,并且随后在180℃温度下退火30分钟。
其后,在1.5ASD的电流密度下将电解铜(可购自安美特公司的市售电解镀铜浴)镀敷到15μm的厚度。在退火和不退火的情形下评估粘着性。
对三种样品以不同的温度概况逐步进行退火:
a)120℃/10min和180℃/30min,和
c)120℃/10min、180℃/30min和350℃/30min。
在电解铜沉积后不退火的情形下,PS是约0.3N/cm(测量下限)。
在根据概况a)退火后,获得PS是1.6N/cm的沉积金属层,在根据概况c)退火后,获得PS是6.3N/cm的沉积金属层。这证实退火对剥离强度(PS)的有益作用。
在260℃温度下回焊后,退火样品不分层并且保持初始的PS。进行这个回焊测试来仿真回焊期间的组件附着热应力。
实例5
如上所述清洁玻璃衬底并且以ZnO浸涂。
对于浸涂来说,在周围温度下将衬底垂直浸没于0.5mol/l Zn(OAc)2×2H2O的EtOH溶液中并且以10cm/min的速度垂直去除。接着将其在250℃的温度下干燥15分钟。重复这个过程3次。随后使衬底热解并且在空气中在500℃的温度下烧结一小时。ZnO层的厚度是约150nm。
随后在37℃温度下使衬底完全浸没于可购自安美特公司的含有硫酸铜作为铜离子来源并且含有甲醛作为还原剂的无电镀Cu浴中,同时以UV光(波长365nm,能量2.65mW/cm2)照射以供活化。10分钟后关闭UV光。在这时间期间,在衬底上沉积具有足以促进进一步镀敷的厚度的无电铜薄层。再继续进行无电镀Cu 15min,仅在涂布区域中产生1μm的无电铜层。未涂布的载片部分保持未镀敷。
使无电电镀的样品首先在120℃温度下退火10分钟,并且随后在180℃温度下退火30分钟。
其后,在1.5ASD的电流密度下将电解铜(可购自安美特公司的市售电解镀铜浴)分别镀敷到15μm与30μm的厚度。此时,具有30μm Cu的衬底展示分层并且不进一步加工。
以如下温度概况对具有15μm Cu的衬底进行退火:
c)120℃/10min、180℃/30min和350℃/30min。
将其冷却到周围温度并且在上文提及的电解镀铜浴中进一步镀敷到30μm的总厚度。
未观测到铜与衬底分离(起泡)。测量到7.8N/cm的高PS。这个实验明确证实退火的有益作用并且其使得可进一步镀敷到退火的金属层上。
在260℃温度下回焊后,退火样品不分层并且保持初始的PS。进行这个回焊测试来仿真回焊期间的组件附着热应力。
这个实验证实根据本发明的方法能够在不分层的情形下沉积具有高于15μm的厚度值(例如30μm)和高剥离强度值的铜金属。
实例6
如上所述清洁Al2O3陶瓷衬底并且通过喷雾热解以ZnO涂布。
为此,由手持式气刷装置向预热到400℃温度的陶瓷衬底上喷射0.05mol/l Zn(OAc)2×2H2O(金属氧化物前体化合物)的EtOH溶液。
随后使衬底热解并且在空气气氛中在500℃温度下烧结1h。ZnO金属氧化物层的厚度是约200nm。
随后在37℃温度下使衬底完全浸没于可购自安美特公司的含有硫酸铜作为铜离子来源并且含有甲醛作为还原剂的无电镀Cu浴中,同时以UV光(波长365nm,能量2.65mW/cm2)照射以供活化。10分钟后关闭UV光。在这时间期间,在衬底上沉积具有足以促进进一步镀敷的厚度的无电铜薄层。再继续进行无电镀Cu 15min,仅在涂布区域中产生1μm的无电铜层。未涂布的载片部分保持未镀敷。
使无电电镀的样品首先在120℃温度下退火10分钟,并且其后在180℃下退火30分钟。
其后,在1.5ASD的电流密度下将电解铜(可购自安美特公司的市售电解镀铜浴)镀敷到15μm的厚度。在退火和不退火的情形下评估粘着性。
以不同温度概况对样品逐步进行退火:
a)120℃/10min和180℃/30min
c)120℃/10min、180℃/30min和350℃/30min。
在电解铜沉积后不退火的情形下,PS仅为约0.5N/cm(测量下限)。使退火样品冷却到周围温度。在根据概况a)退火后,获得PS是4.2N/cm的沉积金属层,在根据概况c)退火后,获得PS是8.0N/cm的沉积金属层。这证实退火对PS的有益作用。
表1:所测试的各种非导电衬底的金属化条件和所获得的粘着值。
Figure BDA0003371523450000181
Figure BDA0003371523450000191
MO金属氧化物化合物
通过:PS(剥离强度,还表示粘着强度)等于或超过2N/cm
失败:PS小于2N/cm
由来自IMADA的数字测力计和剥离强度测试仪进行90°剥离强度(PS)测量。所有样品的PS值在表1,PS列7到9中描绘,并且所述值另外在实例1到6中提供。
通过使Scotch胶带(约2N/cm)附着于Cu层并且以90°角快速移动将其剥除来测试镀层的粘着性。如果可从铜金属层去除胶带而不剥除金属层,那么金属层的粘着强度超过2N/cm(表1中的“通过”)。如果金属层剥除,那么粘着强度低于2N/cm(表1中的“失败”)。
由根据本发明的方法镀敷金属的所有样品均展示金属层对于下层非导电衬底的良好粘着性。通过Olympus LEXT 4000共焦激光显微镜上的梯级高度来确定氧化物膜的层厚度。在120μm×120μm的表面积上收集粗糙度值。

Claims (11)

1.一种用于向非导电衬底上镀敷金属的湿式化学方法,其包含以下步骤:
i.在所述非导电衬底表面的至少一部分上沉积一层选自由氧化锌、氧化钛、氧化锆、氧化铝、氧化硅和氧化锡或前述各物的混合物组成的群组的金属氧化物化合物;并且其后
ii.在高于400℃的温度下加热所述非导电衬底并且由此在所述衬底表面的至少一部分上形成所述金属氧化物化合物的厚度是5nm到500nm的粘着层;并且其后
iii.通过应用湿式化学镀敷方法至少金属镀敷所述具有所述金属氧化物化合物粘着层的衬底表面;并且其后
iv.在两个或三个步骤中将所述金属镀层加热到150℃与500℃之间的最大温度,其中所述步骤包括以下温度曲线:
a)100到200℃历时10到60分钟,并且其后150到400℃历时10到120分钟,或
b)100到150℃历时10到60分钟,并且其后任选地150到250℃历时10到60分钟,并且其后230到500℃历时10到120分钟;
其中在所述非导电衬底表面的至少一部分上沉积一层金属氧化物化合物包括:
ia.使所述衬底与适合于在加热时形成所述金属氧化物化合物的金属氧化物前体化合物接触,并且其后
ib.在150℃与400℃之间的温度下加热所述非导电衬底并且由此在所述衬底表面的至少一部分上由所述金属氧化物前体化合物形成所述金属氧化物化合物,并且
所述金属氧化物前体化合物选自由金属乙酸盐、乙酰基丙酮酸盐、硝酸盐、氯化物、溴化物和碘化物组成的群组。
2.根据权利要求1所述的方法,其中所述金属氧化物化合物选自由ZnO、TiO2、ZrO2、Al2O3、SiO2、SnO2或前述各物的混合物组成的群组。
3.根据权利要求1所述的方法,其中所述金属氧化物化合物以10-9wt.%到10wt.%之间的含量掺杂有锗、铝、硼、砷或磷。
4.根据权利要求1所述的方法,其中步骤iv.中的所述加热在两个步骤中进行并且其中所述第一加热步骤在高达最大在100℃与200℃之间的温度下并且所述第二加热步骤在高达最大在200℃与500℃之间的温度下。
5.根据权利要求1所述的方法,其中所述步骤
iii.应用湿式化学镀敷方法金属镀敷所述衬底包含:
iiia.使所述衬底与包含催化性金属的水溶液接触,并且其后
iiib.使所述衬底与包含待镀敷的金属离子的来源和还原剂的无电金属镀敷水溶液接触。
6.根据权利要求1所述的方法,其中所述步骤
iii.应用湿式化学镀敷方法金属镀敷所述衬底包含:
iiib.使所述衬底与包含待镀敷的金属离子的来源和还原剂的无电金属镀敷水溶液接触以沉积金属层并且在所述镀敷过程期间以UV光照射所述衬底一段时间。
7.根据权利要求6所述的方法,其中所述UV光的波长在200nm与450nm之间的范围内。
8.根据权利要求1所述的方法,其中所述步骤
iii.应用湿式化学镀敷方法金属镀敷所述衬底除步骤iiia.和iiib.以外进一步包含:
iiic.使所述衬底与电解金属镀敷溶液接触。
9.根据权利要求1所述的方法,其中所述非导电衬底是陶瓷、硅基半导体或玻璃衬底。
10.根据权利要求1所述的方法,其中在方法步骤ii.之后进行另一方法步骤:
ii.a.使所述衬底与酸性水溶液或碱性水溶液接触。
11.根据权利要求1所述的方法,其中所述湿式化学金属镀敷溶液是镀镍或镀铜溶液。
CN202111401153.3A 2013-09-26 2014-09-22 用于衬底表面金属化的新颖粘着促进方法 Pending CN114107984A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13186150 2013-09-26
EP13186150.2 2013-09-26
CN201480052346.4A CN105593410A (zh) 2013-09-26 2014-09-22 用于衬底表面金属化的新颖粘着促进方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480052346.4A Division CN105593410A (zh) 2013-09-26 2014-09-22 用于衬底表面金属化的新颖粘着促进方法

Publications (1)

Publication Number Publication Date
CN114107984A true CN114107984A (zh) 2022-03-01

Family

ID=49231364

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480052346.4A Pending CN105593410A (zh) 2013-09-26 2014-09-22 用于衬底表面金属化的新颖粘着促进方法
CN202111401153.3A Pending CN114107984A (zh) 2013-09-26 2014-09-22 用于衬底表面金属化的新颖粘着促进方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480052346.4A Pending CN105593410A (zh) 2013-09-26 2014-09-22 用于衬底表面金属化的新颖粘着促进方法

Country Status (7)

Country Link
US (1) US10487404B2 (zh)
EP (1) EP3049555A1 (zh)
JP (1) JP6478982B2 (zh)
KR (2) KR102378658B1 (zh)
CN (2) CN105593410A (zh)
TW (1) TWI631241B (zh)
WO (1) WO2015044091A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155255A (ja) * 2016-02-29 2017-09-07 株式会社村田製作所 金属層の形成方法
WO2017191260A1 (en) 2016-05-04 2017-11-09 Atotech Deutschland Gmbh Process for depositing a metal or metal alloy on a surface of a substrate including its activation
JP6717663B2 (ja) * 2016-05-23 2020-07-01 一般財団法人ファインセラミックスセンター 膜形成方法
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
EP3296428B1 (en) * 2016-09-16 2019-05-15 ATOTECH Deutschland GmbH Method for depositing a metal or metal alloy on a surface
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
KR102029535B1 (ko) 2017-08-28 2019-10-07 삼성전기주식회사 팬-아웃 반도체 패키지
KR102096299B1 (ko) * 2017-12-08 2020-04-03 한국생산기술연구원 광소결을 이용한 무전해 도금 방법
JP7120757B2 (ja) 2017-12-12 2022-08-17 株式会社Jcu 酸化物膜形成用塗布剤、酸化物膜の製造方法及び金属めっき構造体の製造方法
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
KR20200136919A (ko) 2018-03-28 2020-12-08 다이니폰 인사츠 가부시키가이샤 배선 기판, 및 배선 기판을 제조하는 방법
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11284510B2 (en) * 2018-04-17 2022-03-22 Board Of Trustees Of Michigan State University Controlled wetting and spreading of metals on substrates using porous interlayers and related articles
JP7261545B2 (ja) * 2018-07-03 2023-04-20 新光電気工業株式会社 配線基板、半導体パッケージ及び配線基板の製造方法
CN108866518B (zh) * 2018-07-25 2020-03-31 东北大学 铁酸镍陶瓷材料表面无敏化无活化制备化学镀镍层的方法
WO2020068436A1 (en) * 2018-09-24 2020-04-02 Corning Incorporated Methods for increasing adhesion between metallic films and glass surfaces and articles made therefrom
EP3880865A2 (en) * 2018-11-13 2021-09-22 Corning Incorporated 3d interposer with through glas vias-method of increasing adhesion between copper and class surfaces and articles therefrom
WO2020124620A1 (zh) * 2018-12-19 2020-06-25 江南大学 一种微生物导电陶瓷及其制备方法和应用
CN113474311B (zh) 2019-02-21 2023-12-29 康宁股份有限公司 具有铜金属化贯穿孔的玻璃或玻璃陶瓷制品及其制造过程
CN113840810A (zh) * 2019-05-17 2021-12-24 康宁股份有限公司 改良具有处于压应力下的区域的纹理化玻璃基板以增加玻璃基板强度的方法
CN110029382B (zh) * 2019-05-22 2021-09-24 电子科技大学 一种用于直接电镀的表面处理工艺及其相关直接电镀工艺
JP2023519072A (ja) * 2020-01-06 2023-05-10 コーニング インコーポレイテッド ガラス物品のメタライズ方法
KR20230008068A (ko) * 2020-04-14 2023-01-13 코닝 인코포레이티드 금속 산화물 층의 생성을 통해 유리 기판에 대한 금속의 증가된 결합성을 제공하기 위한 유리 물품의 제조 방법, 및 금속 산화물 층을 포함하는 유리 인터포저와 같은 유리 물품
CN113853451B (zh) 2020-06-30 2023-05-23 松下知识产权经营株式会社 层叠膜结构及层叠膜结构的制造方法
JP6917587B1 (ja) * 2020-06-30 2021-08-11 パナソニックIpマネジメント株式会社 積層膜構造および積層膜構造の製造方法
CN111987000A (zh) * 2020-07-07 2020-11-24 中国科学院深圳先进技术研究院 金属基板复合材料的制备方法
KR20230136217A (ko) 2021-02-08 2023-09-26 맥더미드 엔쏜 인코포레이티드 확산 장벽 형성을 위한 방법 및 습식 화학 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780332A (en) * 1985-10-18 1988-10-25 Robert Bosch Gmbh Process for producing adherent, electrochemically reinforcible and solderable metal layers on an aluminum-oxide containing ceramic substrate
JPH05331660A (ja) * 1992-06-02 1993-12-14 Toto Ltd 銅メタライズ法
US20020187266A1 (en) * 2001-05-22 2002-12-12 Yoshihiro Izumi Metal film pattern and manufacturing method thereof
CN1747626A (zh) * 2004-09-06 2006-03-15 三星电机株式会社 使用光催化剂在印刷电路板上进行无电电镀的方法
WO2013083600A2 (en) * 2011-12-05 2013-06-13 Atotech Deutschland Gmbh Novel adhesion promoting agents for metallization of substrate surfaces
CN103183978A (zh) * 2011-12-27 2013-07-03 比亚迪股份有限公司 油墨组合物及其应用和表面选择性金属化的制品及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1323742A (en) 1970-08-22 1973-07-18 Ppg Industries Inc Applying electroconductive heating circuits to glass
US3907621A (en) 1971-07-29 1975-09-23 Photocircuits Corp Method of sensitizing substrates for chemical metallization
JPS6028817B2 (ja) 1976-09-06 1985-07-06 住友化学工業株式会社 インド−ル類の製造方法
US4233344A (en) * 1978-07-20 1980-11-11 Learonal, Inc. Method of improving the adhesion of electroless metal deposits employing colloidal copper activator
US4659587A (en) 1984-10-11 1987-04-21 Hitachi, Ltd. Electroless plating process and process for producing multilayer wiring board
EP0273227A3 (en) * 1986-12-22 1989-01-25 Kalman F. Zsamboky A method of improving bond strength between a metal layer and a non-metallic substrate
JPH01247577A (ja) * 1988-03-30 1989-10-03 Nippon Denso Co Ltd 化学銅めっき方法
US5693209A (en) 1989-09-14 1997-12-02 Atotech Deutschland Gmbh Process for metallization of a nonconductor surface
JP2768451B2 (ja) * 1990-11-29 1998-06-25 松下電器産業株式会社 セラミック電子部品用電極の形成方法
JPH04201251A (ja) * 1990-11-29 1992-07-22 Matsushita Electric Ind Co Ltd セラミックス―金属積層体
DE69426732T3 (de) 1993-03-18 2010-11-25 Atotech Deutschland Gmbh Sich selbstbeschleunigendes und sich selbst auffrischendes Verfahren zur Tauchbeschichtung ohne Formaldehyd
DE19510855C2 (de) 1995-03-17 1998-04-30 Atotech Deutschland Gmbh Verfahren zum selektiven oder partiellen elektrolytischen Metallisieren von Substraten aus nichtleitenden Materialien
US7192494B2 (en) * 1999-03-05 2007-03-20 Applied Materials, Inc. Method and apparatus for annealing copper films
JP3543108B2 (ja) 2000-03-08 2004-07-14 東北大学長 フラーレン−カルボランリジッドロッドハイブリッド化合物およびその合成方法
DE10124631C1 (de) 2001-05-18 2002-11-21 Atotech Deutschland Gmbh Verfahren zum direkten elektrolytischen Metallisieren von elektrisch nichtleiteitenden Substratoberflächen
JP4111851B2 (ja) 2002-11-08 2008-07-02 コバレントマテリアル株式会社 薄板の剥離・保持装置
GB0811962D0 (en) * 2008-06-30 2008-07-30 Imp Innovations Ltd Improved fabrication method for thin-film field-effect transistors
US8076241B2 (en) * 2009-09-30 2011-12-13 Tokyo Electron Limited Methods for multi-step copper plating on a continuous ruthenium film in recessed features
JP5331660B2 (ja) 2009-11-25 2013-10-30 株式会社三共 遊技機
CN101983757B (zh) * 2010-12-06 2012-12-19 西北有色金属研究院 以多孔FeAlCr为基体的钯复合膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780332A (en) * 1985-10-18 1988-10-25 Robert Bosch Gmbh Process for producing adherent, electrochemically reinforcible and solderable metal layers on an aluminum-oxide containing ceramic substrate
JPH05331660A (ja) * 1992-06-02 1993-12-14 Toto Ltd 銅メタライズ法
US20020187266A1 (en) * 2001-05-22 2002-12-12 Yoshihiro Izumi Metal film pattern and manufacturing method thereof
CN1747626A (zh) * 2004-09-06 2006-03-15 三星电机株式会社 使用光催化剂在印刷电路板上进行无电电镀的方法
WO2013083600A2 (en) * 2011-12-05 2013-06-13 Atotech Deutschland Gmbh Novel adhesion promoting agents for metallization of substrate surfaces
CN103183978A (zh) * 2011-12-27 2013-07-03 比亚迪股份有限公司 油墨组合物及其应用和表面选择性金属化的制品及其制备方法

Also Published As

Publication number Publication date
JP6478982B2 (ja) 2019-03-06
WO2015044091A1 (en) 2015-04-02
KR102378658B1 (ko) 2022-03-28
US20160208387A1 (en) 2016-07-21
US10487404B2 (en) 2019-11-26
KR102531793B1 (ko) 2023-05-12
JP2016533429A (ja) 2016-10-27
TW201520382A (zh) 2015-06-01
EP3049555A1 (en) 2016-08-03
KR20160062067A (ko) 2016-06-01
TWI631241B (zh) 2018-08-01
KR20220040512A (ko) 2022-03-30
CN105593410A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
KR102378658B1 (ko) 기판 표면들의 금속화를 위한 신규한 접착 촉진 프로세스
TWI651432B (zh) 用於基材表面金屬化之新穎黏著促進劑
TWI569704B (zh) 增進介電基板與金屬層間黏著度的方法
TWI602950B (zh) 用於形成種晶層之組成物
KR102427122B1 (ko) 구리 및 구리 합금 회로의 광학 반사율을 감소시키는 방법 및 터치 스크린 디바이스
Yoshiki et al. Adhesion mechanism of electroless copper film formed on ceramic substrates using ZnO thin film as an intermediate layer
CN111479953B (zh) 氧化物膜形成用涂布剂、氧化物膜的制造方法及金属镀覆结构体的制造方法
WO2021211285A1 (en) A method of manufacturing a glass article to provide increased bonding of metal to a glass substrate via the generation of a metal oxide layer, and glass articles such as glass interposers including the metal oxide layer
JP2006052440A (ja) 無電解めっき用触媒液及び無電解めっき皮膜の形成方法
CN104204294A (zh) 促进介电衬底与金属层之间粘着度的方法
Venev et al. Fabrication of Conductive Copper Patterns Using Photocatalyst-activated Electroless Deposition
JP2019147978A (ja) 金属めっき構造体の製造方法
JP2019167591A (ja) 酸化物膜及び酸化物膜の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination