WO2023137812A1 - 基于虚拟域张量填充的互质面阵二维波达方向估计方法 - Google Patents
基于虚拟域张量填充的互质面阵二维波达方向估计方法 Download PDFInfo
- Publication number
- WO2023137812A1 WO2023137812A1 PCT/CN2022/076430 CN2022076430W WO2023137812A1 WO 2023137812 A1 WO2023137812 A1 WO 2023137812A1 CN 2022076430 W CN2022076430 W CN 2022076430W WO 2023137812 A1 WO2023137812 A1 WO 2023137812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tensor
- array
- virtual
- axis
- virtual domain
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000009466 transformation Effects 0.000 claims abstract description 15
- 230000003190 augmentative effect Effects 0.000 claims abstract description 9
- 239000013598 vector Substances 0.000 claims description 34
- 238000013519 translation Methods 0.000 claims description 23
- 238000003491 array Methods 0.000 claims description 18
- 238000005457 optimization Methods 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 12
- 238000013461 design Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 230000008602 contraction Effects 0.000 claims description 3
- 238000009795 derivation Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
- G01S3/143—Systems for determining direction or deviation from predetermined direction by vectorial combination of signals derived from differently oriented antennae
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/74—Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/04—Details
- G01S3/043—Receivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
Definitions
- the invention belongs to the technical field of array signal processing, and in particular relates to a statistical signal processing technology based on second-order high-dimensional statistics in a sparse array virtual domain, in particular to a two-dimensional DOA estimation method for a coprime array based on virtual domain tensor filling, which can be used for target positioning.
- the coprime array As a sparse array with a systematic structure, the coprime array has the advantages of large aperture and high resolution, and can break through the performance bottleneck of traditional uniform array DOA estimation in terms of estimation performance and cost. Since the sparsely arranged elements of the coprime array do not meet the Nyquist sampling rate, in order to realize the DOA estimation of the Nyquist matching, the common practice is to calculate the second-order statistics of the received signal of the coprime array to construct an augmented non-continuous virtual array, and extract the continuous part from it to realize the Nyquist matching process based on the second-order equivalent signal in the virtual domain. Furthermore, in order to make full use of all the discontinuous virtual array elements, the existing method fills the discontinuous virtual array to improve the performance of DOA estimation.
- the above method usually represents the received signal as a vector, and derives the second-order equivalent signal in the virtual domain by vectorizing the covariance matrix of the received signal; in the scenario of deploying a coprime array, since the received signal of the coprime array covers two-dimensional spatial information, this vectorized signal processing method destroys the original spatial information structure of the received signal of the coprime array, which will cause serious performance loss.
- tensor As a multi-dimensional data type, has been applied in the field of array signal processing to characterize received signals covering multi-dimensional spatial information, and perform feature analysis and effective information extraction to achieve high-precision and high-resolution DOA estimation.
- the augmented multi-dimensional non-continuous virtual array will have a whole patch of holes, resulting in a piece of missing elements in the corresponding virtual domain tensor.
- the traditional tensor filling method applied to image restoration is based on the random distribution of missing elements in the tensor, so it cannot effectively fill the virtual domain tensor. Therefore, for the virtual domain tensor model of the coprime area array, how to effectively use all the discontinuous virtual domain tensor statistical information to achieve high-precision and high-resolution two-dimensional DOA estimation is still an urgent problem to be solved.
- the purpose of the present invention is to solve the problems of the loss of multi-dimensional signal structure information and the inability to fully utilize virtual domain statistics existing in existing methods, and propose a two-dimensional direction of arrival estimation method based on virtual domain tensor filling of coprime arrays, which provides a feasible idea and an effective solution for making full use of all discontinuous virtual domain tensor statistics corresponding to coprime arrays to realize high-precision and high-resolution two-dimensional DOA estimation of Nyquist matching.
- a method for estimating a two-dimensional direction of arrival of a coprime array based on virtual domain tensor filling comprising the following steps:
- s k [s k,1 ,s k,2 ,...,s k,T ] T is the multi-snapshot sampling signal waveform corresponding to the kth incident signal source
- [ ] T represents the transpose operation
- the vector outer product represents the vector outer product
- the signal source of is expressed as:
- a two-dimensional augmented virtual plane array along the x-axis and y-axis direction is constructed, represents the Kronecker product; therefore, corresponds to a size of The non-continuous virtual array of The non-continuous virtual array Contains holes in the entire row and column, that is, missing elements;
- Subscripts that will have the same s y index subscript Superimpose in the fourth dimension to obtain L y four-dimensional tensors whose dimensions are P x ⁇ P y ⁇ 2 ⁇ L x ; further, superpose these L y four-dimensional tensors in the fifth dimension to obtain a five-dimensional virtual domain tensor
- This five-dimensional virtual domain tensor Covers spatial angle information in the x-axis and y-axis directions, spatial mirror transformation information, and spatial translation information in the x-axis and y-axis directions; defines a set of dimensions then pass Dimensions are combined to obtain a three-dimensional reconstructed virtual domain tensor
- the three dimensions of represent spatial angle information, spatial translation information, and spatial mirror transformation information respectively.
- the original virtual domain tensor Slices of missing elements in are randomly distributed to on the three spatial dimensions covered;
- the optimization variable is the padded virtual domain tensor corresponding to the virtual uniform cubic array
- the tensor kernel norm express A collection of positional indices of non-missing elements in , Indicates tensors in Mapping on ; Since the kernel norm is a convex function, the virtual field tensor filling problem based on the minimization of the tensor kernel norm is a solvable convex optimization problem. Solving the convex optimization problem, we get
- step (2) By computing the tensor and The cross-correlation statistics of are approximated, that is, the sampling cross-correlation tensor
- step (7) the filled virtual domain tensor Perform canonical polyadic decomposition to get the factor vector and then parameter and from and Extracted as:
- ⁇ ( ⁇ ) represents the operation of taking the argument of a complex number
- a (a) represents the ath element of a vector a; here, according to and ⁇ 1 ⁇ [1,P x P y -1] and ⁇ 2 ⁇ [1,L x L y -1] respectively satisfy mod( ⁇ 1 ,P x ) ⁇ 0 and mod( ⁇ 2 ,P y ) ⁇ 0, and ⁇ 1 ⁇ [1,P x P y -P x ], ⁇ 2 ⁇ [1,L x L y -L x ], mod( ⁇ ) represents the remainder operation; Parameter ( ⁇ k , v k ) and two-dimensional direction of arrival The relationship between the two-dimensional direction of arrival estimation is obtained
- the closed-form solution of is:
- the present invention has the following advantages:
- the present invention derives the augmented discontinuous virtual array based on the cross-correlation tensor, and utilizes the mirror image expansion of the discontinuous virtual array to construct a three-dimensional discontinuous virtual cubic array and its corresponding virtual domain tensor, fully retaining the structured information of all discontinuous virtual domain statistics of the coprime array;
- the present invention proposes a virtual domain tensor filling mechanism for non-continuous virtual arrays. By reconstructing the virtual domain tensor and dispersing its missing elements in pieces, the low-rank fillability of the virtual domain tensor is satisfied, thereby effectively filling the virtual domain tensor and realizing high-precision and high-resolution two-dimensional DOA estimation.
- Fig. 1 is the overall flow chart of the present invention.
- Fig. 2 is a schematic diagram of the coprime array structure constructed by the present invention.
- Fig. 3 is a schematic diagram of the augmented discontinuous virtual array derived by the present invention.
- Fig. 4 is a schematic diagram of a discontinuous virtual cubic array constructed by the present invention.
- Fig. 5 is a performance comparison chart of direction of arrival estimation accuracy of the method proposed in the present invention under different signal-to-noise ratio conditions.
- Fig. 6 is a comparison diagram of the direction of arrival estimation accuracy performance of the method proposed in the present invention under the condition of different sampling snapshot numbers.
- the present invention proposes a two-dimensional direction of arrival estimation method for coprime arrays based on virtual domain tensor filling.
- the two-dimensional direction of arrival estimation for coprime arrays based on Nyquist matching is realized.
- the realization steps of the present invention are as follows:
- Step 1 Construct a coprime surface array.
- Step 2 Tensor modeling of received signal of coprime area array.
- T sampling snapshot signals After superimposing the T sampling snapshot signals in the third dimension, a three-dimensional tensor signal can be obtained Modeled as:
- s k [s k,1 ,s k,2 ,...,s k,T ] T is the multi-snapshot sampling signal waveform corresponding to the kth incident signal source
- [ ] T represents the transpose operation
- the vector outer product represents the vector outer product
- the signal source of is expressed as:
- the received signal can be three-dimensional tensor express:
- Step 3 Construct the augmented discontinuous virtual array based on the cross-correlation tensor transformation of the coprime array. Due to the cross-correlation tensor Contains two sparse uniform sub-arrays corresponding to and The spatial information of In the dimension representing the spatial information of the same direction, the steering vectors corresponding to two sparse uniform sub-arrays can form a difference array on the exponent term, thereby constructing a two-dimensional augmented virtual area array.
- the cross-correlation tensor The 1st and 3rd dimensions of (via the steering vector and Indicates) characterizes the spatial information in the x-axis direction, the 2nd and 4th dimensions (through the steering vector and Indicates) characterizes the spatial information in the y-axis direction; for this purpose, define a set of dimensions By pairing the cross-correlation tensor Perform tensor transformation of merging dimensions to obtain a virtual domain signal
- non-continuous virtual array size is And contains holes in the entire row and column (ie: missing elements), as shown in Figure 3,
- the cross-correlation noise tensor in about omitted in the theoretical modeling step of ; however, in practice, due to the use of the sampled cross-correlation tensor Alternative Theoretical Cross-Correlation Tensor Still covered in the statistical processing of virtual domain signals;
- Step 4 Deduce the virtual domain tensor based on the mirror extension of the non-continuous virtual area array. Construct a non-continuous virtual area array About the Virtual Surface Array of Coordinate Axis Mirroring and will and Superimposed in the third dimension into a size of The three-dimensional discontinuous virtual cubic array of As shown in Figure 4. here, and Correspondingly, the virtual domain signal The conjugate transpose signal of The elements in are arranged to correspond to The position of the virtual array element in the middle can be obtained corresponding to the virtual array virtual domain signal Will and Superimpose on the third dimension to get the corresponding non-continuous virtual cubic array
- Step 5 Scatter its missing elements into pieces by reconstructing the virtual domain tensor.
- the virtual domain tensor In order to construct a virtual uniform cubic array for Nyquist-matched signal processing, the virtual domain tensor The slices of missing elements in are filled, thus corresponding to a virtual uniform cubic array
- the low-rank tensor filling technology is based on the premise of random distribution of missing elements in the tensor, and cannot be used for virtual domain tensors with slices of missing elements. for efficient filling.
- the value range of the translation window size is:
- Subscripts that will have the same s y index subscript Superimpose in the fourth dimension to obtain L y four-dimensional tensors whose dimensions are P x ⁇ P y ⁇ 2 ⁇ L x ; further, superpose these L y four-dimensional tensors in the fifth dimension to obtain a five-dimensional virtual domain tensor
- This five-dimensional virtual domain tensor Covers the spatial angle information of the x-axis and y-axis directions, the spatial mirror transformation information, and the spatial translation information of the x-axis and y-axis directions; the Merge along the 1st and 2nd dimensions of the representation space angle information, and merge along the 4th and 5th dimensions of the representation space translation information, and retain the 3rd dimension of the representation space mirror transformation information.
- the specific operation is: define a set of dimensions then pass Dimensions are merged to obtain a three-dimensional reconstructed virtual domain tensor
- the three dimensions of represent spatial angle information, spatial translation information, and spatial mirror transformation information respectively.
- the virtual domain tensor Slices of missing elements in are randomly distributed to on the three spatial dimensions covered;
- Step 6 Virtual Domain Tensor Filling Based on Tensor Kernel Norm Minimization.
- the optimization variable is the padded virtual domain tensor corresponding to the virtual uniform cubic array
- the tensor kernel norm express A collection of positional indices of non-missing elements in , Indicates tensors in on the mapping.
- the kernel norm is a convex function
- the virtual field tensor filling problem based on the minimization of the tensor kernel norm is a solvable convex optimization problem. Solving this convex optimization problem, we can get
- Step 7 Decompose the filled virtual domain tensor to obtain the DOA estimation result.
- padded virtual field tensor Can be expressed as:
- ⁇ ( ⁇ ) represents the operation of taking the argument of a complex number
- a (a) represents the ath element of a vector a; here, according to and The Kronecker structure of ⁇ 1 ⁇ [1,P x P y -1] and ⁇ 2 ⁇ [1,L x L y -1] respectively satisfy mod( ⁇ 1 ,P x ) ⁇ 0 and mod( ⁇ 2 ,P y ) ⁇ 0, and ⁇ 1 ⁇ [1,P x P y -P x ], ⁇ 2 ⁇ [1,L x L y -L x ], mod( ⁇ ) represents the remainder operation.
- mod( ⁇ ) represents the remainder operation.
- the closed-form solution of is:
- the translation window size of the subtensor is 6 ⁇ 15 ⁇ 2. Assume that there are two narrow-band incident signals, and the azimuth and elevation angles of the incident direction are [30.6°, 25.6°] and [40.5°, 50.5°], respectively.
- the method proposed in the present invention has performance advantages in the direction of arrival estimation accuracy no matter in different scenarios of expected signal-to-noise ratio (SNR) or in scenarios of different sampling snapshot numbers T.
- the proposed method of the present invention makes full use of the structural information of the coprime area array receiving signal by constructing the virtual domain tensor, thereby having better DOA estimation performance;
- the performance advantage of the proposed method of the present invention comes from filling and utilizing all non-continuous virtual domain statistical information through the virtual domain tensor, while the Tensor MUSIC method only extracts the continuous part of the non-continuous virtual array for virtual domain signal processing, resulting in the loss of virtual domain statistical information.
- the present invention realizes the randomized distribution of missing elements in a piece through virtual domain tensor reconstruction, and based on this, designs a virtual domain tensor filling method based on the minimization of the tensor kernel norm, successfully utilizes all non-continuous virtual domain statistical information, and realizes high-precision two-dimensional DOA estimation of coprime arrays.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种基于虚拟域张量填充的互质面阵二维波达方向估计方法,主要解决现有方法中多维信号结构化信息丢失和虚拟域统计量无法完全利用的问题,其实现步骤是:构建互质面阵;互质面阵接收信号的张量建模;基于互质面阵互相关张量变换构造增广非连续虚拟面阵;基于非连续虚拟面阵的镜像拓展推导虚拟域张量;通过虚拟域张量重构分散其成片缺失元素;基于张量核范数最小化的虚拟域张量填充;对填充后的虚拟域张量进行分解获得波达方向估计结果。该方法充分利用互质面阵所对应的全部非连续虚拟域张量统计量信息,实现了高精度的波达方向估计,可用于目标定位。
Description
本发明属于阵列信号处理技术领域,尤其涉及基于稀疏阵列虚拟域二阶高维统计量的统计信号处理技术,具体是一种基于虚拟域张量填充的互质面阵二维波达方向估计方法,可用于目标定位。
互质阵列作为一种具备系统化结构的稀疏阵列,具有大孔径、高分辨率的优势,能够突破传统均匀阵列波达方向估计在估计性能与成本开销层面的性能瓶颈。由于互质阵列稀疏排布的阵元不满足奈奎斯特采样速率,为了实现奈奎斯特匹配的波达方向估计,常用做法是计算互质阵列接收信号的二阶统计量,以构造增广的非连续虚拟阵列,并从中提取连续部分,以实现基于虚拟域二阶等价信号的奈奎斯特匹配处理。进一步地,为了充分利用全部的非连续虚拟阵元,现有方法对非连续虚拟阵列进行填充,以实现波达方向估计性能提升。然而,上述方法通常将接收信号表示成矢量,并通过矢量化接收信号协方差矩阵推导虚拟域二阶等价信号;在部署互质面阵的场景中,由于互质面阵接收信号涵盖二维的空间信息,这种矢量化信号的处理方法破坏了互质面阵接收信号的原始空间信息结构,将会造成严重的性能损失。
为了保留多维接收信号的结构化信息,张量作为一种多维的数据类型,开始被应用于阵列信号处理领域,用于表征涵盖多维空间信息的接收信号,并对其进行特征分析和有效信息提取,从而实现高精度高分辨的波达方向估计。然而,当涉及到互质面阵虚拟域张量统计量处理,增广的多维非连续虚拟阵列将存在整片的孔洞,导致所对应的虚拟域张量存在成片缺失的元素。传统应用于图像修复的张量填充手段以张量中缺失元素的随机分布为前提,故无法有效填充虚拟域张量。为此,针对互质面阵的虚拟域张量模型,如何有效利用全部的非连续虚拟域张量统计量信息,实现高精度高分辨的二维波达方向估计,仍然 是一个亟待解决的问题。
发明内容
本发明的目的在于针对现有方法存在的多维信号结构化信息丢失和虚拟域统计量无法完全利用问题,提出一种基于虚拟域张量填充的互质面阵二维波达方向估计方法,为充分利用互质面阵所对应的全部非连续虚拟域张量统计量信息,以实现奈奎斯特匹配的高精度高分辨二维波达方向估计提供了可行的思路和有效的解决方案。
本发明的目的是通过以下技术方案来实现的:一种基于虚拟域张量填充的互质面阵二维波达方向估计方法,该方法包含以下步骤:
(1)接收端使用4M
xM
y+N
xN
y-1个物理天线阵元,按照互质面阵的结构进行架构;其中,M
x、N
x以及M
y、N
y分别为一对互质整数;该互质面阵分解为两个稀疏均匀子面阵
和
其中
包含2M
x×2M
y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为N
xd和N
yd,
包含N
x×N
y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为M
xd和M
yd,单位间隔d取为入射窄带信号波长λ的一半,即d=λ/2;
其中,s
k=[s
k,1,s
k,2,…,s
k,T]
T为对应第k个入射信号源的多快拍采样信号波形,[·]
T表示转置操作,
表示矢量外积,
为与各信号源相互独立的噪声张量,
和
分别为
在x轴和y轴方向上的导引矢量,对应于来波方向为
的信号源,表示为:
其中,
表示第k个入射信号源的功率,
表示互相关噪声张量,<·,·>
r表示两个张量沿着第r维度的张量缩并操作,E[·]表 示取数学期望操作,(·)
*表示共轭操作;互相关噪声张量
仅在第(1,1,1,1)个位置上存在取值为
的元素,
表示噪声功率,而在其他位置上的元素取值均为0;
其中,
和
分别通过在指数项上形成差集数组,构造出沿着x轴和y轴方向的二维增广虚拟面阵,
表示Kronecker积;因此,
对应一个大小为
的非连续虚拟面阵
该非连续虚拟面阵
中包含了整行和整列的孔洞,即缺失元素;
(4)构建非连续虚拟面阵
关于坐标轴镜像的虚拟面阵
并将
和
在第三维度上叠加成一个大小为
的三维非连续虚拟立方阵列
这里,
且
对应地,将虚拟域信号
的共轭转置信号
中的元素进行重新排列,以对应
中虚拟阵元的位置,得到对应于虚拟面阵
的虚拟域信号
将
和
在第三维度上进行叠加,得到对应非连续虚拟立方阵列
的虚拟域张量
表示为:
表示对应于
和
的镜像变换因子矢量;由于非连续虚拟面阵
中包含了整行 和整列的孔洞,由
和其镜像部分
叠加得到的非连续虚拟立方阵列
中包含了成片的孔洞,对应非连续虚拟立方阵列
的虚拟域张量
由此包含了成片的缺失元素;
(5)设计一个大小为P
x×P
y×2的平移窗口选取虚拟域张量
的一个子张量
其中包含了
三个维度上索引分别为(1:P
x-1),(1:P
y-1),(1:2)的元素;随后,将平移窗口分别沿x轴和y轴方向依次平移一个元素,将
分割成L
x×L
y个子张量,表示为
s
x=1,2,…,L
x,s
y=1,2,…,L
y;该平移窗口大小的取值范围为:
且L
x、L
y、P
x、P
y之间满足以下关系:
将具有相同s
y索引下标的子张量
在第四维度进行叠加,得到L
y个维度为P
x×P
y×2×L
x的四维张量;进一步地,将这L
y个四维张量在第五维度叠加,得到一个五维虚拟域张量
这个五维虚拟域张量
涵盖了x轴和y轴方向空间角度信息、空间镜像变换信息,以及x轴和y轴方向的空间平移信息;定义维度集合
则通过
的维度合并,得到三维的重构虚拟域张量
(6)设计一个基于张量核范数最小化的虚拟域张量填充优化问题:
其中,优化变量
是填充后的虚拟域张量,对应于虚拟均匀立方阵列
表示张量核范数,
表示
中非缺失元素的位置索引集合,
表示张量在
上的映射;由于核范数是凸函数,基于张量核范数最小化的虚拟域张量填充问题是一个可解的凸优化问题,求解该凸优化问题,得到
分别为平移窗口截取子张量过程中对应于x轴和y轴方向的空间平移因子矢量;对填充后的虚拟域张量
进行canonical polyadic分解,得到三个因子矢量p
k,q
k和c
k的估计值,表示为
和
从中提取包含在
和
指数项的角度参数,得到二维波达方向估计结果
进一步地,步骤(1)所述的互质面阵结构具体描述为:在平面坐标系xoy上构造一对稀疏均匀子面阵
和
其中
包含2M
x×2M
y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为N
xd和N
yd,其在xoy上的位置坐标为{(N
xdm
x,N
ydm
y),m
x=0,1,...,2M
x-1,m
y=0,1,...,2M
y-1};
包含N
x×N
y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为M
xd和M
yd,其在xoy上的位置坐标为{(M
xdn
x,M
ydn
y),n
x=0,1,...,N
x-1,n
y=0,1,...,N
y-1};M
x、N
x以及M
y、N
y分别为一对互质整数;将
和
按照坐标系(0,0)位 置处阵元重叠的方式进行子阵列组合,获得实际包含4M
xM
y+N
xN
y-1个物理天线阵元的互质面阵。
其中,∠(·)表示复数取幅角操作,a
(a)表示一个矢量a的第a个元素;这里,根据
和
的Kronecker结构,η
1∈[1,P
xP
y-1]和η
2∈[1,L
xL
y-1]分别满足mod(η
1,P
x)≠0和mod(η
2,P
y)≠0,且δ
1∈[1,P
xP
y-P
x],δ
2∈[1,L
xL
y-L
x],mod(·)表示取余数操作;根据参数(μ
k,v
k)与二维波达方向
之间的关系,得到二维波达方向估计
的闭式解为:
本发明与现有技术相比具有以下优点:
(1)本发明基于互相关张量推导增广的非连续虚拟面阵,并利用非连续虚拟面阵的镜像拓展构造三维非连续虚拟立方阵列及其对应的虚拟域张量,充分保留了互质阵列全部非连续虚拟域统计量的结构化信息;
(2)本发明提出了面向非连续虚拟阵列的虚拟域张量填充机制,通过虚拟域张量重构分散其成片缺失的元素,以满足虚拟域张量的低秩可填充性,从而对虚拟域张量进行有效填充,实现了高精度高分辨的二维波达方向估计。
图1是本发明的总体流程框图。
图2是本发明所构建的互质面阵结构示意图。
图3是本发明所推导增广非连续虚拟面阵示意图。
图4是本发明所构造非连续虚拟立方阵列示意图。
图5是本发明所提方法在不同信噪比条件下的波达方向估计精度性能比较图。
图6是本发明所提方法在不同采样快拍数条件下的波达方向估计精度性能比较图。
以下参照附图,对本发明的技术方案作进一步的详细说明。
为了解决现有方法存在的多维信号结构化信息丢失和虚拟域统计量无法完全利用问题,本发明提出了一种基于虚拟域张量填充的互质面阵二维波达方向估计方法,通过原始虚拟域张量成片缺失元素的有效填充,以实现奈奎斯特匹配的互质面阵二维波达方向估计。参照图1,本发明的实现步骤如下:
步骤1:构建互质面阵。在接收端使用4M
xM
y+N
xN
y-1个物理天线阵元构建互质面阵,如图2所示:在平面坐标系xoy上构造一对稀疏均匀子面阵
和
其中
包含2M
x×2M
y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为N
xd和N
yd,其在xoy上的位置坐标为{(N
xdm
x,N
ydm
y),m
x=0,1,...,2M
x-1,m
y=0,1,...,2M
y-1};
包含N
x×N
y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为M
xd和M
yd,其在xoy上的位置坐标为{(M
xdn
x,M
ydn
y),n
x=0,1,...,N
x-1,n
y=0,1,...,N
y-1};M
x、N
x以及M
y、N
y分别为一对互质整数;单位间隔d取为入射窄带信号波长λ的一半,即d=λ/2;将
和
按 照坐标系(0,0)位置处阵元重叠的方式进行子阵列组合,获得实际包含4M
xM
y+N
xN
y-1个物理天线阵元的互质面阵;
步骤2:互质面阵接收信号的张量建模。假设有K个来自
方向的远场窄带非相关信号源,θ
k和
分别为第k个入射信号源的方位角和俯仰角,k=1,2,…,K,将互质面阵中稀疏均匀子面阵
的T个采样快拍信号在第三个维度进行叠加后,可以得到一个三维张量信号
建模为:
其中,s
k=[s
k,1,s
k,2,…,s
k,T]
T为对应第k个入射信号源的多快拍采样信号波形,[·]
T表示转置操作,
表示矢量外积,
为与各信号源相互独立的噪声张量,
和
分别为
在x轴和y轴方向上的导引矢量,对应于来波方向为
的信号源,表示为:
其中,
表示第k个入射信号源的功率,
表示四维互相关噪声张量,<·,·>
r表示两个张量沿着第r维度的张量缩并操作,E[·]表示取数学期望操作,(·)
*表示共轭操作。这里,互相关噪声张量
仅在第(1,1,1,1)个位置上存在取值为
的元素,
表示噪声功率,而在其他位置上的元素取值均为0。在实际中,
通过计算张量信号
和
的互相关统计量近似得到,即采样互相关张量
步骤3:基于互质面阵的互相关张量变换构造增广非连续虚拟面阵。由于互相关张量
中包含了对应两个稀疏均匀子面阵
和
的空间信息,通过合并
中表征同一方向空间信息的维度,可以使对应两个稀疏均匀子面阵的导引矢量在指数项上形成差集数组,从而构造二维的增广虚拟面阵。具体地,互相关张量
的第1、3维度(通过导引矢量
和
表示)表征x轴方向的空间信息,第2、4维度(通过导引矢量
和
表示)表征y轴方向的空间信息;为此,定义维度集合
通过对互相关张量
进行维度合并的张量变换,得到一个虚拟域信号
其中,
和
等价为非连续虚拟面阵
在x轴和y轴上的导引矢量,对应于来波方向为
的信号源,
表示Kronecker积。非连续虚拟面阵
大小为
且包含了整行和整列的孔洞(即:缺失元素),如图3所示,
这里,为了简化推导过程,互相关噪声张量
在关于
的理论建模步骤中省略;然而,在实际中,由于使用采样互相关张量
替代理论互相关张量
仍旧涵盖于虚拟域信号统计处理过程中;
步骤4:基于非连续虚拟面阵的镜像拓展推导虚拟域张量。构建非连续虚拟面阵
关于坐标轴镜像的虚拟面阵
并将
和
在第三维度上叠加成一个大小为
的三维非连续虚拟立方阵列
如图4所示。这里,
且
对应地,将虚拟域信号
的共轭转置信号
中的元素进行排列,以对应
中虚拟阵元的位置,即可得到对应于虚拟面阵
的虚拟域信号
将
和
在第三维度上进行叠加,得到对应非连续虚拟立方阵列
的虚拟域张量
表示为:
表示对应
和
的镜像变换因子矢量;由于非连续虚拟面阵
中包含了整行和整列的孔洞,由
和其镜像部分
叠加得到的非连续虚拟立方阵列
中包含了成片的孔洞,对应非连续虚拟立方阵列
的虚拟域张量
由此包含了成片的缺失元素;
步骤5:通过虚拟域张量重构分散其成片缺失元素。为了构造一个虚拟均匀立方阵列以实现奈奎斯特匹配的信号处理,需要对虚拟域张量
中的成片缺失元素进行填充,从而对应一个虚拟均匀立方阵列
然而,低秩张量填充技术以张量中缺失元素随机化分布为前提,无法对存在成片缺失元素的虚拟域张量
进行有效填充。为此,通过重构虚拟域张量
分散其成片缺失元素,具体过程为:通过设计一个大小为P
x×P
y×2的平移窗口选取虚拟域张量
的一个子张量
其中包含了
三个维度上索引分别为(1:P
x-1),(1:P
y-1),(1:2)的元素;随后,将平移窗口分别沿x轴和y轴方向依次平移一个元素,则可以将
分割成L
x×L
y个子张量,表示为
s
y=1,2,…,L
y。该平移窗口大小的取值范围为:
且L
x、L
y、P
x、P
y之间满足以下关系:
将具有相同s
y索引下标的子张量
在第四维度进行叠加,得到L
y个维度为P
x×P
y×2×L
x的四维张量;进一步地,将这L
y个四维张量在第五维度叠加,得到一个五维虚拟域张量
这个五维虚拟域张量
涵盖了x轴和y轴方向空间角度信息、空间镜像变换信息,以及x轴和y轴方向的空间平移信息;将
沿着表征空间角度信息的第1、2维度进行合并,同时沿着表征空间平移信息的第4、5维度进行合并,并保留表征空间镜像变换信息的第3维度,具体操作为:定义维度集合
则通过
的维 度合并,可得到三维的重构虚拟域张量
其中,优化变量
是填充后的虚拟域张量,对应于虚拟均匀立方阵列
表示张量核范数,
表示
中非缺失元素的位置索引集合,
表示张量在
上的映射。由于核范数是凸函数,该基于张量核范数最小化的虚拟域张量填充问题是一个可解的凸优化问题。求解该凸优化问题,即可得到
分别为平移窗口截取子张量过程中对应于x轴和y轴方向的空间平移因子矢量。对填充后的虚拟域张量
进行canonical polyadic分解,即可得到三个因子矢量p
k,q
k和c
k的估计值,表示为
和
则参数
和
可从
和
中提取得到:
其中,∠(·)表示复数取幅角操作,a
(a)表示一个矢量a的第a个元素;这里,根据
和
的Kronecker结构,η
1∈[1,P
xP
y-1]和η
2∈[1,L
xL
y-1]分别满足mod(η
1,P
x)≠0和mod(η
2,P
y)≠0,且δ
1∈[1,P
xP
y-P
x],δ
2∈[1,L
xL
y-L
x],mod(·)表示取余数操作。根据参数(μ
k,v
k)与二维波达方向
之间的关系,得到二维波达方向估计
的闭式解为:
下面结合仿真实例对本发明的效果做进一步的描述。
仿真实例:采用互质面阵接收入射信号,其参数选取为M
x=2,M
y=3,N
x=3,N
y=4,即架构的互质面阵共包含4M
xM
y+N
xN
y-1=35个物理阵元。子张量的平移窗口大小为6×15×2。假定有2个窄带入射信号,入射方向的方位角和俯仰角分别是[30.6°,25.6°]和[40.5°,50.5°]。将本发明所提基于虚拟域张量填充的互质面阵二维波达方向估计方法与传统仅利用虚拟域连续部分的多重信号分类(Multiple Signal Classification,MUSIC)方法和张量多重信号分类(Tensor MUSIC)方法进行对比,在采样快拍数T=300条件下,绘制均方根误差(Root-mean-square Error,RMSE)随信噪比SNR变化的性能对比曲线,如图5所示;在SNR=0dB条件下,绘制RMSE随采样快拍数T变化的性能对比曲线,如图6所示。
从图5和图6的对比结果可以看出,无论是在不同的期望信号信噪比SNR场景,还是在不同的采样快拍数T场景下,本发明所提方法在波达方向估计精度 上均存在性能优势。相比于传统的MUSIC方法,本发明所提方法通过构建虚拟域张量,充分利用了互质面阵接收信号的结构化信息,从而具备更优的波达方向估计性能;相比于Tensor MUSIC方法,本发明所提方法的性能优势来源于通过虚拟域张量填充利用全部的非连续虚拟域统计量信息,而Tensor MUSIC方法只提取非连续虚拟阵列的连续部分进行虚拟域信号处理,造成了虚拟域统计量信息的丢失。
综上所述,本发明通过虚拟域张量重构实现成片缺失元素随机化分布,并以此为基础,设计基于张量核范数最小化的虚拟域张量填充方法,成功利用了全部的非连续虚拟域统计量信息,实现了高精度的互质面阵二维波达方向估计。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
Claims (4)
- 一种基于虚拟域张量填充的互质面阵二维波达方向估计方法,其特征在于,包含以下步骤:(1)接收端使用4M xM y+N xN y-1个物理天线阵元,按照互质面阵的结构进行架构;其中,M x、N x以及M y、N y分别为一对互质整数;该互质面阵分解为两个稀疏均匀子面阵 和 其中 包含2M x×2M y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为N xd和N yd, 包含N x×N y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为M xd和M yd,单位间隔d取为入射窄带信号波长λ的一半,即d=λ/2;其中,s k=[s k,1,s k,2,…,s k,T] T为对应第k个入射信号源的多快拍采样信号波形,[·] T表示转置操作,°表示矢量外积, 为与各信号源相互独立的噪声张量, 和 分别为 在x轴和y轴方向上的导引矢量,对应于来波方向为 的信号源,表示为:其中, 表示第k个入射信号源的功率, 表示互相关噪声张量,<·,·> r表示两个张量沿着第r维度的张量缩并操作,E[·]表示取数学期望操作,(·) *表示共轭操作;互相关噪声张量 仅在第(1,1,1,1)个位置上存在取值为 的元素, 表示噪声功率,而在其他位置上的元素取值均为0;其中, 和 分别通过在指数项上形成差集数组,构造出沿着x轴和y轴方向的二维增广虚拟面阵, 表示Kronecker积;因此, 对应一个大小为 的非连续虚拟面阵 该非连续虚拟面阵 中包含了整行和整列的孔洞,即缺失元素;(4)构建非连续虚拟面阵 关于坐标轴镜像的虚拟面阵 并将 和 在第三维度上叠加成一个大小为 的三维非连续虚拟立方阵列 这里, 且 对应地,将虚拟域信号 的共轭转置信号 中的元素进行重新排列,以对应 中虚拟阵元的位置,得到对应于虚拟面阵 的虚拟域信号 将 和 在第三维度上进行叠加,得到对应非连续虚拟立方阵列 的虚拟域张量 表示为:表示对应于 和 的镜像变换因子矢量;由于非连续虚拟面阵 中包含了整行和整列的孔洞,由 和其镜像部分 叠加得到的非连续虚拟立方阵列 中包含了成片的孔洞,对应非连续虚拟立方阵列 的虚拟域张量 由此包含了成片的缺失元素;(5)设计一个大小为P x×P y×2的平移窗口选取虚拟域张量 的一个子张量 中包含了 三个维度上索引分别为(1:P x-1),(1:P y-1),(1:2) 的元素;随后,将平移窗口分别沿x轴和y轴方向依次平移一个元素,将 分割成L x×L y个子张量,表示为 该平移窗口大小的取值范围为:且L x、L y、P x、P y之间满足以下关系:将具有相同s y索引下标的子张量 在第四维度进行叠加,得到L y个维度为P x×P y×2×L x的四维张量;进一步地,将这L y个四维张量在第五维度叠加,得到一个五维虚拟域张量 这个五维虚拟域张量 涵盖了x轴和y轴方向空间角度信息、空间镜像变换信息,以及x轴和y轴方向的空间平移信息;定义维度集合 则通过 的维度合并,得到三维的重构虚拟域张量(6)设计一个基于张量核范数最小化的虚拟域张量填充优化问题:其中,优化变量 是填充后的虚拟域张量,对应于虚拟均匀立方阵列 表示张量核范数, 表示 中非缺失元素的位置索引集合, 表示张量在 上的映射;由于核范数是凸函数,基于张量核范数最小化的虚拟域张量填充问题是一个可解的凸优化问题,求解该凸优化问题,得到
- 根据权利要求1所述的基于虚拟域张量填充的互质面阵二维波达方向估计方法,其特征在于,步骤(1)所述的互质面阵结构具体描述为:在平面坐标系xoy上构造一对稀疏均匀子面阵 和 其中 包含2M x×2M y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为N xd和N yd,其在xoy上的位置坐标为{(N xdm x,N ydm y),m x=0,1,...,2M x-1,m y=0,1,...,2M y-1}; 包含N x×N y个天线阵元,在x轴方向上和y轴方向上的阵元间距分别为M xd和M yd,其在xoy上的位置坐标为{(M xdn x,M ydn y),n x=0,1,...,N x-1,n y=0,1,...,N y-1};M x、N x以及M y、N y分别为一对互质整数;将 和 按照坐标系(0,0)位置处阵元重叠的方式进行子阵列组合,获得实际包含4M xM y+N xN y-1个物理天线阵元的互质面阵。
- 根据权利要求1所述的基于虚拟域张量填充的互质面阵二维波达方向估计方法,其特征在于,步骤(7)中,对填充后的虚拟域张量 进行canonical polyadic分解,得到因子矢量 和 则参数 和 从 和 中提取为:其中,∠(·)表示复数取幅角操作,a (a)表示一个矢量a的第a个元素;这里,根据 和 的Kronecker结构,η 1∈[1,P xP y-1]和η 2∈[1,L xL y-1]分别满足mod(η 1,P x)≠0和mod(η 2,P y)≠0,且δ 1∈[1,P xP y-P x],δ 2∈[1,L xL y-L x],mod(·)表示取余数操作;根据参数(μ k,v k)与二维波达方向 之间的关系,得到二维波达方向估计 的闭式解为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/920,401 US20240210510A1 (en) | 2022-01-21 | 2022-02-16 | Two-dimensional direction-of-arrival estimation method for coprime surface array based on virtual domain tensor filling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210077881.1A CN114444298A (zh) | 2022-01-21 | 2022-01-21 | 基于虚拟域张量填充的互质面阵二维波达方向估计方法 |
CN202210077881.1 | 2022-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023137812A1 true WO2023137812A1 (zh) | 2023-07-27 |
Family
ID=81369705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/076430 WO2023137812A1 (zh) | 2022-01-21 | 2022-02-16 | 基于虚拟域张量填充的互质面阵二维波达方向估计方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240210510A1 (zh) |
CN (1) | CN114444298A (zh) |
WO (1) | WO2023137812A1 (zh) |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030058153A1 (en) * | 2001-09-07 | 2003-03-27 | Lockheed Martin Corporation | Adaptive digital beamforming radar method and system for maintaining multiple source angle super-resolution capability in jamming |
CN104749552A (zh) * | 2015-03-21 | 2015-07-01 | 西安电子科技大学 | 基于稀疏重构的互质阵列波达方向角估计方法 |
US20160172767A1 (en) * | 2014-12-12 | 2016-06-16 | The Boeing Company | Congruent non-uniform antenna arrays |
CN106896340A (zh) * | 2017-01-20 | 2017-06-27 | 浙江大学 | 一种基于压缩感知的互质阵列高精度波达方向估计方法 |
CN107037392A (zh) * | 2017-03-01 | 2017-08-11 | 浙江大学 | 一种基于压缩感知的自由度增加型互质阵列波达方向估计方法 |
CN107102291A (zh) * | 2017-05-03 | 2017-08-29 | 浙江大学 | 基于虚拟阵列内插的无网格化互质阵列波达方向估计方法 |
CN107315160A (zh) * | 2017-05-03 | 2017-11-03 | 浙江大学 | 基于内插虚拟阵列信号原子范数最小化的互质阵列波达方向估计方法 |
CN107329108A (zh) * | 2017-05-03 | 2017-11-07 | 浙江大学 | 基于内插虚拟阵列协方差矩阵Toeplitz化重建的互质阵列波达方向估计方法 |
CN107422295A (zh) * | 2017-08-30 | 2017-12-01 | 浙江大学 | 基于互质阵列虚拟域等价信号原子范数表示的波达方向估计方法 |
CN107589399A (zh) * | 2017-08-24 | 2018-01-16 | 浙江大学 | 基于多采样虚拟信号奇异值分解的互质阵列波达方向估计方法 |
CN108344967A (zh) * | 2018-01-20 | 2018-07-31 | 中国人民解放军战略支援部队信息工程大学 | 基于互质面阵的二维波达方向快速估计方法 |
CN108710102A (zh) * | 2018-05-15 | 2018-10-26 | 浙江大学 | 基于互质阵列二阶等价虚拟信号离散傅里叶逆变换的波达方向估计方法 |
CN109143152A (zh) * | 2018-09-25 | 2019-01-04 | 哈尔滨工业大学 | 基于张量建模的极化阵列波达方向和极化参数估计方法 |
CN109143228A (zh) * | 2018-08-28 | 2019-01-04 | 海南大学 | 互耦条件下双基地mimo雷达非圆目标的角度估计方法 |
CN110244259A (zh) * | 2019-06-26 | 2019-09-17 | 南京航空航天大学 | 数据缺失情况下基于低n-秩最小化张量填充的二维到达角估计方法 |
CN110927661A (zh) * | 2019-11-22 | 2020-03-27 | 重庆邮电大学 | 基于music算法的单基地展开互质阵列mimo雷达doa估计方法 |
CN111610486A (zh) * | 2020-05-03 | 2020-09-01 | 浙江大学 | 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法 |
CN111624545A (zh) * | 2020-05-03 | 2020-09-04 | 浙江大学 | 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法 |
CN112904272A (zh) * | 2021-01-18 | 2021-06-04 | 浙江大学 | 基于互相关张量的三维互质立方阵列波达方向估计方法 |
CN113552532A (zh) * | 2021-07-09 | 2021-10-26 | 浙江大学 | 基于耦合张量分解的l型互质阵列波达方向估计方法 |
-
2022
- 2022-01-21 CN CN202210077881.1A patent/CN114444298A/zh active Pending
- 2022-02-16 US US17/920,401 patent/US20240210510A1/en active Pending
- 2022-02-16 WO PCT/CN2022/076430 patent/WO2023137812A1/zh active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030058153A1 (en) * | 2001-09-07 | 2003-03-27 | Lockheed Martin Corporation | Adaptive digital beamforming radar method and system for maintaining multiple source angle super-resolution capability in jamming |
US20160172767A1 (en) * | 2014-12-12 | 2016-06-16 | The Boeing Company | Congruent non-uniform antenna arrays |
CN104749552A (zh) * | 2015-03-21 | 2015-07-01 | 西安电子科技大学 | 基于稀疏重构的互质阵列波达方向角估计方法 |
CN106896340A (zh) * | 2017-01-20 | 2017-06-27 | 浙江大学 | 一种基于压缩感知的互质阵列高精度波达方向估计方法 |
CN107037392A (zh) * | 2017-03-01 | 2017-08-11 | 浙江大学 | 一种基于压缩感知的自由度增加型互质阵列波达方向估计方法 |
CN107102291A (zh) * | 2017-05-03 | 2017-08-29 | 浙江大学 | 基于虚拟阵列内插的无网格化互质阵列波达方向估计方法 |
CN107315160A (zh) * | 2017-05-03 | 2017-11-03 | 浙江大学 | 基于内插虚拟阵列信号原子范数最小化的互质阵列波达方向估计方法 |
CN107329108A (zh) * | 2017-05-03 | 2017-11-07 | 浙江大学 | 基于内插虚拟阵列协方差矩阵Toeplitz化重建的互质阵列波达方向估计方法 |
CN107589399A (zh) * | 2017-08-24 | 2018-01-16 | 浙江大学 | 基于多采样虚拟信号奇异值分解的互质阵列波达方向估计方法 |
CN107422295A (zh) * | 2017-08-30 | 2017-12-01 | 浙江大学 | 基于互质阵列虚拟域等价信号原子范数表示的波达方向估计方法 |
CN108344967A (zh) * | 2018-01-20 | 2018-07-31 | 中国人民解放军战略支援部队信息工程大学 | 基于互质面阵的二维波达方向快速估计方法 |
CN108710102A (zh) * | 2018-05-15 | 2018-10-26 | 浙江大学 | 基于互质阵列二阶等价虚拟信号离散傅里叶逆变换的波达方向估计方法 |
CN109143228A (zh) * | 2018-08-28 | 2019-01-04 | 海南大学 | 互耦条件下双基地mimo雷达非圆目标的角度估计方法 |
CN109143152A (zh) * | 2018-09-25 | 2019-01-04 | 哈尔滨工业大学 | 基于张量建模的极化阵列波达方向和极化参数估计方法 |
CN110244259A (zh) * | 2019-06-26 | 2019-09-17 | 南京航空航天大学 | 数据缺失情况下基于低n-秩最小化张量填充的二维到达角估计方法 |
CN110927661A (zh) * | 2019-11-22 | 2020-03-27 | 重庆邮电大学 | 基于music算法的单基地展开互质阵列mimo雷达doa估计方法 |
CN111610486A (zh) * | 2020-05-03 | 2020-09-01 | 浙江大学 | 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法 |
CN111624545A (zh) * | 2020-05-03 | 2020-09-04 | 浙江大学 | 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法 |
CN112904272A (zh) * | 2021-01-18 | 2021-06-04 | 浙江大学 | 基于互相关张量的三维互质立方阵列波达方向估计方法 |
CN113552532A (zh) * | 2021-07-09 | 2021-10-26 | 浙江大学 | 基于耦合张量分解的l型互质阵列波达方向估计方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240210510A1 (en) | 2024-06-27 |
CN114444298A (zh) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109655799B (zh) | 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法 | |
CN111610486B (zh) | 基于平面互质阵列虚拟域张量空间谱搜索的高分辨精确二维波达方向估计方法 | |
WO2021068496A1 (zh) | 基于结构化虚拟域张量信号处理的互质面阵二维波达方向估计方法 | |
WO2023279411A1 (zh) | 基于耦合张量分解的l型互质阵列波达方向估计方法 | |
JP7327840B2 (ja) | 相互相関テンソルに基づく三次元の互いに素のキュービックアレイの到来方向推定方法 | |
CN107544051A (zh) | 嵌套阵列基于k‑r子空间的波达方向估计方法 | |
WO2023137813A1 (zh) | 基于最优结构化虚拟域张量填充的超分辨互质面阵空间谱估计方法 | |
Zheng et al. | Coarray tensor completion for DOA estimation | |
CN109613473A (zh) | 基于稀疏性的展开互质线阵角度估计方法 | |
US11422177B2 (en) | Spatial spectrum estimation method with enhanced degree-of-freedom based on block sampling tensor construction for coprime planar array | |
CN112733327A (zh) | 一种面向非高斯信号的连续和阵稀疏阵列及其设计方法 | |
Liu et al. | Direction‐of‐Arrival Estimation for Coprime Array Using Compressive Sensing Based Array Interpolation | |
WO2023070499A1 (zh) | 基于四阶采样协方差张量去噪的子阵分置式l型互质阵列波达方向估计方法 | |
CN109143151A (zh) | 部分阵元损坏的均匀面阵张量重构方法及信源定位方法 | |
CN106980105B (zh) | 电磁矢量传感器阵列空间旋转解相干测向方法 | |
Zheng et al. | DOA estimation via coarray tensor completion with missing slices | |
CN109738852B (zh) | 基于低秩矩阵重建的分布式源二维空间谱估计方法 | |
US20210364591A1 (en) | High-resolution, accurate, two-dimensional direction-of-arrival estimation method based on coarray tensor spatial spectrum searching with co-prime planar array | |
WO2023137812A1 (zh) | 基于虚拟域张量填充的互质面阵二维波达方向估计方法 | |
CN110095750A (zh) | 基于准平稳信号稀疏重构的快速二维欠定测角方法 | |
CN112327292A (zh) | 一种二维稀疏阵列doa估计方法 | |
CN113687297B (zh) | 数据缺失下基于矩阵分解的声矢量传感器doa估计方法 | |
US20230048116A1 (en) | Composite tensor beamforming method for electromagnetic vector coprime planar array | |
CN114648041A (zh) | 一种基于平行稀疏阵列的二维欠定doa估计算法 | |
Jamshidpour et al. | A coarray processing technique for nested vector-sensor arrays with improved resolution capabilities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 17920401 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22921248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |