CN112701295A - 一种石墨纤维毡柔性集流体及其制备方法和柔性电池 - Google Patents

一种石墨纤维毡柔性集流体及其制备方法和柔性电池 Download PDF

Info

Publication number
CN112701295A
CN112701295A CN202011599754.5A CN202011599754A CN112701295A CN 112701295 A CN112701295 A CN 112701295A CN 202011599754 A CN202011599754 A CN 202011599754A CN 112701295 A CN112701295 A CN 112701295A
Authority
CN
China
Prior art keywords
manganese dioxide
graphene
graphite
manganese
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011599754.5A
Other languages
English (en)
Other versions
CN112701295B (zh
Inventor
聂荣健
王守兵
陈岩
吕睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svolt Energy Technology Co Ltd
Original Assignee
Svolt Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svolt Energy Technology Co Ltd filed Critical Svolt Energy Technology Co Ltd
Priority to CN202011599754.5A priority Critical patent/CN112701295B/zh
Publication of CN112701295A publication Critical patent/CN112701295A/zh
Application granted granted Critical
Publication of CN112701295B publication Critical patent/CN112701295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种石墨纤维毡柔性集流体及其制备方法和柔性电池,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯@二氧化锰,能够有效提升集流体的结构强度,缓解循环过程中活性材料的内应力,可以抑制体积膨胀引起的活性材料粉化的问题,石墨烯的存在能够加速电子的转移,提高电池的充放电能力;所述石墨纤维毡柔性集流体的制备方法采用水热原位反应法将石墨烯@二氧化锰负载在石墨纤维毡上,结合更加牢固,应用前景广阔。

Description

一种石墨纤维毡柔性集流体及其制备方法和柔性电池
技术领域
本发明涉及电池材料技术领域,尤其涉及一种石墨纤维毡柔性集流体及其制备方法和柔性电池。
背景技术
锂离子电池具有较高的工作电压和能量密度,并且无记忆效应,随着锂离子电池在汽车上的应用,人们对其快速充放电能力的要求越来越高。集流体在电池中主要起汇集电流的作用,为电子提供通道,加速电荷转移,提高充放电能力。其需具有电导率高、质量轻、机械强度高以及与活性物质结合力强等特点。在锂离子电池制备过程中大多采用铜箔和铝箔作为集流体,但附着在箔材表面的活性物质在弯曲的时候极易与集流体分离,所以这些材料不能用于柔性电池。不同于传统电池,柔性电池要求电池的正极、负极、隔膜和电解液都必须是柔性的,而且柔性电池需要兼顾更高的能量密度和更小的体积。近年来,很多柔性电极采用碳纳米管纸、石墨烯薄膜等柔性、导电性强的碳材料作为集流体,这种集流体在充分发挥集流体功能的同时,较之传统的金属集流体更轻。
柔性锂离子电池的制备方法上,常采用抽滤和涂覆制膜法,抽滤法制备的柔性电极的机械强度较差,容易破碎。涂覆法制备的柔性电极,活性物质与集流体之间的结合力不足,接触阻抗较大,抑制了其倍率性能的发挥。
CN111900412A公开了一种柔性集流体、锂离子电池极片及其制备方法,该柔性集流体包括第一柔性集流体层、第二柔性集流体层及第三柔性集流体层,第二柔性集流体层位于第一柔性集流体层上,第三柔性集流体层位于第二柔性集流体层上,其中,第一柔性集流体层和第二柔性集流体层的材料均为二维导电材料,第三柔性集流体层的材料为一维导电材料。
CN103426634A公开了一种柔性集流体及其制备方法和应用,该柔性集流体的制备方法包括将柔性支撑层放在匀胶机上,将石墨烯悬浮液旋转涂覆在所述柔性支撑层表面,真空干燥,制得柔性支撑层上设置有石墨烯薄膜的柔性集流体。
CN103903876A公开了一种柔性集流体的制备方法,所述制备方法通过离子液体进行插层剥离石墨烯,在剥离石墨烯的同时,达到分散的目的,且使得到的石墨烯电导率较高,通过喷涂法制备石墨烯薄膜较为简单;所制备的集流体由石墨烯和一支撑体组成,其中石墨烯和支撑体的密度均较小,则集流体的质量较低。
如上所述,现有集流体的制备方法一般采用抽滤、涂覆、喷涂和层叠等方法,上述方法存在活性物质与集流体之间的结合力不足,接触阻抗较大等问题。
因此,需要开发一种柔性集流体材料,解决活性物质与集流体之间的结合力不足等问题。
发明内容
鉴于现有技术中存在的问题,本发明提供一种石墨纤维毡柔性集流体及其制备方法和用途,所述石墨纤维毡柔性集流体能够解决活性物质与集流体之间的结合力不足的问题,并有效提升集流体的结构强度,缓解循环过程中活性材料的内应力,可以抑制体积膨胀引起的活性材料粉化的问题,提高电池的充放电能力。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯@二氧化锰。
本发明提供的石墨纤维毡柔性集流体中以石墨纤维毡作为柔性载体,其不仅具有良好的可弯曲性,而且具备多孔结构,能够吸收和存储电解液,为电化学反应提供活性位点,其上负载的石墨烯@二氧化锰中二氧化锰能够显著增加柔性集流体骨架的稳定性且电化学性能优异,而石墨烯能够改善材料与集流体之间的接触电阻,降低极化,提升倍率性能,经石墨烯@二氧化锰负载后的石墨纤维毡能吸收和储存更多的电解液,整体多孔、柔性的特点能加强活性材料与集流体的结合强度,有效的缓解充放电过程中的体积效应,有利于提高电极的循环性能。
本发明所述石墨烯@二氧化锰的结构是指二氧化锰颗粒负载到石墨烯的片层结构上。
优选地,所述石墨烯@二氧化锰中石墨烯的质量分数为1.0~7.5wt%,例如可以是1.0wt%、1.8wt%、2.5wt%、3.2wt%、3.9wt%、4.7wt%、5.4wt%、6.1wt%、6.8wt%或7.5wt%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明优选石墨烯@二氧化锰中石墨烯的质量分数为1.0~7.5wt%,能够进一步保障电池的倍率性能,降低集流体与活性材料的接触电阻。
优选地,所述石墨烯@二氧化锰中石墨烯为氧化石墨烯。
优选地,所述石墨烯@二氧化锰中二氧化锰为四方晶系的α-二氧化锰。
优选地,所述石墨烯@二氧化锰中二氧化锰为纳米棒状。
本发明所述石墨烯@二氧化锰中二氧化锰优选为纳米棒状,其长径比较大,与石墨纤维毡有较大负载接触面的同时,能够有更多的表面与电解液接触,提高电池性能。
优选地,所述石墨烯@二氧化锰中二氧化锰的直径为20~30nm,例如可以是20nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm或30nm等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述石墨烯@二氧化锰中二氧化锰的长度为500~700nm,例如可以是500nm、523nm、545nm、567nm、589nm、612nm、634nm、656nm、678nm或700nm等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述石墨纤维毡上石墨烯@二氧化锰纳米棒的负载量为0.6~1.5mg·mm-2,例如可以是0.6mg·mm-2、0.7mg·mm-2、0.8mg·mm-2、0.9mg·mm-2、1.0mg·mm-2、1.1mg·mm-2、1.2mg·mm-2或1.5mg·mm-2等。
第二方面,本发明提供根据第一方面所述的石墨纤维毡柔性集流体的制备方法,所述制备方法包括如下步骤:
(1)混合二氧化锰的分散液与石墨烯,得到混合液;
(2)石墨纤维毡经刻蚀,得到刻蚀后石墨纤维毡;
(3)混合步骤(1)所述刻蚀后石墨纤维毡和步骤(2)所述混合液,反应后经焙烧,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
本法发明所述石墨纤维毡柔性集流体的制备方法通过在石墨纤维毡的表面原位反应形成石墨烯@二氧化锰材料的复合材料,其与石墨纤维毡的结合力更牢固,界面电阻小,且所述石墨纤维毡经刻蚀后表面粗糙度显著增加,复合材料在其表面上的附着力得到提升。
优选地,步骤(1)所述二氧化锰的制备方法包括:混合具有氧化性的第一锰源和具有还原性的第二锰源,进行氧化还原反应,得到二氧化锰。
优选地,所述第一锰源为高锰酸钾。
优选地,所述第二锰源为二价锰盐,优选为硫酸锰。
优选地,所述第一锰源与第二锰源的混合在溶液中进行。
优选地,所述第一锰源与第二锰源的质量比为1~3:1,例如可以是1:1、1.3:1、1.5:1、1.7:1、1.9:1、2.2:1、2.4:1、2.6:1、2.8:1或3:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述溶液中第一锰源与第二锰源总的质量分数为2~5wt%,例如可以是2wt%、2.4wt%、2.7wt%、3wt%、3.4wt%、3.7wt%、4wt%、4.4wt%、4.7wt%或5wt%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述第一锰源与第二锰源的混合在搅拌条件下进行。
优选地,所述搅拌的时间为30~90min,例如可以是30min、37min、44min、50min、57min、64min、70min、77min、84min或90min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述氧化还原反应的温度为120~160℃,例如可以是120℃、125℃、129℃、134℃、138℃、143℃、147℃、152℃、156℃或160℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述氧化还原反应的时间为8~12h,例如可以是8h、8.5h、8.9h、9.4h、9.8h、10.3h、10.7h、11.2h、11.6h或12h等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述二氧化锰为四方晶系的α-二氧化锰。
优选地,所述二氧化锰为纳米棒状。
优选地,所述二氧化锰的直径为20~30nm,例如可以是20nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm或30nm等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述二氧化锰的长度为500~700nm,例如可以是500nm、523nm、545nm、567nm、589nm、612nm、634nm、656nm、678nm或700nm等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(1)中所述二氧化锰的分散液的制备包括:二氧化锰分散至水中,并进行一次超声。
优选地,所述一次超声的时间为15~35min,例如可以是15min、18min、20min、22min、24min、27min、29min、31min、33min或35min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述二氧化锰的分散液的浓度为0.8~1.5wt%,例如可以是0.8wt%、0.9wt%、1wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%或1.5wt%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述石墨烯先分散至水中,二次超声,得到石墨烯分散液,再将所述石墨烯分散液与二氧化锰的分散液混合。
优选地,所述石墨烯为氧化石墨烯。
优选地,所述二次超声的时间为15~35min,例如可以是15min、18min、20min、22min、24min、27min、29min、31min、33min或35min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述石墨烯分散液的浓度为0.5~2mg·ml-1,例如可以是0.5mg·ml-1、0.7mg·ml-1、0.9mg·ml-1、1mg·ml-1、1.2mg·ml-1、1.4mg·ml-1、1.5mg·ml-1、1.7mg·ml-1、1.9mg·ml-1或2mg·ml-1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述石墨烯分散液与二氧化锰的分散液的体积比为0.2~0.5:1,例如可以是0.2:1、0.24:1、0.27:1、0.3:1、0.34:1、0.37:1、0.4:1、0.44:1、0.47:1或0.5:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述混合包括:向石墨烯分散液中加入二氧化锰的分散液。
优选地,向所述石墨烯分散液中滴加二氧化锰的分散液,所述滴加的速率为1~5ml·min-1,例如可以是1ml·min-1、1.5ml·min-1、1.7ml·min-1、2.4ml·min-1、2.6ml·min-1、2.8ml·min-1、3ml·min-1、3.2ml·min-1、3.5ml·min-1、4.0ml·min-1、4.2ml·min-1、4.5ml·min-1或5.0ml·min-1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(2)所述刻蚀的刻蚀液包括草酸。
优选地,所述刻蚀液的浓度为2~8wt%,例如可以是2wt%、2.7wt%、3.4wt%、4wt%、4.7wt%、5.4wt%、6wt%、6.7wt%、7.4wt%或8wt%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述刻蚀的时间为30~90min,例如可以是30min、37min、44min、50min、57min、64min、70min、77min、84min或90min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述刻蚀的温度为40~80℃,例如可以是40℃、45℃、49℃、54℃、58℃、63℃、67℃、72℃、76℃或80℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,在所述刻蚀之前还包括前处理,所述前处理包括:将所述石墨纤维毡置于有机溶剂中浸泡以及洗涤。
所述石墨纤维毡在刻蚀前进行浸泡和洗涤处理,除去表面的油污和粉尘颗粒,更有利于促进石墨烯纤维毡的刻蚀。
优选地,所述浸泡的时间为20~40min,例如可以是20min、23min、25min、27min、29min、32min、34min、36min、38min或40min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述有机溶剂包括丙酮和/或乙醇,优选为丙酮和乙醇。
优选地,所述刻蚀之后还包括后处理,所述后处理包括:将所述刻蚀后石墨纤维毡洗涤并干燥。
优选地,所述干燥的温度为90~120℃,例如可以是90℃、94℃、97℃、100℃、104℃、107℃、110℃、114℃、117℃或120℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述干燥的时间为40~80min,例如可以是40min、45min、49min、54min、58min、63min、67min、72min、76min或80min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述干燥为真空干燥。
优选地,步骤(3)中所述混合液的体积与刻蚀后石墨纤维毡的面积之比为1:(7~10.4)ml·mm-2,例如可以是1:7ml·mm-2、1:8ml·mm-2、1:9ml·mm-2、或1:10.4ml·mm-2等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。本发明将二者的比例控制在1:(7~10.4)ml·mm-2,更有利于石墨纤维毡表面复合材料的负载。
优选地,所述反应的温度为120~150℃,例如可以是120℃、124℃、127℃、130℃、134℃、137℃、140℃、144℃、147℃或150℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述反应的时间为2~6h,例如可以是2h、2.5h、2.9h、3.4h、3.8h、4.3h、4.7h、5.2h、5.6h或6h等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(3)中所述焙烧在保护气氛中进行。本发明所述焙烧可进一步提高石墨纤维毡与石墨烯@α-二氧化锰的附着力。
优选地,所述保护气氛包括氩气气氛。
优选地,所述焙烧的温度为300~500℃,例如可以是300℃、323℃、345℃、367℃、389℃、412℃、434℃、456℃、478℃或500℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述焙烧的时间为30~180min,例如可以是30min、47min、64min、80min、97min、114min、130min、147min、164min或180min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述焙烧为程序升温焙烧,所述程序升温焙烧的升温速率为1~3℃·min-1,例如可以是1℃·min-1、1.3℃·min-1、1.5℃·min-1、1.7℃·min-1、1.9℃·min-1、2.2℃·min-1、2.4℃·min-1、2.6℃·min-1、2.8℃·min-1或3℃·min-1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本发明优选地技术方案,所述制备方法包括如下步骤:
(1)按质量比1~3:1混合高锰酸钾和硫酸锰于溶液中,所述溶液中高锰酸钾和硫酸锰总的质量分数为2~5wt%,搅拌30~90min,在120~160℃进行氧化还原反应8~12h,得到四方晶系的α-二氧化锰;
制得的二氧化锰分散至水中,一次超声15~35min,得到浓度为0.8~1.5wt%的二氧化锰的分散液;氧化石墨烯分散至水中,二次超声15~35min,得到浓度为0.5~2mg·ml-1的石墨烯分散液;向所述石墨烯分散液中滴加二氧化锰的分散液,得到混合液,所述滴加的速率为1~5ml·min-1,石墨烯分散液与二氧化锰的分散液的体积比为0.2~0.5:1;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡20~40min,并用水洗涤,再用浓度为2~8wt%的草酸40~80℃刻蚀石墨纤维毡30~90min,所述刻蚀后石墨纤维毡经洗涤并干燥,得到刻蚀后石墨纤维毡;
(3)混合步骤(2)所述刻蚀后石墨纤维毡和步骤(1)所述混合液,混合液的体积与刻蚀后石墨纤维毡的面积之比为1:(7~10.4)ml·mm-2;120~150℃反应2~6h,反应的产物经氩气气氛下300~500℃焙烧30~180min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
第三方面,本发明提供一种柔性电池,所述柔性电池包括第一方面所述的石墨纤维毡柔性集流体。
本发明所述石墨纤维毡柔性集流体具有多孔结构,能吸收和储存更多的电解液,加快锂离子的转移速度,应用在柔性电池中,有利于提高柔性电池的倍率性能和循环性能。
优选地,所述柔性电池为柔性锂离子电池。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明提供的石墨纤维毡柔性集流体能够有效提升集流体的结构强度,缓解循环过程中活性材料的内应力,可以抑制体积膨胀引起的活性材料粉化的问题,提高电池的充放电能力,电池循环80次后容量保持率在83.5%以上,在较优条件下可达到94%以上;
(2)本发明提供的石墨纤维毡柔性集流体的制备方法能够有效提高石墨烯@二氧化锰与石墨纤维毡的附着力,最终的集流体能够吸收和储存更多的电解液,首次充放电库伦效率能够达到74.4%以上。
附图说明
图1是实施例1制得的石墨纤维毡柔性集流体与铜箔集流体制得的电池的循环性能图。
图2是实施例1制得的石墨纤维毡柔性集流体与铜箔集流体制得的电池的倍率性能图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
一、实施例
实施例1
本实施例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯@二氧化锰;所述石墨烯@二氧化锰中石墨烯的质量分数为1.84wt%;所述石墨烯@二氧化锰中石墨烯为Hummers法制备得到的氧化石墨烯,二氧化锰为纳米棒状四方晶系的α-二氧化锰;平均直径为20nm;平均长度为700nm;所述石墨纤维毡上石墨烯@二氧化锰纳米棒的负载量为0.90mg·mm-2
本实施例还提供所述石墨纤维毡柔性集流体的制备方法,所述制备方法包括如下步骤:
(1)将1.5g高锰酸钾置于烧瓶中,依次加入硫酸锰和去离子水,其中高锰酸钾与硫酸锰的质量比为1:1,溶液中高锰酸钾和硫酸锰总的质量分数为2.5wt%,搅拌30min,然后转移至水热合成反应釜中,在120℃进行氧化还原反应8h,得到纳米棒状四方晶系的α-二氧化锰;
制得的二氧化锰分散至去离子水中,一次超声20min,得到浓度为0.8wt%的二氧化锰的分散液;Hummers法制备得到的氧化石墨烯分散至去离子水中,二次超声20min,得到浓度为0.5mg·ml-1的石墨烯分散液;
用蠕动泵向30ml所述石墨烯分散液中滴加100ml二氧化锰的分散液,所述滴加的速率为2ml·min-1,混合后搅拌20min,得到混合液;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡30min,并用去离子水洗涤,再用浓度为8wt%的草酸在微沸条件下刻蚀石墨纤维毡60min,所述刻蚀后石墨纤维毡经洗涤至中性并在105℃的真空干燥箱中干燥60min,得到刻蚀后石墨纤维毡;
(3)混合8个直径为12mm的所述刻蚀后石墨纤维毡和步骤(1)所述混合液,混合液的体积与刻蚀后石墨纤维毡的面积之比为1:7ml·mm-2;120℃反应3h,反应的产物经氩气气氛下以2℃·min-1升温至350℃焙烧120min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
实施例2
本实施例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯@二氧化锰;所述石墨烯@二氧化锰中石墨烯的质量分数为4.76wt%;所述石墨烯@二氧化锰中石墨烯为Hummers法制备得到的氧化石墨烯,二氧化锰为纳米棒状四方晶系的α-二氧化锰;平均直径为30nm;平均长度为500nm;所述石墨纤维毡上石墨烯@二氧化锰纳米棒的负载量为0.68mg·mm-2
本实施例还提供所述石墨纤维毡柔性集流体的制备方法,所述制备方法包括如下步骤:
(1)将4.5g高锰酸钾置于烧瓶中,依次加入硫酸锰和去离子水,其中高锰酸钾与硫酸锰的质量比为3:1,溶液中高锰酸钾和硫酸锰总的质量分数为5wt%,搅拌30min,然后转移至水热合成反应釜中,在160℃进行氧化还原反应12h,得到纳米棒状四方晶系的α-二氧化锰;
制得的二氧化锰分散至去离子水中,一次超声30min,得到浓度为0.8wt%的二氧化锰的分散液;Hummers法制备得到的氧化石墨烯分散至去离子水中,二次超声20min,得到浓度为2mg·ml-1的石墨烯分散液;
用蠕动泵向20ml所述石墨烯分散液中滴加100ml二氧化锰的分散液,所述滴加的速率为5ml·min-1,混合后搅拌40min,得到混合液;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡30min,并用去离子水洗涤,再用浓度为2wt%的草酸在微沸条件下刻蚀石墨纤维毡90min,所述刻蚀后石墨纤维毡经洗涤至中性并在110℃的真空干燥箱中干燥55min,得到刻蚀后石墨纤维毡;
(3)混合步骤(2)11个直径为12mm的所述刻蚀后石墨纤维毡和步骤(1)所述混合液,混合液的体积与刻蚀后石墨纤维毡的面积之比为1:10.4ml·mm-2;150℃反应2h,反应的产物经氩气气氛下以3℃·min-1升温至450℃焙烧180min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
实施例3
本实施例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯@二氧化锰;所述石墨烯@二氧化锰中石墨烯的质量分数为2.60wt%;所述石墨烯@二氧化锰中石墨烯为Hummers法制备得到的氧化石墨烯,二氧化锰为纳米棒状四方晶系的α-二氧化锰;平均直径为25nm;平均长度为600nm;所述石墨纤维毡上石墨烯@二氧化锰纳米棒的负载量为1.51mg·mm-2
本实施例还提供所述石墨纤维毡柔性集流体的制备方法,所述制备方法包括如下步骤:
(1)将3.0g高锰酸钾置于烧瓶中,依次加入硫酸锰和去离子水,其中高锰酸钾与硫酸锰的质量比为2:1,溶液中高锰酸钾和硫酸锰总的质量分数为3wt%,搅拌60min,然后转移至水热合成反应釜中,在140℃进行氧化还原反应12h,得到纳米棒状四方晶系的α-二氧化锰;
制得的二氧化锰分散至去离子水中,一次超声35min,得到浓度为1.5wt%的二氧化锰的分散液;Hummers法制备得到的氧化石墨烯分散至去离子水中,二次超声15min,得到浓度为2mg·ml-1的石墨烯分散液;
用蠕动泵向20ml所述石墨烯分散液中滴加100ml二氧化锰的分散液,所述滴加的速率为3ml·min-1,混合后搅拌40min,得到混合液;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡30min,并用去离子水洗涤,再用浓度为5wt%的草酸在微沸条件下刻蚀石墨纤维毡90min,所述刻蚀后石墨纤维毡经洗涤至中性并在105℃的真空干燥箱中干燥60min,得到刻蚀后石墨纤维毡;
(3)混合步骤(2)9个直径为12mm的所述刻蚀后石墨纤维毡和步骤(1)所述混合液,混合液的体积与刻蚀后石墨纤维毡的面积之比为1:8.5ml·mm-2;130℃反应4h,反应的产物经氩气气氛下以1.5℃·min-1升温至450℃焙烧100min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
实施例4
本实施例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体与实施例1的结构组成基本相同,除所述石墨烯@二氧化锰中石墨烯的质量分数为0.3wt%,且制备方法中步骤(1)中仅采用5ml石墨烯分散液外,其余均与实施例1相同。
实施例5
本实施例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体与实施例1的结构组成基本相同,除所述石墨烯@二氧化锰中石墨烯的质量分数为9wt%,且制备方法中步骤(1)中仅采用160ml石墨烯分散液外,其余均与实施例1相同。
实施例6
本实施例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体除纳米棒状二氧化锰替换为购买的纳米片状二氧化锰外,其制备方法中不进行步骤(1)中二氧化锰的制备外,其余均与实施例1相同。
二、对比例
对比例1
本对比例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的二氧化锰,即不负载石墨烯@二氧化锰外,其余均与实施例1相同。
其制备方法包括如下步骤:
(1)将1.5g高锰酸钾置于烧瓶中,依次加入硫酸锰和去离子水,其中高锰酸钾与硫酸锰的质量比为1:1,溶液中高锰酸钾和硫酸锰总的质量分数为2.5wt%,搅拌30min,然后转移至水热合成反应釜中,在120℃进行氧化还原反应8h,得到纳米棒状四方晶系的α-二氧化锰;
制得的二氧化锰分散至去离子水中,一次超声20min,得到浓度为0.8wt%的二氧化锰的分散液;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡30min,并用去离子水洗涤,再用浓度为8wt%的草酸在微沸条件下刻蚀石墨纤维毡60min,所述刻蚀后石墨纤维毡经洗涤至中性并在105℃的真空干燥箱中干燥60min,得到刻蚀后石墨纤维毡;
(3)混合所述8个直径为12mm的刻蚀后石墨纤维毡和步骤(1)所述二氧化锰的分散液,分散液的体积与刻蚀后石墨纤维毡的面积之比为1:7ml·mm-2;120℃反应3h,反应的产物经氩气气氛下以2℃·min-1升温至350℃焙烧120min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
对比例2
本对比例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯,即不负载石墨烯@二氧化锰外,其余均与实施例1相同。
其制备方法包括如下步骤:
(1)Hummers法制备得到的氧化石墨烯分散至去离子水中,二次超声20min,得到浓度为0.5mg·ml-1的石墨烯分散液;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡30min,并用去离子水洗涤,再用浓度为8wt%的草酸在微沸条件下刻蚀石墨纤维毡60min,所述刻蚀后石墨纤维毡经洗涤至中性并在105℃的真空干燥箱中干燥60min,得到刻蚀后石墨纤维毡;
(3)混合8个直径为12mm的所述刻蚀后石墨纤维毡和步骤(1)所述石墨烯分散液,石墨烯分散液的体积与刻蚀后石墨纤维毡的面积之比为1:7ml·mm-2;120℃反应3h,反应的产物经氩气气氛下以2℃·min-1升温至350℃焙烧120min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
对比例3
本对比例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体的制备方法除步骤(3)与实施例1不同外,其余均与实施例1相同。
具体地,步骤(3)为:步骤(1)所述混合液于120℃反应3h,然后将反应后液相涂覆在将直径为12mm的刻蚀后石墨纤维毡表面,涂覆后产物经在氩气气氛下以2℃·min-1升温至350℃焙烧120min,得到所述石墨纤维毡柔性集流体。
对比例4
本对比例提供一种石墨纤维毡柔性集流体,所述石墨纤维毡柔性集流体为未负载任何物质的石墨纤维毡。
三、测试及结果
电极制备:将石墨(97wt%)与CMC胶液(1wt%)和SBR(2wt%)搅拌形成均匀分散的负极浆料。将制得的浆料均匀涂抹到上述实施例和对比例制备的集流体上,并放在真空烘箱中于60℃条件下干燥4h。干燥完成后,进行压片、切片。
电池组装:将电池置于装有氩气保护的水分和氧气含量控制在1ppm以下的手套箱中进行组装。负极采用锂片,隔膜采用Celgard2400多孔聚丙烯膜,电解液使用含有1mol/LLiPF6的EC、DMC和DEC的混合溶液(体积比为1:1:1)。按照负极壳、锂片、隔膜、电解液、极片,正极壳的顺序进行组装,密封静置24h。
以实施例1为例,测试实施例1制得的石墨纤维毡柔性集流体与铜箔集流体制得的电池的循环性能,在0.2C条件下进行测试,其结果如图1所示,从图1可以看出,实施例1的石墨纤维毡柔性集流体制得的电池的循环性能明显比铜箔集流体的高。
以实施例1为例测试实施例1制得的石墨纤维毡柔性集流体与铜箔集流体制得的电池的倍率性能,其结果如图2所示,从图2可以看出,采用0.1C循环10次后再依次采用0.2C循环5次、0.5C循环10次、1.0C循环10次,最后再采用0.1C循环5次,在上述不同倍率循环过程中,实施例1制得的石墨纤维毡柔性集流体的倍率性能均表现比铜箔集流体佳,不同倍率充放电并返回至0.1C时,实施例1容量保持率达到98.3%,而铜箔集流体容量保持率为89.4%。
用上述电池进行测试。具体为:表1为0.2C上述电池充电放电条件下测试电池首次充放电容量、库伦效率和循环80次后容量保持率。
表1
Figure BDA0002870961440000181
Figure BDA0002870961440000191
从表1可以看出以下几点:
(1)综合实施例1~6可以看出,本发明提供的石墨纤维毡柔性集流体能够提高电池的充放电能力,其循环80次后容量保持率在83.5%以上,且库伦效率能够达到74.4%以上,电池性能得到提升;
(2)综合实施例1和对比例1~2以及对比例4可以看出,实施例1在石墨纤维毡上负载石墨烯@二氧化锰,相较于对比例1和对比例2分别负载二氧化锰和石墨烯以及对比例4不进行负载而言,实施例1中首次充放电的库伦效率可达到82.1%,循环80次后容量保持率为94%,而对比例1~2和对比例4中首次充放电的库伦效率分别为68.8%、73.1%和63.0%,循环80次后容量保持率分别为80.1%、81.4%和56.8%,由此表明,本发明通过在石墨纤维毡表面负载石墨烯@二氧化锰,提高了电池的循环性能和库伦效率;
(3)综合实施例1和对比例3可以看出,实施例1中采用原位生长的方式,相较于对比例3中采用涂覆的方式而言,实施例1中首次充放电的库伦效率可达到82.1%,循环80次后容量保持率为94%,而对比例3中首次充放电的库伦效率为73.5%,循环80次后容量保持率为78.8%,由此表明,本发明通过原位负载的方法,提高了电池的循环性能和库伦效率;
(4)综合实施例1和实施例4~5可以看出,实施例1中石墨烯@二氧化锰中石墨烯的质量分数为1.84wt%,相较于实施例4~5石墨烯@二氧化锰中石墨烯的质量分数分别为0.3wt%和9wt%而言,实施例1中首次充放电的库伦效率和循环性能均比实施例4~5高,由此表明,本发明通过控制石墨烯@二氧化锰中石墨烯的质量分数,更有利于改善电池的循环性能并提高库伦效率。
综上所述,本发明提供的石墨纤维毡柔性集流体及其制备方法能够有效提升集流体的结构强度,缓解循环过程中活性材料的内应力,可以抑制体积膨胀引起的活性材料粉化的问题,其制得的锂离子二次电池循环80次后容量保持率在83.5%以上,且库伦效率能够达到74.4%以上,电池性能优良,应用前景广阔。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种石墨纤维毡柔性集流体,其特征在于,所述石墨纤维毡柔性集流体包括石墨纤维毡以及负载于石墨纤维毡上的石墨烯@二氧化锰。
2.根据权利要求1所述的石墨纤维毡柔性集流体,其特征在于,所述石墨烯@二氧化锰中石墨烯的质量分数为1.0~7.5wt%;
优选地,所述石墨烯@二氧化锰中石墨烯为氧化石墨烯;
优选地,所述石墨烯@二氧化锰中二氧化锰为四方晶系的α-二氧化锰;
优选地,所述石墨烯@二氧化锰中二氧化锰为纳米棒状;
优选地,所述石墨烯@二氧化锰中二氧化锰的直径为20~30nm;
优选地,所述石墨烯@二氧化锰中二氧化锰的长度为500~700nm;
优选地,所述石墨纤维毡上石墨烯@二氧化锰纳米棒的负载量为0.6~1.5mg·mm-2
3.一种根据权利要求1或2所述的石墨纤维毡柔性集流体的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)混合二氧化锰的分散液与石墨烯,得到混合液;
(2)石墨纤维毡经刻蚀,得到刻蚀后石墨纤维毡;
(3)混合步骤(2)所述刻蚀后石墨纤维毡和步骤(1)所述混合液,反应后经焙烧,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)所述二氧化锰的制备方法包括:混合具有氧化性的第一锰源和具有还原性的第二锰源,进行氧化还原反应,得到二氧化锰;
优选地,所述第一锰源为高锰酸钾;
优选地,所述第二锰源为二价锰盐,优选为硫酸锰;
优选地,所述第一锰源与第二锰源的混合在溶液中进行;
优选地,所述第一锰源与第二锰源的质量比为1~3:1;
优选地,所述溶液中第一锰源与第二锰源总的质量分数为2~5wt%;
优选地,所述第一锰源与第二锰源的混合在搅拌条件下进行;
优选地,所述搅拌的时间为30~90min;
优选地,所述氧化还原反应的温度为120~160℃;
优选地,所述氧化还原反应的时间为8~12h;
优选地,所述二氧化锰为四方晶系的α-二氧化锰;
优选地,所述二氧化锰为纳米棒状;
优选地,所述二氧化锰的直径为20~30nm;
优选地,所述二氧化锰的长度为500~700nm。
5.根据权利要求3或4所述的制备方法,其特征在于,步骤(1)中所述二氧化锰的分散液的制备包括:二氧化锰分散至水中,并进行一次超声;
优选地,所述二氧化锰的分散液的浓度为0.8~1.5wt%;
优选地,所述石墨烯先分散至水中,二次超声,得到石墨烯分散液,再将所述石墨烯分散液与二氧化锰的分散液混合;
优选地,所述石墨烯为氧化石墨烯;
优选地,所述石墨烯分散液的浓度为0.5~2mg·ml-1
优选地,所述石墨烯分散液与二氧化锰的分散液的体积比为0.2~0.5:1;
优选地,所述混合包括:向石墨烯分散液中加入二氧化锰的分散液;
优选地,向所述石墨烯分散液中滴加二氧化锰的分散液,所述滴加的速率为1~5ml·min-1
6.根据权利要求3~5任一项所述的制备方法,其特征在于,步骤(2)所述刻蚀的刻蚀液包括草酸;
优选地,所述刻蚀液的浓度为2~8wt%;
优选地,所述刻蚀的时间为30~90min;
优选地,所述刻蚀的温度为40~80℃;
优选地,在所述刻蚀之前还包括前处理,所述前处理包括:将所述石墨纤维毡置于有机溶剂中浸泡以及洗涤;
优选地,所述有机溶剂包括丙酮和/或乙醇,优选为丙酮和乙醇;
优选地,所述刻蚀之后还包括后处理,所述后处理包括:将所述刻蚀后石墨纤维毡洗涤并干燥。
7.根据权利要求3~6任一项所述的制备方法,其特征在于,步骤(3)中所述混合液的体积与刻蚀后石墨纤维毡的面积之比为9~14:1ml·mm-2
优选地,所述反应的温度为120~150℃;
优选地,所述反应的时间为2~6h。
8.根据权利要求3~7任一项所述的制备方法,其特征在于,步骤(3)中所述焙烧在保护气氛中进行;
优选地,所述保护气氛包括氩气气氛;
优选地,所述焙烧的温度为300~500℃;
优选地,所述焙烧的时间为30~180min;
优选地,所述焙烧为程序升温焙烧,所述程序升温焙烧的升温速率为1~3℃·min-1
9.根据权利要求3~8任一项所述的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)按质量比1~3:1混合高锰酸钾和硫酸锰于溶液中,所述溶液中高锰酸钾和硫酸锰总的质量分数为2~5wt%,搅拌30~90min,在120~160℃进行氧化还原反应8~12h,得到四方晶系的α-二氧化锰;
制得的二氧化锰分散至水中,一次超声15~35min,得到浓度为0.8~1.5wt%的二氧化锰的分散液;氧化石墨烯分散至水中,二次超声15~35min,得到浓度为0.5~2mg·ml-1的石墨烯分散液;向所述石墨烯分散液中滴加二氧化锰的分散液,得到混合液,所述滴加的速率为1~5ml·min-1,石墨烯分散液与二氧化锰的分散液的体积比为0.2~0.5:1;
(2)将石墨纤维毡置于丙酮和乙醇中浸泡20~40min,并用水洗涤,再用浓度为2~8wt%的草酸40~80℃刻蚀石墨纤维毡30~90min,所述刻蚀后石墨纤维毡经洗涤并干燥,得到刻蚀后石墨纤维毡;
(3)混合步骤(2)所述刻蚀后石墨纤维毡和步骤(1)所述混合液,混合液的体积与刻蚀后石墨纤维毡的面积之比为1:(7~10.4)ml·mm-2;120~150℃反应2~6h,反应的产物经氩气气氛下300~500℃焙烧30~180min,得到所述石墨纤维毡柔性集流体;
步骤(1)和步骤(2)不分先后顺序。
10.一种柔性电池,其特征在于,所述柔性电池包括权利要求1或2所述的石墨纤维毡柔性集流体。
CN202011599754.5A 2020-12-29 2020-12-29 一种石墨纤维毡柔性集流体及其制备方法和柔性电池 Active CN112701295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011599754.5A CN112701295B (zh) 2020-12-29 2020-12-29 一种石墨纤维毡柔性集流体及其制备方法和柔性电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011599754.5A CN112701295B (zh) 2020-12-29 2020-12-29 一种石墨纤维毡柔性集流体及其制备方法和柔性电池

Publications (2)

Publication Number Publication Date
CN112701295A true CN112701295A (zh) 2021-04-23
CN112701295B CN112701295B (zh) 2022-02-22

Family

ID=75512133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011599754.5A Active CN112701295B (zh) 2020-12-29 2020-12-29 一种石墨纤维毡柔性集流体及其制备方法和柔性电池

Country Status (1)

Country Link
CN (1) CN112701295B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488339A (zh) * 2021-07-15 2021-10-08 华东师范大学 一种基于碳基复合电极的柔性超级电容器及制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553137A (zh) * 2013-11-04 2014-02-05 中国科学院广州能源研究所 一种采用水热合成法制备不同形貌纳米二氧化锰的方法
CN104979566A (zh) * 2015-05-18 2015-10-14 清华大学 复合电极及其制备方法和用途
CN105355893A (zh) * 2015-12-16 2016-02-24 西北工业大学 柔性锂离子电池负极材料的制备方法
CN105810883A (zh) * 2016-05-24 2016-07-27 广州市霆宇能源科技有限责任公司 一种柔性可穿戴的电极及其制备方法
CN106098395A (zh) * 2016-06-02 2016-11-09 中南大学 一种二氧化锰纤维电极及其制备方法和应用
CN106207100A (zh) * 2015-05-04 2016-12-07 深圳市寒暑科技新能源有限公司 一种碳纤维织物电极及基于其的高容量电池
CN106356196A (zh) * 2016-10-14 2017-01-25 安泰科技股份有限公司 一种二氧化锰/碳纸复合电极材料及其制备方法
CN107104003A (zh) * 2017-05-22 2017-08-29 华北电力大学(保定) 一种柔性电极、其制备方法及超级电容器
CN107805823A (zh) * 2017-10-31 2018-03-16 哈尔滨工业大学 一种自支撑的过渡金属化合物基多级结构电极材料的制备方法及其应用
CN108258334A (zh) * 2018-01-19 2018-07-06 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN108417793A (zh) * 2018-02-01 2018-08-17 复旦大学 碳基架负载二氧化锰纳米片的复合薄膜及其制备方法和应用
KR20190004035A (ko) * 2017-07-03 2019-01-11 대한민국(산림청 국립산림과학원장) 이산화망간이 증착된 리그닌 유래 탄소나노섬유 매트의 슈퍼 커패시터용 전극과 그 제조방법
CN109887766A (zh) * 2019-03-23 2019-06-14 浙江大学 二氧化钛/碳/聚苯胺复合电极材料的制备方法
CN110190246A (zh) * 2019-06-24 2019-08-30 陕西科技大学 一种Sb2O3/碳毡柔性钠离子电池负极材料的制备方法
CN110581028A (zh) * 2019-08-30 2019-12-17 浙江工业大学 一种二氧化锰/碳基柔性电极材料的制备方法
CN110993908A (zh) * 2019-11-27 2020-04-10 浙江大学 一种垂直石墨烯/二氧化锰复合材料及其制备方法和应用
WO2020098276A1 (zh) * 2018-11-14 2020-05-22 五邑大学 碳纳米管/二氧化锰复合材料电极的制备方法
CN111952573A (zh) * 2020-08-25 2020-11-17 山东大学 一种石墨烯负载二氧化锰的复合材料及其制备方法和应用

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553137A (zh) * 2013-11-04 2014-02-05 中国科学院广州能源研究所 一种采用水热合成法制备不同形貌纳米二氧化锰的方法
CN106207100A (zh) * 2015-05-04 2016-12-07 深圳市寒暑科技新能源有限公司 一种碳纤维织物电极及基于其的高容量电池
CN104979566A (zh) * 2015-05-18 2015-10-14 清华大学 复合电极及其制备方法和用途
CN105355893A (zh) * 2015-12-16 2016-02-24 西北工业大学 柔性锂离子电池负极材料的制备方法
CN105810883A (zh) * 2016-05-24 2016-07-27 广州市霆宇能源科技有限责任公司 一种柔性可穿戴的电极及其制备方法
CN106098395A (zh) * 2016-06-02 2016-11-09 中南大学 一种二氧化锰纤维电极及其制备方法和应用
CN106356196A (zh) * 2016-10-14 2017-01-25 安泰科技股份有限公司 一种二氧化锰/碳纸复合电极材料及其制备方法
CN107104003A (zh) * 2017-05-22 2017-08-29 华北电力大学(保定) 一种柔性电极、其制备方法及超级电容器
KR20190004035A (ko) * 2017-07-03 2019-01-11 대한민국(산림청 국립산림과학원장) 이산화망간이 증착된 리그닌 유래 탄소나노섬유 매트의 슈퍼 커패시터용 전극과 그 제조방법
CN107805823A (zh) * 2017-10-31 2018-03-16 哈尔滨工业大学 一种自支撑的过渡金属化合物基多级结构电极材料的制备方法及其应用
CN108258334A (zh) * 2018-01-19 2018-07-06 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN108417793A (zh) * 2018-02-01 2018-08-17 复旦大学 碳基架负载二氧化锰纳米片的复合薄膜及其制备方法和应用
WO2020098276A1 (zh) * 2018-11-14 2020-05-22 五邑大学 碳纳米管/二氧化锰复合材料电极的制备方法
CN109887766A (zh) * 2019-03-23 2019-06-14 浙江大学 二氧化钛/碳/聚苯胺复合电极材料的制备方法
CN110190246A (zh) * 2019-06-24 2019-08-30 陕西科技大学 一种Sb2O3/碳毡柔性钠离子电池负极材料的制备方法
CN110581028A (zh) * 2019-08-30 2019-12-17 浙江工业大学 一种二氧化锰/碳基柔性电极材料的制备方法
CN110993908A (zh) * 2019-11-27 2020-04-10 浙江大学 一种垂直石墨烯/二氧化锰复合材料及其制备方法和应用
CN111952573A (zh) * 2020-08-25 2020-11-17 山东大学 一种石墨烯负载二氧化锰的复合材料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488339A (zh) * 2021-07-15 2021-10-08 华东师范大学 一种基于碳基复合电极的柔性超级电容器及制备方法

Also Published As

Publication number Publication date
CN112701295B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN112151762B (zh) 一种锂硫电池正极材料及其制备方法、一种锂硫电池正极及其制备方法以及一种锂硫电池
Kim et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries
CN108630920A (zh) 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法
Liang et al. High-energy flexible quasi-solid-state lithium-ion capacitors enabled by a freestanding rGO-encapsulated Fe 3 O 4 nanocube anode and a holey rGO film cathode
CN111916640B (zh) 一种锂硫电池WS2/CNTs改性隔膜及其制备方法
CN108615854B (zh) 一种硅基锂离子电池负极活性材料及其制备和应用
CN113629249B (zh) 一种应用于锂硫电池正极的MXene基负载铂催化剂的制备方法
CN113540416A (zh) 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN111193022B (zh) 用于锂离子电池的改性三氟氧钛酸铵的制备及应用
CN114388760A (zh) 一种金属氧化物纳米片材料及其制备方法和锂离子电池
CN112701295B (zh) 一种石墨纤维毡柔性集流体及其制备方法和柔性电池
CN114854030A (zh) 一种单层MXene纳米片/ZIF-67复合材料的制备方法
CN111430665A (zh) 正极片及其制备方法和应用
CN104466147A (zh) 碳原位复合二氧化钛锂离子电池负极体材料的制备方法
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN112062166A (zh) 一种用于混合电容器的三元复合电极材料及其应用
CN114843700B (zh) 一种高度有序端基化MXene及其制备方法和应用
CN113921758A (zh) 锂离子电池层级复合负极及其制备方法和应用
CN112701274A (zh) 一种石墨烯-二氧化锰负极材料、其制备方法及用途
CN112928258A (zh) 一种预锂化MXenes材料的制备方法及其在电池电极材料中的应用
Lei et al. Effects of Co3O4 on different particle size of Al anode material for lithium ion battery
CN117153578B (zh) 一种钴离子插层碳化钒纳米片及其制备方法与应用
CN213278153U (zh) 石墨烯改性五氧化二钒电池
CN113247903B (zh) 多孔Ti3C2/SnO纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant