CN114200388A - 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法 - Google Patents

基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法 Download PDF

Info

Publication number
CN114200388A
CN114200388A CN202111261630.0A CN202111261630A CN114200388A CN 114200388 A CN114200388 A CN 114200388A CN 202111261630 A CN202111261630 A CN 202111261630A CN 114200388 A CN114200388 A CN 114200388A
Authority
CN
China
Prior art keywords
array
tensor
order
prime
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111261630.0A
Other languages
English (en)
Inventor
陈积明
郑航
周成伟
史治国
王滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111261630.0A priority Critical patent/CN114200388A/zh
Priority to PCT/CN2021/127305 priority patent/WO2023070499A1/zh
Priority to US17/922,973 priority patent/US20230280433A1/en
Publication of CN114200388A publication Critical patent/CN114200388A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/143Systems for determining direction or deviation from predetermined direction by vectorial combination of signals derived from differently oriented antennae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/043Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,主要解决现有方法中信号结构受损和高阶虚拟域统计量受到噪声项干扰的问题,其实现步骤是:构建线性子阵分置的L型互质阵列;L型互质阵列的接收信号建模及其二阶互相关矩阵推导;推导基于互相关矩阵的四阶协方差张量;基于核张量阈值化处理实现四阶采样协方差张量去噪;推导基于去噪采样协方差张量的四阶虚拟域信号;构造去噪的结构化虚拟域张量;通过结构化虚拟域张量分解获得波达方向估计结果。本发明充分利用所构建子阵分置式L型互质阵列的高阶张量统计分布特性,通过去噪虚拟域张量信号处理实现高精度的二维波达方向估计,可用于目标定位。

Description

基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波 达方向估计方法
技术领域
本发明属于阵列信号处理技术领域,尤其涉及基于多维稀疏阵列高阶虚拟域统计量的统计信号处理技术,具体是一种基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,可用于目标定位。
背景技术
互质阵列作为一种具有系统化结构的稀疏阵列,具备大孔径、高分辨率、高自由度的优势,能够突破奈奎斯特采样速率的限制,实现波达方向估计综合性能的提升。为了在互质阵列场景下实现匹配奈奎斯特采样速率的波达方向估计,常用做法是将互质阵列接收信号推导至高阶统计量模型,通过构造增广的虚拟均匀阵列实现基于虚拟域信号处理的波达方向估计。然而,现有方法通常将接收信号建模成矢量,并通过矢量化接收信号协方差矩阵推导虚拟域信号。在部署多维互质阵列的场景中,由于接收信号涵盖多维度的时空信息,矢量化信号的处理方式损失了互质阵列接收信号的原始结构化信息。张量作为一种多维的数据类型,可以用于表征复杂的电磁信息,保留接收信号的原始结构,因此逐渐被应用于阵列信号处理领域。然而,现有张量信号处理方法仅在匹配奈奎斯特采样速率的前提下有效,尚未涉及到互质阵列稀疏信号的高阶统计分析及其虚拟域拓展。
张量分解作为一种重要的多维信号特征提取工具,对噪声敏感性高,而传统基于高阶信号统计量的虚拟域推导方法往往引入了复杂的噪声项,为实现基于张量模型的互质阵列虚拟域拓展带来了巨大挑战。一方面,传统方法基于接收信号的自相关统计量推导增广虚拟域,而由噪声自相关所引入的噪声功率将对张量统计量处理造成干扰;另一方面,传统方法基于采样信号的统计计算估计得到高阶采样协方差统计量,而引入了高阶采样噪声,从而对高阶协方差张量的分解处理带来严重影响。为此,如何在多维互质阵列的场景下同时克服噪声功率和高阶采样噪声干扰,进行去噪的虚拟域张量推导,并基于去噪虚拟域张量处理实现高精度的二维波达方向估计,仍然是一个亟待解决的问题。
发明内容
本发明的目的在于针对现有方法存在的多维稀疏阵列接收信号结构受损和高阶虚拟域统计量受到噪声项干扰问题,提出一种基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,为通过高阶张量统计量去噪处理实现高精度的二维波达方向估计提供了可行的思路和有效的解决方案。
本发明的目的是通过以下技术方案来实现的:一种基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,该方法包含以下步骤:
(1)接收端使用
Figure BDA0003325951160000021
个物理天线阵元,构建一个线性子阵分置的L型互质阵列;该L型互质阵列由位于x轴和y轴上的两个互质线性阵列
Figure BDA0003325951160000022
组成,两个互质线性阵列
Figure BDA0003325951160000023
Figure BDA0003325951160000024
的首阵元分别从x轴和y轴上坐标为1位置开始布设;互质线性阵列
Figure BDA0003325951160000025
中包含
Figure BDA0003325951160000026
个阵元,其中,
Figure BDA0003325951160000027
Figure BDA0003325951160000028
为一对互质整数,
Figure BDA0003325951160000029
|·|表示集合的势;分别用
Figure BDA00033259511600000210
Figure BDA00033259511600000211
表示L型互质阵列各阵元在x轴和y轴上的位置,其中,
Figure BDA00033259511600000212
单位间隔d取为入射窄带信号波长的一半;
(2)假设有K个来自
Figure BDA00033259511600000213
方向的远场窄带非相干信号源,则组成L型互质阵列的互质线性阵列
Figure BDA00033259511600000214
接收信号建模为:
Figure BDA00033259511600000215
其中,sk=[sk,1,sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,o表示矢量外积,
Figure BDA00033259511600000216
为与各信号源相互独立的噪声,
Figure BDA00033259511600000217
Figure BDA00033259511600000218
的导引矢量,对应于来波方向为
Figure BDA00033259511600000219
的信号源,表示为:
Figure BDA00033259511600000220
其中,
Figure BDA0003325951160000031
Figure BDA0003325951160000032
[·]T表示转置操作;通过求
Figure BDA0003325951160000033
Figure BDA0003325951160000034
的互相关统计量,得到二阶互相关矩阵
Figure BDA0003325951160000035
Figure BDA0003325951160000036
其中,
Figure BDA0003325951160000037
表示第k个入射信号源的功率,E{·}表示取数学期望操作,(·)H表示共轭转置操作,(·)*表示共轭操作;
(3)计算二阶互相关矩阵
Figure BDA0003325951160000038
的自相关,得到四阶协方差张量
Figure BDA0003325951160000039
Figure BDA00033259511600000310
Figure BDA00033259511600000311
在实际中,它可以通过四阶采样协方差张量
Figure BDA00033259511600000312
近似替代,即:
Figure BDA00033259511600000313
其中,
Figure BDA00033259511600000314
为四阶采样噪声张量;将
Figure BDA00033259511600000315
中的第
Figure BDA00033259511600000316
个元素表示为
Figure BDA00033259511600000317
Figure BDA00033259511600000318
服从近似复高斯分布,且其近似方差
Figure BDA00033259511600000319
表示为:
Figure BDA00033259511600000320
其中λ1,λ2和λ3表示三项子方差项
Figure BDA0003325951160000041
Figure BDA0003325951160000042
Figure BDA0003325951160000043
的组合权重,
Figure BDA0003325951160000044
表示噪声功率;
(4)对四阶采样协方差张量
Figure BDA0003325951160000045
进行高阶奇异值分解:
Figure BDA0003325951160000046
其中,
Figure BDA0003325951160000047
表示核张量,包含了来自
Figure BDA0003325951160000048
中信号和噪声分量的投影,
Figure BDA0003325951160000049
Figure BDA00033259511600000410
表示对应
Figure BDA00033259511600000411
四个维度的奇异矩阵;对
Figure BDA00033259511600000412
进行阈值化处理,即将
Figure BDA00033259511600000413
中小于等于噪声阈值∈的元素进行置零,而保留大于噪声阈值∈的元素,从而得到阈值化处理后的核张量
Figure BDA00033259511600000414
中的元素表示为:
Figure BDA00033259511600000415
其中,
Figure BDA00033259511600000416
表示
Figure BDA00033259511600000417
的第
Figure BDA00033259511600000439
个元素,噪声阈值∈为:
Figure BDA00033259511600000418
进一步地,利用阈值化处理后的核张量
Figure BDA00033259511600000419
乘上四个奇异矩阵Y(1),Y(2),Y(3)和Y(4),得到去噪采样协方差张量
Figure BDA00033259511600000420
表示为:
Figure BDA00033259511600000421
(5)定义维度集合
Figure BDA00033259511600000422
通过对去噪采样协方差张量
Figure BDA00033259511600000423
进行维度合并的张量变换,得到四阶虚拟域信号
Figure BDA00033259511600000424
Figure BDA00033259511600000425
其中,
Figure BDA00033259511600000426
Figure BDA00033259511600000427
分别通过在指数项上形成差集数组,构造出x轴和y轴上的增广虚拟线性阵列,
Figure BDA00033259511600000428
表示Kronecker积;
Figure BDA00033259511600000429
对应一个二维非连续虚拟十字阵列
Figure BDA00033259511600000430
Figure BDA00033259511600000431
中包含一个虚拟均匀十字阵列
Figure BDA00033259511600000432
其中
Figure BDA00033259511600000433
Figure BDA00033259511600000434
分别为x轴和y轴上的虚拟均匀线性阵列;
Figure BDA00033259511600000435
Figure BDA00033259511600000436
中各虚拟阵元的位置分别表示为
Figure BDA00033259511600000437
Figure BDA00033259511600000438
Figure BDA0003325951160000051
其中
Figure BDA0003325951160000052
Figure BDA0003325951160000053
Figure BDA0003325951160000054
Figure BDA0003325951160000055
从非连续虚拟十字阵列
Figure BDA00033259511600000531
的虚拟域信号
Figure BDA0003325951160000056
中提取对应于虚拟均匀十字阵列
Figure BDA0003325951160000057
中各虚拟阵元位置的元素,得到
Figure BDA0003325951160000058
所对应的四阶虚拟域信号
Figure BDA0003325951160000059
(6)从
Figure BDA00033259511600000510
Figure BDA00033259511600000511
中分别提取子阵列
Figure BDA00033259511600000512
Figure BDA00033259511600000513
作为平移窗口;然后,分别将平移窗口
Figure BDA00033259511600000514
Figure BDA00033259511600000515
沿着x轴和y轴的负半轴方向逐次平移一个虚拟阵元间隔d,得到Jx个虚拟均匀线性子阵列
Figure BDA00033259511600000516
Figure BDA00033259511600000517
和Jy个虚拟均匀线性子阵列
Figure BDA00033259511600000518
Figure BDA00033259511600000519
jx=1,2,...,Jx,jy=1,2,...,Jy
Figure BDA00033259511600000520
Figure BDA00033259511600000521
则虚拟均匀子阵列
Figure BDA00033259511600000522
所对应的虚拟域信号可表示为
Figure BDA00033259511600000523
固定jy索引,将
Figure BDA00033259511600000524
在第三维度上进行叠加,得到Jy个三维的虚拟域张量,然后,将这Jy个三维的虚拟域张量在第四维度上进行叠加,得到一个四维的去噪结构化虚拟域张量
Figure BDA00033259511600000525
表示为:
Figure BDA00033259511600000526
其中,
Figure BDA00033259511600000527
Figure BDA00033259511600000528
分别为
Figure BDA00033259511600000529
Figure BDA00033259511600000530
的导引矢量,
Figure BDA0003325951160000061
Figure BDA0003325951160000062
分别为沿着x轴和y轴方向的平移因子;
(7)通过canonical polyadic decomposition(CPD)对去噪结构化虚拟域张量
Figure BDA0003325951160000063
进行张量分解,得到
Figure BDA0003325951160000064
各空间因子的估计值,即
Figure BDA0003325951160000065
Figure BDA0003325951160000066
中提取参数
Figure BDA0003325951160000067
Figure BDA0003325951160000068
并根据{μ1(k),μ2(k)}与二维波达方向
Figure BDA0003325951160000069
的关系得到二维波达方向估计
Figure BDA00033259511600000610
的闭式解。
进一步地,步骤(1)所述线性子阵分置的L型互质阵列结构具体描述为:组成L型互质阵列的互质线性阵列
Figure BDA00033259511600000611
由一对稀疏均匀线性子阵列构成,两个稀疏均匀线性子阵列分别包含
Figure BDA00033259511600000612
Figure BDA00033259511600000613
个天线阵元,阵元间距分别为
Figure BDA00033259511600000614
Figure BDA00033259511600000615
Figure BDA00033259511600000616
中两个稀疏线性均匀子阵列按照首阵元重叠的方式进行组合,获得包含
Figure BDA00033259511600000617
个阵元的互质线性阵列
Figure BDA00033259511600000618
进一步地,步骤(3)所述的四阶采样噪声张量
Figure BDA00033259511600000619
Figure BDA00033259511600000620
Figure BDA00033259511600000621
Figure BDA00033259511600000622
中的第
Figure BDA00033259511600000623
个元素分别表示成
Figure BDA00033259511600000624
Figure BDA00033259511600000625
Figure BDA00033259511600000626
Figure BDA00033259511600000627
中的第
Figure BDA00033259511600000628
个元素表示为:
Figure BDA00033259511600000629
由于
Figure BDA00033259511600000630
Figure BDA00033259511600000631
分别服从近似复高斯分布,即:
Figure BDA00033259511600000632
Figure BDA0003325951160000071
Figure BDA0003325951160000072
因此
Figure BDA0003325951160000073
Figure BDA0003325951160000074
Figure BDA0003325951160000075
Figure BDA0003325951160000076
Figure BDA0003325951160000077
从而得出
Figure BDA0003325951160000078
也服从近似复高斯分布,且其近似方差
Figure BDA0003325951160000079
表示为:
Figure BDA00033259511600000710
进一步地,步骤(5)所述的四阶虚拟域信号推导,对应于虚拟均匀十字阵列
Figure BDA00033259511600000711
的虚拟域信号
Figure BDA00033259511600000712
可表示为:
Figure BDA00033259511600000713
其中,
Figure BDA00033259511600000714
Figure BDA00033259511600000715
分别表示
Figure BDA00033259511600000716
Figure BDA00033259511600000717
的导引矢量。
进一步地,步骤(7)所述的二维波达方向估计过程,从
Figure BDA0003325951160000081
中提取参数
Figure BDA0003325951160000082
Figure BDA0003325951160000083
Figure BDA0003325951160000084
Figure BDA0003325951160000085
其中,∠(·)表示复数的取幅角操作;根据{μ1(k),μ2(k)}与二维波达方向
Figure BDA0003325951160000086
的关系,即
Figure BDA0003325951160000087
Figure BDA0003325951160000088
得到二维波达方向估计
Figure BDA0003325951160000089
的闭式解:
Figure BDA00033259511600000810
Figure BDA00033259511600000811
进一步地,在步骤(7)中,根据CPD的唯一性条件,对
Figure BDA00033259511600000812
进行CPD需满足以下条件:
Figure BDA00033259511600000813
其中,κ(·)表示矩阵的Kruskal秩,
Figure BDA00033259511600000814
Figure BDA00033259511600000815
Figure BDA00033259511600000816
Figure BDA00033259511600000817
的因子矩阵;将
Figure BDA00033259511600000818
Figure BDA00033259511600000819
Figure BDA00033259511600000820
代入CPD唯一性条件不等式中,得到
Figure BDA00033259511600000821
其中
Figure BDA00033259511600000822
表示向上取整操作;因此,本发明所提方法可实现波达方向估计的最大目标数量为
Figure BDA00033259511600000823
Figure BDA00033259511600000824
本发明与现有技术相比具有以下优点:
(1)本发明通过对子阵分置式L型互质阵列接收信号进行互相关计算,得到了去除噪声功率干扰的二阶信号统计量,并以此为基础进一步拓展四阶协方差张量,实现了虚拟域张量推导;
(2)本发明基于互质阵列四阶采样协方差张量的统计特性分析,设计了基于核张量阈值滤波的四阶采样协方差张量去噪方法,为抑制采样噪声干扰,构造去噪虚拟域张量奠定了基础;
(3)本发明提出了去噪虚拟域信号的结构化叠加机制,并对构造的去噪结构化虚拟域张量进行张量分解和角度信息提取,实现了欠定条件下的精确二维波达方向估计。
附图说明
图1是本发明的总体流程框图。
图2是本发明所提子阵分置式L型互质阵列的结构示意图。
图3是本发明所构造虚拟均匀十字阵列及其虚拟均匀子阵列示意图。
图4是传统Tensor MUSIC方法的二维欠定波达方向估计结果图。
图5是本发明所提方法的二维欠定波达方向估计结果图。
具体实施方式
以下参照附图,对本发明的技术方案作进一步的详细说明。
为了解决现有方法存在的信号结构受损和高阶虚拟域统计量受到噪声项干扰问题,本发明提出了一种基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,通过推导子阵分置式L型互质阵列的高阶张量统计量,设计针对采样协方差张量的去噪技术,并基于去噪的虚拟域张量信号处理实现高精度的二维波达方向估计。参照图1,本发明的实现步骤如下:
步骤1:构建线性子阵分置的L型互质阵列。在接收端使用
Figure BDA0003325951160000091
Figure BDA0003325951160000092
个物理天线阵元构建线性子阵分置的L型互质阵列,如图2所示:在x轴和y轴上分别构造一个互质线性阵列
Figure BDA0003325951160000093
Figure BDA0003325951160000094
中包含
Figure BDA0003325951160000095
Figure BDA0003325951160000096
个天线阵元,其中,
Figure BDA0003325951160000097
Figure BDA0003325951160000098
为一对互质整数,|·|表示集合的势;这两个互质线性阵列
Figure BDA0003325951160000099
Figure BDA00033259511600000910
的首阵元分别从x轴和y轴上坐标为1位置开始布设,因此,组成L型互质阵列的两个互质线性阵列
Figure BDA00033259511600000911
Figure BDA00033259511600000912
互不重叠;分别用
Figure BDA00033259511600000913
Figure BDA00033259511600000914
表示L型互质阵列各阵元在x轴和y轴上的位置,其中,
Figure BDA00033259511600000915
单位间隔d取为入射窄带信号波长的一半;构成L型互质阵列的两个分置互质线性阵列
Figure BDA00033259511600000916
分别由一对稀疏均匀线性子阵列组成,两个稀疏均匀线性子阵列分别包含
Figure BDA0003325951160000101
Figure BDA0003325951160000102
个天线阵元,
Figure BDA0003325951160000103
阵元间距分别为
Figure BDA0003325951160000104
Figure BDA0003325951160000105
并按照首阵元重叠的方式进行组合,获得包含
Figure BDA0003325951160000106
个阵元的互质线性阵列
Figure BDA0003325951160000107
步骤2:L型互质阵列的接收信号建模及其二阶互相关矩阵推导。假设有K个来自
Figure BDA0003325951160000108
方向的远场窄带非相干信号源,则将组成L型互质阵列两个互质线性阵列
Figure BDA0003325951160000109
Figure BDA00033259511600001010
的接收信号建模为:
Figure BDA00033259511600001011
其中,sk=[Sk,1,Sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,
Figure BDA00033259511600001012
表示矢量外积,
Figure BDA00033259511600001013
为与各信号源相互独立的噪声,
Figure BDA00033259511600001014
Figure BDA00033259511600001015
的导引矢量,对应于来波方向为
Figure BDA00033259511600001016
的信号源,表示为:
Figure BDA00033259511600001017
其中,
Figure BDA00033259511600001018
Figure BDA00033259511600001019
表示转置操作;通过求互质线性阵列
Figure BDA00033259511600001020
Figure BDA00033259511600001021
采样信号
Figure BDA00033259511600001022
Figure BDA00033259511600001023
的互相关统计量,得到二阶互相关矩阵
Figure BDA00033259511600001024
Figure BDA00033259511600001025
其中,
Figure BDA00033259511600001026
表示第k个入射信号源的功率,E{·}表示取数学期望操作,(·)H表示共轭转置操作,(·)*表示共轭操作;通过对接收信号进行互相关计算,消除了由噪声
Figure BDA00033259511600001027
自相关计算引入的噪声功率项,即
Figure BDA00033259511600001028
其中
Figure BDA00033259511600001029
表示噪声功率,I表示单位矩阵。
步骤3:推导基于互相关矩阵的四阶协方差张量。为了实现增广虚拟阵列推导,在二阶互相关统计量的基础上,进一步推导L型互质阵列的四阶统计量。具体而言,通过对二阶互相关矩阵
Figure BDA00033259511600001030
求其自相关得到四阶协方差张量
Figure BDA00033259511600001031
Figure BDA00033259511600001032
Figure BDA0003325951160000111
在实际中,它可以通过估计接收信号
Figure BDA0003325951160000112
Figure BDA0003325951160000113
的四阶统计量得到,即四阶采样协方差张量
Figure BDA0003325951160000114
Figure BDA0003325951160000115
其中,
Figure BDA0003325951160000116
为四阶采样噪声张量。将
Figure BDA0003325951160000117
Figure BDA0003325951160000118
中的第
Figure BDA0003325951160000119
个元素分别表示成
Figure BDA00033259511600001110
Figure BDA00033259511600001111
Figure BDA00033259511600001112
Figure BDA00033259511600001113
Figure BDA00033259511600001114
中的第
Figure BDA00033259511600001115
个元素可以表示为:
Figure BDA00033259511600001116
其中,
Figure BDA00033259511600001117
由于
Figure BDA00033259511600001118
Figure BDA00033259511600001119
分别服从近似复高斯分布,即:
Figure BDA00033259511600001120
Figure BDA00033259511600001121
Figure BDA0003325951160000121
因此
Figure BDA0003325951160000122
Figure BDA0003325951160000123
Figure BDA0003325951160000124
Figure BDA0003325951160000125
Figure BDA0003325951160000126
从而得出
Figure BDA0003325951160000127
也服从近似复高斯分布,且其近似方差
Figure BDA0003325951160000128
表示为:
Figure BDA0003325951160000129
其中λ1,λ2和λ3表示三项子方差
Figure BDA00033259511600001210
Figure BDA00033259511600001211
Figure BDA00033259511600001212
的组合权重。
步骤4:基于核张量阈值化处理实现四阶采样协方差张量去噪。针对四阶采样协方差张量
Figure BDA00033259511600001213
对其进行高阶奇异值分解:
Figure BDA00033259511600001214
其中,
Figure BDA00033259511600001215
表示核张量,包含了来自
Figure BDA00033259511600001216
中信号和噪声分量的投影,
Figure BDA00033259511600001217
Figure BDA00033259511600001218
表示对应
Figure BDA00033259511600001219
四个维度的奇异矩阵;对
Figure BDA00033259511600001220
进行阈值化处理,即将
Figure BDA00033259511600001221
中小于等于噪声阈值∈的元素进行置零,并保留大于噪声阈值∈的元素,从而得到阈值化处理后的核张量
Figure BDA00033259511600001222
中的元素表示为:
Figure BDA00033259511600001223
其中,
Figure BDA00033259511600001224
表示
Figure BDA00033259511600001225
的第
Figure BDA00033259511600001226
个元素,噪声阈值∈为:
Figure BDA0003325951160000131
进一步地,利用阈值化处理后的核张量
Figure BDA0003325951160000132
乘上四个奇异矩阵Y(1),Y(2),Y(3)和Y(4),得到去噪采样协方差张量
Figure BDA0003325951160000133
表示为:
Figure BDA0003325951160000134
步骤5:推导基于去噪采样协方差张量的四阶虚拟域信号。通过合并去噪采样协方差张量
Figure BDA0003325951160000135
中表征同一方向空间信息的维度,可以使对应两个互质线性阵列
Figure BDA0003325951160000136
Figure BDA0003325951160000137
的共轭导引矢量
Figure BDA0003325951160000138
Figure BDA0003325951160000139
在指数项上形成差集数组,从而分别在x轴和y轴上构造一个增广虚拟线性阵列,对应得到一个二维非连续虚拟十字阵列
Figure BDA00033259511600001310
具体地,去噪采样协方差张量
Figure BDA00033259511600001311
的第1、3维度表征x轴方向的空间信息,第2、4维度表征y轴方向的空间信息;为此,定义维度集合
Figure BDA00033259511600001312
通过对去噪采样协方差张量
Figure BDA00033259511600001313
进行维度合并的张量变换,得到一个对应于非连续虚拟十字阵列
Figure BDA00033259511600001314
的四阶虚拟域信号
Figure BDA00033259511600001315
Figure BDA00033259511600001316
Figure BDA00033259511600001317
其中,
Figure BDA00033259511600001318
Figure BDA00033259511600001319
分别通过在指数项上形成差集数组,构造出x轴和y轴上的增广虚拟线性阵列,
Figure BDA00033259511600001320
表示Kronecker积。
Figure BDA00033259511600001321
中包含一个虚拟均匀十字阵列
Figure BDA00033259511600001322
Figure BDA00033259511600001323
的结构如图3所示,其中
Figure BDA00033259511600001324
Figure BDA00033259511600001325
分别为对应于x轴和y轴的虚拟均匀线性阵列。
Figure BDA00033259511600001326
Figure BDA00033259511600001327
中各虚拟阵元的位置分别为
Figure BDA00033259511600001328
Figure BDA00033259511600001329
Figure BDA00033259511600001330
其中
Figure BDA00033259511600001331
Figure BDA00033259511600001332
Figure BDA00033259511600001333
从非连续虚拟十字阵列
Figure BDA00033259511600001334
的虚拟域信号
Figure BDA00033259511600001335
中提取对应于虚拟均匀十字阵列
Figure BDA00033259511600001336
中各虚拟阵元位置的元素,得到
Figure BDA00033259511600001337
所对应的虚拟域信号
Figure BDA00033259511600001338
建模为:
Figure BDA0003325951160000141
其中,
Figure BDA0003325951160000142
Figure BDA0003325951160000143
分别表示
Figure BDA0003325951160000144
Figure BDA0003325951160000145
的导引矢量。
步骤6:构造去噪的结构化虚拟域张量。考虑到组成虚拟均匀十字阵列
Figure BDA0003325951160000146
的两个虚拟均匀线性阵列
Figure BDA0003325951160000147
Figure BDA0003325951160000148
分别关于x=1和y=1轴对称,从
Figure BDA0003325951160000149
Figure BDA00033259511600001410
中分别提取子阵列
Figure BDA00033259511600001411
Figure BDA00033259511600001412
作为平移窗口;然后,分别将平移窗口
Figure BDA00033259511600001413
Figure BDA00033259511600001414
沿着x轴和y轴的负半轴方向逐次平移一个虚拟阵元间隔d,得到Jx个虚拟均匀线性子阵列
Figure BDA00033259511600001415
Figure BDA00033259511600001416
和Jy个虚拟均匀线性子阵列
Figure BDA00033259511600001417
Figure BDA00033259511600001418
如图3所示,这里,jx=1,2,...,Jx,jy=1,2,...,Jy
Figure BDA00033259511600001419
则虚拟均匀子阵列
Figure BDA00033259511600001420
所对应的虚拟域信号可表示为
Figure BDA00033259511600001421
具有相邻索引下标的虚拟域信号
Figure BDA00033259511600001422
Figure BDA00033259511600001423
之间存在y轴方向上的一步平移关系,类似地,
Figure BDA00033259511600001424
Figure BDA00033259511600001425
之间存在x轴方向上的一步平移关系。因此,将这些虚拟域信号堆叠成结构化的虚拟域张量,具体而言,固定jy索引下标,将
Figure BDA00033259511600001426
在第三维度上进行叠加,得到Jy个三维虚拟域张量,然后,将这Jy个三维虚拟域张量在第四维度上进行叠加,得到一个去噪的结构化虚拟域张量
Figure BDA00033259511600001427
表示为:
Figure BDA0003325951160000151
其中,
Figure BDA0003325951160000152
Figure BDA0003325951160000153
分别为
Figure BDA0003325951160000154
Figure BDA0003325951160000155
的导引矢量,
Figure BDA0003325951160000156
Figure BDA0003325951160000157
分别为沿着x轴和y轴方向的平移因子。
步骤7:通过结构化虚拟域张量分解获得波达方向估计结果。利用所构造的去噪结构化虚拟域张量
Figure BDA0003325951160000158
通过canonical polyadic decomposition(CPD)对其进行张量分解,得到
Figure BDA0003325951160000159
各空间因子的估计值,即
Figure BDA00033259511600001510
Figure BDA00033259511600001511
中提取参数
Figure BDA00033259511600001512
Figure BDA00033259511600001513
Figure BDA00033259511600001514
Figure BDA00033259511600001515
其中,∠(·)表示复数的取幅角操作。最后,根据参数{μ1(k),μ2(k)}与二维波达方向
Figure BDA00033259511600001516
的关系,即
Figure BDA00033259511600001517
Figure BDA00033259511600001518
得到二维波达方向估计
Figure BDA00033259511600001519
的闭式解:
Figure BDA00033259511600001520
Figure BDA00033259511600001521
根据CPD的唯一性条件,对张量
Figure BDA00033259511600001522
进行CPD需满足以下条件:
Figure BDA00033259511600001523
其中,K(·)表示矩阵的Kruskal秩,
Figure BDA00033259511600001524
Figure BDA0003325951160000161
Figure BDA0003325951160000162
Figure BDA0003325951160000163
的因子矩阵;将
Figure BDA0003325951160000164
Figure BDA0003325951160000165
Figure BDA0003325951160000166
代入CPD唯一性条件不等式中,得到
Figure BDA0003325951160000167
其中
Figure BDA0003325951160000168
表示向上取整操作;因此,本发明所提方法可实现波达方向估计的最大目标数量为
Figure BDA0003325951160000169
Figure BDA00033259511600001610
下面结合仿真实例对本发明的效果做进一步的描述。
仿真实例:采用子阵分置式L型互质阵列接收入射信号,其参数选取为
Figure BDA00033259511600001611
即架构的L型互质阵列共包含
Figure BDA00033259511600001612
Figure BDA00033259511600001613
个天线阵元。假定有22个入射窄带信号,波达方向的二维参数μ1(k)和μ2(k)分别在[-0.97,0.97]上均匀分布。子方差组合权重λ1=1,λ2=0.25,λ3=1。将本发明所提基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法与传统Tensor Multiple Signal Classification(Tensor MUSIC)方法进行对比,在信噪比SNR=一5dB,采样快拍数为T=500条件下,上述方法在欠定条件下的二维波达方向估计性能分别如图4和图5所示。
可以看出,在欠定条件下,本发明所提方法能够准确估计出所有信源的二维波达方向,而Tensor MUSIC方法无法有效地估计出所有信源的二维波达方向。相比于传统的Tensor MUSIC方法,本发明所提方法通过构建去噪的虚拟域张量,在抑制噪声功率和采样高阶噪声干扰的前提下,实现了二维波达方向的精确估计,在欠定条件下具备更为优越的波达方向估计性能。
综上所述,本发明通过构建L型互质阵列多维虚拟域与去噪高阶张量统计量之间的关联,挖掘了高阶采样协方差张量的统计分布特性,以此为基础设计高阶采样协方差张量的去噪处理方法;再者,建立起去噪高阶虚拟域信号的结构化空间分割和叠加机理,从而构造去噪的结构化虚拟域张量,通过对其进行张量分解,实现了二维波达方向的精确估计,并给出了其闭式解。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (6)

1.一种基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,其特征在于,包含以下步骤:
(1)接收端使用
Figure FDA0003325951150000011
个物理天线阵元,构建一个线性子阵分置的L型互质阵列;该L型互质阵列由位于x轴和y轴上的两个互质线性阵列
Figure FDA0003325951150000012
组成,两个互质线性阵列
Figure FDA0003325951150000013
Figure FDA0003325951150000014
的首阵元分别从x轴和y轴上坐标为1位置开始布设;互质线性阵列
Figure FDA0003325951150000015
中包含
Figure FDA0003325951150000016
个阵元,其中,
Figure FDA0003325951150000017
Figure FDA0003325951150000018
为一对互质整数,
Figure FDA0003325951150000019
|·|表示集合的势;分别用
Figure FDA00033259511500000110
Figure FDA00033259511500000111
表示L型互质阵列各阵元在x轴和y轴上的位置,其中,
Figure FDA00033259511500000112
单位间隔d取为入射窄带信号波长的一半;
(2)假设有K个来自
Figure FDA00033259511500000113
方向的远场窄带非相干信号源,则组成L型互质阵列的互质线性阵列
Figure FDA00033259511500000114
接收信号建模为:
Figure FDA00033259511500000115
其中,sk=[sk,1,sk,2,...,sk,T]T为对应第k个入射信号源的多快拍采样信号波形,T为采样快拍数,
Figure FDA00033259511500000116
表示矢量外积,
Figure FDA00033259511500000117
为与各信号源相互独立的噪声,
Figure FDA00033259511500000118
Figure FDA00033259511500000119
的导引矢量,对应于来波方向为
Figure FDA00033259511500000120
的信号源,表示为:
Figure FDA00033259511500000121
其中,
Figure FDA00033259511500000122
[·]T表示转置操作;通过求
Figure FDA00033259511500000123
Figure FDA00033259511500000124
的互相关统计量,得到二阶互相关矩阵
Figure FDA00033259511500000125
Figure FDA00033259511500000126
其中,
Figure FDA00033259511500000127
表示第k个入射信号源的功率,E{·}表示取数学期望操作,(·)H表示共轭转置操作,(·)*表示共轭操作;
(3)计算二阶互相关矩阵
Figure FDA0003325951150000021
的自相关,得到四阶协方差张量
Figure FDA0003325951150000022
Figure FDA0003325951150000023
Figure FDA0003325951150000024
在实际中,通过四阶采样协方差张量
Figure FDA0003325951150000025
近似替代,即:
Figure FDA0003325951150000026
其中,
Figure FDA0003325951150000027
为四阶采样噪声张量;将
Figure FDA0003325951150000028
中的第
Figure FDA0003325951150000029
个元素表示为
Figure FDA00033259511500000210
Figure FDA00033259511500000211
Figure FDA00033259511500000212
服从近似复高斯分布,且其近似方差
Figure FDA00033259511500000213
表示为:
Figure FDA00033259511500000214
其中λ1,λ2和λ3表示三项子方差项
Figure FDA00033259511500000215
Figure FDA00033259511500000216
的组合权重,
Figure FDA00033259511500000217
表示噪声功率;
(4)对四阶采样协方差张量
Figure FDA00033259511500000218
进行高阶奇异值分解:
Figure FDA00033259511500000219
其中,
Figure FDA00033259511500000220
表示核张量,包含了来自
Figure FDA00033259511500000221
中信号和噪声分量的投影,
Figure FDA0003325951150000031
Figure FDA0003325951150000032
表示对应
Figure FDA0003325951150000033
四个维度的奇异矩阵;对
Figure FDA0003325951150000034
进行阈值化处理,即将
Figure FDA0003325951150000035
中小于等于噪声阈值∈的元素进行置零,而保留大于噪声阈值∈的元素,从而得到阈值化处理后的核张量
Figure FDA0003325951150000036
中的元素表示为:
Figure FDA0003325951150000037
其中,
Figure FDA0003325951150000038
表示
Figure FDA0003325951150000039
的第
Figure FDA00033259511500000310
个元素,噪声阈值∈为:
Figure FDA00033259511500000311
利用阈值化处理后的核张量
Figure FDA00033259511500000312
乘上四个奇异矩阵Y(1),Y(2),Y(3)和Y(4),得到去噪采样协方差张量
Figure FDA00033259511500000313
表示为:
Figure FDA00033259511500000314
(5)定义维度集合
Figure FDA00033259511500000315
通过对去噪采样协方差张量
Figure FDA00033259511500000316
进行维度合并的张量变换,得到四阶虚拟域信号
Figure FDA00033259511500000317
Figure FDA00033259511500000318
其中,
Figure FDA00033259511500000319
Figure FDA00033259511500000320
分别通过在指数项上形成差集数组,构造出x轴和y轴上的增广虚拟线性阵列,
Figure FDA00033259511500000321
表示Kronecker积;
Figure FDA00033259511500000322
对应一个二维非连续虚拟十字阵列
Figure FDA00033259511500000323
Figure FDA00033259511500000324
中包含一个虚拟均匀十字阵列
Figure FDA00033259511500000325
其中
Figure FDA00033259511500000326
Figure FDA00033259511500000327
分别为x轴和y轴上的虚拟均匀线性阵列;
Figure FDA00033259511500000328
Figure FDA00033259511500000329
中各虚拟阵元的位置分别表示为
Figure FDA00033259511500000330
Figure FDA00033259511500000331
Figure FDA00033259511500000332
其中
Figure FDA00033259511500000333
Figure FDA00033259511500000334
Figure FDA00033259511500000335
Figure FDA00033259511500000336
从非连续虚拟十字阵列
Figure FDA00033259511500000337
的虚拟域信号
Figure FDA00033259511500000338
中提取对应于虚拟均匀十字阵列
Figure FDA00033259511500000339
中各虚拟阵元位置的元素,得到
Figure FDA00033259511500000340
所对应的四阶虚拟域信号
Figure FDA00033259511500000341
(6)从
Figure FDA0003325951150000041
Figure FDA0003325951150000042
中分别提取子阵列
Figure FDA0003325951150000043
Figure FDA0003325951150000044
作为平移窗口;然后,分别将平移窗口
Figure FDA0003325951150000045
Figure FDA0003325951150000046
沿着x轴和y轴的负半轴方向逐次平移一个虚拟阵元间隔d,得到Jx个虚拟均匀线性子阵列
Figure FDA0003325951150000047
Figure FDA0003325951150000048
和Jy个虚拟均匀线性子阵列
Figure FDA0003325951150000049
Figure FDA00033259511500000410
jx=1,2,...,Jx,jy=1,2,...,Jy
Figure FDA00033259511500000411
Figure FDA00033259511500000412
则虚拟均匀子阵列
Figure FDA00033259511500000413
所对应的虚拟域信号可表示为
Figure FDA00033259511500000414
固定jy索引,将
Figure FDA00033259511500000415
在第三维度上进行叠加,得至Jy个三维的虚拟域张量,然后,将这Jy个三维的虚拟域张量在第四维度上进行叠加,得到一个四维的去噪结构化虚拟域张量
Figure FDA00033259511500000416
表示为:
Figure FDA00033259511500000417
其中,
Figure FDA00033259511500000418
Figure FDA00033259511500000419
分别为
Figure FDA00033259511500000420
Figure FDA00033259511500000421
的导引矢量,
Figure FDA00033259511500000422
Figure FDA00033259511500000423
分别为沿着x轴和y轴方向的平移因子;
(7)通过CPD对去噪结构化虚拟域张量
Figure FDA00033259511500000424
进行张量分解,得到
Figure FDA00033259511500000425
各空间因子的估计值,即
Figure FDA00033259511500000426
Figure FDA00033259511500000427
中提取参数
Figure FDA0003325951150000051
Figure FDA0003325951150000052
并根据{μ1(k),μ2(k)}与二维波达方向
Figure FDA0003325951150000053
的关系得到二维波达方向估计
Figure FDA0003325951150000054
的闭式解。
2.根据权利要求1所述的基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,其特征在于,步骤(1)所述线性子阵分置的L型互质阵列结构具体描述为:组成L型互质阵列的互质线性阵列
Figure FDA0003325951150000055
由一对稀疏均匀线性子阵列构成,两个稀疏均匀线性子阵列分别包含
Figure FDA0003325951150000056
Figure FDA0003325951150000057
个天线阵元,阵元间距分别为
Figure FDA0003325951150000058
Figure FDA0003325951150000059
Figure FDA00033259511500000510
中两个稀疏线性均匀子阵列按照首阵元重叠的方式进行组合,获得包含
Figure FDA00033259511500000511
个阵元的互质线性阵列
Figure FDA00033259511500000512
3.根据权利要求1所述的基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,其特征在于,步骤(3)所述的四阶采样噪声张量
Figure FDA00033259511500000513
Figure FDA00033259511500000514
Figure FDA00033259511500000515
中的第
Figure FDA00033259511500000516
个元素分别表示成
Figure FDA00033259511500000517
Figure FDA00033259511500000518
Figure FDA00033259511500000519
中的第
Figure FDA00033259511500000520
个元素表示为:
Figure FDA00033259511500000521
由于
Figure FDA00033259511500000522
Figure FDA00033259511500000523
分别服从近似复高斯分布,即
Figure FDA00033259511500000524
Figure FDA00033259511500000525
Figure FDA00033259511500000526
因此
Figure FDA0003325951150000061
Figure FDA0003325951150000062
Figure FDA0003325951150000063
从而得出
Figure FDA0003325951150000064
也服从近似复高斯分布,且其近似方差
Figure FDA0003325951150000065
表示为:
Figure FDA0003325951150000066
4.根据权利要求1所述的基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,其特征在于,步骤(5)所述的四阶虚拟域信号推导,对应于虚拟均匀十字阵列
Figure FDA0003325951150000067
的虚拟域信号
Figure FDA0003325951150000068
可表示为:
Figure FDA0003325951150000069
其中,
Figure FDA00033259511500000610
Figure FDA00033259511500000611
分别表示
Figure FDA00033259511500000612
Figure FDA00033259511500000613
的导引矢量。
5.根据权利要求1所述的基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,其特征在于,步骤(7)所述的二维波达方向估计过程,从
Figure FDA00033259511500000614
中提取参数
Figure FDA00033259511500000615
Figure FDA00033259511500000616
Figure FDA00033259511500000617
Figure FDA00033259511500000618
其中,∠(·)表示复数的取幅角操作;根据{μ1(k),μ2(k)}与二维波达方向
Figure FDA0003325951150000071
的关系,即
Figure FDA0003325951150000072
Figure FDA0003325951150000073
得到二维波达方向估计
Figure FDA0003325951150000074
的闭式解:
Figure FDA0003325951150000075
Figure FDA0003325951150000076
6.根据权利要求1所述的基于四阶采样协方差张量去噪的子阵分置式L型互质阵列波达方向估计方法,其特征在于,在步骤(7)中,根据CPD的唯一性条件,对
Figure FDA0003325951150000077
进行CPD需满足以下条件:
Figure FDA0003325951150000078
其中,K(·)表示矩阵的Kruskal秩,
Figure FDA0003325951150000079
Figure FDA00033259511500000710
Figure FDA00033259511500000711
Figure FDA00033259511500000712
的因子矩阵;将
Figure FDA00033259511500000713
Figure FDA00033259511500000714
Figure FDA00033259511500000715
代入CPD唯一性条件不等式中,得到
Figure FDA00033259511500000716
其中
Figure FDA00033259511500000717
表示向上取整操作;因此,该方法可实现波达方向估计的最大目标数量为
Figure FDA00033259511500000718
CN202111261630.0A 2021-10-28 2021-10-28 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法 Pending CN114200388A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111261630.0A CN114200388A (zh) 2021-10-28 2021-10-28 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
PCT/CN2021/127305 WO2023070499A1 (zh) 2021-10-28 2021-10-29 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
US17/922,973 US20230280433A1 (en) 2021-10-28 2021-10-29 Method for estimating direction of arrival of sub-array partition type l-shaped coprime array based on fourth-order sampling covariance tensor denoising

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111261630.0A CN114200388A (zh) 2021-10-28 2021-10-28 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法

Publications (1)

Publication Number Publication Date
CN114200388A true CN114200388A (zh) 2022-03-18

Family

ID=80646476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111261630.0A Pending CN114200388A (zh) 2021-10-28 2021-10-28 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法

Country Status (3)

Country Link
US (1) US20230280433A1 (zh)
CN (1) CN114200388A (zh)
WO (1) WO2023070499A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117706475A (zh) * 2023-11-14 2024-03-15 电子科技大学长三角研究院(湖州) 一种单基地对称互质阵mimo系统及混合场定位方法
CN118013187A (zh) * 2024-02-04 2024-05-10 兰州理工大学 基于l型互质阵列的二维信号源glmb跟踪方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028388B2 (ja) * 2012-05-11 2016-11-16 富士通株式会社 到来方向推定装置、及び到来方向推定方法
CN104749552A (zh) * 2015-03-21 2015-07-01 西安电子科技大学 基于稀疏重构的互质阵列波达方向角估计方法
CN111610486B (zh) * 2020-05-03 2022-12-27 浙江大学 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN111610485B (zh) * 2020-05-03 2022-10-04 浙江大学 基于平面互质阵列块采样张量信号构造的自由度增强型空间谱估计方法
CN112904272B (zh) * 2021-01-18 2022-02-18 浙江大学 基于互相关张量的三维互质立方阵列波达方向估计方法
CN113552532B (zh) * 2021-07-09 2022-03-22 浙江大学 基于耦合张量分解的l型互质阵列波达方向估计方法

Also Published As

Publication number Publication date
WO2023070499A1 (zh) 2023-05-04
US20230280433A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
CN109655799B (zh) 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN109444810B (zh) 一种非负稀疏贝叶斯学习框架下的互质阵列非网格doa估计方法
CN108872929B (zh) 基于内插虚拟阵列协方差矩阵子空间旋转不变性的互质阵列波达方向估计方法
CN107092004B (zh) 基于信号子空间旋转不变性的互质阵列波达方向估计方法
CN111337893B (zh) 一种基于实值稀疏贝叶斯学习的离格doa估计方法
CN114200388A (zh) 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法
CN111610486B (zh) 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN111049556B (zh) 一种基于干扰协方差矩阵重构的互素阵稳健自适应波束形成方法
WO2021068496A1 (zh) 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法
US11422177B2 (en) Spatial spectrum estimation method with enhanced degree-of-freedom based on block sampling tensor construction for coprime planar array
WO2022151511A1 (zh) 基于互相关张量的三维互质立方阵列波达方向估计方法
CN113673317B (zh) 基于原子范数最小化可降维的二维离格doa估计方法
CN112731275B (zh) 一种基于零化插值的互质阵部分极化信号参数估计方法
CN113552532B (zh) 基于耦合张量分解的l型互质阵列波达方向估计方法
CN113376569B (zh) 基于最大似然的嵌套阵稀疏表示波达方向估计方法
CN111610485A (zh) 基于平面互质阵列块采样张量信号构造的自由度增强型空间谱估计方法
CN108398659B (zh) 一种矩阵束与求根music结合的波达方向估计方法
CN106980105B (zh) 电磁矢量传感器阵列空间旋转解相干测向方法
WO2021068494A1 (zh) 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法
CN116389198A (zh) 一种基于指数滤波器的多目标时延稀疏重构估计方法
CN112611999B (zh) 一种基于双四元数的电磁矢量传感器阵列角度估计方法
CN113325364A (zh) 一种基于数据压缩的空时联合测向方法
CN115390007A (zh) 基于张量链分解的稀疏立方阵列波达方向估计方法
CN114036975B (zh) 基于频域-波数域解卷积的目标信号提取方法
CN114397620A (zh) 改进和差非均匀阵列的高精度波达方向估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination