CN113552532A - 基于耦合张量分解的l型互质阵列波达方向估计方法 - Google Patents

基于耦合张量分解的l型互质阵列波达方向估计方法 Download PDF

Info

Publication number
CN113552532A
CN113552532A CN202110781692.8A CN202110781692A CN113552532A CN 113552532 A CN113552532 A CN 113552532A CN 202110781692 A CN202110781692 A CN 202110781692A CN 113552532 A CN113552532 A CN 113552532A
Authority
CN
China
Prior art keywords
array
tensor
virtual
virtual domain
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110781692.8A
Other languages
English (en)
Other versions
CN113552532B (zh
Inventor
郑航
周成伟
颜成钢
陈剑
史治国
陈积明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110781692.8A priority Critical patent/CN113552532B/zh
Priority to PCT/CN2021/105699 priority patent/WO2023279411A1/zh
Priority to US17/799,930 priority patent/US12117545B2/en
Publication of CN113552532A publication Critical patent/CN113552532A/zh
Application granted granted Critical
Publication of CN113552532B publication Critical patent/CN113552532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/043Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/143Systems for determining direction or deviation from predetermined direction by vectorial combination of signals derived from differently oriented antennae

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种基于耦合张量分解的L型互质阵列波达方向估计方法,主要解决现有方法中多维信号结构受损和虚拟域信号关联信息丢失的问题,其实现步骤是:构建子阵分置的L型互质阵列并进行接收信号建模;推导L型互质阵列接收信号的四阶协方差张量;推导对应增广虚拟均匀十字阵列的四阶虚拟域信号;平移分割虚拟均匀十字阵列;通过叠加平移虚拟域信号构造耦合虚拟域张量;通过耦合虚拟域张量分解获得波达方向估计结果。本发明充分利用所构建的子阵分置L型互质阵列虚拟域张量统计量的空间关联属性,通过耦合虚拟域张量处理实现了高精度的二维波达方向估计,可用于目标定位。

Description

基于耦合张量分解的L型互质阵列波达方向估计方法
技术领域
本发明属于阵列信号处理技术领域,尤其涉及基于多维稀疏阵列虚拟域高阶统计量的统计信号处理技术,具体是一种基于耦合张量分解的L型互质阵列波达方向估计方法,可用于目标定位。
背景技术
互质阵列作为一种具有系统化结构的稀疏阵列,具备大孔径、高分辨率、高自由度的优势,能够突破奈奎斯特采样速率的限制,实现波达方向估计综合性能的提升。为了在互质阵列场景下实现匹配奈奎斯特采样速率的波达方向估计,常用做法是将互质阵列接收信号推导至二阶统计量模型,通过构造增广的虚拟均匀阵列实现基于虚拟域信号处理的波达方向估计。然而,现有方法通常将接收信号建模成矢量,并通过矢量化接收信号协方差矩阵推导虚拟域信号。在部署多维互质阵列的场景中,由于接收信号涵盖多维度的时空信息,矢量化信号的处理方法不仅损失了互质阵列接收信号的结构化信息,且由矢量化推导得到的虚拟域信号模型存在结构受损、线性尺度过大等问题。另一方面,由于对应虚拟均匀阵列的虚拟域信号是单快拍信号,因此虚拟域信号统计量存在秩亏问题;为了解决该问题,传统基于空间平滑的方法将虚拟域信号进行分割,并对分割后的虚拟域信号进行平均统计处理以得到满秩的虚拟域信号统计量,从而实现有效的波达方向估计。然而,这类做法往往忽略了被分割虚拟域信号之间的空间关联属性,统计平均的处理过程造成了性能损失。
针对以上问题,为了保留多维接收信号的结构化信息,张量作为一种多维的数据类型,开始被应用于阵列信号处理领域,用于表征涵盖复杂电磁信息的接收信号;通过对其进行多维特征提取,可实现高精度的波达方向估计。然而,现有张量信号处理方法仅仅在匹配奈奎斯特采样速率的前提下有效,尚未涉及到互质阵列稀疏信号的统计分析及其虚拟域拓展。另一方面,传统的张量信号特征提取方法往往是针对单个独立张量进行分解,而当存在多个具备空间关联属性的张量信号时,缺乏有效的多维特征联合提取手段。为此,如何在多维互质阵列的场景下结合虚拟域张量建模和虚拟域信号关联处理,实现高精度的二维波达方向估计,仍然是一个亟待解决的问题。
发明内容
本发明的目的在于针对现有方法存在的多维信号结构受损和虚拟域信号关联信息丢失问题,提出一种基于耦合张量分解的L型互质阵列波达方向估计方法,为建立L型互质阵列增广虚拟域与张量信号建模的联系,充分挖掘多维虚拟域张量统计量的关联信息,以实现高精度的二维波达方向估计提供了可行的思路和有效的解决方案。
本发明的目的是通过以下技术方案来实现的:一种基于耦合张量分解的L型互质阵列波达方向估计方法,该方法包含以下步骤:
(1)接收端使用
Figure BDA0003155704650000021
个物理天线阵元,构建一个子阵分置的L型互质阵列;该L型互质阵列由位于x轴和y轴上的两个互质线性阵列
Figure BDA0003155704650000022
组成,两个互质线性阵列
Figure BDA0003155704650000023
Figure BDA0003155704650000024
的首阵元分别从xoy坐标系上(1,0)和(1,0)位置开始布设;互质线性阵列
Figure BDA0003155704650000025
中包含
Figure BDA0003155704650000026
个阵元,其中,
Figure BDA0003155704650000027
Figure BDA0003155704650000028
为一对互质整数,|·|表示集合的势;分别用
Figure BDA0003155704650000029
Figure BDA00031557046500000210
Figure BDA00031557046500000211
表示L型互质阵列中各阵元在x轴和y轴上的位置,其中,
Figure BDA00031557046500000212
单位间隔d取为入射窄带信号波长的一半;
假设有K个来自
Figure BDA00031557046500000213
方向的远场窄带非相干信号源,则组成L型互质阵列的互质线性阵列
Figure BDA00031557046500000214
接收信号建模为:
Figure BDA00031557046500000215
其中,sk=[sk,1,sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,
Figure BDA00031557046500000218
表示矢量外积,
Figure BDA00031557046500000216
为与各信号源相互独立的噪声,
Figure BDA00031557046500000217
Figure BDA0003155704650000031
的导引矢量,对应于来波方向为
Figure BDA0003155704650000032
的信号源,表示为:
Figure BDA0003155704650000033
其中,
Figure BDA0003155704650000034
[·]T表示转置操作;
(2)通过求
Figure BDA0003155704650000035
Figure BDA0003155704650000036
的互相关统计量,得到二阶互相关矩阵
Figure BDA0003155704650000037
Figure BDA0003155704650000038
其中,
Figure BDA0003155704650000039
表示第k个入射信号源的功率,E{·}表示取数学期望操作,(·)H表示共轭转置操作,(·)*表示共轭操作;在二阶互相关矩阵的基础上,推导子阵分置L型互质阵列的四阶统计量,即通过计算二阶互相关矩阵
Figure BDA00031557046500000310
的自相关得到四阶协方差张量
Figure BDA00031557046500000311
Figure BDA00031557046500000312
Figure BDA00031557046500000313
(3)定义维度集合
Figure BDA00031557046500000314
通过对四阶协方差张量
Figure BDA00031557046500000315
进行维度合并的张量变换,得到一个四阶虚拟域信号
Figure BDA00031557046500000316
Figure BDA00031557046500000317
其中,
Figure BDA00031557046500000318
Figure BDA00031557046500000319
分别通过在指数项上形成差集数组,构造出x轴和y轴上的增广非连续虚拟线性阵列,
Figure BDA00031557046500000320
表示Kronecker积;
Figure BDA00031557046500000321
对应一个二维非连续虚拟十字阵列
Figure BDA00031557046500000322
中包含一个虚拟均匀十字阵列
Figure BDA00031557046500000323
其中
Figure BDA00031557046500000324
Figure BDA00031557046500000325
分别为x轴和y轴上的虚拟均匀线性阵列;
Figure BDA00031557046500000326
Figure BDA00031557046500000327
中各虚拟阵元的位置表示为
Figure BDA00031557046500000328
Figure BDA00031557046500000329
Figure BDA00031557046500000330
其中
Figure BDA00031557046500000331
Figure BDA00031557046500000332
Figure BDA00031557046500000333
Figure BDA0003155704650000041
从非连续虚拟十字阵列
Figure BDA00031557046500000428
的虚拟域信号
Figure BDA0003155704650000042
中提取对应于虚拟均匀十字阵列
Figure BDA0003155704650000043
中各虚拟阵元位置的元素,得到
Figure BDA0003155704650000044
所对应的虚拟域信号
Figure BDA0003155704650000045
建模为:
Figure BDA0003155704650000046
其中,
Figure BDA0003155704650000047
Figure BDA0003155704650000048
分别为
Figure BDA0003155704650000049
Figure BDA00031557046500000410
的导引矢量;
(4)从
Figure BDA00031557046500000411
Figure BDA00031557046500000412
中分别提取子阵列
Figure BDA00031557046500000413
Figure BDA00031557046500000414
作为平移窗口;分别将平移窗口
Figure BDA00031557046500000415
Figure BDA00031557046500000416
沿着x轴和y轴的负半轴方向逐次平移一个虚拟阵元间隔,得到Px个虚拟均匀线性子阵列
Figure BDA00031557046500000417
和Py个虚拟均匀线性子阵列
Figure BDA00031557046500000418
Figure BDA00031557046500000419
其中
Figure BDA00031557046500000420
则虚拟均匀子阵列
Figure BDA00031557046500000421
的虚拟域信号可表示为:
Figure BDA00031557046500000422
其中,
Figure BDA00031557046500000423
Figure BDA00031557046500000424
分别为
Figure BDA00031557046500000425
Figure BDA00031557046500000426
的导引矢量;
(5)对于具有相同px下标的Py个虚拟均匀子阵列
Figure BDA00031557046500000427
将它们对应的虚拟域信号
Figure BDA0003155704650000051
在第三维度上进行叠加,得到Px个三维的耦合虚拟域张量
Figure BDA0003155704650000052
Figure BDA0003155704650000053
Figure BDA0003155704650000054
Figure BDA0003155704650000055
其中,
Figure BDA0003155704650000056
为平移窗口
Figure BDA0003155704650000057
的导引矢量,
Figure BDA0003155704650000058
Figure BDA0003155704650000059
表示沿着y轴方向的平移因子,
Figure BDA00031557046500000510
Figure BDA00031557046500000511
和Qy=[qy(1),qy(2),...,qy(K)]为
Figure BDA00031557046500000512
的因子矩阵,
Figure BDA00031557046500000513
表示在第a维度上的张量叠加操作,
Figure BDA00031557046500000514
表示张量的canonical polyadic模型;
(6)对所构造的Px个耦合虚拟域张量
Figure BDA00031557046500000515
进行耦合canonical polyadic分解,得到因子矩阵
Figure BDA00031557046500000516
的估计值
Figure BDA00031557046500000517
其中包含空间因子
Figure BDA00031557046500000518
的估计值
Figure BDA00031557046500000519
随后,从空间因子的估计值
Figure BDA00031557046500000520
中提取二维波达方向估计结果
Figure BDA00031557046500000521
进一步地,步骤(1)所述子阵分置的L型互质阵列结构可具体描述为:组成L型互质阵列的互质线性阵列
Figure BDA00031557046500000522
由一对稀疏均匀线性子阵列构成,两个稀疏均匀线性子阵列分别包含
Figure BDA00031557046500000523
Figure BDA00031557046500000524
个天线阵元,阵元间距分别为
Figure BDA00031557046500000525
Figure BDA00031557046500000526
其中,
Figure BDA00031557046500000527
Figure BDA00031557046500000528
为一对互质整数;
Figure BDA00031557046500000529
中两个稀疏均匀线性子阵列按照首阵元重叠的方式进行子阵列组合,获得包含
Figure BDA00031557046500000530
个阵元的互质线性阵列
Figure BDA00031557046500000531
进一步地,步骤(2)所述的四阶统计量推导,在实际中,对T个采样快拍的接收信号
Figure BDA00031557046500000532
Figure BDA00031557046500000533
通过求它们的四阶统计量,得到基于采样的四阶协方差张量
Figure BDA00031557046500000534
Figure BDA00031557046500000535
进一步地,步骤(5)所述的耦合虚拟域张量构造,得到的Px个虚拟域张量
Figure BDA00031557046500000536
在第二维度和第三维度上表征相同的空间信息,而在第一维度上表征不同的空间信息,因此,Px个虚拟域张量
Figure BDA0003155704650000061
在第二维度和第三维度上具有耦合关系。
进一步地,步骤(5)所述的耦合虚拟域张量构造过程,通过在x轴方向上叠加平移虚拟域信号构造耦合虚拟域张量;具体而言,对于具有相同py下标的Px个虚拟均匀子阵列
Figure BDA0003155704650000062
它们在y轴方向上涵盖相同的角度信息,在x轴方向上则具备空间平移关系,将它们对应的虚拟域信号
Figure BDA0003155704650000063
在第三维度上进行叠加,得到Py个虚拟域张量
Figure BDA0003155704650000064
Figure BDA0003155704650000065
Figure BDA0003155704650000066
其中,
Figure BDA0003155704650000067
为平移窗口
Figure BDA0003155704650000068
的导引矢量,
Figure BDA0003155704650000069
Figure BDA00031557046500000610
表示沿着x轴方向的平移因子,
Figure BDA00031557046500000611
Figure BDA00031557046500000612
和Qx=[qx(1),qx(2),...,qx(K)]为
Figure BDA00031557046500000613
的因子矩阵;所构造的Py个虚拟域张量
Figure BDA00031557046500000614
在第一维度和第三维度上表征相同的空间信息,而在第二维度上表征不同的空间信息,为此,虚拟域张量
Figure BDA00031557046500000615
在第一维度和第三维度上具有耦合关系;对所构造的Py个虚拟域张量
Figure BDA00031557046500000616
进行耦合canonicalpolyadic分解,估计其因子矩阵
Figure BDA00031557046500000617
进一步地,步骤(6)所述的耦合虚拟域张量分解,利用所构造的Px个虚拟域张量
Figure BDA00031557046500000618
的耦合关系,通过联合最小二乘优化问题对
Figure BDA00031557046500000619
进行耦合canonical polyadic分解:
Figure BDA00031557046500000620
其中,||·||F表示Frobenius范数;求解该联合最小二乘优化问题,得到因子矩阵
Figure BDA00031557046500000621
的估计值
Figure BDA00031557046500000622
在耦合虚拟域张量分解问题中,可辨识目标数K的最大值为
Figure BDA0003155704650000071
超过所构建的子阵分置L型互质阵列的实际物理阵元个数。
进一步地,在步骤(6)中,对估计得到的空间因子
Figure BDA0003155704650000072
从中提取参数
Figure BDA0003155704650000073
Figure BDA0003155704650000074
Figure BDA0003155704650000075
Figure BDA0003155704650000076
其中,
Figure BDA0003155704650000077
Figure BDA0003155704650000078
中虚拟阵元的位置索引,
Figure BDA0003155704650000079
Figure BDA00031557046500000710
中虚拟阵元的位置索引,z=[0,1,...,Py-1]T表示平移步长,∠(·)表示一个复数的取幅角操作,
Figure BDA00031557046500000717
表示伪逆操作;最后,根据{μ1(k),μ2(k)}与二维波达方向
Figure BDA00031557046500000711
的关系,即
Figure BDA00031557046500000712
Figure BDA00031557046500000713
得到二维波达方向估计
Figure BDA00031557046500000714
的闭式解为:
Figure BDA00031557046500000715
Figure BDA00031557046500000716
本发明与现有技术相比具有以下优点:
(1)本发明通过张量表示L型互质阵列实际接收信号,在张量化信号建模的基础上,探究多维虚拟域信号的推导形式,充分保留并利用了接收信号的原始结构化信息;
(2)本发明基于多维虚拟域信号的平移增广,结构化推导了多个具备空间关联属性的虚拟域张量,为充分利用虚拟域信号关联信息实现波达方向估计提供了技术前提;
(3)本发明提出了面向多个虚拟域张量的耦合处理手段,设计了基于联合最小二乘的耦合虚拟域张量分解优化方法,在充分考虑虚拟域张量空间关联属性的前提下,实现了二维波达方向的精确联合估计。
附图说明
图1是本发明的总体流程框图。
图2是本发明所提子阵分置L型互质阵列的结构示意图。
图3是本发明所构造虚拟均匀十字阵列和虚拟均匀子阵列示意图。
图4是本发明所提方法在不同信噪比条件下的波达方向估计精度性能比较图。
图5是本发明所提方法在不同采样快拍数条件下的波达方向估计精度性能比较图。
具体实施方式
以下参照附图,对本发明的技术方案作进一步的详细说明。
为了解决现有方法存在的多维信号结构受损和虚拟域信号关联信息丢失问题,本发明提出了一种基于耦合张量分解的L型互质阵列波达方向估计方法,通过推导基于张量模型的L型互质阵列虚拟域信号,并构建虚拟域张量的耦合思路,以利用虚拟域张量关联信息实现高精度的二维波达方向估计。参照图1,本发明的实现步骤如下:
步骤1:构建子阵分置的L型互质阵列并进行接收信号建模。在接收端使用
Figure BDA0003155704650000081
个物理天线阵元构建子阵分置的L型互质阵列,如图2所示:在x轴和y轴上分别构造一个互质线性阵列
Figure BDA0003155704650000082
i=1,2;
Figure BDA0003155704650000083
中包含
Figure BDA0003155704650000084
个天线阵元,其中,
Figure BDA0003155704650000085
Figure BDA0003155704650000086
为一对互质整数,|·|表示集合的势;这两个互质线性阵列
Figure BDA0003155704650000087
Figure BDA0003155704650000088
的首阵元分别从xoy坐标系上(1,0)和(1,0)位置开始布设,因此,组成L型互质阵列的两个互质线性阵列
Figure BDA0003155704650000089
Figure BDA00031557046500000810
互不重叠;分别用
Figure BDA00031557046500000811
Figure BDA00031557046500000812
Figure BDA00031557046500000813
表示L型互质阵列各阵元在x轴和y轴上的位置,其中,
Figure BDA00031557046500000814
单位间隔d取为入射窄带信号波长的一半;组成L型互质阵列的互质线性阵列
Figure BDA00031557046500000815
由一对稀疏均匀线性子阵列构成,两个稀疏均匀线性子阵列分别包含
Figure BDA00031557046500000816
Figure BDA00031557046500000817
个天线阵元,阵元间距分别为
Figure BDA00031557046500000818
Figure BDA00031557046500000819
中两个稀疏均匀线性子阵列按照首阵元重叠的方式进行子阵列组合,获得包含
Figure BDA00031557046500000820
个阵元的互质线性阵列
Figure BDA0003155704650000091
假设有K个来自
Figure BDA0003155704650000092
方向的远场窄带非相干信号源,则将组成L型互质阵列两个互质线性阵列
Figure BDA0003155704650000093
Figure BDA0003155704650000094
的接收信号建模为:
Figure BDA0003155704650000095
其中,sk=[sk,1,sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,
Figure BDA00031557046500000927
表示矢量外积,
Figure BDA0003155704650000096
为与各信号源相互独立的噪声,
Figure BDA0003155704650000097
Figure BDA0003155704650000098
的导引矢量,对应于来波方向为
Figure BDA0003155704650000099
的信号源,表示为:
Figure BDA00031557046500000910
其中,
Figure BDA00031557046500000911
[·]T表示转置操作;
步骤2:推导L型互质阵列接收信号的四阶协方差张量。利用互质线性阵列
Figure BDA00031557046500000912
Figure BDA00031557046500000913
的采样信号
Figure BDA00031557046500000914
Figure BDA00031557046500000915
通过求它们的互相关统计量,得到二阶互相关矩阵
Figure BDA00031557046500000916
Figure BDA00031557046500000917
其中,
Figure BDA00031557046500000918
表示第k个入射信号源的功率,E{·}表示取数学期望操作,(·)H表示共轭转置操作,(·)*表示共轭操作;通过计算接收信号的互相关矩阵,将原始接收信号中噪声部分
Figure BDA00031557046500000919
的影响有效消除。为了实现增广虚拟阵列推导,在二阶互相关统计量的基础上,进一步推导L型互质阵列的四阶统计量。对二阶互相关矩阵
Figure BDA00031557046500000920
求得其自相关得到四阶协方差张量
Figure BDA00031557046500000921
Figure BDA00031557046500000922
Figure BDA00031557046500000923
在实际中,基于采样的四阶协方差张量
Figure BDA00031557046500000925
通过求接收信号
Figure BDA00031557046500000926
Figure BDA0003155704650000101
的四阶统计量得到:
Figure BDA0003155704650000102
步骤3:推导对应增广虚拟均匀十字阵列的四阶虚拟域信号。通过合并四阶协方差张量
Figure BDA0003155704650000103
中表征同一方向空间信息的维度,可以使对应两个互质线性阵列
Figure BDA0003155704650000104
Figure BDA0003155704650000105
的共轭导引矢量
Figure BDA0003155704650000106
Figure BDA0003155704650000107
在指数项上形成差集数组,从而分别在x轴和y轴上构造一个非连续增广虚拟线性阵列,对应得到一个二维非连续虚拟十字阵列
Figure BDA0003155704650000108
具体地,四阶协方差张量
Figure BDA0003155704650000109
的第1、3维度表征x轴方向的空间信息,第2、4维度表征y轴方向的空间信息;为此,定义维度集合
Figure BDA00031557046500001010
通过对四阶协方差张量
Figure BDA00031557046500001011
进行维度合并的张量变换,得到一个对应于非连续虚拟十字阵列
Figure BDA00031557046500001012
的四阶虚拟域信号
Figure BDA00031557046500001013
Figure BDA00031557046500001014
其中,
Figure BDA00031557046500001015
Figure BDA00031557046500001016
分别通过在指数项上形成差集数组,构造出x轴和y轴上的增广虚拟线性阵列,
Figure BDA00031557046500001017
表示Kronecker积。
Figure BDA00031557046500001018
中包含一个虚拟均匀十字阵列
Figure BDA00031557046500001019
如图3所示,其中
Figure BDA00031557046500001020
Figure BDA00031557046500001021
分别为x轴和y轴上的虚拟均匀线性阵列。
Figure BDA00031557046500001022
Figure BDA00031557046500001023
中各虚拟阵元的位置分别表示为
Figure BDA00031557046500001024
Figure BDA00031557046500001025
Figure BDA00031557046500001026
其中
Figure BDA00031557046500001027
Figure BDA00031557046500001028
Figure BDA00031557046500001029
Figure BDA00031557046500001030
从非连续虚拟十字阵列
Figure BDA00031557046500001036
的虚拟域信号
Figure BDA00031557046500001031
中提取对应于虚拟均匀十字阵列
Figure BDA00031557046500001032
中各虚拟阵元位置的元素,得到
Figure BDA00031557046500001033
所对应的虚拟域信号
Figure BDA00031557046500001034
建模为:
Figure BDA00031557046500001035
其中,
Figure BDA0003155704650000111
Figure BDA0003155704650000112
分别表示
Figure BDA0003155704650000113
Figure BDA0003155704650000114
的导引矢量;
步骤4:平移分割虚拟均匀十字阵列。考虑到组成虚拟均匀十字阵列
Figure BDA0003155704650000115
的两个虚拟均匀线性阵列
Figure BDA0003155704650000116
Figure BDA0003155704650000117
分别关于x=1和y=1轴对称,从
Figure BDA0003155704650000118
Figure BDA0003155704650000119
中分别提取子阵列
Figure BDA00031557046500001110
Figure BDA00031557046500001111
作为平移窗口;然后,分别将平移窗口
Figure BDA00031557046500001112
Figure BDA00031557046500001113
沿着x轴和y轴的负半轴方向逐次平移一个虚拟阵元间隔,得到Px个虚拟均匀线性子阵列
Figure BDA00031557046500001114
和Py个虚拟均匀线性子阵列
Figure BDA00031557046500001115
如图3所示,这里,
Figure BDA00031557046500001116
则虚拟均匀子阵列
Figure BDA00031557046500001117
的虚拟域信号可表示为:
Figure BDA00031557046500001118
其中,
Figure BDA00031557046500001119
Figure BDA00031557046500001120
分别为
Figure BDA00031557046500001121
Figure BDA00031557046500001122
的导引矢量;
步骤5:通过叠加平移虚拟域信号构造耦合虚拟域张量。由于平移分割得到的虚拟均匀子阵列
Figure BDA00031557046500001123
互相之间存在空间平移关系,对这些虚拟均匀子阵列对应的虚拟域信号进行结构化叠加得到若干具有耦合关系的虚拟域张量。具体而言,对于具有相同px下标的Py个虚拟均匀子阵列
Figure BDA00031557046500001124
它们在x轴方向上涵盖相同的角度信息,在y轴方向上则具备空间平移关系,为此,将它们对应的虚拟域信号
Figure BDA0003155704650000121
在第三维度上进行叠加,得到Px个三维的耦合虚拟域张量
Figure BDA0003155704650000122
Figure BDA0003155704650000123
Figure BDA0003155704650000124
其中,
Figure BDA0003155704650000125
为平移窗口
Figure BDA0003155704650000126
的导引矢量,
Figure BDA0003155704650000127
Figure BDA0003155704650000128
表示沿着y轴方向的平移因子,
Figure BDA0003155704650000129
Figure BDA00031557046500001210
和Qy=[qy(1),qy(2),...,qy(K)]为
Figure BDA00031557046500001211
的因子矩阵,
Figure BDA00031557046500001212
表示在第a维度上的张量叠加操作,
Figure BDA00031557046500001213
表示张量的canonicalpolyadic模型;所构造的Px个三维虚拟域张量
Figure BDA00031557046500001214
在第二维度(平移窗口
Figure BDA00031557046500001215
的角度信息)和第三维度(y轴方向的平移信息)上表征相同的空间信息,而在第一维度(虚拟均匀线性子阵列
Figure BDA00031557046500001216
的角度信息)上表征不同的空间信息,为此,虚拟域张量
Figure BDA00031557046500001217
在第二维度和第三维度上具有耦合关系。
类似地,可以在x轴方向上叠加平移虚拟域信号构造耦合虚拟域张量。具体而言,对于具有相同py下标的Px个虚拟均匀子阵列
Figure BDA00031557046500001218
它们在y轴方向上涵盖相同的角度信息,在x轴方向上则具备空间平移关系,可以将它们对应的虚拟域信号
Figure BDA00031557046500001219
在第三维度上进行叠加,得到Py个三维虚拟域张量
Figure BDA00031557046500001220
Figure BDA00031557046500001221
Figure BDA00031557046500001223
其中,
Figure BDA00031557046500001224
为平移窗口
Figure BDA00031557046500001225
的导引矢量,
Figure BDA00031557046500001226
Figure BDA00031557046500001227
表示沿着x轴方向的平移因子,
Figure BDA00031557046500001228
Figure BDA0003155704650000131
和Qx=[qx(1),qx(2),...,qx(K)]为
Figure BDA0003155704650000132
的因子矩阵;所构造的Py个三维虚拟域张量
Figure BDA0003155704650000133
在第一维度(平移窗口
Figure BDA0003155704650000134
的角度信息)和第三维度(x轴方向的平移信息)上表征相同的空间信息,而在第二维度(虚拟均匀线性子阵列
Figure BDA0003155704650000135
的角度信息)上表征不同的空间信息,为此,虚拟域张量
Figure BDA0003155704650000136
在第一维度和第三维度上具有耦合关系;
步骤6:通过耦合虚拟域张量分解获得波达方向估计结果。利用所构造的Px个虚拟域张量
Figure BDA0003155704650000137
的耦合关系,通过联合最小二乘优化问题对
Figure BDA0003155704650000138
进行耦合canonicalpolyadic分解:
Figure BDA0003155704650000139
其中,
Figure BDA00031557046500001310
表示因子矩阵
Figure BDA00031557046500001311
的估计值,由空间因子
Figure BDA00031557046500001312
的估计值
Figure BDA00031557046500001313
组成,||·||F表示Frobenius范数;求解该联合最小二乘优化问题,得到
Figure BDA00031557046500001314
在该问题中,可辨识目标数K的最大值为
Figure BDA00031557046500001315
Figure BDA00031557046500001316
超过所构建的子阵分置L型互质阵列的实际物理阵元个数。同样地,可以对所构造Py个三维虚拟域张量
Figure BDA00031557046500001317
进行耦合canonical polyadic分解,估计其因子矩阵
Figure BDA00031557046500001318
从空间因子的估计值
Figure BDA00031557046500001319
中提取参数
Figure BDA00031557046500001320
Figure BDA00031557046500001321
Figure BDA00031557046500001322
Figure BDA00031557046500001323
其中,
Figure BDA00031557046500001324
表示
Figure BDA00031557046500001325
中虚拟阵元的位置索引,
Figure BDA00031557046500001326
表示
Figure BDA00031557046500001327
中虚拟阵元的位置索引,z=[0,1,...,Py-1]T表示平移步长,∠(·)表示一个复数的取幅角操作,
Figure BDA00031557046500001411
表示伪逆操作。最后,根据{μ1(k),μ2(k)}与二维波达方向
Figure BDA0003155704650000141
的关系,即
Figure BDA0003155704650000142
Figure BDA0003155704650000143
得到二维波达方向估计
Figure BDA0003155704650000144
的闭式解为:
Figure BDA0003155704650000145
Figure BDA0003155704650000146
下面结合仿真实例对本发明的效果做进一步的描述。
仿真实例:采用L型互质阵列接收入射信号,其参数选取为
Figure BDA0003155704650000147
Figure BDA0003155704650000148
即架构的L型互质阵列共包含
Figure BDA0003155704650000149
Figure BDA00031557046500001410
个天线阵元。假定有2个入射窄带信号,入射方向方位角和俯仰角分别是[20.5°,30.5°]和[45.6°,40.6°]。将本发明所提基于耦合张量分解的L型互质阵列波达方向估计方法与传统基于矢量化虚拟域信号处理的Estimation of SignalParameters via RotationalInvariant Techniques(ESPRIT)方法,以及基于传统张量分解的Tensor Multiple SignalClassification(Tensor MUSIC)方法进行对比,分别在图4和图5中对比上述方法在不同信噪比和不同采样快拍数条件下的二维波达方向估计精度性能。
在采样快拍数为T=300条件下,绘制波达方向估计均方根误差随信噪比变化的性能对比曲线,如图4所示;在信噪比SNR=0dB条件下,绘制波达方向估计均方根误差随采样快拍数变化的性能对比曲线,如图5所示。从图4和图5的对比结果可以看出,无论是在不同的信噪比场景,还是在不同的采样快拍数场景下,本发明所提方法在波达方向估计精度上均存在性能优势。相比于基于矢量化虚拟域信号处理的ESPRIT方法,本发明所提方法通过构建虚拟域张量,充分利用了L型互质阵列接收信号的结构化信息,从而具备更为优越的波达方向估计精度;另一方面,相比于基于传统张量分解的Tensor MUSIC方法,本发明所提方法的性能优势来源于通过耦合虚拟域张量处理充分利用了多维虚拟域信号的空间关联属性,而传统张量分解方法只针对空间平滑后的单一虚拟域张量进行处理,造成了虚拟域信号关联信息的丢失。
综上所述,本发明构建L型互质阵列多维虚拟域与张量信号建模之间的关联,将稀疏张量信号推导至虚拟域张量模型,深入挖掘了L型互质阵列接收信号和虚拟域的多维特征;再者,建立起虚拟域信号的空间叠加机理,在无需引入空间平滑的前提下,构造出具备空间耦合关系的虚拟域张量;最后,本发明通过虚拟域张量的耦合分解,实现了二维波达方向的精确估计,并给出了其闭式解。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (7)

1.一种基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,包含以下步骤:
(1)接收端使用
Figure FDA0003155704640000011
个物理天线阵元,构建一个子阵分置的L型互质阵列;该L型互质阵列由位于x轴和y轴上的两个互质线性阵列
Figure FDA0003155704640000012
组成,两个互质线性阵列
Figure FDA0003155704640000013
Figure FDA0003155704640000014
的首阵元分别从xoy坐标系上(1,0)和(1,0)位置开始布设;互质线性阵列
Figure FDA0003155704640000015
中包含
Figure FDA0003155704640000016
个阵元,其中,
Figure FDA0003155704640000017
Figure FDA0003155704640000018
为一对互质整数,|·|表示集合的势;分别用
Figure FDA0003155704640000019
Figure FDA00031557046400000110
Figure FDA00031557046400000111
表示L型互质阵列中各阵元在x轴和y轴上的位置,其中,
Figure FDA00031557046400000112
单位间隔d取为入射窄带信号波长的一半;
假设有K个来自
Figure FDA00031557046400000113
方向的远场窄带非相干信号源,则组成L型互质阵列的互质线性阵列
Figure FDA00031557046400000114
接收信号建模为:
Figure FDA00031557046400000115
其中,sk=[sk,1,sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,
Figure FDA00031557046400000127
表示矢量外积,
Figure FDA00031557046400000116
为与各信号源相互独立的噪声,
Figure FDA00031557046400000117
Figure FDA00031557046400000118
的导引矢量,对应于来波方向为
Figure FDA00031557046400000119
的信号源,表示为:
Figure FDA00031557046400000120
其中,
Figure FDA00031557046400000121
[·]T表示转置操作;
(2)通过求
Figure FDA00031557046400000122
Figure FDA00031557046400000123
的互相关统计量,得到二阶互相关矩阵
Figure FDA00031557046400000124
Figure FDA00031557046400000125
其中,
Figure FDA00031557046400000126
表示第k个入射信号源的功率,E{·}表示取数学期望操作,(·)H表示共轭转置操作,(·)*表示共轭操作;在二阶互相关矩阵的基础上,推导子阵分置L型互质阵列的四阶统计量,即通过计算二阶互相关矩阵
Figure FDA0003155704640000021
的自相关得到四阶协方差张量
Figure FDA0003155704640000022
Figure FDA0003155704640000023
(3)定义维度集合
Figure FDA0003155704640000024
通过对四阶协方差张量
Figure FDA00031557046400000230
进行维度合并的张量变换,得到一个四阶虚拟域信号
Figure FDA0003155704640000025
Figure FDA0003155704640000026
其中,
Figure FDA0003155704640000027
Figure FDA0003155704640000028
分别通过在指数项上形成差集数组,构造出x轴和y轴上的增广非连续虚拟线性阵列,
Figure FDA0003155704640000029
表示Kronecker积;
Figure FDA00031557046400000210
对应一个二维非连续虚拟十字阵列
Figure FDA00031557046400000231
中包含一个虚拟均匀十字阵列
Figure FDA00031557046400000211
其中
Figure FDA00031557046400000212
Figure FDA00031557046400000213
分别为x轴和y轴上的虚拟均匀线性阵列;
Figure FDA00031557046400000214
Figure FDA00031557046400000215
中各虚拟阵元的位置表示为
Figure FDA00031557046400000216
Figure FDA00031557046400000217
Figure FDA00031557046400000218
其中
Figure FDA00031557046400000219
Figure FDA00031557046400000220
Figure FDA00031557046400000221
Figure FDA00031557046400000222
从非连续虚拟十字阵列
Figure FDA00031557046400000223
的虚拟域信号
Figure FDA00031557046400000224
中提取对应于虚拟均匀十字阵列
Figure FDA00031557046400000225
中各虚拟阵元位置的元素,得到
Figure FDA00031557046400000232
所对应的虚拟域信号
Figure FDA00031557046400000226
建模为:
Figure FDA00031557046400000227
其中,
Figure FDA00031557046400000228
Figure FDA00031557046400000229
分别为
Figure FDA00031557046400000326
Figure FDA00031557046400000327
的导引矢量;
(4)从
Figure FDA00031557046400000328
Figure FDA00031557046400000329
中分别提取子阵列
Figure FDA0003155704640000031
Figure FDA0003155704640000032
作为平移窗口;分别将平移窗口
Figure FDA0003155704640000033
Figure FDA0003155704640000034
沿着x轴和y轴的负半轴方向逐次平移一个虚拟阵元间隔,得到Px个虚拟均匀线性子阵列
Figure FDA0003155704640000035
和Py个虚拟均匀线性子阵列
Figure FDA0003155704640000036
Figure FDA0003155704640000037
其中
Figure FDA0003155704640000038
则虚拟均匀子阵列
Figure FDA0003155704640000039
的虚拟域信号可表示为:
Figure FDA00031557046400000310
其中,
Figure FDA00031557046400000311
Figure FDA00031557046400000312
分别为
Figure FDA00031557046400000313
Figure FDA00031557046400000314
的导引矢量;
(5)对于具有相同px下标的Py个虚拟均匀子阵列
Figure FDA00031557046400000315
将它们对应的虚拟域信号
Figure FDA00031557046400000316
在第三维度上进行叠加,得到Px个三维的耦合虚拟域张量
Figure FDA00031557046400000317
Figure FDA00031557046400000318
Figure FDA00031557046400000319
其中,
Figure FDA00031557046400000320
为平移窗口
Figure FDA00031557046400000321
的导引矢量,
Figure FDA00031557046400000322
Figure FDA00031557046400000323
表示沿着y轴方向的平移因子,
Figure FDA00031557046400000324
Figure FDA00031557046400000325
和Qy=[qy(1),qy(2),...,qy(K)]为
Figure FDA0003155704640000041
的因子矩阵,
Figure FDA0003155704640000042
表示在第a维度上的张量叠加操作,
Figure FDA0003155704640000043
表示张量的canonicalpolyadic模型;
(6)对所构造的Px个耦合虚拟域张量
Figure FDA00031557046400000410
进行耦合canonicalpolyadic分解,得到因子矩阵
Figure FDA0003155704640000044
的估计值
Figure FDA0003155704640000045
其中包含空间因子
Figure FDA0003155704640000046
的估计值
Figure FDA0003155704640000047
随后,从空间因子的估计值
Figure FDA00031557046400000411
中提取二维波达方向估计结果
Figure FDA00031557046400000412
2.根据权利要求1所述的基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,步骤(1)所述子阵分置的L型互质阵列结构可具体描述为:组成L型互质阵列的互质线性阵列
Figure FDA00031557046400000426
由一对稀疏均匀线性子阵列构成,两个稀疏均匀线性子阵列分别包含
Figure FDA00031557046400000413
Figure FDA00031557046400000414
个天线阵元,阵元间距分别为
Figure FDA00031557046400000415
Figure FDA00031557046400000416
其中,
Figure FDA00031557046400000417
Figure FDA00031557046400000418
为一对互质整数;
Figure FDA00031557046400000419
中两个稀疏均匀线性子阵列按照首阵元重叠的方式进行子阵列组合,获得包含
Figure FDA00031557046400000425
个阵元的互质线性阵列
Figure FDA00031557046400000420
3.根据权利要求1所述的基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,步骤(2)所述的四阶统计量推导,在实际中,对T个采样快拍的接收信号
Figure FDA00031557046400000421
Figure FDA00031557046400000422
通过求它们的四阶统计量,得到基于采样的四阶协方差张量
Figure FDA0003155704640000048
Figure 1
4.根据权利要求1所述的基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,步骤(5)所述的耦合虚拟域张量构造,得到的Px个虚拟域张量
Figure FDA00031557046400000423
在第二维度和第三维度上表征相同的空间信息,而在第一维度上表征不同的空间信息,因此,Px个虚拟域张量
Figure FDA00031557046400000424
在第二维度和第三维度上具有耦合关系。
5.根据权利要求1所述的基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,步骤(5)所述的耦合虚拟域张量构造过程,通过在x轴方向上叠加平移虚拟域信号构造耦合虚拟域张量;具体而言,对于具有相同py下标的Px个虚拟均匀子阵列
Figure FDA00031557046400000511
它们在y轴方向上涵盖相同的角度信息,在x轴方向上则具备空间平移关系,将它们对应的虚拟域信号
Figure FDA0003155704640000051
在第三维度上进行叠加,得到Py个虚拟域张量
Figure FDA0003155704640000052
Figure FDA0003155704640000053
其中,
Figure FDA00031557046400000512
为平移窗口
Figure FDA00031557046400000513
的导引矢量,
Figure FDA0003155704640000054
Figure FDA0003155704640000055
表示沿着x轴方向的平移因子,
Figure FDA0003155704640000056
Figure FDA0003155704640000057
和Qx=[qx(1),qx(2),...,qx(K)]为
Figure FDA00031557046400000514
的因子矩阵;所构造的Py个虚拟域张量
Figure FDA00031557046400000522
在第一维度和第三维度上表征相同的空间信息,而在第二维度上表征不同的空间信息,为此,虚拟域张量
Figure FDA00031557046400000516
在第一维度和第三维度上具有耦合关系;对所构造的Py个虚拟域张量
Figure FDA00031557046400000517
进行耦合canonicalpolyadic分解,估计其因子矩阵
Figure FDA0003155704640000058
6.根据权利要求1所述的基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,步骤(6)所述的耦合虚拟域张量分解,利用所构造的Px个三维虚拟域张量
Figure FDA00031557046400000518
的耦合关系,通过联合最小二乘优化问题对
Figure FDA00031557046400000519
进行耦合canonical polyadic分解:
Figure FDA0003155704640000059
其中,||·||F表示Frobenius范数;求解该联合最小二乘优化问题,得到因子矩阵
Figure FDA00031557046400000520
的估计值
Figure FDA00031557046400000521
在耦合虚拟域张量分解问题中,可辨识目标数K的最大值为
Figure FDA00031557046400000510
超过所构建的子阵分置L型互质阵列的实际物理阵元个数。
7.根据权利要求1所述的基于耦合张量分解的L型互质阵列波达方向估计方法,其特征在于,在步骤(6)中,对估计得到的空间因子
Figure FDA0003155704640000066
从中提取参数
Figure FDA0003155704640000067
Figure FDA0003155704640000068
Figure FDA0003155704640000061
Figure FDA0003155704640000062
其中,
Figure FDA0003155704640000063
Figure FDA0003155704640000069
中虚拟阵元的位置索引,
Figure FDA0003155704640000064
Figure FDA00031557046400000610
中虚拟阵元的位置索引,z=[0,1,...,Py-1]T表示平移步长,∠(·)表示一个复数的取幅角操作,
Figure FDA00031557046400000615
表示伪逆操作;最后,根据{μ1(k),μ2(k)}与二维波达方向
Figure FDA00031557046400000611
的关系,即
Figure FDA00031557046400000616
Figure FDA00031557046400000612
得到二维波达方向估计
Figure FDA00031557046400000613
的闭式解为:
Figure FDA0003155704640000065
Figure 2
CN202110781692.8A 2021-07-09 2021-07-09 基于耦合张量分解的l型互质阵列波达方向估计方法 Active CN113552532B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110781692.8A CN113552532B (zh) 2021-07-09 2021-07-09 基于耦合张量分解的l型互质阵列波达方向估计方法
PCT/CN2021/105699 WO2023279411A1 (zh) 2021-07-09 2021-07-12 基于耦合张量分解的l型互质阵列波达方向估计方法
US17/799,930 US12117545B2 (en) 2021-07-09 2021-07-12 Method for estimating direction of arrival of an L-type coprime array based on coupled tensor decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110781692.8A CN113552532B (zh) 2021-07-09 2021-07-09 基于耦合张量分解的l型互质阵列波达方向估计方法

Publications (2)

Publication Number Publication Date
CN113552532A true CN113552532A (zh) 2021-10-26
CN113552532B CN113552532B (zh) 2022-03-22

Family

ID=78102916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110781692.8A Active CN113552532B (zh) 2021-07-09 2021-07-09 基于耦合张量分解的l型互质阵列波达方向估计方法

Country Status (3)

Country Link
US (1) US12117545B2 (zh)
CN (1) CN113552532B (zh)
WO (1) WO2023279411A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200388A (zh) * 2021-10-28 2022-03-18 浙江大学 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
WO2023137812A1 (zh) * 2022-01-21 2023-07-27 浙江大学 基于虚拟域张量填充的互质面阵二维波达方向估计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552532B (zh) * 2021-07-09 2022-03-22 浙江大学 基于耦合张量分解的l型互质阵列波达方向估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143228A (zh) * 2018-08-28 2019-01-04 海南大学 互耦条件下双基地mimo雷达非圆目标的角度估计方法
CN111610486A (zh) * 2020-05-03 2020-09-01 浙江大学 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN111624545A (zh) * 2020-05-03 2020-09-04 浙江大学 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法
CN112904272A (zh) * 2021-01-18 2021-06-04 浙江大学 基于互相关张量的三维互质立方阵列波达方向估计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068494A1 (zh) * 2020-05-03 2021-04-15 浙江大学 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN112269172B (zh) 2020-10-14 2024-03-08 中国人民解放军空军工程大学 一种基于张量结构的嵌套mimo雷达角度估计方法和装置
CN113552532B (zh) * 2021-07-09 2022-03-22 浙江大学 基于耦合张量分解的l型互质阵列波达方向估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143228A (zh) * 2018-08-28 2019-01-04 海南大学 互耦条件下双基地mimo雷达非圆目标的角度估计方法
CN111610486A (zh) * 2020-05-03 2020-09-01 浙江大学 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN111624545A (zh) * 2020-05-03 2020-09-04 浙江大学 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法
CN112904272A (zh) * 2021-01-18 2021-06-04 浙江大学 基于互相关张量的三维互质立方阵列波达方向估计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG XU等: "Tensor Decomposition Based DOA Estimation for", 《2020 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO)》 *
PENG HAN等: "Direction Finding for both Uncorrelated and Coherent Signals in Improved Uniform Circular Array", 《2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC)》 *
饶伟等: "基于张量的互质面阵信号处理方法", 《通信学报》 *
黄翔东等: "基于差集表遍历搜索的互素阵列DOA估计器", 《系统工程与电子技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200388A (zh) * 2021-10-28 2022-03-18 浙江大学 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
WO2023070499A1 (zh) * 2021-10-28 2023-05-04 浙江大学 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
WO2023137812A1 (zh) * 2022-01-21 2023-07-27 浙江大学 基于虚拟域张量填充的互质面阵二维波达方向估计方法

Also Published As

Publication number Publication date
US12117545B2 (en) 2024-10-15
WO2023279411A1 (zh) 2023-01-12
CN113552532B (zh) 2022-03-22
US20230213606A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN113552532B (zh) 基于耦合张量分解的l型互质阵列波达方向估计方法
CN109932680B (zh) 一种基于平移互质阵列的非圆信号波达方向估计方法
CN109655799B (zh) 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN109444810B (zh) 一种非负稀疏贝叶斯学习框架下的互质阵列非网格doa估计方法
CN111610486B (zh) 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN107092004B (zh) 基于信号子空间旋转不变性的互质阵列波达方向估计方法
CN108375751B (zh) 多信源波达方向估计方法
CN105548957B (zh) 一种未知有色噪声下多目标远近场混合源定位方法
CN111624545B (zh) 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法
WO2022151511A1 (zh) 基于互相关张量的三维互质立方阵列波达方向估计方法
US11422177B2 (en) Spatial spectrum estimation method with enhanced degree-of-freedom based on block sampling tensor construction for coprime planar array
WO2021068496A1 (zh) 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法
CN112731275B (zh) 一种基于零化插值的互质阵部分极化信号参数估计方法
CN109507636B (zh) 基于虚拟域信号重构的波达方向估计方法
CN113075610B (zh) 一种基于互质极化阵列的差分阵列内插的doa估计方法
CN110749857A (zh) 基于秩损法的均匀矩形阵列二维非圆信号doa估计方法
CN111610485A (zh) 基于平面互质阵列块采样张量信号构造的自由度增强型空间谱估计方法
CN111965591A (zh) 一种基于四阶累积量矢量化dft的测向估计方法
WO2023070499A1 (zh) 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
US20210364591A1 (en) High-resolution, accurate, two-dimensional direction-of-arrival estimation method based on coarray tensor spatial spectrum searching with co-prime planar array
CN114648041A (zh) 一种基于平行稀疏阵列的二维欠定doa估计算法
CN113325364A (zh) 一种基于数据压缩的空时联合测向方法
CN114114142A (zh) 一种基于协方差扩展pm算法的波达方向估计方法
CN117214810A (zh) 一种基于虚拟阵元的近远场混合参数估计方法
CN117826076A (zh) 一种基于空时信息联合的近场源三维参数欠定估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant