WO2020124620A1 - 一种微生物导电陶瓷及其制备方法和应用 - Google Patents

一种微生物导电陶瓷及其制备方法和应用 Download PDF

Info

Publication number
WO2020124620A1
WO2020124620A1 PCT/CN2018/123379 CN2018123379W WO2020124620A1 WO 2020124620 A1 WO2020124620 A1 WO 2020124620A1 CN 2018123379 W CN2018123379 W CN 2018123379W WO 2020124620 A1 WO2020124620 A1 WO 2020124620A1
Authority
WO
WIPO (PCT)
Prior art keywords
macroporous
cells
ceramics
bacteria
microorganism
Prior art date
Application number
PCT/CN2018/123379
Other languages
English (en)
French (fr)
Inventor
高敏杰
詹晓北
李志涛
蒋芸
吴剑荣
晏家俊
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811558546.3A external-priority patent/CN109536482B/zh
Priority claimed from CN201811562188.3A external-priority patent/CN109574709B/zh
Priority claimed from CN201811569265.8A external-priority patent/CN109516832B/zh
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2020124620A1 publication Critical patent/WO2020124620A1/zh
Priority to US17/126,346 priority Critical patent/US20210139880A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4539Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying

Definitions

  • the invention relates to a microbial conductive ceramic, a preparation method and application thereof, and belongs to the technical field of microbes and the technical field of semiconductor materials.
  • oxide ceramics are not conductive and are good insulators, for example, oxide ceramics. Since the outer electrons of oxide ceramic atoms are usually attracted by the nucleus, they are bound around their respective atoms and cannot move freely. Therefore, oxide ceramics are usually non-conductive insulators; however, some oxide ceramics are heated At this time, the electrons in the outer layer of the atom can obtain enough energy to overcome the attraction of the atomic nucleus and become free electrons that can move freely. At this time, the oxide ceramic has gained the conductivity and becomes a conductive ceramic.
  • conductive ceramics such as silicon nitride, zirconia, titanium aluminum carbide ceramics, etc.
  • impurities such as ZrO 2 , ThO 2 and LaCrO 2 due to the main oxides constituting their electronic conductivity, making them Requires a heating temperature of up to 3000-5000 °C, the preparation cost is higher; and these impurities will also lead to a lower conductivity at room temperature, and a decrease in resistivity above 800 °C, which undoubtedly greatly reduces its conductive performance.
  • the present invention provides a microbial conductive ceramic and its preparation method and application.
  • the invention is based on common insulating macroporous ceramics, using the method of cell immobilization and the principle of microbial adsorption to prepare a microbial conductive ceramic containing macroporous ceramics, microorganisms fixed to the macroporous ceramics and metal ions adsorbed to the microorganisms .
  • the microbial conductive ceramic has excellent performance, and the conductivity can reach 2.91 ⁇ 10 6 S/m; at the same time, the cost of this microbial conductive ceramic is low, only 10% of the cost of the conductive ceramic with the same conductivity.
  • the invention provides a method for preparing microbial conductive ceramics.
  • the method is to cultivate microorganisms in a medium to a logarithmic growth phase or a stable period to obtain a microbial bacterial liquid; place macroporous ceramics in hydrochloric acid or sodium hydroxide solution After being soaked for the first time, the pretreated macroporous ceramics are obtained; the pretreated macroporous ceramics are put into the microbial bacterial solution for shaking and then dried for the second time to obtain macroporous ceramics with fixed microorganisms; After flowing the metal ion solution through the macroporous ceramics fixed with microorganisms, the macroporous ceramics are dried for a third time to obtain microbial conductive ceramics; the microorganisms include yeasts, filamentous fungi or bacteria.
  • the yeast comprises S. cerevisiae and/or Pichia pastoris;
  • the filamentous fungus comprises one or more of Aspergillus niger, Aspergillus oryzae or Mucor;
  • the bacteria comprises E. coli and/or magnetotactic bacteria.
  • the magnetotactic bacteria comprise aquatic spirillus and/or cholephilus.
  • the culture time of the microorganism in the culture medium is 12 to 60 hours; when the microorganism is a filamentous fungus, the culture time of the microorganism in the culture medium is 24 ⁇ 72h; when the microorganism is a bacterium, the culture time of the microorganism in the culture medium is 48-96h.
  • the concentration of bacteria in the microbial liquid is 1 ⁇ 10 6 to 1 ⁇ 10 10 cells/mL; when the microorganism is a filamentous fungus, the microbial bacteria The bacterial concentration in the liquid is 1 ⁇ 10 6 to 1 ⁇ 10 8 cells/mL; when the microorganism is a bacteria, the bacterial concentration in the microbial bacterial liquid is 1 ⁇ 10 8 to 1 ⁇ 10 10 cells/mL.
  • the bacterial concentration in the microbial bacterial liquid is 1 ⁇ 10 8 cells/mL; when the microorganism is a filamentous fungus, the bacterial concentration in the microbial bacterial liquid It is 1 ⁇ 10 7 cells/mL; when the microorganisms are bacteria, the concentration of bacteria in the microbial bacterial liquid is 1 ⁇ 10 9 cells/mL.
  • the macroporous ceramic comprises one of silicon nitride ceramic, alumina ceramic, zirconia ceramic or titanium aluminum carbide ceramic or Multiple.
  • the pore size of the macroporous ceramic when the microorganism is a yeast, the pore size of the macroporous ceramic is 10-20 ⁇ m; when the microorganism is a filamentous fungus, the pore size of the macroporous ceramic is 50-200 ⁇ m; the microorganism In the case of bacteria, the pore size of the macroporous ceramic is 1 to 10 ⁇ m.
  • the concentration of hydrochloric acid is 0.5 to 1.5 mol/L.
  • the concentration of sodium hydroxide is 0.5-1.5 mol/L.
  • the soaking condition is a temperature of 20-30°C and a time of 24-48h.
  • the conditions of oscillation are a rotation speed of 50-100r/min, a temperature of 30-50°C, and a time of 60-150min; when the microorganism is a filamentous fungus, oscillation The conditions are: rotation speed 120-200r/min, temperature 20-40°C, time 4-8h; when the microorganism is a bacterium, oscillation conditions are rotation speed 20-60r/min, temperature 40-60°C, time 120-240min.
  • the condition of oscillation is a rotation speed of 70 r/min, the temperature is 40° C., and the time is 100 min; when the microorganism is a filamentous fungus, the condition of oscillation is a rotation speed of 160 r/. min, temperature 30°C, time 6h; when the microorganism is a bacterium, the oscillating conditions are speed 40r/min, temperature 50°C, time 180min.
  • the concentration of the metal ion solution is 30-100 mg/mL; when the microorganism is a bacteria, the concentration of the metal ion solution is 50-80 mg /mL.
  • the concentration of the metal ion solution when the microorganism is a yeast, the concentration of the metal ion solution is 50 mg/mL; when the microorganism is a filamentous fungus or bacteria, the concentration of the metal ion solution is 60 mg/mL.
  • the pH of the metal ion solution is 2-5.
  • the pH of the metal ion solution when the microorganism is a yeast or filamentous fungus, the pH of the metal ion solution is 3; when the microorganism is a bacteria, the pH of the metal ion solution is 4.
  • the conditions for the metal ion solution to flow through the macroporous ceramic fixed with the microorganism are a temperature of 15 to 35° C., a flow rate of 10 to 30 mL/min, and a time of 30 to 120 min.
  • the conditions for the metal ion solution to flow through the macroporous ceramics fixed with microorganisms are temperature 45-55°C, flow rate 20-40 mL/min, time 150-240 min; when the microorganism is bacteria, The conditions for the metal ion solution to flow through the macroporous ceramics immobilized with microorganisms are a temperature of 35 to 45°C, a flow rate of 5 to 20 mL/min, and a time of 60 to 150 min.
  • the conditions for the metal ion solution to flow through the macroporous ceramic fixed with the microorganism are a temperature of 25° C., a flow rate of 20 mL/min, and a time of 60 min; the microorganism is silk
  • the conditions for the metal ion solution to flow through the macroporous ceramics fixed with microorganisms are temperature 50 °C, flow rate 30mL/min, time 200min; when the microorganisms are bacteria, the metal ion solution flows through the macroporous ceramics fixed with microorganisms
  • the conditions are: temperature 40°C, flow rate 10mL/min, time 90min.
  • the invention provides a microbial conductive ceramic prepared by using the above method.
  • the present invention provides a microbial conductive ceramic
  • the microbial conductive ceramic contains macroporous ceramics, microorganisms fixed to the macroporous ceramics and metal ions adsorbed to the microorganisms; the microorganisms include yeasts, filamentous fungi or bacteria.
  • the yeast comprises S. cerevisiae and/or Pichia pastoris;
  • the filamentous fungus comprises one or more of Aspergillus niger, Aspergillus oryzae or Mucor;
  • the bacteria comprises E. coli and/or magnetotactic bacteria.
  • the magnetotactic bacteria comprise aquatic spirillus and/or cholephilus.
  • the macroporous ceramic comprises one of silicon nitride ceramic, alumina ceramic, zirconia ceramic or titanium aluminum carbide ceramic or Multiple.
  • the pore size of the macroporous ceramic when the microorganism is a yeast, the pore size of the macroporous ceramic is 10-20 ⁇ m; when the microorganism is a filamentous fungus, the pore size of the macroporous ceramic is 50-200 ⁇ m; the microorganism In the case of bacteria, the pore size of the macroporous ceramic is 1 to 10 ⁇ m.
  • the fixed number of microorganisms on the macroporous ceramic is 1.0 ⁇ 10 8 to 2.0 ⁇ 10 8 per cm 3 ; when the microorganism is a filamentous fungus, The fixed number of microorganisms on the macroporous ceramic is 1.0 ⁇ 10 7 ⁇ 1.5 ⁇ 10 7 /cm 3 ; when the microorganisms are bacteria, the fixed number of microorganisms on the macroporous ceramics is 1.0 ⁇ 10 9 ⁇ 1.5 ⁇ 10 9 / cm 3 ;
  • the metal ion when the microorganism is a yeast, filamentous fungus or bacteria, includes one or more of silver ion, molybdenum ion, aluminum ion or copper ion.
  • the metal ion is molybdenum ion.
  • the invention provides a product containing the microbial conductive ceramic prepared above or the microbial conductive ceramic prepared above.
  • the product includes electronic components, electric heating elements, electrodes, batteries, electronic cameras, televisions, radios, computers or mobile TVs.
  • the invention provides the above preparation method or the application of the prepared microbial conductive ceramic or the above microbial conductive ceramic in the preparation of electronic products and measurement tools.
  • the microbial conductive ceramic of the present invention has excellent performance.
  • the microorganism is a yeast
  • the fixed number of microbial cells can reach 1 ⁇ 10 8 cells/cm 3 or more, and the electrical conductivity can reach 2.91 ⁇ 10 6 S/m
  • the microorganism is For filamentous fungi
  • the fixed number of microbial cells can reach more than 1 ⁇ 10 7 cells/cm 3 and the electrical conductivity can reach 2.71 ⁇ 10 6 S/m
  • the microorganisms are bacteria
  • the fixed number of microbial cells can reach 1 ⁇ 10 9 cells /cm 3 or more, the conductivity can reach 2.51 ⁇ 10 6 S/m;
  • the existing conductive ceramics want to achieve the same conductivity as the present invention, ultra-high temperature sintering operation is required, which is costly and complicated.
  • the microbial conductive ceramic of the present invention only needs to cultivate microorganisms It can be prepared in three steps of attaching to macroporous ceramics and adsorbing metal ions to microorganisms, with low cost (only 10% of the cost of conductive ceramics with the same conductivity) and simple operation;
  • the microbial conductive ceramic of the present invention has superior performance, simple preparation and low cost, can be widely used for preparing electronic products and measuring tools, and has great application prospects.
  • the shaker involved in the following examples was purchased from Changzhou Runhua Electrical Technology Co., Ltd., model RH-100; the Saccharomyces cerevisiae involved in the following examples was Saccharomyces cerevisiae CICC1221 deposited in the Microbial Culture Collection Center of Jiangnan University; The Pichia pastoris involved in the examples described above is Pichia pastoris GS115 deposited at the Microorganism Strains Collection Center of Jiangnan University; the A. niger involved in the following examples is Aspergillus niger deposited at the Microorganism Strains Collection Center of Jiangnan University (Aspergillus niger) CGMCC No.
  • the Aspergillus oryzae involved in the following examples is Aspergillus oryzae (Aspergillus oryzae) CGMCC No. 12378 deposited in the Microbial Culture Collection Center of Jiangnan University; the E. coli involved in the following examples is Escherichia coli TOP10 deposited in the Microorganism Strain Collection Center of Jiangnan University; the magnetotactic bacteria involved in the following examples are magnetotactic bacteria AMB-1 deposited in the Microorganism Strain Collection Center of Jiangnan University;
  • the porous ceramic comes from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (the above strains Aspergillus niger CGMCC No.
  • the medium involved in the present invention is as follows:
  • Yeast seed medium: beef extract 3g/L, peptone 10g/L, sodium chloride 5g/L, pH 7.4 ⁇ 7.6;
  • Fermentation medium glucose 100g/L, peptone 20g/L, potassium hydrogen phosphate 3g/L, magnesium sulfate 1g/L.
  • Filamentous fungi seed medium: potato 200g/L, glucose 20g/L, agar 15-20g/L, natural pH;
  • Fermentation medium potato 200g/L, glucose 20g/L, agar 15-20g/L, natural pH.
  • Seed culture medium beef extract 3g/L, peptone 10g/L, sodium chloride 5g/L, pH7.4 ⁇ 7.6;
  • Fermentation medium beef extract 3g/L, peptone 10g/L, sodium chloride 5g/L, pH7.4 ⁇ 7.6.
  • the detection methods involved in the present invention are as follows:
  • ICP-OES inductively coupled plasma emission spectrometer
  • the determination method can refer to the paper: Xie Weihua, etc.; ICP-AES method for determination of molybdenum content in U-Mo alloy; analysis laboratory; 2016 04.
  • Adsorption amount (initial concentration-final concentration) ⁇ solution volume / mass of adsorbent
  • the initial concentration is the initial concentration of molybdenum ions in the molybdenum ion solution (mg ⁇ L -1 )
  • the final concentration is the concentration of molybdenum ions in the molybdenum ion solution after adsorption of the cells (mg ⁇ L -1 )
  • the mass of the adsorbent is the adsorption The corresponding mass under the dry weight of the agent (ie the dry weight of the cell).
  • the number of cells immobilized the number of original microbial cells-the number of remaining microbial cells.
  • the macroporous ceramics fixed with Saccharomyces cerevisiae and the macroporous ceramics fixed with Pichia pastoris were centrifugally washed with deionized water for 3 times, then freeze-dried, a conductive glue was pasted on the SEM sample table, and the sample powder was sprinkled on the conductive glue.
  • the samples were plated with carbon film and observed with SEM.
  • the acceleration voltage was 15kV.
  • the instrument model was an environmental electron scanning microscope Hitachi TM3030 (Tokyo, Japan) to determine whether the microorganisms were successfully attached.
  • the TX-1000A intelligent metal conductor resistivity meter is used to determine the ceramic conductivity.
  • Example 1-1 Effect of pretreatment on the effect of microorganisms fixed on macroporous ceramics (yeast)
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • test results were: the fixed number of S. cerevisiae cells on the macroporous ceramics treated with distilled water was 2.5 ⁇ 10 7 cells/cm 3 , and the fixed number of Pichia pastoris was 1.1 ⁇ 10 8 cells/cm 3 ; the concentration was 0.5 mol/L The fixed number of S.
  • the fixed number of Saccharomyces cerevisiae cells is 1.6 ⁇ 10 8 cells/cm 3
  • the fixed number of Pichia yeast is 1.5 ⁇ 10 8 cells/cm 3
  • the fixed number is 1.1 ⁇ 10 8 cells/cm 3
  • the fixed number of Pichia pastoris is 1.6 ⁇ 10 8 cells/cm 3
  • the fixed number of Saccharomyces cerevisiae cells on macroporous ceramics treated with 0.5 mol/L sodium hydroxide concentration is 1.2 ⁇ 10 8 cells/cm 3
  • the fixed number of Saccharomyces cerevisiae cells on macroporous ceramics treated with 0.5 mol/L sodium hydroxide concentration is 1.2 ⁇ 10 8 cells/cm 3 , the fixed number
  • the macroporous ceramics should be treated with 1mol hydrochloric acid or 1.5mol sodium hydroxide to make the ceramics have more positive or negative charges.
  • the yeast can use the principle of electrostatic adsorption to better The gap attached to the inside of the ceramic makes the inside of the ceramic get better filling, improves the metal adsorption rate, and thus makes the electrical conductivity higher.
  • Example 1-2 The effect of temperature on the effect of microorganisms fixed to macroporous ceramics (yeast)
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • the detection results were as follows: the fixed number of S. cerevisiae cells on the macroporous ceramics treated at a temperature of 20°C was 1.2 ⁇ 10 8 cells/cm 3 , and the fixed number of Pichia yeast was 1.3 ⁇ 10 8 cells/cm 3 ; the treatment at a temperature of 30° C.
  • the fixed number of Saccharomyces cerevisiae cells on the macroporous ceramics is 1.3 ⁇ 10 8 cells/cm 3 , and the fixed number of Pichia yeast is 1.4 ⁇ 10 8 cells/cm 3 ; Saccharomyces cerevisiae cells on the macroporous ceramics treated at a temperature of 40°C
  • the fixed number is 1.6 ⁇ 10 8 cells/cm 3
  • the fixed number of Pichia pastoris is 1.6 ⁇ 10 8 cells/cm 3
  • the fixed number of Saccharomyces cerevisiae cells on macroporous ceramics treated at a temperature of 50°C is 1.4 ⁇ 10 8 cells/cm 3 cm 3
  • the fixed number of Pichia pastoris is 1.5 ⁇ 10 8 pieces/cm 3 .
  • the macroporous ceramics should be treated at a temperature of 40°C, so that the yeasts can better adhere to the gaps inside the ceramics, so that the ceramics get better filling, improve the metal adsorption rate, and thus make the conductivity higher.
  • Example 1-3 Effect of rotation speed on the effect of microorganisms fixed in macroporous ceramics (yeast)
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • the detection results were: fixed number of Saccharomyces cerevisiae cells on macroporous ceramics treated at a speed of 50 r ⁇ min -1 was 1.2 ⁇ 10 8 cells/cm 3 , and a fixed number of Pichia pastoris was 1.3 ⁇ 10 8 cells/cm 3 ; speed 60r ⁇ The fixed number of Saccharomyces cerevisiae cells on the macroporous ceramics processed under min -1 is 1.4 ⁇ 10 8 cells/cm 3 , and the fixed number of Pichia pastoris is 1.4 ⁇ 10 8 cells/cm 3 ; the processing speed is 70r ⁇ min -1 a fixed number of S.
  • the fixed number of Saccharomyces cerevisiae cells is 1.4 ⁇ 10 8 cells/cm 3
  • the fixed number of Pichia pastoris is 1.5 ⁇ 10 8 cells/cm 3
  • the fixed number of Saccharomyces cerevisiae cells on macroporous ceramics treated at a speed of 90 r ⁇ min -1 is 1.4 ⁇ 10 8 cells/cm 3
  • the fixed number of Pichia pastoris is 1.5 ⁇ 10 8 cells/cm 3
  • the fixed number of Saccharomyces cerevisiae cells on the macroporous ceramics treated at 100r ⁇ min -1 is 1.3 ⁇ 10 8 cells/cm 3 cm 3
  • the fixed number of Pichia pastoris is 1.5 ⁇ 10 8 pieces/cm 3 .
  • the macroporous ceramic should be treated at a speed of 70r ⁇ min -1 , so that the yeast can better adhere to the gap inside the ceramic and not be thrown off, so that the ceramic can be better filled and the metal adsorption rate can be improved. , which in turn makes the conductivity higher.
  • Example 1-4 Effect of flow rate on the adsorption of metal ions by microorganisms (yeast)
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • the obtained macroporous ceramics fixed with Saccharomyces cerevisiae and macroporous ceramics fixed with Pichia pastoris were respectively fixed in soft conduits communicating at both ends, and the catheters were connected to a peristaltic pump, and the flow rate of the peristaltic pump was adjusted to 10 mL/ min, 15mL/min, 20mL/min, 25mL/min, 30mL/min, put both ends of the catheter into an ion solution with a molybdenum ion concentration of 50mg/mL and a pH of 3, and start the peristaltic pump at a temperature of 25°C , Add metal ion concentrate to the soft tube, and the concentrate will slowly pass through the ceramic for metal ion adsorption, the time is 60min. After the adsorption is completed, the microporous ceramic fixed with microorganisms is dried at 150°C for 2h To obtain microbial conductive ceramics.
  • the detection results were as follows: the amount of metal ions absorbed by S. cerevisiae on the macroporous ceramics treated at a flow rate of 10 mL/min was 1.1 mmol/g, and the amount of metal ions absorbed by Pichia pastoris was 1.2 mmol/g; the treatment at a flow rate of 15 mL/min The amount of metal ions adsorbed by S. cerevisiae on macroporous ceramics is 1.3 mmol/g, and the amount of metal ions absorbed by Pichia pastoris is 1.5 mmol/g; the metal ions adsorbed by S. cerevisiae on macroporous ceramics treated at a flow rate of 20 mL/min.
  • the amount is 1.6 mmol/g, the amount of metal ions absorbed by Pichia pastoris is 1.5 mmol/g; the amount of metal ions adsorbed by S. cerevisiae on the macroporous ceramics treated at a flow rate of 25 mL/min is 1.5 mmol/g, and Pichia pastoris adsorbs
  • the amount of metal ions was 1.5 mmol/g; the amount of metal ions adsorbed by S. cerevisiae on the macroporous ceramics treated at a flow rate of 30 mL/min was 1.4 mmol/g, and the amount of metal ions adsorbed by Pichia pastoris was 1.5 mmol/g.
  • the macropore ceramic should be treated with a flow rate of 20mL/min.
  • Example 1-5 The effect of pH on the adsorption of metal ions by microorganisms (yeast)
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • the detection results were as follows: the amount of metal ions adsorbed by S. cerevisiae on the macroporous ceramics treated at pH 1 was 1.0 mmol/g, and the amount of metal ions adsorbed by Pichia pastoris was 1.3 mmol/g; under the condition of pH 2 The amount of metal ions adsorbed by S. cerevisiae on the treated macroporous ceramics was 1.3 mmol/g, and the amount of metal ions adsorbed by Pichia pastoris was 1.4 mmol/g; S.
  • the amount of metal ions is 1.5 mmol/g, and the amount of metal ions adsorbed by Pichia pastoris is 1.6 mmol/g; the amount of metal ions adsorbed by S. cerevisiae on macroporous ceramics treated at pH 4 is 1.4 mmol/g.
  • the amount of metal ions absorbed by Pichia pastoris was 1.5 mmol/g; the amount of metal ions adsorbed by S. cerevisiae on the macroporous ceramics treated at pH 5 was 1.4 mmol/g, and the amount of metal ions adsorbed by Pichia pastoris was 1.5 mmol/g.
  • pH 3 should be used to treat macroporous ceramics.
  • Example 1-6 Effect of microorganism cultivation time on the adsorption of metal ions by microorganisms (yeast)
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium). Fermentation at 37°C for 12h, 24h, 36h, 48h, 60h to obtain Saccharomyces cerevisiae fermentation broth and Pichia pastoris fermentation broth; throughout the fermentation process, the aeration and stirring speed need to be adjusted to control the amount of dissolved oxygen in the fermentation broth. Less than 10%, glucose and peptone need to be added to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • the obtained macroporous ceramics fixed with Saccharomyces cerevisiae and macroporous ceramics fixed with Pichia pastoris were respectively fixed in soft conduits communicating at both ends, and the catheters were connected to the peristaltic pump, and the flow rate of the peristaltic pump was adjusted to 70 mL/ min, put the two ends of the catheter into an ion solution with a molybdenum ion concentration of 50mg/mL and a pH of 3, and start the peristaltic pump at a temperature of 25°C, add metal ion concentrate to the soft catheter, and the concentrate slowly passes through the ceramic After that, metal ion adsorption is performed for 60 minutes. After the adsorption is completed, the microporous ceramic fixed with microorganisms is dried at a temperature of 150° C. for 2 hours to obtain a microbial conductive ceramic.
  • the detection results were as follows: the amount of metal ions adsorbed by Saccharomyces cerevisiae for 12 hours of fermentation was 1.1 mmol/g, and the amount of metal ions adsorbed by Pichia pastoris was 1.2 mmol/g; the amount of metal ions adsorbed by Saccharomyces cerevisiae for 24 hours of fermentation was 1.4 mmol/g. g.
  • the amount of metal ions adsorbed by Pichia pastoris is 1.5mmol/g; the amount of metal ions adsorbed by Saccharomyces cerevisiae fermented for 36h is 1.6mmol/g, and the amount of metal ions adsorbed by Pichia pastoris is 1.6mmol/g; the fermentation is cultured for 48h
  • the amount of metal ions absorbed by Saccharomyces cerevisiae was 1.5 mmol/g, and the amount of metal ions absorbed by Pichia pastoris was 1.6 mmol/g; the amount of metal ions absorbed by Saccharomyces cerevisiae fermented for 60 hours was 1.6 mmol/g, and the amount of metal absorbed by Pichia pastoris was 1.
  • the amount of ions is 1.6 mmol/g.
  • microporous microporous ceramics cultured for 12 to 60 hours by fermentation has good results, probably because the yeast at this time is in the logarithmic growth period, stable period, or the transition period from logarithmic growth period to stable period ,
  • the cell membrane has better permeability and absorbs metal ions more easily.
  • Example 1-7 Preparation of microbial conductive ceramics (yeast)
  • Saccharomyces cerevisiae seed liquid is inoculated into a 5L fermenter previously added with 1.2L fermentation medium according to a 10% inoculation amount (ie, the volume of the seed liquid accounts for 10% of the volume of the fermentation medium), and fermented at 37°C 36h, Saccharomyces cerevisiae fermentation broth is obtained; throughout the fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and peptone must be added to control the glucose content in the fermentation broth to not be less than 60g/L, the content of peptone is not less than 15g/L (replenish the carbon and nitrogen sources consumed during cell growth);
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • the microporous ceramic fixed with microorganisms is dried at a temperature of 150° C. and a time of 2 hours to obtain a microbial conductive ceramic, and its conductivity is tested, and its conductivity result It is 2.86 ⁇ 10 6 S/m.
  • Saccharomyces cerevisiae seed solution and Pichia pastoris seed solution are inoculated into a 5L fermentation tank previously added with 1.2L fermentation medium according to a 10% inoculation amount (that is, the volume of the seed solution accounts for 10% of the volume of the fermentation medium).
  • the microporous ceramic fixed with microorganisms is dried at a temperature of 150° C. for 2 hours to obtain a microbial conductive ceramic and test
  • the above experiment was repeated three times, and the conductivity results were 2.91 ⁇ 10 6 S/m, 2.51 ⁇ 10 6 S/m and 2.46 ⁇ 10 6 S/m, respectively.
  • Example 2-1 Effect of pretreatment on the effect of microorganisms fixed on macroporous ceramics (filamentous fungi)
  • Fermentation at 37 °C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • the test results were as follows: the fixed number of Aspergillus niger cells on macroporous ceramics treated with distilled water was 1.1 ⁇ 10 7 cells/cm 3 , and the fixed number of Aspergillus oryzae cells was 1.8 ⁇ 10 6 cells/cm 3 ; after hydrochloric acid with a concentration of 0.5 mol/L The fixed number of Aspergillus niger cells on the treated macroporous ceramic was 1.1 ⁇ 10 7 cells/cm 3 , and the fixed number of Aspergillus oryzae was 1.1 ⁇ 10 7 cells/cm 3 ; on the macroporous ceramics treated with hydrochloric acid with a concentration of 1 mol/L The fixed number of Aspergillus niger cells was 1.2 ⁇ 10 7 cells/cm 3 and the fixed number of Aspergillus oryzae cells was 1.3 ⁇ 10 7 cells/cm 3 ; the fixed number of Aspergillus niger cells on macroporous ceramics treated with hydrochloric
  • macromolecular ceramics should be treated with 1mol/L sodium hydroxide to make the ceramics have more positive or negative charges.
  • the filamentous fungi can adhere better to the principle of electrostatic adsorption
  • the gap inside the ceramic makes the ceramic get better filling, improve the metal adsorption rate, and then make the conductivity higher.
  • Example 2-2 The effect of temperature on the effect of microorganisms fixed to macroporous ceramics (filamentous fungi)
  • Fermentation at 37 °C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • the detection results were as follows: the fixed number of Aspergillus niger cells on the macroporous ceramics treated at a temperature of 10°C was 1.1 ⁇ 10 7 cells/cm 3 , and the fixed number of Aspergillus oryzae was 1.1 ⁇ 10 7 cells/cm 3 ; The fixed number of Aspergillus niger cells on the macroporous ceramic is 1.2 ⁇ 10 7 cells/cm 3 , and the fixed number of Aspergillus oryzae is 1.3 ⁇ 10 7 cells/cm 3 ; the fixed number of Aspergillus niger cells on the macroporous ceramics treated at 30°C It is 1.4 ⁇ 10 7 cells/cm 3 , the fixed number of Aspergillus oryzae is 1.3 ⁇ 10 7 cells/cm 3 ; the fixed number of Aspergillus niger cells on the macroporous ceramics treated at 40 °C is 1.3 ⁇ 10 7 cells/cm 3 , The fixed number of Aspergillus ory
  • the macroporous ceramics should be treated at a temperature of 30°C, so that the filamentous fungi can better adhere to the gaps inside the ceramics, so that the ceramics get better filling, improve the metal adsorption rate, and thus make the conductivity higher .
  • Example 2-3 Effect of rotation speed on the effect of microorganisms fixed in macroporous ceramics (filamentous fungi)
  • Fermentation at 37 °C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • the test results were as follows: the fixed number of Aspergillus niger cells on the macroporous ceramics treated at 120r ⁇ min -1 was 1.0 ⁇ 10 7 cells/cm 3 , and the fixed number of Aspergillus oryzae was 1.2 ⁇ 10 7 cells/cm 3 ; the speed was 140r ⁇ Aspergillus niger cells in a fixed number on a macroporous ceramic min -1 under treatment is 1.2 ⁇ 10 7 th / cm 3, a fixed number of Aspergillus oryzae 1.3 ⁇ 10 7 th / cm 3; the process speed 160r ⁇ min -1 large
  • the fixed number of Aspergillus niger cells on the porous ceramic is 1.3 ⁇ 10 7 cells/cm 3 , and the fixed number of Aspergillus oryzae is 1.4 ⁇ 10 7 cells/cm 3 ; Aspergillus niger cells on the macroporous ceramics treated at a speed of 180r ⁇ min -1 The fixed number is
  • the macroporous ceramics should be treated at a speed of 160r ⁇ min -1 , so that the filamentous fungi can better adhere to the gaps inside the ceramics and not be thrown off, so that the ceramics can get better filling and improve metal adsorption Rate, which in turn makes the conductivity higher.
  • Example 2-4 Effect of flow rate on the adsorption of metal ions by microorganisms (filamentous fungi)
  • Fermentation at 37 °C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • the detection results were as follows: the amount of metal ions adsorbed by Aspergillus niger on the macroporous ceramics treated at a flow rate of 10 mL/min was 1.1 mmol/g and the amount of metal ions adsorbed by Aspergillus oryzae was 1.2 mmol/g; the macropores treated at a flow rate of 20 mL/min The amount of metal ions adsorbed by Aspergillus niger on ceramics is 1.2 mmol/g.
  • the amount of metal ions adsorbed by Aspergillus oryzae is 1.3 mmol/g; the amount of metal ions adsorbed by Aspergillus niger on macroporous ceramics treated at a flow rate of 30 mL/min is 1.3 mmol.
  • Aspergillus oryzae adsorbs metal ions at 1.4 mmol/g; Aspergillus niger on macroporous ceramics treated at a flow rate of 40 mL/min adsorbs metal ions at 1.3 mmol/g Aspergillus oryzae adsorbs metal ions at 1.3 mmol/g g; the amount of metal ions adsorbed by Aspergillus niger on the macroporous ceramics treated at a flow rate of 50 mL/min is 1.4 mmol/g, and the amount of metal ions adsorbed by Aspergillus oryzae is 1.2 mmol/g.
  • the macropore ceramic should be treated with a flow rate of 30mL/min.
  • Example 2-5 Effect of pH on the adsorption of metal ions by microorganisms (filamentous fungi)
  • Fermentation at 37 °C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • Example 2-6 Effect of time on the adsorption of metal ions by microorganisms (filamentous fungi)
  • Fermentation at 37°C for 24h, 36h, 48h, 60h, 72h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; throughout the fermentation process, the aeration and stirring speed need to be adjusted to control the amount of dissolved oxygen in the fermentation broth is not lower than 10%, need to add glucose and peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • test results were as follows: the amount of metal ions adsorbed by Aspergillus niger was 1.0 mmol/g for 24 hours of fermentation and culture. The amount of metal ions adsorbed by Aspergillus oryzae was 1.1 mmol/g; the amount of metal ions adsorbed by Aspergillus niger for fermentation and culture for 36 hours was 1.2 mmol/g rice.
  • the amount of metal ions adsorbed by Aspergillus niger was 1.2 mmol/g; the amount of metal ions adsorbed by Aspergillus niger was 1.3 mmol/g for 48 hours of fermentation culture; the amount of metal ions adsorbed by Aspergillus oryzae was 1.4 mmol/g; the metal ions adsorbed by Aspergillus niger for 60 hours by fermentation
  • the amount of metal ions adsorbed by Aspergillus oryzae was 1.3 mmol/g.
  • the amount of metal ions adsorbed by Aspergillus niger was 72 mmol/g by fermentation and cultured for 72 hours.
  • the amount of metal ions adsorbed by Aspergillus oryzae was 1.3 mmol/g.
  • the treatment of microporous microporous ceramics cultured for 24 to 72 hours by fermentation has good results, which may be because the filamentous fungi at this time are in the logarithmic growth period, stable period, or excessive transition from the logarithmic growth period to the stable period.
  • the cell membrane is more permeable and more easily absorbs metal ions.
  • Example 2-7 Preparation of microbial conductive ceramics (filamentous fungi)
  • Fermentation at 37°C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration rate and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • Fermentation at 37 °C for 48h to obtain Aspergillus niger fermentation broth and Aspergillus oryzae fermentation broth; during the entire fermentation process, the aeration and stirring speed need to be adjusted to control the dissolved oxygen content in the fermentation broth to be not less than 10%, and glucose and Peptone to control the glucose content in the fermentation broth is not less than 60g/L, and the peptone content is not less than 15g/L (to supplement the carbon and nitrogen sources consumed during cell growth);
  • the microporous ceramic fixed with microorganisms is dried at a temperature of 150° C. for 2 hours to obtain a microbial conductive ceramic and detect its For the electrical conductivity, the above experiment was repeated three times, and the conductivity results were 2.71 ⁇ 10 6 S/m, 2.41 ⁇ 10 6 S/m and 2.35 ⁇ 10 6 S/m.
  • Example 3-1 Effect of pretreatment on the effect of microorganisms fixed on macroporous ceramics (bacteria)
  • the test results were as follows: the fixed number of E. coli cells on the macroporous ceramics treated with distilled water was 1.1 ⁇ 10 9 cells/cm 3 , and the fixed number of magnetotactic bacteria was 1.9 ⁇ 10 8 cells/cm 3 ; the concentration of 0.5mol/L The fixed number of E. coli cells on the macroporous ceramics treated with hydrochloric acid is 1.2 ⁇ 109 /cm 3 , and the fixed number of magnetotactic bacteria is 1.1 ⁇ 109 /cm 3 ; the macroporous ceramics treated with hydrochloric acid with a concentration of 1mol/L The fixed number of E.
  • the fixed number of magnetotactic bacteria is 1.3 ⁇ 10 9 cells/cm 3
  • E. coli cells on macroporous ceramics treated with hydrochloric acid at a concentration of 1.5 mol/L The fixed number is 1.3 ⁇ 10 9 cells/cm 3
  • the magnetotactic bacteria fixed number is 1.3 ⁇ 10 9 cells/cm 3
  • the fixed number of E. coli cells on the macroporous ceramics treated with sodium hydroxide at a concentration of 0.5 mol/L is 1.3 ⁇ 10 9 cells/cm 3
  • the fixed number of magnetotactic bacteria is 1.2 ⁇ 10 9 cells/cm 3
  • the fixed number of magnetotactic bacteria is 1.3 ⁇ 10 9 cells/cm 3
  • the fixed number of E. coli cells on the macroporous ceramics treated with sodium hydroxide with a concentration of 1.5mol/L is 1.2 ⁇ 10 9 cells/cm 3.
  • the fixed number of magnetotactic bacteria is 1.3 ⁇ 109 /cm 3 .
  • 1mol/L hydrochloric acid should be used to treat the macroporous ceramics, so that the ceramics have more positive or negative charges. Under this condition, bacteria can adhere to the gaps inside the ceramics through the principle of electrostatic adsorption. , So that the ceramics get better filling, improve the metal adsorption rate, and then make the conductivity higher.
  • Example 3-2 The effect of temperature on the effect of microorganisms fixed in macroporous ceramics (bacteria)
  • the test results were as follows: the fixed number of E. coli cells on the macroporous ceramics treated at 30°C was 1.1 ⁇ 10 9 cells/cm 3 , and the fixed number of magnetotactic bacteria was 1.2 ⁇ 10 9 cells/cm 3 ; the temperature was processed at 40°C The fixed number of E. coli cells on the macroporous ceramics is 1.2 ⁇ 10 9 cells/cm 3 , and the fixed number of magnetotactic bacteria is 1.3 ⁇ 10 9 cells/cm 3 ; E.
  • the fixed number is 1.3 ⁇ 10 9 cells/cm 3
  • the magnetotactic bacteria fixed number is 1.4 ⁇ 10 9 cells/cm 3
  • the fixed number of E. coli cells on the macroporous ceramics treated at 60 °C is 1.3 ⁇ 10 9 cells/cell cm 3
  • the fixed number of magnetotactic bacteria is 1.3 ⁇ 10 9 /cm 3 .
  • the macroporous ceramics should be treated with a temperature of 50°C to allow bacteria to adhere better to the gaps inside the ceramics, so that the ceramics get better filling, improve the metal adsorption rate, and thus make the conductivity higher.
  • Example 3-3 Effect of rotation speed on the effect of microorganisms fixed in macroporous ceramics (bacteria)
  • the detection results were: the fixed number of E. coli cells on the macroporous ceramics treated at a rotation speed of 20r ⁇ min -1 was 1.0 ⁇ 10 9 cells/cm 3 , and the fixed number of magnetotactic bacteria was 1.2 ⁇ 10 9 cells/cm 3 ; the rotation speed was 30r ⁇ The fixed number of Escherichia coli cells on the macroporous ceramics processed under min -1 is 1.1 ⁇ 10 9 cells/cm 3 , and the fixed number of magnetotactic bacteria is 1.3 ⁇ 10 9 cells/cm 3 ; the processing speed is 40r ⁇ min -1 fixed number of E.
  • the fixed number of E. coli cells is 1.3 ⁇ 10 9 cells/cm 3
  • the fixed number of magnetotactic bacteria is 1.3 ⁇ 10 9 cells/cm 3
  • the fixed number of E. coli cells on the macroporous ceramics treated at a speed of 60 r ⁇ min -1 is 1.3 ⁇ 10 9 /cm 3
  • the fixed number of magnetotactic bacteria is 1.2 ⁇ 10 9 /cm 3 .
  • the macroporous ceramics should be treated with a rotation speed of 40r ⁇ min -1 , so that bacteria can better adhere to the gaps inside the ceramics and not be thrown off, so that the ceramics get better filling and improve the metal adsorption rate. In turn, the conductivity is higher.
  • Example 3-4 Effect of flow rate on the adsorption of metal ions by microorganisms (bacteria)
  • the detection results were as follows: the amount of metal ions adsorbed by Escherichia coli on the macroporous ceramic treated at a flow rate of 5 mL/min was 1.1 mmol/g, and the amount of metal ions adsorbed by magnetotactic bacteria was 1.1 mmol/g; the treatment at a flow rate of 10 mL/min
  • the amount of metal ions adsorbed by Escherichia coli on the macroporous ceramic is 1.3mmol/g, and the amount of metal ions adsorbed by the magnetotactic bacteria is 1.3mmol/g; the amount of metal ions adsorbed by the Escherichia coli on the macroporous ceramic treated at a flow rate of 15mL/min
  • the amount is 1.2mmol/g, the amount of metal ions adsorbed by magnetotactic bacteria is 1.3mmol/g; the amount of metal ions adsorbed by Escherichia coli on the macroporous ceramic treated at a
  • the macropore ceramic should be treated with a flow rate of 10 mL/min.
  • Example 3-5 Effect of pH on the adsorption of metal ions by microorganisms (bacteria)
  • the obtained large-pore ceramics fixed with E. coli and the large-pore ceramics fixed with magnetotactic bacteria are respectively fixed in flexible catheters communicating at both ends, and the catheter is connected to the peristaltic pump, and the flow rate of the peristaltic pump is adjusted to 10 mL/ min, put the two ends of the catheter into an ion solution with a molybdenum ion concentration of 65mg/mL and a pH of 1, 2, 3, 4, and 5, respectively, and start the peristaltic pump at a temperature of 40°C to add metal to the soft catheter. Ionic concentrated liquid, the concentrated liquid slowly passes through the ceramic and then adsorbs metal ions for 90 minutes. After the adsorption is completed, the microporous ceramic fixed with microorganisms is dried at a temperature of 105° C. for 12 hours to obtain a microbial conductive ceramic.
  • the amount of metal ions adsorbed by magnetotactic bacteria is 1.3 mmol/g
  • the amount of metal ions adsorbed by magnetotactic bacteria was 1.3 mmol/g.
  • Example 3-6 Effect of time on the adsorption of metal ions by microorganisms (bacteria)
  • the obtained large-pore ceramics fixed with E. coli and the large-pore ceramics fixed with magnetotactic bacteria are respectively fixed in flexible catheters communicating at both ends, and the catheter is connected to the peristaltic pump, and the flow rate of the peristaltic pump is adjusted to 10 mL/ min, put the two ends of the catheter into an ion solution with a molybdenum ion concentration of 65mg/mL and a pH of 4, start the peristaltic pump at a temperature of 40 °C, add metal ion concentrate to the soft catheter, and the concentrate slowly passes through the ceramic After that, metal ion adsorption is performed for 90 minutes. After the adsorption is completed, the microporous ceramic fixed with microorganisms is dried at a temperature of 150° C. for 2 hours to obtain a microbial conductive ceramic.
  • test results were as follows: the amount of metal ions adsorbed by Escherichia coli for 48 hours of fermentation was 1.1 mmol/g, and the amount of metal ions adsorbed by magnetotactic bacteria was 1.1 mmol/g; the amount of metal ions adsorbed by E. coli for 60 hours of fermentation was 1.2 mmol/g g.
  • the amount of metal ions adsorbed by magnetotactic bacteria is 1.3 mmol/g; the amount of metal ions adsorbed by Escherichia coli fermented for 72 hours is 1.3 mmol/g, and the amount of metal ions adsorbed by magnetotactic bacteria is 1.4 mmol/g; 84h by fermentation culture
  • the amount of metal ions adsorbed by Escherichia coli is 1.3 mmol/g
  • the amount of metal ions adsorbed by magnetotactic bacteria is 1.4 mmol/g
  • the amount of metal ions adsorbed by Escherichia coli fermented for 96 hours is 1.3 mmol/g
  • metal adsorbed by magnetotactic bacteria The amount of ions is 1.3 mmol/g.
  • microporous macroporous ceramics cultured for 48 to 96 hours by fermentation has good results, probably because the bacteria at this time are in the logarithmic growth period, stable period, or the transition period from the logarithmic growth period to the stable period.
  • the cell membrane has better permeability and absorbs metal ions more easily.
  • Example 3-7 Preparation of microbial conductive ceramics (bacteria)
  • Example 3-8 Preparation of microbial conductive ceramics (bacteria)
  • Example 3-9 Preparation of microbial conductive ceramics (bacteria)
  • the obtained large-pore ceramics fixed with E. coli and the large-pore ceramics fixed with magnetotactic bacteria are respectively fixed in flexible catheters communicating at both ends, and the catheters are connected to the peristaltic pump, and the flow rate of the peristaltic pump is adjusted to 10 mL/ min, put the two ends of the catheter into an ion solution with a molybdenum ion concentration of 65 mg/mL and a pH of 4, start the peristaltic pump at a temperature of 40 °C, add metal ion concentrate to the soft catheter, and the concentrate slowly passes through the ceramic After the adsorption of metal ions, the time is 90min.
  • the microporous ceramic fixed with microorganisms is dried at a temperature of 105°C and a time of 12h to obtain a microbial conductive ceramic, and its conductivity is tested, and its conductivity result It is 2.41 ⁇ 10 6 S/m.
  • Example 3-10 Preparation of microbial conductive ceramics (bacteria)
  • the obtained large-pore ceramics fixed with E. coli and the large-pore ceramics fixed with magnetotactic bacteria are respectively fixed in flexible catheters communicating at both ends, and the catheters are connected to the peristaltic pump, and the flow rate of the peristaltic pump is adjusted to 10 mL/ min, put the two ends of the catheter into the ion solution of silver ion, copper ion and aluminum ion with a concentration of 65mg/mL, pH 4, and start the peristaltic pump at a temperature of 40 °C to add metal ions to the soft catheter. Dope, the dope passes through the ceramic slowly and then adsorbs metal ions for 90 minutes.
  • the microporous ceramic fixed with microorganisms is dried at a temperature of 105° C. for 12 hours to obtain a microbial conductive ceramic and test
  • the above experiment was repeated three times, and the conductivity results were 2.51 ⁇ 10 6 S/m, 2.31 ⁇ 10 6 S/m and 2.24 ⁇ 10 6 S/m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种微生物导电陶瓷及其制备方法和应用,属于微生物技术领域以及半导体材料技术领域。基于普通的绝缘大孔陶瓷,利用细胞固定化的手段以及微生物吸附的原理,制备出了一种含有大孔陶瓷、固定于大孔陶瓷的微生物以及吸附于微生物的金属离子的微生物导电陶瓷。此微生物导电陶瓷性能优越,导电率可达2.91×10 6S/m;同时,此微生物导电陶瓷成本低廉,仅为相同导电率的导电陶瓷成本的10%。

Description

一种微生物导电陶瓷及其制备方法和应用 技术领域
本发明涉及一种微生物导电陶瓷及其制备方法和应用,属于微生物技术领域以及半导体材料技术领域。
背景技术
通常情况下,陶瓷不导电,是良好的绝缘体,例如,氧化物陶瓷。由于氧化物陶瓷原子的外层电子通常受到原子核的吸引力,被束缚在各自原子的周围,不能自由运动,因此,氧化物陶瓷通常是不导电的绝缘体;然而,某些氧化物陶瓷在被加热时,处于原子外层的电子可以获得足够的能量,以便克服原子核对它的吸引力,而成为可以自由运动的自由电子,这时,氧化物陶瓷就获得了导电能力,成为了导电陶瓷。
目前,导电陶瓷作为一种新型半导体材料,由于具备抗氧化、耐高温和金属态的导电性能的优势,已经被广泛用于电机电极、电热元件和电子相机中,在航空、机械、冶金和电子等领域均具有重要的应用。
但是,现有的导电陶瓷,如氮化硅、氧化锆、钛碳化铝陶瓷等,由于构成其电子导电的主要氧化物掺杂有ZrO 2、ThO 2和LaCrO 2等杂质,使得其在制备时要求高达3000-5000℃的加热温度,制备成本较高;且这些杂质也会导致其在室温时电导率较低,800℃以上时电阻率下降,这无疑大大降低了其导电性能。
上述缺陷均严重限制了导电陶瓷的工业化进展以及其在航空、机械、冶金和电子等领域的应用,因此,找到降低导电陶瓷制备成本,同时,提高其导电性能的方法至关重要。
发明内容
为解决上述问题,本发明提供了一种微生物导电陶瓷及其制备方法和应用。本发明基于普通的绝缘大孔陶瓷,利用细胞固定化的手段以及微生物吸附的原理,制备出了一种含有大孔陶瓷、固定于大孔陶瓷的微生物以及吸附于微生物的金属离子的微生物导电陶瓷。此微生物导电陶瓷性能优越,导电率可达2.91×10 6S/m;同时,此微生物导电陶瓷成本低廉,仅为相同导电率的导电陶瓷成本的10%。
本发明的技术方案如下:
本发明提供了一种微生物导电陶瓷的制备方法,所述方法为将微生物在培养基中培养至对数生长期或稳定期,得到微生物菌液;将大孔陶瓷在盐酸或氢氧化钠溶液中进行浸泡后第一次烘干,得到经预处理的大孔陶瓷;将经预处理的大孔陶瓷放入微生物菌液中进行振荡后 第二次烘干,得到固定有微生物的大孔陶瓷;使金属离子溶液流经固定有微生物的大孔陶瓷后将大孔陶瓷第三次烘干,得到微生物导电陶瓷;所述微生物包含酵母菌、丝状真菌或细菌。
在本发明的一种实施方式中,所述酵母菌包含酿酒酵母和/或毕赤酵母;所述丝状真菌包含黑曲霉、米曲霉或毛霉中的一种或多种;所述细菌包含大肠杆菌和/或趋磁细菌。
在本发明的一种实施方式中,所述趋磁细菌包含水生螺菌属和/或嗜胆球菌属。
在本发明的一种实施方式中,所述微生物为酵母菌时,微生物在培养基中培养的时间为12~60h;所述微生物为丝状真菌时,微生物在培养基中培养的时间为24~72h;所述微生物为细菌时,微生物在培养基中培养的时间为48~96h。
在本发明的一种实施方式中,所述微生物为酵母菌时,微生物菌液中的菌浓度为1×10 6~1×10 10个/mL;所述微生物为丝状真菌时,微生物菌液中的菌浓度为1×10 6~1×10 8个/mL;所述微生物为细菌时,微生物菌液中的菌浓度为1×10 8~1×10 10个/mL。
在本发明的一种实施方式中,所述微生物为酵母菌时,微生物菌液中的菌浓度为1×10 8个/mL;所述微生物为丝状真菌时,微生物菌液中的菌浓度为1×10 7个/mL;所述微生物为细菌时,微生物菌液中的菌浓度为1×10 9个/mL。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,大孔陶瓷包含氮化硅陶瓷、氧化铝陶瓷、氧化锆陶瓷或钛碳化铝陶瓷中的一种或多种。
在本发明的一种实施方式中,所述微生物为酵母菌时,大孔陶瓷的孔径为10~20μm;所述微生物为丝状真菌时,大孔陶瓷的孔径为50~200μm;所述微生物为细菌时,大孔陶瓷的孔径为1~10μm。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,盐酸的浓度为0.5~1.5mol/L。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,氢氧化钠的浓度为0.5~1.5mol/L。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,浸泡的条件为温度20~30℃、时间24~48h。
在本发明的一种实施方式中,所述微生物为酵母菌时,振荡的条件为转速50~100r/min、温度30~50℃、时间60~150min;所述微生物为丝状真菌时,振荡的条件为转速120~200r/min、温度20~40℃、时间4~8h;所述微生物为细菌时,振荡的条件为转速20~60r/min、温度40~60℃、时间120~240min。
在本发明的一种实施方式中,所述微生物为酵母菌时,振荡的条件为转速70r/min、温 度40℃、时间100min;所述微生物为丝状真菌时,振荡的条件为转速160r/min、温度30℃、时间6h;所述微生物为细菌时,振荡的条件为转速40r/min、温度50℃、时间180min。
在本发明的一种实施方式中,所述微生物为酵母菌或丝状真菌时,金属离子溶液的浓度为30~100mg/mL;所述微生物为细菌时,金属离子溶液的浓度为50~80mg/mL。
在本发明的一种实施方式中,所述微生物为酵母菌时,金属离子溶液的浓度为50mg/mL;所述微生物为丝状真菌或细菌时,金属离子溶液的浓度为60mg/mL。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,金属离子溶液的pH为2~5。
在本发明的一种实施方式中,所述微生物为酵母菌或丝状真菌时,金属离子溶液的pH为3;所述微生物为细菌时,金属离子溶液的pH为4。
在本发明的一种实施方式中,所述微生物为酵母菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度15~35℃、流速10~30mL/min、时间30~120min;所述微生物为丝状真菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度45~55℃、流速20~40mL/min、时间150~240min;所述微生物为细菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度35~45℃、流速5~20mL/min、时间60~150min。
在本发明的一种实施方式中,所述微生物为酵母菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度25℃、流速20mL/min、时间60min;所述微生物为丝状真菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度50℃、流速30mL/min、时间200min;所述微生物为细菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度40℃、流速10mL/min、时间90min。
本发明提供了应用上述方法制备得到的微生物导电陶瓷。
本发明提供了一种微生物导电陶瓷,所述微生物导电陶瓷包含大孔陶瓷、固定于大孔陶瓷的微生物以及吸附于微生物的金属离子;所述微生物包含酵母菌、丝状真菌或细菌。
在本发明的一种实施方式中,所述酵母菌包含酿酒酵母和/或毕赤酵母;所述丝状真菌包含黑曲霉、米曲霉或毛霉中的一种或多种;所述细菌包含大肠杆菌和/或趋磁细菌。
在本发明的一种实施方式中,所述趋磁细菌包含水生螺菌属和/或嗜胆球菌属。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,大孔陶瓷包含氮化硅陶瓷、氧化铝陶瓷、氧化锆陶瓷或钛碳化铝陶瓷中的一种或多种。
在本发明的一种实施方式中,所述微生物为酵母菌时,大孔陶瓷的孔径为10~20μm;所述微生物为丝状真菌时,大孔陶瓷的孔径为50~200μm;所述微生物为细菌时,大孔陶瓷的 孔径为1~10μm。
在本发明的一种实施方式中,所述微生物为酵母菌时,大孔陶瓷上的微生物固定数量在1.0×10 8~2.0×10 8个/cm 3;所述微生物为丝状真菌时,大孔陶瓷上的微生物固定数量在1.0×10 7~1.5×10 7个/cm 3;所述微生物为细菌时,大孔陶瓷上的微生物固定数量在1.0×10 9~1.5×10 9个/cm 3
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,金属离子包含银离子、钼离子、铝离子或铜离子中的一种或多种。
在本发明的一种实施方式中,所述微生物为酵母菌、丝状真菌或细菌时,金属离子为钼离子。
本发明提供了含有上述制备得到的微生物导电陶瓷或上述制备得到的微生物导电陶瓷的产品。
在本发明的一种实施方式中,所述产品包含电子元器件、电热元件、电极、电池、电子相机、电视机、收音机、计算机或移动电视。
本发明提供了上述制备方法或上述制备得到的微生物导电陶瓷或上述微生物导电陶瓷在制备电子产品以及测量工具方面的应用。
有益效果:
(1)本发明的微生物导电陶瓷性能优越,当微生物为酵母菌时,微生物细胞固定数量可达1×10 8个/cm 3以上,导电率可达2.91×10 6S/m;当微生物为丝状真菌时,微生物细胞固定数量可达1×10 7个/cm 3以上,导电率可达2.71×10 6S/m;当微生物为细菌时,微生物细胞固定数量可达1×10 9个/cm 3以上,导电率可达2.51×10 6S/m;
(2)现有的导电陶瓷若想达到与本发明相同的导电率,需进行超高温烧结的操作,成本较高,操作较复杂,而本发明的微生物导电陶瓷只需进行培养微生物、将微生物附着于大孔陶瓷以及将金属离子吸附于微生物这三步操作即可制备得到,成本低廉(仅为相同导电率的导电陶瓷成本的10%)、操作简单;
(3)本发明的微生物导电陶瓷性能优越、制备简单、成本低廉,可广泛的用于制备电子产品以及测量工具,具有极大的应用前景。
具体实施方式
下面结合具体实施例对本发明进行进一步的阐述。
下述实施例中涉及的摇床购自常州润华电器科技有限公司,型号为RH-100;下述实施例中涉及的酿酒酵母为保藏于江南大学微生物菌种保藏中心的酿酒酵母CICC1221;下述实施例 中涉及的毕赤酵母为保藏于江南大学微生物菌种保藏中心的巴斯德毕赤酵母GS115;下述实施例中涉及的黑曲霉为保藏于江南大学微生物菌种保藏中心的黑曲霉(Aspergillus niger)CGMCC No.14630;下述实施例中涉及的米曲霉为保藏于江南大学微生物菌种保藏中心的米曲霉(Aspergillus oryzae)CGMCC NO.12378;下述实施例中涉及的大肠杆菌为保藏于江南大学微生物菌种保藏中心的大肠杆菌TOP10;下述实施例中涉及的趋磁细菌为保藏于江南大学微生物菌种保藏中心的趋磁细菌AMB-1;下述实施例中涉及的大孔陶瓷来源于中国科学院大连化学物理研究所(上述菌株黑曲霉CGMCC No.14630、米曲霉CGMCC NO.12378、酿酒酵母CICC122、巴斯德毕赤酵母GS115、大肠杆菌TOP10、趋磁细菌AMB-1均可以购买得到,不需要进行用于专利程序的保藏)。
本发明涉及的培养基如下:
酵母菌:种子培养基:牛肉膏3g/L、蛋白胨10g/L、氯化钠5g/L,pH 7.4~7.6;
发酵培养基:葡糖糖100g/L、蛋白胨20g/L、磷酸氢钾3g/L、硫酸镁1g/L。
丝状真菌:种子培养基:马铃薯200g/L、葡萄糖20g/L、琼脂15~20g/L,pH自然;
发酵培养基:马铃薯200g/L、葡萄糖20g/L、琼脂15~20g/L,pH自然。
细菌:种子培养基:牛肉膏3g/L、蛋白胨10g/L、氯化钠5g/L,pH 7.4~7.6;
发酵培养基:牛肉膏3g/L、蛋白胨10g/L、氯化钠5g/L,pH 7.4~7.6。
本发明涉及的检测方法如下:
1、细胞干重的计算:
检测600nm下的微生物菌液吸光度(OD 600),得细胞浓度,并根据曲线DCW=0.25×OD 600,得细胞干重。
3、钼离子浓度测定:
采用电感耦合等离子体发射光谱仪(ICP-OES),测定方法可参考论文:谢卫华等;ICP-AES法测定U-Mo合金中钼含量;分析实验室;2016年04期。
4、钼离子吸附量测定:
按下式计算:吸附量=(初浓度-终浓度)×溶液体积/吸附剂的质量;
初浓度为钼离子溶液中的钼离子初始浓度(mg·L -1),终浓度为菌体吸附后钼离子溶液中的钼离子浓度(mg·L -1),吸附剂的质量为为吸附剂干重(即细胞干重)下对应的质量。
5、细胞固定化数量测定:
将与经处理的大孔陶瓷进行振荡前以及振荡后的微生物菌液分别在5000r/min离心15min,倾去上清液,离心得湿菌体,取0.1mL湿菌体加入无菌水定容至100mL后,混合均匀, 用血球计数板测定(例如,计数板的16小格中细胞的平均数为4个,即得出每毫升中细胞的数量=4*10 4*25*1000=1×10 9个),得到微生物菌液中原始的微生物细胞数量与剩余的微生物细胞数量;
按下式计算:细胞固定化数量=原始微生物细胞数量-剩余微生物细胞数量。
6、扫描电镜:
将固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷用去离子水离心洗涤3次后冷冻干燥,在SEM样品台上贴上导电胶,将样品粉末撒于导电胶上,样品镀碳膜,用SEM进行观察,加速电压为15kV,仪器型号为环境电子扫描显微镜日立TM3030(日本,东京),判断微生物是否附着成功。
7、导电率测定:
采用TX-1000A智能金属导体电阻率仪测定陶瓷电导率。
实施例1-1:前处理对微生物固定于大孔陶瓷效果的影响(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于蒸馏水、浓度为5mol/L、1mol/L、1.5mol/L的盐酸、浓度为5mol/L、1mol/L、1.5mol/L的氢氧化钠中浸泡24h后于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、 温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:经蒸馏水处理的大孔陶瓷上的酿酒酵母细胞固定数量为2.5×10 7个/cm 3、毕赤酵母固定数量为1.1×10 8个/cm 3;经浓度0.5mol/L的盐酸处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.3×10 8个/cm 3、毕赤酵母固定数量为1.3×10 8个/cm 3;经浓度1mol/L的盐酸处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.6×10 8个/cm 3、毕赤酵母固定数量为1.5×10 8个/cm 3;经浓度1.5mol/L的盐酸处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.1×10 8个/cm 3、毕赤酵母固定数量为1.6×10 8个/cm 3;经浓度0.5mol/L的氢氧化钠处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.2×10 8个/cm 3、毕赤酵母固定数量为1.3×10 8个/cm 3;经浓度1mol/L的氢氧化钠处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.5×10 8个/cm 3、毕赤酵母固定数量为1.4×10 8个/cm 3;经浓度1.5mol/L的氢氧化钠处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.4×10 8个/cm 3、毕赤酵母固定数量为1.6×10 8个/cm 3
因此,应使用1mol的盐酸或1.5mol的氢氧化钠对大孔陶瓷进行处理,以使陶瓷附带更多的正电荷或负电荷,在此条件下,酵母菌可通过静电吸附原理,更好的附着于陶瓷内部的间隙,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例1-2:温度对微生物固定于大孔陶瓷效果的影响(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL, 得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、温度20℃、30℃、40℃、50℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:温度20℃下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.2×10 8个/cm 3、毕赤酵母固定数量为1.3×10 8个/cm 3;温度30℃下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.3×10 8个/cm 3、毕赤酵母固定数量为1.4×10 8个/cm 3;温度40℃下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.6×10 8个/cm 3、毕赤酵母固定数量为1.6×10 8个/cm 3;温度50℃下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.4×10 8个/cm 3、毕赤酵母固定数量为1.5×10 8个/cm 3
因此,应使用温度40℃对大孔陶瓷进行处理,以使酵母菌可更好的附着于陶瓷内部的间隙,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例1-3:转速对微生物固定于大孔陶瓷效果的影响(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速50r·min -1、60r·min -1、70r·min -1、80r·min -1、90r·min -1、100r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:转速50r·min -1下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.2×10 8个/cm 3、毕赤酵母固定数量为1.3×10 8个/cm 3;转速60r·min -1下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.4×10 8个/cm 3、毕赤酵母固定数量为1.4×10 8个/cm 3;转速70r·min -1下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.4×10 8个/cm 3、毕赤酵母固定数量为1.7×10 8个/cm 3;转速80r·min -1下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.4×10 8个/cm 3、毕赤酵母固定数量为1.5×10 8个/cm 3;转速90r·min -1下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.4×10 8个/cm 3、毕赤酵母固定数量为1.5×10 8个/cm 3;转速100r·min -1下处理的大孔陶瓷上的酿酒酵母细胞固定数量为1.3×10 8个/cm 3、毕赤酵母固定数量为1.5×10 8个/cm 3
因此,应使用转速70r·min -1对大孔陶瓷进行处理,以使酵母菌可更好的附着于陶瓷内部的间隙且不被甩脱,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例1-4:流速对微生物吸附金属离子效果的影响(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷;
(7)将得到的固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min、15mL/min、20mL/min、25mL/min、30mL/min,将导管两端放入钼离子浓度为50mg/mL、pH为3的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:流速10mL/min下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.1mmol/g、毕赤酵母吸附金属离子的量为1.2mmol/g;流速15mL/min下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.3mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g;流速20mL/min下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.6mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g;流速25mL/min下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.5mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g;流速30mL/min下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.4mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g。
因此,应使用流速20mL/min对大孔陶瓷进行处理。
实施例1-5:pH对微生物吸附金属离子效果的影响(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅 拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷;
(7)将得到的固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为20mL/min,将导管两端放入钼离子浓度为50mg/mL、pH分别为1、2、3、4、5的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间12h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:pH为1的条件下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.0mmol/g、毕赤酵母吸附金属离子的量为1.3mmol/g;pH为2的条件下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.3mmol/g、毕赤酵母吸附金属离子的量为1.4mmol/g;pH为3的条件下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.5mmol/g、毕赤酵母吸附金属离子的量为1.6mmol/g;pH为4的条件下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.4mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g;pH为5的条件下处理的大孔陶瓷上的酿酒酵母吸附金属离子的量为1.4mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g。
因此,应使用pH 3对大孔陶瓷进行处理。
实施例1-6:微生物培养时间对微生物吸附金属离子效果的影响(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子 培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵12h、24h、36h、48h、60h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷;
(7)将得到的固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为70mL/min,将导管两端放入钼离子浓度为50mg/mL、pH为3的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:发酵培养12h的酿酒酵母吸附金属离子的量为1.1mmol/g、毕赤酵母吸附金属离子的量为1.2mmol/g;发酵培养24h的酿酒酵母吸附金属离子的量为1.4mmol/g、毕赤酵母吸附金属离子的量为1.5mmol/g;发酵培养36h的酿酒酵母吸附金属离子的量为1.6mmol/g、毕赤酵母吸附金属离子的量为1.6mmol/g;发酵培养48h的酿酒酵母吸附金属离子的量为1.5mmol/g、毕赤酵母吸附金属离子的量为1.6mmol/g;发酵培养60h的酿酒酵母吸附金属离子的量为1.6mmol/g、毕赤酵母吸附金属离子的量为1.6mmol/g。
因此,使用发酵培养了12~60h的微生物大孔陶瓷进行处理,效果均较好,可能是因为此时的酵母菌正处于对数生长期、稳定期或对数生长期到稳定期的过度期,细胞膜通透性更好,更易吸收金属离子。
实施例1-7:微生物导电陶瓷的制备(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液;
(2)将酿酒酵母种子液按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体;
(4)将酿酒酵母菌体放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷;
(7)将得到的固定有酿酒酵母的大孔陶瓷固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为20mL/min,将导管两端放入钼离子浓度为50mg/mL、pH为3的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.85×10 6S/m。
实施例1-8:微生物导电陶瓷的制备(酵母菌)
具体步骤如下:
(1)从平板上挑取毕赤酵母单菌落接种到预先加入50mL种子培养基的500mL三角瓶 中,于30℃、220r·min -1的摇床中培养24h,得到毕赤酵母种子液;
(2)将毕赤酵母种子液按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的毕赤酵母发酵液于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到毕赤酵母菌体;
(4)将毕赤酵母菌体放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到毕赤酵母菌液
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入毕赤酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有毕赤酵母的大孔陶瓷;
(7)将得到的固定有毕赤酵母的大孔陶瓷固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为20mL/min,将导管两端放入钼离子浓度为50mg/mL、pH为3的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.87×10 6S/m。
实施例1-9:微生物导电陶瓷的制备(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含 量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷;
(7)将得到的固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为20mL/min,将导管两端放入钼离子浓度为50mg/mL、pH为3的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.86×10 6S/m。
实施例1-10:微生物导电陶瓷的制备(酵母菌)
具体步骤如下:
(1)从平板上挑取酿酒酵母单菌落以及毕赤酵母单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于30℃、220r·min -1的摇床中培养24h,得到酿酒酵母种子液以及毕赤酵母种子液;
(2)将酿酒酵母种子液以及毕赤酵母种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵36h,得到酿酒酵母发酵液以及毕赤酵母发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的酿酒酵母发酵液以及毕赤酵母发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到酿酒酵母菌体以及毕赤酵母菌体;
(4)将酿酒酵母菌体以及毕赤酵母菌体分别放入蒸馏水中,控制菌浓度为1×10 8个/mL,得到酿酒酵母菌液以及毕赤酵母菌液;
(5)将大孔陶瓷分别于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入酿酒酵母菌液以及毕赤酵母菌液,于转速70r·min -1、温度40℃的条件下于摇床上振荡100min后于温度105℃、时间12h的条件下烘干,得到固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷;
(7)将得到的固定有酿酒酵母的大孔陶瓷以及固定有毕赤酵母的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为20mL/min,将导管两端分别放入浓度为50mg/mL的银离子、铜离子和铝离子,pH为3的离子溶液中,于温度25℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为60min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,重复三次上述实验,其导电率结果分别为2.91×10 6S/m、2.51×10 6S/m和2.46×10 6S/m。
实施例2-1:前处理对微生物固定于大孔陶瓷效果的影响(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷分别于蒸馏水、浓度为0.5mol/L、1mol/L、1.5mol/L的盐酸、浓度为 0.5mol/L、1mol/L、1.5mol/L的氢氧化钠中浸泡24h后于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:经蒸馏水处理的大孔陶瓷上的黑曲霉细胞固定数量为1.1×10 7个/cm 3、米曲霉固定数量为1.8×10 6个/cm 3;经浓度0.5mol/L的盐酸处理的大孔陶瓷上的黑曲霉细胞固定数量为1.1×10 7个/cm 3、米曲霉固定数量为1.1×10 7个/cm 3;经浓度1mol/L的盐酸处理的大孔陶瓷上的黑曲霉细胞固定数量为1.2×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;经浓度1.5mol/L的盐酸处理的大孔陶瓷上的黑曲霉细胞固定数量为1.1×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;经浓度0.5mol/L的氢氧化钠处理的大孔陶瓷上的黑曲霉细胞固定数量为1.1×10 7个/cm 3、米曲霉固定数量为1.2×10 7个/cm 3;经浓度1mol/L的氢氧化钠处理的大孔陶瓷上的黑曲霉细胞固定数量为1.3×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;经浓度1.5mol/L的氢氧化钠处理的大孔陶瓷上的黑曲霉细胞固定数量为1.3×10 7个/cm 3、米曲霉固定数量为1.2×10 7个/cm 3
因此,应使用1mol/L的氢氧化钠对大孔陶瓷进行处理,以使陶瓷附带更多的正电荷或负电荷,在此条件下,丝状真菌可通过静电吸附原理,更好的附着于陶瓷内部的间隙,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例2-2:温度对微生物固定于大孔陶瓷效果的影响(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15 min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于浓度为1mol/L的氢氧化钠中浸泡24h后于温度105℃、以及时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度20℃、30℃、40℃、50℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:温度10℃下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.1×10 7个/cm 3、米曲霉固定数量为1.1×10 7个/cm 3;温度20℃下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.2×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;温度30℃下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.4×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;温度40℃下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.3×10 7个/cm 3、米曲霉固定数量为1.2×10 7个/cm 3;温度50℃下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.3×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3
因此,应使用温度30℃对大孔陶瓷进行处理,以使丝状真菌可更好的附着于陶瓷内部的间隙,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例2-3:转速对微生物固定于大孔陶瓷效果的影响(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15 min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于浓度为1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速120r·min -1、140r·min -1、160r·min -1、180r·min -1、200r·min -1以及温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:转速120r·min -1下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.0×10 7个/cm 3、米曲霉固定数量为1.2×10 7个/cm 3;转速140r·min -1下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.2×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;转速160r·min -1下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.3×10 7个/cm 3、米曲霉固定数量为1.4×10 7个/cm 3;转速180r·min -1下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.3×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3;转速200r·min -1下处理的大孔陶瓷上的黑曲霉细胞固定数量为1.2×10 7个/cm 3、米曲霉固定数量为1.3×10 7个/cm 3
因此,应使用转速160r·min -1对大孔陶瓷进行处理,以使丝状真菌可更好的附着于陶瓷内部的间隙且不被甩脱,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例2-4:流速对微生物吸附金属离子效果的影响(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于 60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷;
(7)将得到的固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min、20mL/min、30mL/min、40mL/min、50mL/min,将导管两端放入钼离子浓度为60mg/mL、pH为3的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为200min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:流速10mL/min下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.1mmol/g米曲霉吸附金属离子的量为1.2mmol/g;流速20mL/min下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.2mmol/g米曲霉吸附金属离子的量为1.3mmol/g;流速30mL/min下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.4mmol/g;流速40mL/min下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.3mmol/g;流速50mL/min下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.4mmol/g米曲霉吸附金属离子的量为1.2mmol/g。
因此,应使用流速30mL/min对大孔陶瓷进行处理。
实施例2-5:pH对微生物吸附金属离子效果的影响(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲 霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷;
(7)将得到的固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为160mL/min,将导管两端放入钼离子浓度为60mg/mL、pH分别为1、2、3、4、5的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:pH=1下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.0mmol/g米曲霉吸附金属离子的量为1.2mmol/g;pH=2下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.1mmol/g米曲霉吸附金属离子的量为1.3mmol/g;pH=3下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.4mmol/g;pH=4下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.2mmol/g米曲霉吸附金属离子的量为1.3mmol/g;pH=5下处理的大孔陶瓷上的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.3mmol/g。
因此,应使用pH=3对大孔陶瓷进行处理。
实施例2-6:时间对微生物吸附金属离子效果的影响(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵24h、36h、48h、60h、72h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷;
(7)将得到的固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为30mL/min,将导管两端放入钼离子浓度为60mg/mL、pH分别为3的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为200min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:发酵培养24h的黑曲霉吸附金属离子的量为1.0mmol/g米曲霉吸附金属离子的量为1.1mmol/g;发酵培养36h的黑曲霉吸附金属离子的量为1.2mmol/g米曲霉吸附金 属离子的量为1.2mmol/g;发酵培养48h的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.4mmol/g;发酵培养60h的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.4mmol/g;发酵培养72h的黑曲霉吸附金属离子的量为1.3mmol/g米曲霉吸附金属离子的量为1.3mmol/g。
因此,使用发酵培养了24~72h的微生物大孔陶瓷进行处理,效果均较好,可能是因为此时的丝状真菌正处于对数生长期、稳定期或对数生长期到稳定期的过度期,细胞膜通透性更好,更易吸收金属离子。
实施例2-7:微生物导电陶瓷的制备(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液;
(2)将黑曲霉种子液按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体;
(4)将黑曲霉菌体放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷;
(7)将得到的固定有黑曲霉的大孔陶瓷固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为160mL/min,将导管两端放入钼离子浓度为60mg/mL、pH为3的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.61×10 6S/m。
实施例2-8:微生物导电陶瓷的制备(丝状真菌)
具体步骤如下:
(1)从平板上挑取米曲霉单菌落接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到米曲霉种子液;
(2)将米曲霉种子液按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的米曲霉发酵液于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到米曲霉菌体;
(4)将米曲霉菌体放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到米曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有米曲霉的大孔陶瓷;
(7)将得到的固定有米曲霉的大孔陶瓷固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为160mL/min,将导管两端放入钼离子浓度为60mg/mL、pH分别为3的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.63×10 6S/m。
实施例2-9:微生物导电陶瓷的制备(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵 48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷;
(7)将得到的固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为160mL/min,将导管两端放入钼离子浓度为60mg/mL、pH为3的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.65×10 6S/m。
实施例2-10:微生物导电陶瓷的制备(丝状真菌)
具体步骤如下:
(1)从平板上挑取黑曲霉单菌落以及米曲霉单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养72h,得到黑曲霉种子液以及米曲霉种子液;
(2)将黑曲霉种子液以及米曲霉种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h,得到黑曲霉发酵液以及米曲霉发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的黑曲霉发酵液以及米曲霉发酵液分别于转速1500r·min -1的条件下离心15 min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到黑曲霉菌体以及米曲霉菌体;
(4)将黑曲霉菌体以及米曲霉菌体分别放入蒸馏水中,控制菌浓度为1×10 7个/mL,得到黑曲霉菌液以及米曲霉菌液;
(5)将大孔陶瓷于1mol/L的氢氧化钠中浸泡24h后分别于温度105℃、时间12h条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入黑曲霉菌液以及米曲霉菌液,于转速160r·min -1、温度30℃的条件下于摇床上振荡6h后于温度105℃、时间12h的条件下烘干,得到固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷;
(7)将得到的固定有黑曲霉的大孔陶瓷以及固定有米曲霉的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为160mL/min,将导管两端分别放入浓度为60mg/mL的银离子、铜离子和铝离子,pH为3的离子溶液中,于温度50℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,重复三次上述实验,其导电率结果为2.71×10 6S/m、2.41×10 6S/m和2.35×10 6S/m。
实施例3-1:前处理对微生物固定于大孔陶瓷效果的影响(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL, 得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷分别于蒸馏水、浓度为5mol/L、1mol/L、1.5mol/L的盐酸、浓度为5mol/L、1mol/L、1.5mol/L的氢氧化钠中浸泡24h后于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:经蒸馏水处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.1×10 9个/cm 3、趋磁细菌固定数量为1.9×10 8个/cm 3;经浓度0.5mol/L的盐酸处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.2×10 9个/cm 3、趋磁细菌固定数量为1.1×10 9个/cm 3;经浓度1mol/L的盐酸处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.4×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3;经浓度1.5mol/L的盐酸处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3;经浓度0.5mol/L的氢氧化钠处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.2×10 9个/cm 3;经浓度1mol/L的氢氧化钠处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3;经浓度1.5mol/L的氢氧化钠处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.2×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3
因此,应使用1mol/L的盐酸对大孔陶瓷进行处理,以使陶瓷附带更多的正电荷或负电荷,在此条件下,细菌可通过静电吸附原理,更好的附着于陶瓷内部的间隙,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例3-2:温度对微生物固定于大孔陶瓷效果的影响(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含 量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷放入浓度为1mol/L的盐酸中浸泡24h后于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度30℃、40℃、50℃、60℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:温度30℃下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.1×10 9个/cm 3、趋磁细菌固定数量为1.2×10 9个/cm 3;温度40℃下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.2×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3;温度50℃下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.4×10 9个/cm 3;温度60℃下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3
因此,应使用温度50℃对大孔陶瓷进行处理,以使细菌可更好的附着于陶瓷内部的间隙,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例3-3:转速对微生物固定于大孔陶瓷效果的影响(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速20r·min -1、30r·min -1、40r·min -1、50r·min -1、60r·min -1,温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷。
检测大孔陶瓷上固定的微生物的数量。
检测结果为:转速20r·min -1下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.0×10 9个/cm 3、趋磁细菌固定数量为1.2×10 9个/cm 3;转速30r·min -1下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.1×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3;转速40r·min -1下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.4×10 9个/cm 3;转速50r·min -1下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.3×10 9个/cm 3;转速60r·min -1下处理的大孔陶瓷上的大肠杆菌细胞固定数量为1.3×10 9个/cm 3、趋磁细菌固定数量为1.2×10 9个/cm 3
因此,应使用转速40r·min -1对大孔陶瓷进行处理,以使细菌可更好的附着于陶瓷内部的间隙且不被甩脱,使得陶瓷内部获得更好的填充,提高金属吸附率,进而使得电导率更高。
实施例3-4:流速对微生物吸附金属离子效果的影响(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含 量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷;
(7)将得到的固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为5mL/min、10mL/min、15mL/min、20mL/min,将导管两端放入钼离子浓度为65mg/mL、pH为3的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:流速5mL/min下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.1mmol/g、趋磁细菌吸附金属离子的量为1.1mmol/g;流速10mL/min下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.3mmol/g、趋磁细菌吸附金属离子的量为1.3mmol/g;流速15mL/min下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.2mmol/g、趋磁细菌吸附金属离子的量为1.3mmol/g;流速20mL/min下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.2mmol/g、趋磁细菌吸附金属离子的量为1.2mmol/g。
因此,应使用流速10mL/min对大孔陶瓷进行处理。
实施例3-5:pH对微生物吸附金属离子效果的影响(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷;
(7)将得到的固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min,将导管两端放入钼离子浓度为65mg/mL、pH分别为1、2、3、4、5的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度105℃、时间12h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:pH=1下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.1mmol/g、趋磁细菌吸附金属离子的量为1.2mmol/g;pH=2下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.2mmol/g、趋磁细菌吸附金属离子的量为1.2mmol/g;pH=3下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.3mmol/g、趋磁细菌吸附金属离子的量为1.3mmol/g;pH=4下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.3mmol/g、趋磁细菌吸附金属离子的量为1.4mmol/g;pH=5下处理的大孔陶瓷上的大肠杆菌吸附金属离子的量为1.3mmol/g、趋磁细菌吸附金属离子的量为1.3mmol/g。
因此,应使用pH=4对大孔陶瓷进行处理。
实施例3-6:时间对微生物吸附金属离子效果的影响(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵48h、60h、72h、84h、96h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸/中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷;
(7)将得到的固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min,将导管两端放入钼离子浓度为65mg/mL、pH为4的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度150℃、时间2h的条件下烘干,得到微生物导电陶瓷。
检测微生物吸附金属离子的量。
检测结果为:发酵培养48h的大肠杆菌吸附金属离子的量为1.1mmol/g、趋磁细菌吸附金属离子的量为1.1mmol/g;发酵培养60h的大肠杆菌吸附金属离子的量为1.2mmol/g、趋磁细菌吸附金属离子的量为1.3mmol/g;发酵培养72h的大肠杆菌吸附金属离子的量为1.3 mmol/g、趋磁细菌吸附金属离子的量为1.4mmol/g;发酵培养84h的大肠杆菌吸附金属离子的量为1.3mmol/g、趋磁细菌吸附金属离子的量为1.4mmol/g;发酵培养96h的大肠杆菌吸附金属离子的量为1.3mmol/g、趋磁细菌吸附金属离子的量为1.3mmol/g。
因此,使用发酵培养了48~96h的微生物大孔陶瓷进行处理,效果均较好,可能是因为此时的细菌正处于对数生长期、稳定期或对数生长期到稳定期的过度期,细胞膜通透性更好,更易吸收金属离子。
实施例3-7:微生物导电陶瓷的制备(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液;
(2)将大肠杆菌种子液按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体;
(4)将大肠杆菌菌体放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷;
(7)将得到的固定有大肠杆菌的大孔陶瓷固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min,将导管两端放入钼离子浓度为65mg/mL、pH为4的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度105℃、时间12h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.41×10 6S/m。
实施例3-8:微生物导电陶瓷的制备(细菌)
具体步骤如下:
(1)从平板上挑取趋磁细菌单菌落接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到趋磁细菌种子液;
(2)将趋磁细菌种子液按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的趋磁细菌发酵液于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到趋磁细菌菌体;
(4)将趋磁细菌菌体放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有趋磁细菌的大孔陶瓷;
(7)将得到的固定有趋磁细菌的大孔陶瓷固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min,将导管两端放入钼离子浓度为65mg/mL、pH为4的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度105℃、时间12h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.40×10 6S/m。
实施例3-9:微生物导电陶瓷的制备(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发 酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷;
(7)将得到的固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min,将导管两端放入钼离子浓度为65mg/mL,pH为4的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度105℃、时间12h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,其导电率结果为2.41×10 6S/m。
实施例3-10:微生物导电陶瓷的制备(细菌)
具体步骤如下:
(1)从平板上挑取大肠杆菌单菌落以及趋磁细菌单菌落分别接种到预先加入50mL种子培养基的500mL三角瓶中,于37℃、220r·min -1的摇床中培养60h,得到大肠杆菌种子液以及趋磁细菌种子液;
(2)将大肠杆菌种子液以及趋磁细菌种子液分别按照10%的接种量(即种子液体积占发酵培养基体积的10%)接种至预先加入1.2L发酵培养基的5L发酵罐中,于37℃的条件下发酵72h,得到大肠杆菌发酵液以及趋磁细菌发酵液;整个发酵过程中,需调整通气量与搅拌转速以控制发酵液中溶氧量不低于10%,需流加葡萄糖和蛋白胨以控制发酵液中葡萄糖含量不低于60g/L、蛋白胨含量不低于15g/L(补充细胞生长过程中消耗的碳源和氮源);
(3)将得到的大肠杆菌发酵液以及趋磁细菌发酵液分别于转速1500r·min -1的条件下离心15min,得到菌体,将菌体用蒸馏水冲洗,再于转速1500r·min -1的条件下离心5min,收取活性菌体,重复冲洗操作3次,得到大肠杆菌菌体以及趋磁细菌菌体;
(4)将大肠杆菌菌体以及趋磁细菌菌体分别放入蒸馏水中,控制菌浓度为1×10 9个/mL,得到大肠杆菌菌液以及趋磁细菌菌液;
(5)将大孔陶瓷于浓度为1mol/L的盐酸中浸泡24h后分别于温度105℃、时间12h的条件下烘干,得到经处理的大孔陶瓷;
(6)将经处理的大孔陶瓷分别放入大肠杆菌菌液以及趋磁细菌菌液,于转速40r·min -1、温度50℃的条件下于摇床上振荡180min后于温度105℃、时间12h的条件下烘干,得到固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷;
(7)将得到的固定有大肠杆菌的大孔陶瓷以及固定有趋磁细菌的大孔陶瓷分别固定于两端互通的软导管中,并将导管连接至蠕动泵,调节蠕动泵流速为10mL/min,将导管两端分别放入浓度为65mg/mL的银离子、铜离子和铝离子,pH为4的离子溶液中,于温度40℃的条件下开启蠕动泵,对软导管流加金属离子浓液,浓液缓慢经过陶瓷后进行金属离子吸附,时间为90min,吸附结束后,将固定有微生物的大孔陶瓷于温度105℃、时间12h的条件下烘干,得到微生物导电陶瓷,并检测其导电性能,重复三次上述实验,其导电率结果分别为2.51×10 6S/m、2.31×10 6S/m和2.24×10 6S/m。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (20)

  1. 一种微生物导电陶瓷的制备方法,其特征在于,所述方法为将微生物在培养基中培养至对数生长期或稳定期,得到微生物菌液;将大孔陶瓷在盐酸或氢氧化钠溶液中进行浸泡后第一次烘干,得到经预处理的大孔陶瓷;将经预处理的大孔陶瓷放入微生物菌液中进行振荡后第二次烘干,得到固定有微生物的大孔陶瓷;使金属离子溶液流经固定有微生物的大孔陶瓷后将大孔陶瓷第三次烘干,得到微生物导电陶瓷;所述微生物包含酵母菌、丝状真菌或细菌。
  2. 如权利要求1所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌时,微生物在培养基中培养的时间为12~60h;所述微生物为丝状真菌时,微生物在培养基中培养的时间为24~72h;所述微生物为细菌时,微生物在培养基中培养的时间为48~96h。
  3. 如权利要求1或2所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌时,微生物菌液中的菌浓度为1×10 6~1×10 10个/mL;所述微生物为丝状真菌时,微生物菌液中的菌浓度为1×10 6~1×10 8个/mL;所述微生物为细菌时,微生物菌液中的菌浓度为1×10 8~1×10 10个/mL。
  4. 如权利要求1-3任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌时,大孔陶瓷的孔径为10~20μm;所述微生物为丝状真菌时,大孔陶瓷的孔径为50~200μm;所述微生物为细菌时,大孔陶瓷的孔径为1~10μm。
  5. 如权利要求1-4任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌、丝状真菌或细菌时,盐酸的浓度为0.5~1.5mol/L。
  6. 如权利要求1-5任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌、丝状真菌或细菌时,氢氧化钠的浓度为0.5~1.5mol/L。
  7. 如权利要求1-6任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌、丝状真菌或细菌时,浸泡的条件为温度20~30℃、时间24~48h。
  8. 如权利要求1-7任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌时,振荡的条件为转速50~100r/min、温度30~50℃、时间60~150min;所述微生物为丝状真菌时,振荡的条件为转速120~200r/min、温度20~40℃、时间4~8h;所述微生物为细菌时,振荡的条件为转速20~60r/min、温度40~60℃、时间120~240min。
  9. 如权利要求1-8任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌或丝状真菌时,金属离子溶液的浓度为30~100mg/mL;所述微生物为细菌时,金属离子溶液的浓度为50~80mg/mL。
  10. 如权利要求1-9任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌、丝状真菌或细菌时,金属离子溶液的pH为2~5。
  11. 如权利要求1-10任一所述的一种微生物导电陶瓷的制备方法,其特征在于,所述微生物为酵母菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度15~35℃、流速10~30mL/min、时间30~120min;所述微生物为丝状真菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度45~55℃、流速20~40mL/min、时间150~240min;所述微生物为细菌时,金属离子溶液流经固定有微生物的大孔陶瓷的条件为温度35~45℃、流速5~20mL/min、时间60~150min。
  12. 应用权利要求1-11任一所述的方法制备得到的微生物导电陶瓷。
  13. 一种微生物导电陶瓷,其特征在于,所述微生物导电陶瓷包含大孔陶瓷、固定于大孔陶瓷的微生物以及吸附于微生物的金属离子;所述微生物包含酵母菌、丝状真菌或细菌。
  14. 如权利要求13所述的一种微生物导电陶瓷,其特征在于,所述酵母菌包含酿酒酵母和/或毕赤酵母;所述丝状真菌包含黑曲霉、米曲霉或毛霉中的一种或多种;所述细菌包含大肠杆菌和/或趋磁细菌。
  15. 如权利要求13或14所述的一种微生物导电陶瓷,其特征在于,所述微生物为酵母菌、丝状真菌或细菌时,大孔陶瓷包含氮化硅陶瓷、氧化铝陶瓷、氧化锆陶瓷或钛碳化铝陶瓷中的一种或多种。
  16. 如权利要求13-15任一所述的一种微生物导电陶瓷,其特征在于,所述微生物为酵母菌时,大孔陶瓷的孔径为10~20μm;所述微生物为丝状真菌时,大孔陶瓷的孔径为50~200μm;所述微生物为细菌时,大孔陶瓷的孔径为1~10μm。
  17. 如权利要求13-16任一所述的一种微生物导电陶瓷,其特征在于,所述微生物为酵母菌、丝状真菌或细菌时,金属离子包含银离子、钼离子、铝离子或铜离子中的一种或多种。
  18. 含有权利要求12所述的制备得到的微生物导电陶瓷或权利要求13-17任一所述的制备得到的微生物导电陶瓷的产品。
  19. 如权利要求18所述的产品,其特征在于,所述产品包含电子元器件、电热元件、电极、电池、电子相机、电视机、收音机、计算机或移动电视。
  20. 权利要求1-11任一所述的制备方法或权利要求12所述的制备得到的微生物导电陶瓷或权利要求13-17任一所述的微生物导电陶瓷在制备电子产品以及测量工具方面的应用。
PCT/CN2018/123379 2018-12-19 2018-12-25 一种微生物导电陶瓷及其制备方法和应用 WO2020124620A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/126,346 US20210139880A1 (en) 2018-12-19 2020-12-18 Microbial Conductive Ceramics and Preparation Method and Application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811558546.3A CN109536482B (zh) 2018-12-19 2018-12-19 一种基于酵母菌的微生物导电陶瓷及其制备方法和应用
CN201811558546.3 2018-12-19
CN201811562188.3A CN109574709B (zh) 2018-12-20 2018-12-20 一种基于细菌的微生物导电陶瓷及其制备方法和应用
CN201811562188.3 2018-12-20
CN201811569265.8 2018-12-21
CN201811569265.8A CN109516832B (zh) 2018-12-21 2018-12-21 一种基于丝状真菌的微生物导电陶瓷及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/126,346 Continuation US20210139880A1 (en) 2018-12-19 2020-12-18 Microbial Conductive Ceramics and Preparation Method and Application thereof

Publications (1)

Publication Number Publication Date
WO2020124620A1 true WO2020124620A1 (zh) 2020-06-25

Family

ID=71100129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123379 WO2020124620A1 (zh) 2018-12-19 2018-12-25 一种微生物导电陶瓷及其制备方法和应用

Country Status (2)

Country Link
US (1) US20210139880A1 (zh)
WO (1) WO2020124620A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777639B2 (ja) * 1988-07-29 1995-08-23 日本碍子株式会社 微生物固定化用多孔性セラミックス担体
CN1122383A (zh) * 1994-08-23 1996-05-15 希普列远东股份公司 绝缘基体材料上的镀敷方法及由此方法得到的镀敷附加物
JP2001212424A (ja) * 2000-02-02 2001-08-07 Kubota Corp 微生物固定化用セラミック担体を用いた生物脱臭装置
CN104211448A (zh) * 2014-09-05 2014-12-17 电子科技大学 一种陶瓷表面图形化金属层的制备方法
CN105593410A (zh) * 2013-09-26 2016-05-18 德国艾托特克公司 用于衬底表面金属化的新颖粘着促进方法
KR101713657B1 (ko) * 2013-11-15 2017-03-08 주식회사 에코비젼 미생물 고정화 담체 및 이의 제조방법
CN107337469A (zh) * 2016-12-29 2017-11-10 江苏大学 一种多孔生物压电陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462790B (zh) * 2009-01-12 2011-06-22 苏州嘉净环保科技股份有限公司 一种改性生物滤池填料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777639B2 (ja) * 1988-07-29 1995-08-23 日本碍子株式会社 微生物固定化用多孔性セラミックス担体
CN1122383A (zh) * 1994-08-23 1996-05-15 希普列远东股份公司 绝缘基体材料上的镀敷方法及由此方法得到的镀敷附加物
JP2001212424A (ja) * 2000-02-02 2001-08-07 Kubota Corp 微生物固定化用セラミック担体を用いた生物脱臭装置
CN105593410A (zh) * 2013-09-26 2016-05-18 德国艾托特克公司 用于衬底表面金属化的新颖粘着促进方法
KR101713657B1 (ko) * 2013-11-15 2017-03-08 주식회사 에코비젼 미생물 고정화 담체 및 이의 제조방법
CN104211448A (zh) * 2014-09-05 2014-12-17 电子科技大学 一种陶瓷表面图形化金属层的制备方法
CN107337469A (zh) * 2016-12-29 2017-11-10 江苏大学 一种多孔生物压电陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHU, HUAQING ET AL.: "Research on Performance and Preparation of Porous Ceramic Applied to Immobilize Microbe", CHINA CERAMIC INDUSTRY, vol. 12, no. 4, 31 August 2005 (2005-08-31) *
ZHU, HUAQING ET AL.: "Research on the Performance of Porous Ceramics as Support Media for Microbiail Immobilization", CHINA CERAMIC INDUSTRY, vol. 12, no. 6, 31 December 2005 (2005-12-31) *

Also Published As

Publication number Publication date
US20210139880A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
Sun et al. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor
CN104332322B (zh) 一种以细菌为模板的石墨烯基复合薄膜及其制备方法和应用
CN110186966B (zh) 一种检测乳酸浓度的复合材料修饰电极的制备方法及应用
WO2023142668A1 (zh) 氮掺杂碳点-还原氧化石墨烯复合材料的制备方法和应用
CN107436316B (zh) 基于石墨烯和氧化石墨烯复合材料的葡萄糖传感器的制备
CN108047806B (zh) 一种石墨烯/Ag-炭微球气凝胶涂料及其制备方法和应用
CN103832996A (zh) 石墨烯/碳纳米管复合材料及制备方法和应用
CN108414589A (zh) 泡沫状多孔碳网/镍纳米粒子三维复合物及其合成方法和应用
Shi et al. Study of magnetic field to promote oxygen transfer and its application in zinc–air fuel cells
CN111446441A (zh) 一种纳米硒-还原氧化石墨烯复合材料及其制备与应用
CN109536482B (zh) 一种基于酵母菌的微生物导电陶瓷及其制备方法和应用
Zhang et al. A partially reduced C 60-grafted macroporous carbon composite for the enhanced electrocatalysis of nitroaromatic compounds
WO2020124620A1 (zh) 一种微生物导电陶瓷及其制备方法和应用
CN108023084B (zh) 一种硅碳负极材料制备方法及锂离子电池
CN109962249A (zh) 聚间氨基苯硼酸的碳基微生物燃料电池阳极及其制备方法
CN109516832B (zh) 一种基于丝状真菌的微生物导电陶瓷及其制备方法和应用
CN109574709B (zh) 一种基于细菌的微生物导电陶瓷及其制备方法和应用
CN105719853B (zh) 一种碳/钴酸镍气凝胶纳米复合材料的制备方法
CN112725391A (zh) 一种l-异亮氨酸发酵生产工艺
CN114852995B (zh) 黑磷基复合材料构建辣根过氧化物酶传感器的电催化应用
CN107179340B (zh) 一种热处理煤炭电化学传感器的制备方法及其热处理煤炭电化学传感器
CN106835181B (zh) 大肠杆菌鞭毛为模板制备氧化铁用于增强光电催化产氢活性的方法
CN105304923A (zh) 一种提高可降解苯酚的微生物燃料电池能量利用率的方法
CN111613456B (zh) 菌丝基掺杂的超级电容器材料的微生物富集制备方法
CN112444542B (zh) 一种溴氧化铋/氧化锌ito电极及其应用和制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944045

Country of ref document: EP

Kind code of ref document: A1