WO2020098276A1 - 碳纳米管/二氧化锰复合材料电极的制备方法 - Google Patents

碳纳米管/二氧化锰复合材料电极的制备方法 Download PDF

Info

Publication number
WO2020098276A1
WO2020098276A1 PCT/CN2019/092212 CN2019092212W WO2020098276A1 WO 2020098276 A1 WO2020098276 A1 WO 2020098276A1 CN 2019092212 W CN2019092212 W CN 2019092212W WO 2020098276 A1 WO2020098276 A1 WO 2020098276A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon nanotube
manganese dioxide
carbon cloth
electrode
Prior art date
Application number
PCT/CN2019/092212
Other languages
English (en)
French (fr)
Inventor
王忆
陈家琪
王梦霞
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2020098276A1 publication Critical patent/WO2020098276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the technical field of supercapacitor electrode materials, in particular to a method for preparing a carbon nanotube / manganese dioxide composite material electrode, and a supercapacitor including the carbon nanotube / manganese dioxide composite material electrode.
  • the purpose of the present invention is to provide a method for preparing a carbon nanotube / manganese dioxide composite material electrode and including the carbon nanotube / manganese dioxide composite material in view of the problems of large volume, heavy weight, and lack of flexibility of the supercapacitor Electrode super capacitor.
  • the supercapacitor of the present invention is environmentally friendly, energy-saving, stable, efficient, lightweight, and flexible.
  • the preparation method of the carbon nanotube / manganese dioxide composite electrode includes the following steps:
  • step 3 Add the carbon nanotubes obtained in step 2) to absolute ethanol, ultrasonically oscillate to form a dispersion system, spray the resulting dispersion system on the carbon cloth obtained in step 1), and dry to obtain carbon nanotube-loaded carbon cloth;
  • the carbon nanotube-carrying carbon cloth is hydrothermally reacted with the mixed solution of potassium permanganate and manganese sulfate to prepare a carbon nanotube / manganese dioxide composite material electrode.
  • step 1) deionized water is used for ultrasonic cleaning and cutting the carbon cloth for 15-30 min; the concentration of the added nitric acid solution is 10-25%; the temperature set during drying is 65-85 ° C. More preferably, deionized water is used for ultrasonic cleaning to cut the carbon cloth for 15 min; the concentration of the added nitric acid solution is 20%; the temperature set during drying is 70 ° C.
  • the carbon nanotubes are placed in a nitric acid solution with a concentration of 10-25% and subjected to ultrasonic oscillation for 2-4h, the ultrasonic power is 200-500W, and the static setting is 3-4.5h.
  • the temperature is 90-120 °C, calcined at a temperature of 350-500 °C for 3-8h.
  • the carbon nanotubes are placed in a nitric acid solution with a concentration of 20% and subjected to ultrasonic vibration for 2 hours, with an ultrasonic power of 300 W, and standing for 4 hours.
  • the temperature set during drying is 100 ° C. and calcined at a temperature of 400 ° C. for 6 hours.
  • the mass-to-volume ratio of carbon nanotubes is 0.8-1.5mg / ml, the time of ultrasonic oscillation is 2-4h, the ultrasonic power is 200-500W, and the temperature set during drying is 60- 90 °C. More preferably, the mass-to-volume ratio of carbon nanotubes is 1 mg / ml, the time of ultrasonic oscillation is 2 hours, the ultrasonic power is 300 W, and the temperature set during drying is 70 ° C.
  • the molar ratio of potassium permanganate and manganese sulfate is 5-7: 1, wherein the hydrothermal reaction is carried out at 150-180 ° C 5- 14h. More preferably, the molar ratio of potassium permanganate to manganese sulfate is 6: 1.
  • the hydrothermal reaction is carried out at 160 ° C for 6-12 hours. More preferably, the hydrothermal reaction is carried out at 160 ° C for 6-9 hours. More preferably, the hydrothermal reaction is carried out at 160 ° C for 8-9 hours.
  • a person skilled in the art may use an appropriate amount of water to dissolve potassium permanganate and potassium sulfate according to actual needs to form a mixed solution with an appropriate concentration.
  • the invention also provides a carbon nanotube / manganese dioxide composite material electrode prepared by the preparation method.
  • the invention also provides a supercapacitor, the supercapacitor carbon nanotube / manganese dioxide composite material electrode and alkaline solid electrolyte.
  • the alkaline solid electrolyte is prepared by mixing a polyvinyl alcohol solution with a concentration of 0.08-0.25 g / ml and a NaOH solution with a concentration of 0.2-1 g / ml according to a mass ratio of 1.5-5: 1. More preferably, the alkaline solid electrolyte is prepared by mixing a polyvinyl alcohol solution with a concentration of 1-0.15 g / ml and a NaOH solution with a concentration of 0.2-0.5 g / ml in a mass ratio of 1: 2-3. .
  • the invention also provides a method for preparing a supercapacitor, including the following steps: taking two carbon nanotube / manganese dioxide composite material electrodes, placing them on a heating platform at 85 ° C, and coating an alkaline solid electrolyte on one side of the electrodes On the top, press another piece of electrodes together and wait until the alkaline solid electrolyte is bonded to the electrode and solidified to obtain a supercapacitor.
  • the length of the two carbon nanotube / manganese dioxide composite electrode is 1-3 cm, the width is 0.2-0.8 cm, and the thickness of the alkaline solid electrolyte coated on the electrode is 0.5-2 mm. More preferably, the size of the two carbon nanotube / manganese dioxide composite electrode is 2cm * 0.5cm, and the thickness of the alkaline solid electrolyte coated on the electrode is 0.8-2mm.
  • the method for preparing a supercapacitor using a carbon nanotube / manganese dioxide composite electrode and an alkaline solid electrolyte includes the following steps:
  • Carbon cloth pretreatment cut the carbon cloth to 4cm * 2cm size, ultrasonically clean with deionized water for 15min, dilute nitric acid and deionized water to a concentration of 20%, and put the carbon cleaned with deionized water Cloth, ultrasonic treatment for 2h, repeatedly wash the treated carbon cloth with deionized water, wash away the residual nitric acid, and put it in a drying oven at 70 °C to dry for use;
  • the beneficial effect of the present invention is that the composite electrode prepared by the present invention has a large specific capacitance, an extremely high specific surface area, high surface activity, and good flexibility.
  • the super capacitor When it is applied to a supercapacitor, it can be developed to be lightweight and flexible. And other characteristics of the super capacitor, the super capacitor has a capacitance of 22.7mF to 76.5mF, and the capacitance after bending is 29.6mF to 106.6mF, and the capacitance characteristics are still relatively stable when deformed; the present invention adopts both physical methods and chemistry
  • carbon nanotubes are sprayed on the surface of the carbon cloth, and then the nanomanganese dioxide is compounded on the carbon cloth loaded with the carbon nanotubes through a hydrothermal reaction.
  • the electrode material is loaded on the surface of the carbon cloth in two steps, which can better control the carbon nanometer
  • the load of the tube on the carbon cloth can also improve the uniformity of its distribution.
  • Example 1 is an X-ray diffraction pattern of the carbon nanotube / manganese dioxide composite electrode prepared in Example 1-3;
  • Example 2 is a low-power SEM photograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 1-3;
  • Example 3 is a high-power SEM photograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 1-3;
  • Example 4 is a graph showing the change in specific capacitance of the carbon nanotube / manganese dioxide composite electrode prepared in Example 1-3;
  • Example 6 is the capacitance of the carbon nanotube / manganese dioxide doped supercapacitor prepared in Example 4 at different scan rates.
  • a method for preparing a carbon nanotube / manganese dioxide composite material electrode includes the following steps:
  • step 3 Add the carbon nanotubes obtained in step 2) to ethanol at a ratio of 1 mg / ml, and oscillate ultrasonically for 2 h to form a dispersion system; the resulting dispersion system is evenly sprayed on the carbon cloth obtained in step 1) at 70 ° C Drying to obtain carbon cloth loaded with carbon nanotubes;
  • a method for preparing a carbon nanotube / manganese dioxide composite material electrode includes the following steps:
  • step 3 Add the carbon nanotubes obtained in step 2) to absolute ethanol at a ratio of 1 mg / ml, and oscillate ultrasonically for 2 h to form a uniform mixing system; the resulting mixing system is evenly sprayed on the carbon cloth obtained in step 1) at 70 Dry at °C to get carbon cloth loaded with carbon nanotubes;
  • a method for preparing a carbon nanotube / manganese dioxide composite material electrode includes the following steps:
  • step 3 Add the carbon nanotubes obtained in step 2) to absolute ethanol at 1 mg / ml and oscillate ultrasonically for 2 h to form a uniform mixing system; the resulting mixing system is sprayed evenly on the carbon cloth obtained in step 1) and dried at 70 ° C Dry to obtain a carbon cloth loaded with carbon nanotubes;
  • the carbon nanotube / manganese dioxide composite electrode prepared in Examples 1-3 was structurally characterized.
  • the X'pert PRO X-ray diffractometer of PANalytical was used to test the diffraction pattern, and the results are shown in FIG. 1.
  • Fig. 2 shows a low-magnification SEM photograph of the electrode material, and the scanning electron acceleration voltages are all 3.0 kV.
  • (a) is the electron micrograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 1 magnified 39 times
  • (b ) Is an electron microscope photograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 2 magnified 32 times
  • (c) is an electron microscope photograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 3 magnified 23 times. It can be seen from the figure that the carbon cloth has an ordered network structure.
  • a layer of dense manganese dioxide powder is attached by hydrothermal reaction under a lower magnification electron microscope It can be seen that the grown manganese dioxide powder is relatively uniform overall, but it is not partially covered with manganese dioxide. This is due to the uneven contact between the electrode material and the solution during the hydrothermal reaction or the adhesion of the product to the base material after the reaction. Insufficient strength caused by shedding during washing or after drying. With the increase of the reaction time, when the reaction time is 9h, the reaction is longer due to the longer reaction time, so a thicker manganese dioxide layer is formed, and many pores are formed from the surface.
  • the reaction time reaches 12h, due to the excessive reaction time and excessive reaction, the manganese dioxide falling off increases, and the manganese dioxide layer covering the electrode material becomes thinner again, which is almost as dense as the manganese dioxide layer with a reaction time of 6h.
  • the nano-manganese dioxide electrode material prepared by the hydrothermal reaction at a temperature of 160 ° C with a reaction time of 9h has a good growth condition.
  • Figure 3 shows a high-magnification SEM photograph of the electrode material, where (a) is an electron microscope photograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 1 magnified 30,000 times under an acceleration voltage of 3.00kV, (b ) Is an electron microscope photograph of the carbon nanotube / manganese dioxide composite electrode prepared in Example 2 at an acceleration voltage of 3.00 kV and an enlargement of 30,000 times. (C) is prepared in Example 3 at an acceleration voltage of 3.00 kV. Electron micrograph of carbon nanotube / manganese dioxide composite electrode magnified 21290 times.
  • the sea urchin spherical manganese dioxide generated by the hydrothermal reaction is coated with carbon nanotubes, and a large number of nanowire structures form coral-like agglomerations.
  • This fluffy structure makes the specific surface area of the material greatly increase. It provides more active sites for oxidation-reduction reaction and ion adsorption, which greatly improves the capacity of the electrode material pseudocapacitor and improves the overall electrochemical performance of the electrode material.
  • the diameter of the nanowires forming the spherical shape of the sea urchin is about 20nm, and the length is about 100-200nm.
  • the size of the formed sea urchin sphere is relatively uniform, with a diameter ranging from 200nm to 1um.
  • the trend of the reduction is that the electrode material structure obtained when the reaction time is 9h is ideal, the agglomeration is weakened, and the spheres are more uniformly dispersed.
  • the smaller diameter nanowire structures that make up the sea urchin sphere also tend to change to the thicker diameter nanorod structure, and the agglomeration phenomenon is strengthened again, as shown in (c), which makes the material specific surface area Reduce, reduce the electrochemical performance of the material. Therefore, from the morphological analysis, the hydrothermal reaction at 160 °C for 9h produces a perfect nano-manganese dioxide material.
  • Figure 4 is the change curve of specific capacitance measured at different scan rates for samples with different durations at 160 °C.
  • the specific capacitance value reached 5.73mF / cm 2 -129.4mF / cm 2
  • the area specific capacitance value reached 4.3mF / cm 2 -122.4mF / cm for the sample with a reaction time of 9h at a sweep speed of 100mV / s-5mV / s 2.
  • the sample with a reaction time of 12h has an area specific capacitance value of 2.6mF / cm 2 -42.7mF / cm 2 at a sweep rate of 100mV / s-5mV / s. Overall, the reaction time at 160 °C is 6h The specific capacitance of the sample with a reaction time of 9h is not much different, but the specific capacitance of the sample with a reaction time of 12h is relatively small.
  • a method for preparing a carbon nanotube / manganese dioxide doped supercapacitor includes the following steps:
  • step 3 Take the carbon cloth obtained in the above step 1) and the carbon nanotubes obtained in step 2), add anhydrous ethanol at a ratio of 1mg / ml, and oscillate ultrasonically for 2h to form a dispersion system, the resulting dispersion system is uniform Spray on the carbon cloth and dry at 70 °C to obtain the carbon cloth loaded with carbon nanotubes;
  • step (3) Take two pieces of the composite electrode prepared in step (3), place it on a heating platform at 85 ° C, and apply an alkaline gel electrolyte on one side of the electrode, with a coating thickness of about 1 mm. After the colloid is evenly covered on the surface of the electrode, another electrode is aligned and lightly pressed together, and placed at room temperature for 12 hours. After the electrolyte and the electrode are fully bonded and solidified, a carbon nanotube / manganese dioxide doped supercapacitor is obtained.
  • Figure 5 shows the flexibility of the assembled solid-state flexible supercapacitor. From the photo of the flexibility test of the assembled solid-state flexible supercapacitor in Figure 5, it can be seen that the device has good flexibility, which is due to the good ductility of the electrode material and the use of polyvinyl alcohol to prepare the gel electrolyte.
  • the carbon nanotube / manganese dioxide doped supercapacitor prepared in Test Example 4 was subjected to cyclic voltammetry tests at different sweep rates under different deformation conditions.
  • the calculated capacitance value of the supercapacitor is shown in Table 2, and the The data is drawn into a line chart, and the results are shown in Figure 6.
  • Table 2 Calculate the specific capacitance of the supercapacitor (mF / cm 2 ) by performing cyclic voltammetry tests at different sweep rates under different deformation conditions
  • the capacitance of the supercapacitor is between 76.5mF and 22.7mF without bending, which is the value after bending Between 106.6mF and 29.6mF, overall, its capacitance characteristics are still relatively stable when deformed. But at the same time, after bending occurs, the capacitance of the supercapacitor increases compared to when it is not bent (as shown in Figure 6). This is because the super capacitor uses a solid electrolyte. When there is no bending, the contact between the electrolyte and the electrode is not close enough. After the bending occurs, the electrolyte is squeezed to make more full contact with the electrode. This is for its capacitance. Change has a certain impact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了碳纳米管/二氧化锰复合材料电极的制备方法,包括以下步骤:1)超声清洗碳布,在硝酸溶液中超声处理碳布,烘干碳布;2)将碳纳米管置于硝酸溶液中进行超声振荡,洗滤,烘干,煅烧,研磨;3)碳纳米管超声分散于无水乙醇,再喷洒在碳布上,得到负载碳纳米管的碳布;4)将负载碳纳米管的碳布与高锰酸钾和硫酸钾硫酸锰的混合溶液进行水热反应,得到碳纳米管/二氧化锰复合材料电极。本发明制备的复合材料电极具有较大比电容、柔韧性好,将其应用于超级电容器,可以开发轻量化、柔性化的超级电容器,该超级电容器电容量达到了22.7mF~76.5mF,且发生弯曲后电容量为29.6mF~106.6mF,电容特性在发生形变时仍较稳定。

Description

碳纳米管/二氧化锰复合材料电极的制备方法 技术领域
本发明涉及超级电容器电极材料的技术领域,具体涉及一种碳纳米管/二氧化锰复合材料电极的制备方法,以及包括该碳纳米管/二氧化锰复合材料电极的超级电容器。
背景技术
近年来,由二氧化碳等温室气体引发的“温室效应”以及由于二氧化硫等过度排放而不断扩大的酸雨区等环境问题引起了社会的关注。解决这些问题的关键在于寻求更环保的能源与更合理的能源利用方式。
在多种形式能源中,电能作为最直接的可利用的二次能源,在人类生产生活中承担着重要角色,几乎所有的一次能源如太阳能,风能,水能等新能源,以及煤炭等传统能源都必须先转化为电能才能为人类所利用。在这一转化过程中,储能元件的工作效率影响着能源利用的效率。
超级电容作为一种新型储能元件,以其高功率密度、高充放电效率、较强的环境适应能力以及对环境友好等的特点引起了行业学者的广泛关注,因此研究开发超级电容器及其电极材料,对于更合理地利用能源,保护地球生态环境,加快现有科学技术变革具有重要意义。
目前超级电容器发展现状存在体积大、重量大、不具备柔韧性等问题,影响了超级电容器在很多领域的应用,所以亟待开发一种轻量化、柔性化且稳定、具有较大电容量的超级电容器。
发明内容
本发明的目的是针对超级电容器存在体积大、重量大、不具备柔韧性等问题,提供一种碳纳米管/二氧化锰复合材料电极的制备方法以及包括该碳纳米管/二氧化锰复合材料电极的超级电容器。本发明的超级电容器环保、节能、稳定、高效、轻量且柔性好。
为了实现上述目的,本发明采取以下方案:
碳纳米管/二氧化锰复合材料电极的制备方法,包括以下步骤:
1)裁剪碳布,超声清洗,再加入硝酸溶液,超声处理2-4h,清洗处理后的碳布,烘干备用;
2)将碳纳米管置于硝酸溶液中进行超声振荡,静置,洗滤至滤液呈中性,再将洗滤后的碳纳米管烘干,煅烧,研磨备用;
3)将步骤2)得到的碳纳米管加入无水乙醇,超声振荡使其形成分散体系,将所得的分 散体系喷洒在步骤1)得到的碳布上,烘干,得到负载碳纳米管的碳布;
4)将负载碳纳米管的碳布与高锰酸钾和硫酸锰的混合溶液进行水热反应,制备得到碳纳米管/二氧化锰复合材料电极。
优选地,步骤1)中,采用去离子水超声清洗裁剪碳布15-30min;加入的硝酸溶液的浓度为10-25%;烘干时设置的温度为65-85℃。更优选的,采用去离子水超声清洗裁剪碳布15min;加入的硝酸溶液的浓度为20%;烘干时设置的温度为70℃。
优选地,步骤2)中,将碳纳米管置于浓度为10-25%的硝酸溶液中进行超声振荡2-4h,超声功率为200-500W,静置3-4.5h,烘干时设置的温度为90-120℃,在温度350-500℃下煅烧3-8h。更优选的,将碳纳米管置于浓度为20%的硝酸溶液中进行超声振荡2h,超声功率为300W,静置4h,烘干时设置的温度为100℃,在温度400℃下煅烧6h。
优选地,步骤3)中,碳纳米管的质量与的体积比为0.8-1.5mg/ml,超声振荡的时间为2-4h,超声功率为200-500W,烘干时设置的温度为60-90℃。更优选的,碳纳米管的质量与的体积比为1mg/ml,超声振荡的时间为2h,超声功率为300W,烘干时设置的温度为70℃。
优选地,步骤4)中,高锰酸钾和硫酸锰的混合溶液中,高锰酸钾和硫酸锰的摩尔比为5-7∶1,其中水热反应在150-180℃进行反应5-14h。更优选的,高锰酸钾和硫酸锰的摩尔比为6∶1。
优选的,其中水热反应在160℃进行反应6-12h。更优选的,水热反应在160℃进行反应6-9h。更优选的,水热反应在160℃进行反应8-9h。
本领域技术人员可以根据实际需要采用合适量的水来溶解高锰酸钾和硫酸钾,形成合适浓度的混合溶液。
本发明还提供了由该制备方法制备得到的碳纳米管/二氧化锰复合材料电极。
本发明还提供了一种超级电容器,所述超级电容器碳纳米管/二氧化锰复合材料电极和碱性固态电解液。
优选的,所述碱性固态电解液由浓度为0.08-0.25g/ml的聚乙烯醇溶液与浓度为0.2-1g/ml的NaOH溶液按质量比1.5-5∶1混合复配而得。更优选的,所述碱性固态电解液由浓度为1-0.15g/ml的聚乙烯醇溶液与浓度为0.2-0.5g/ml的NaOH溶液按质量比1∶2-3混合复配而得。
本发明还提供了超级电容器的制备方法,包括以下步骤:取两块碳纳米管/二氧化锰复合材料电极,放置在85℃的加热平台上,将碱性固态电解液涂覆在电极的一面上,再将另一片电极对齐压在一起,待碱性固态电解液与电极粘结并凝固,即得超级电容器。
优选的,两块碳纳米管/二氧化锰复合材料电极的长度为1-3cm,宽度为0.2-0.8cm,碱性 固态电解液涂覆在电极上的厚度为0.5-2mm。更优选的,两块碳纳米管/二氧化锰复合材料电极的尺寸为2cm*0.5cm,碱性固态电解液涂覆在电极的厚度为0.8-2mm。
更具体地,采用碳纳米管/二氧化锰复合材料电极和碱性固态电解液制备超级电容器的方法包括以下步骤:
(1)碳布预处理:将碳布裁剪为4cm*2cm大小,用去离子水超声清洗15min,将硝酸加去离子水稀释到浓度为20%后,放入用去离子水清洗过的碳布,超声处理2h,用去离子水反复清洗处理后的碳布,洗去残留的硝酸后置于70℃的干燥箱烘干备用;
(2)碳纳米管预处理:将碳纳米管置于浓度为20%的硝酸中超声振荡2h,然后静止4h,将处理后的碳纳米管洗滤至滤液呈中性,过滤清洗后的碳纳米管先在100℃烘干,后置于空气中以400℃煅烧6h,反复研磨后备用;
(3)在碳布上加载碳纳米管:取步骤(1)碳布的及步骤(2)的碳纳米管,按1mg/ml的比例往碳纳米管中加入无水乙醇,超声振荡2h使其形成分散体系,所得的分散体系均匀喷洒在碳布上,在70℃烘干,得到负载碳纳米管的碳布;
(4)水热合成二氧化锰:按摩尔比(高锰酸钾:硫酸锰)6∶1配制高锰酸钾和硫酸锰的混合溶液,将加载碳纳米管的碳布直立放入100ml聚四氟乙烯反应釜内,加入50ml高锰酸钾和硫酸锰混合溶液,将反应釜置于160℃反应5-14h,反应结束后取出样品,清洗表面糊状物,置于70℃干燥6h,制得复合材料电极;
(5)配制电解质:准确称量4g聚乙烯醇(PVA),倒入30ml去离子水,放入磁力搅拌器中,在温度为85℃,转速为1400转/min的条件下,搅拌大约1h,同时,称取0.1molNaOH并加入10ml去离子水,磁力搅拌10min至澄清溶液,在磁力搅拌的条件下,将NaOH溶液迅速倒入聚乙烯醇溶液中,继续搅拌30min,得到碱性的胶状电解质;
(6)组装超级电容器:剪取两块面积均为2cm*0.5cm的电极,放置在85℃的加热平台上,将胶状电解质涂抹在电极的一面,涂覆厚度约为1mm,待胶状体在电极表面均匀覆盖后,将另一片电极对齐轻压在一起,在室温下放置12h,待电解质与电极充分粘结并凝固,即得到超级电容器。
本发明有益效果在于:本发明制备的复合材料电极具有较大比电容、极高的比表面积、表面活性高、柔韧性好,将其应用于超级电容器,可以开发一种具有轻量化、柔性化等特点的超级电容器,该超级电容器电容量达到了22.7mF~76.5mF,且发生弯曲后电容量为29.6mF~106.6mF,电容特性在发生形变时仍较稳定;本发明同时采取物理方法与化学方法,先在碳布表面喷涂碳纳米管,再在负载碳纳米管的碳布上通过水热反应复合纳米二氧化锰, 分两步在碳布表面加载电极材料,可以更好地控制碳纳米管在碳布上的负载量,同时,也可以改善其分布的均匀程度。
附图说明
图1是实施例1-3制备的碳纳米管/二氧化锰复合材料电极的X射线衍射图谱;
图2是实施例1-3制备的碳纳米管/二氧化锰复合材料电极的低倍SEM照片;
图3是实施例1-3制备的碳纳米管/二氧化锰复合材料电极的高倍SEM照片;
图4是实施例1-3制备的碳纳米管/二氧化锰复合材料电极的比电容值变化曲线;
图5示出了实施例4制备的碳纳米管/二氧化锰掺杂的超级电容器的柔韧性测试情况;
图6是实施例4制备的碳纳米管/二氧化锰掺杂的超级电容器在不同扫描速率下的电容。
具体实施方式
下面的实施例可以帮助本领域的技术人员更全面地理解本发明,但不仅限于此。
实施例1
一种碳纳米管/二氧化锰复合材料电极的制备方法,包括以下步骤:
1)将碳布裁剪为4cm*2cm大小,用去离子水超声清洗15min,将硝酸加去离子水稀释到浓度为20%后,放入用去离子水清洗过的碳布,超声处理2h,用去离子水反复清洗处理后的碳布,洗去残留的硝酸后置于70℃的干燥箱烘干备用;
2)将碳纳米管置于浓度为20%的硝酸中超声振荡2h,然后静止4h,将处理后的碳纳米管洗滤至滤液呈中性,过滤清洗后的碳纳米管先在100℃烘干,后置于空气中以400℃煅烧6h,反复研磨后备用;
3)将步骤2)得到的碳纳米管按1mg/ml的比例加入无水乙醇,超声振荡2h使其形成分散体系;所得的分散体系均匀喷洒在步骤1)得到的碳布上,在70℃烘干,得到负载碳纳米管的碳布;
4)按摩尔比(高锰酸钾:硫酸锰)6∶1配制高锰酸钾和硫酸锰的混合溶液,将加载碳纳米管的碳布直立放入100ml聚四氟乙烯反应釜内,加入50ml混合溶液,将反应釜置于160℃分别反应6h,所得样品记为a1,反应结束后取出清洗表面糊状物,置于70℃干燥6h,制得复合材料电极。
实施例2
一种碳纳米管/二氧化锰复合材料电极的制备方法,包括以下步骤:
1)将碳布裁剪为4cm*2cm大小,用去离子水超声清洗15min;将硝酸加去离子水稀释到浓度为20%后,放入用去离子水清洗过的碳布,超声处理2h;用去离子水反复清洗处理后 的碳布,洗去残留的硝酸后置于70℃的干燥箱烘干备用;
2)将碳纳米管置于浓度为20%的硝酸中超声振荡2h,然后静止4h,将处理后的碳纳米管洗滤至滤液呈中性,过滤清洗后的碳纳米管先在100℃烘干,后置于空气中以400℃煅烧6h,反复研磨后备用;
3)将步骤2)得到的碳纳米管按1mg/ml的比例加入无水乙醇,超声振荡2h使其形成均匀混合体系;所得的混合体系均匀喷洒在步骤1)得到的碳布上,在70℃烘干,得到负载碳纳米管的碳布;
4)按摩尔比(高锰酸钾∶硫酸锰)6∶1配制高锰酸钾和硫酸锰的混合溶液,将加载碳纳米管的碳布直立放入100ml聚四氟乙烯反应釜内,加入50ml混合溶液;将反应釜置于160℃分别反应9h,所得样品记为a2,反应结束后取出清洗表面糊状物,置于70℃干燥6h,制得复合材料电极。
实施例3
一种碳纳米管/二氧化锰复合材料电极的制备方法,包括以下步骤:
1)将碳布裁剪为4cm*2cm大小,用去离子水超声清洗15min,将硝酸加去离子水稀释到浓度为20%后,放入用去离子水清洗过的碳布,超声处理2h,用去离子水反复清洗处理后的碳布,洗去残留的硝酸后置于70℃的干燥箱烘干备用;
2)将碳纳米管置于浓度为20%的硝酸中超声振荡2h,然后静止4h,将处理后的碳纳米管洗滤至滤液呈中性,过滤清洗后的碳纳米管先在100℃烘干,后置于空气中以400℃煅烧6h,反复研磨后备用;
3)将步骤2)得到的碳纳米管按1mg/ml加入无水乙醇,超声振荡2h使其形成均匀混合体系;所得的混合体系均匀喷洒在步骤1)得到的碳布上,在70℃烘干,得到负载碳纳米管的碳布;
4)按摩尔比(高锰酸钾∶硫酸锰)6∶1配制高锰酸钾和硫酸锰的混合溶液;将加载碳纳米管的碳布直立放入100ml聚四氟乙烯反应釜内,加入50ml混合溶液;将反应釜置于160℃分别反应12h,所得样品记为a3,反应结束后取出清洗表面糊状物,置于70℃干燥6h,制得复合材料电极。
本发明对实施例1-3制备的碳纳米管/二氧化锰复合材料电极做了结构表征,采用PANalytical的X'pert PRO型X射线衍射仪测试衍射图谱,结果如图1所示。
由图1可以看到三份样品均具有四个明显且较宽的峰。在反应时长为6h时,各峰的2θ值分别为12.19°、24.81°、36.52°、65.81°;反应时长为9h时,各峰的2θ值分别为12.19°、 24.94°、36.57°、65.58°;反应时长为12h时,各峰的2θ值分别为12.47°、24.39°、36.82°、65.65°。对于三份样品的X射线衍射峰值的分析表明了水热反应的生成物主要为6-MnO 2。同时,我们还发现,相对于反应时长为6h和9h的样品,反应时长为12h的样品的特征峰较弱,且在2θ为29.87°和30.80°出现了两个较为尖锐的杂峰,这说明反应时长为12h时,生成物纯度较低且有其它产物生成,这是由于反应过度导致的。
图2展示了电极材料低倍率SEM照片,扫描电子加速电压均为3.0kV,其中,(a)是实施例1制备的碳纳米管/二氧化锰复合材料电极放大39倍的电镜照片,(b)是实施例2制备的碳纳米管/二氧化锰复合材料电极放大32倍的电镜照片,(c)是实施例3制备的碳纳米管/二氧化锰复合材料电极放大23倍的电镜照片。从图上可以看出,碳布呈现有序网状结构,在负载了碳纳米管的碳布集流体上,通过水热反应附着了一层致密的二氧化锰粉末,在较低倍率电镜下可以看到,生长的二氧化锰粉末总体比较均匀,但局部并未覆盖二氧化锰,这是由于水热反应时电极材料与溶液接触不均匀或者是在反应结束后由于生成物与基底材料附着强度不够而在洗涤时或者干燥后发生脱落引起的。随着反应时长的增加,在反应时长为9h时,由于反应时间加长,反应更加充分,因此形成更厚的二氧化锰层,从表面上看有许多孔隙形成。当反应时长达到12h,由于反应时间过长,反应过度,二氧化锰脱落增加,覆盖在电极材料上的二氧化锰层再次变薄,与反应时长为6h的二氧化锰层分布密集程度差不多。综合来看,在160℃的温度下水热反应,反应时长为9h所制备的纳米二氧化锰电极材料生长状况较好。
图3展示了电极材料高倍率SEM照片,其中,(a)是在3.00kV的加速电压下,实施例1制备的碳纳米管/二氧化锰复合材料电极放大3万倍的电镜照片,(b)是在3.00kV的加速电压下,实施例2制备的碳纳米管/二氧化锰复合材料电极放大3万倍的电镜照片,(c)是在3.00kV的加速电压下,实施例3制备的碳纳米管/二氧化锰复合材料电极放大21290倍的电镜照片。
在高倍照片下可以看到,水热反应生成的海胆球形二氧化锰包覆着碳纳米管,由大量纳米线状结构形成珊瑚状团聚,这种蓬松的结构使得材料的比表面积极大增加,为氧化还原反应及离子吸附提供了更多的活性位点,极大提高了电极材料赝电容的容量,提升了电极材料整体的电化学性能。根据图例,形成海胆球形的纳米线状结构直径大约是20nm,长度约为100-200nm,所形成的海胆球体大小较为均匀,直径范围为200nm~1um,随着反应时长的增加,其直径有随之减小的趋势,在反应时长为9h时制得的电极材料结构较为理想,团聚减弱,球体分散较均匀。但随着反应时长继续增加,构成海胆球体的直径较小的纳米线结构也有着向直径较粗的纳米棒结构变化的趋势,团聚现象再次加强,如(c)所示,这使得材料比表面积减小,降低了材料的电化学性能。因此从形貌上分析,在160℃下水热反应9h生成较为完美 的纳米二氧化锰材料。
表1不同扫描速率下经循环伏安测试算得各样品的比电容值(mF/cm 2)
Figure PCTCN2019092212-appb-000001
将循环伏安法测得的有关数据运用式进行了计算,得出三份样品在不同扫速下的面积比电容如表1所示,并将该数据绘制成折线图,其结果如图4所示。
图4为在160℃下反应不同时长的样品在不同扫描速率下测得的比电容值变化曲线,通过对比,发现反应时长为6h的样品在100mV/s-5mV/s的扫速下的面积比电容值达到5.73mF/cm 2-129.4mF/cm 2,反应时长为9h的样品在100mV/s-5mV/s的扫速下的面积比电容值达到4.3mF/cm 2-122.4mF/cm 2,反应时长为12h的样品在100mV/s-5mV/s的扫速下的面积比电容值达到2.6mF/cm 2-42.7mF/cm 2,从总体上看,160℃下反应时长为6h与反应时长为9h的样品比电容相差不大,但反应时长为12h的样品比电容相对较小。
实施例4
一种碳纳米管/二氧化锰掺杂的超级电容器的制备方法,包括以下步骤:
1)将碳布裁剪为4cm*2cm大小,用去离子水超声清洗15min,将硝酸加去离子水稀释到浓度为20%后,放入用去离子水清洗过的碳布,超声处理2h,用去离子水反复清洗处理后的碳布,洗去残留的硝酸后置于70℃的干燥箱烘干备用;
2)将碳纳米管置于浓度为20%的硝酸中超声振荡2h,然后静止4h,将处理后的碳纳米管洗滤至滤液呈中性,过滤清洗后的碳纳米管先在100℃烘干,后置于空气中以400℃煅烧6h,反复研磨后备用;
3)取上述步骤1)得到的碳布和步骤2)得到的碳纳米管,将碳纳米管按1mg/ml的比例加入无水乙醇,超声振荡2h使其形成分散体系,所得的分散体系均匀喷洒在碳布上,在70℃烘干,得到负载碳纳米管的碳布;
4)按摩尔比(高锰酸钾:硫酸锰)6∶1配制高锰酸钾和硫酸锰的混合溶液,将加载碳纳米管的碳布直立放入100ml聚四氟乙烯反应釜内,加入50ml混合溶液,将反应釜置于160℃分别反应9h,反应结束后取出清洗表面糊状物,置于70℃干燥6h,制得复合材料电极;
5)准确称量4g聚乙烯醇(PVA),倒入30ml去离子水,放入磁力搅拌器中,在温度为85℃,转速为1400转/min的条件下,搅拌大约1h;同时,称取0.1molNaOH并加入10ml去 离子水,磁力搅拌10min至澄清溶液,在磁力搅拌的条件下,将NaOH溶液迅速倒入聚乙烯醇溶液中,继续搅拌30min,得到碱性的胶状电解质;
(6)取两块步骤(3)制得的复合材料电极,放置在85℃的加热平台上,将碱性的胶状电解质涂抹在电极的一面,涂覆厚度约为1mm,待碱性的胶状体在电极表面均匀覆盖后,将另一片电极对齐轻压在一起,在室温下放置12h,待电解质与电极充分粘结并凝固,得到碳纳米管/二氧化锰掺杂的超级电容器。
对实施例4做了实验结果分析:图5展示了组装好的固态柔性超级电容器的柔韧性。由图5对组装好的固态柔性超级电容器进行柔韧性测试照片可以看出,器件具有良好的柔韧性,这是由于电极材料良好的延展性以及采用了聚乙烯醇制备凝胶电解质。
测试实施例4制备的碳纳米管/二氧化锰掺杂的超级电容器在不同形变条件下以不同扫速进行循环伏安测试,计算得到的超级电容器的电容值如表2所示,并将该数据绘制成折线图,其结果如图6所示。
表2不同形变条件下以不同扫速进行循环伏安测试算得超级电容器的比电容值(mF/cm 2)
Figure PCTCN2019092212-appb-000002
由表2可知,在扫速为40mV/s、80mV/s、100mV/s时,超级电容器在未发生弯曲的情况下,电容量介于76.5mF~22.7mF之间,发生弯曲后这一值介于106.6mF~29.6mF,总体而言,其电容特性在发生形变时仍较稳定。但与此同时,在发生弯曲后,超级电容器的电容量较未弯曲时增大了(如图6所示)。这是因为超级电容器采用了固态电解液,在未发生弯曲时,电解液与电极之间的接触不够紧密,发生弯曲后,电解液受到挤压而与电极更充分接触,这对于其电容量的变化有一定程度的影响。

Claims (10)

  1. 碳纳米管/二氧化锰复合材料电极的制备方法,其特征在于,包括以下步骤:
    1)超声清洗碳布,再加入硝酸溶液,超声处理2-4h,清洗处理后的碳布,烘干备用;
    2)将碳纳米管置于硝酸溶液中进行超声振荡,静置,洗滤,烘干,煅烧,研磨备用;
    3)将步骤2)得到的碳纳米管加入无水乙醇,超声振荡使其形成分散体系,将所得的分散体系喷洒在步骤1)得到的碳布上,烘干,得到负载碳纳米管的碳布;
    4)将负载碳纳米管的碳布与高锰酸钾和硫酸锰的混合溶液进行水热反应,制备得到碳纳米管/二氧化锰复合材料电极。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤1)中,采用去离子水超声清洗碳布15-30min;加入的硝酸溶液的浓度为10-25%;烘干时设置的温度为65-85℃。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤2)中,将碳纳米管置于浓度为10-25%的硝酸溶液中进行超声振荡2-4h,超声功率为200-500W,静置3-4.5h,烘干时设置的温度为90-120℃,在温度350-500℃下煅烧3-8h。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤3)中,碳纳米管的质量与无水乙醇的体积比为0.8-1.5mg/ml,超声振荡的时间为2-4h,超声功率为200-500W,烘干时设置的温度为60-90℃。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤4)中,高锰酸钾和硫酸锰的混合溶液中,高锰酸钾和硫酸锰的摩尔比为5-7∶1,其中水热反应在150-180℃进行反应5-14h。
  6. 权利要求1-5中任一项所述的制备方法制备的碳纳米管/二氧化锰复合材料电极。
  7. 一种超级电容器,其特征在于,所述超级电容器包括权利要求6所述的碳纳米管/二氧化锰复合材料电极和碱性固态电解液。
  8. 根据权利要求7所述的超级电容器,其特征在于,所述碱性固态电解液由浓度为0.08-0.25g/ml的聚乙烯醇溶液与浓度为0.2-1g/ml的NaOH溶液按质量比1.5-5∶1混合复配而得。
  9. 权利要求7-8中任一项所述的超级电容器的制备方法,其特征在于,包括以下步骤:取两块碳纳米管/二氧化锰复合材料电极,加热,将碱性固态电解液涂覆在电极的一面上,再将另一片电极对齐压在一起,即得超级电容器。
  10. 根据权利要求9所述的超级电容器的制备方法,其特征在于,两块碳纳米管/二氧化锰复合材料电极的长度为1-3cm,宽度为0.2-0.8cm,碱性固态电解液涂覆在电极上的厚度为0.5-2mm。
PCT/CN2019/092212 2018-11-14 2019-06-21 碳纳米管/二氧化锰复合材料电极的制备方法 WO2020098276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811354453.9 2018-11-14
CN201811354453.9A CN109637839B (zh) 2018-11-14 2018-11-14 碳纳米管/二氧化锰复合材料电极的制备方法

Publications (1)

Publication Number Publication Date
WO2020098276A1 true WO2020098276A1 (zh) 2020-05-22

Family

ID=66068036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092212 WO2020098276A1 (zh) 2018-11-14 2019-06-21 碳纳米管/二氧化锰复合材料电极的制备方法

Country Status (2)

Country Link
CN (1) CN109637839B (zh)
WO (1) WO2020098276A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613452A (zh) * 2019-12-25 2020-09-01 江西悦安新材料股份有限公司 一种铁基碳纳米管复合材料的制备方法
CN111640933A (zh) * 2020-07-16 2020-09-08 中国科学院苏州纳米技术与纳米仿生研究所 二氧化锰/碳纳米管泡沫材料、锌锰电池、其制法与应用
US10806594B2 (en) 2009-07-09 2020-10-20 R Tree Innovations, Llc Inter-body implant
CN111960477A (zh) * 2020-08-20 2020-11-20 辽宁科技大学 一种全固态超级电容器电极材料的制备方法
CN112573576A (zh) * 2020-12-08 2021-03-30 中国科学技术大学 一种MnO2/CNT复合材料、其制备方法及应用
CN112701295A (zh) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 一种石墨纤维毡柔性集流体及其制备方法和柔性电池
CN112717843A (zh) * 2020-12-07 2021-04-30 安徽师范大学 一种二氧化锡量子点/碳纳米管/硫颗粒多孔微胶囊复合材料及其制备方法和应用
CN113422074A (zh) * 2021-06-24 2021-09-21 焦作大学 一种电化学系统碳基电极材料的预处理方法
CN113496824A (zh) * 2021-06-15 2021-10-12 黄世雄 一种表面功能化碳纤维布电极材料的制备方法
CN114235931A (zh) * 2021-12-17 2022-03-25 湘潭大学 一种改善柔性光电探测器性能的方法
CN114496585A (zh) * 2022-01-21 2022-05-13 西安电子科技大学 基于碳纳米管阵列的高性能超级电容器复合电极材料及其制备方法
CN114561794A (zh) * 2022-01-27 2022-05-31 北京工业大学 一种基于除醛、抗菌的纳米级Cu2O-MnO2双金属氧化物的制备方法
CN114950362A (zh) * 2022-05-09 2022-08-30 中南大学湘雅二医院 一种废水处理材料及其制备方法和应用
CN114950361A (zh) * 2022-04-29 2022-08-30 上海交通大学 一种通过废旧锂电池制备复合吸附剂的方法
CN115184426A (zh) * 2022-07-12 2022-10-14 衡阳师范学院 一种负载纳米硒/二氧化锰的氮掺杂石墨烯复合材料、修饰玻碳电极的制备方法及其应用
CN115206692A (zh) * 2022-06-20 2022-10-18 广州大学 甲氧基化合物与改性碳纳米管复合材料制备方法和应用
CN115433475A (zh) * 2021-06-03 2022-12-06 中国科学院上海硅酸盐研究所 光电响应型氧化锰-碳复合涂层及其制备方法和在神经和骨组织修复中的应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637839B (zh) * 2018-11-14 2021-12-17 五邑大学 碳纳米管/二氧化锰复合材料电极的制备方法
CN110323408B (zh) * 2019-04-28 2022-03-25 武汉理工大学 柔性自支撑一体化MnO2柔性电极及其制备方法和应用
CN110581028A (zh) * 2019-08-30 2019-12-17 浙江工业大学 一种二氧化锰/碳基柔性电极材料的制备方法
CN112853372B (zh) * 2021-01-05 2024-03-22 辽宁大学 电催化剂B-MnO/CNT的制备方法及其应用
CN114823167A (zh) * 2022-03-18 2022-07-29 电子科技大学 一种快速制备C@MnO2纳米颗粒的方法和应用
CN114783792A (zh) * 2022-04-22 2022-07-22 辽宁大学 一种三维堆叠氧化锰电极材料及其制备方法和在超级电容器中的应用
CN115376836B (zh) * 2022-09-14 2023-08-01 南通海星电子股份有限公司 咖啡酸修饰的化学切割碳纳米管自组装复合材料的制备方法及其应用
CN116328712B (zh) * 2023-03-15 2024-04-16 中国舰船研究设计中心 一种新型水质净化复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683037A (zh) * 2012-05-10 2012-09-19 中国第一汽车股份有限公司 二氧化锰不对称超级电容器及其制备方法
CN109637839A (zh) * 2018-11-14 2019-04-16 五邑大学 碳纳米管/二氧化锰复合材料电极的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923960B (zh) * 2010-08-18 2012-05-23 东华大学 一种瓣状二氧化锰纳米晶包覆碳纳米管复合电极材料的制备方法
CN102910680A (zh) * 2012-10-22 2013-02-06 天津大学 一种制备不同晶型二氧化锰的制备方法
CN103337639B (zh) * 2013-06-24 2015-05-13 太原理工大学 碳纳米管阵列/碳纤维织物一体化三维多孔空气电极的制备方法
CN104201006B (zh) * 2014-08-15 2017-06-27 国家纳米科学中心 一种碳纳米管/二氧化锰杂化超级电容器电极材料的制备方法及用途
CN104465123B (zh) * 2014-12-02 2017-08-11 国家纳米科学中心 一种C@MnO2纳米管超级电容器电极材料及其制备方法和用途
CN107611478B (zh) * 2017-08-20 2019-10-11 桂林理工大学 一种导电胶体电解质锂空气电池的组装方法
CN107863494A (zh) * 2017-10-25 2018-03-30 北京理工大学 一种用于锂空气电池的柔性气体电极的其制备方法及其用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683037A (zh) * 2012-05-10 2012-09-19 中国第一汽车股份有限公司 二氧化锰不对称超级电容器及其制备方法
CN109637839A (zh) * 2018-11-14 2019-04-16 五邑大学 碳纳米管/二氧化锰复合材料电极的制备方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10806594B2 (en) 2009-07-09 2020-10-20 R Tree Innovations, Llc Inter-body implant
CN111613452A (zh) * 2019-12-25 2020-09-01 江西悦安新材料股份有限公司 一种铁基碳纳米管复合材料的制备方法
CN111640933B (zh) * 2020-07-16 2022-04-19 中国科学院苏州纳米技术与纳米仿生研究所 二氧化锰/碳纳米管泡沫材料、锌锰电池、其制法与应用
CN111640933A (zh) * 2020-07-16 2020-09-08 中国科学院苏州纳米技术与纳米仿生研究所 二氧化锰/碳纳米管泡沫材料、锌锰电池、其制法与应用
CN111960477A (zh) * 2020-08-20 2020-11-20 辽宁科技大学 一种全固态超级电容器电极材料的制备方法
CN112717843A (zh) * 2020-12-07 2021-04-30 安徽师范大学 一种二氧化锡量子点/碳纳米管/硫颗粒多孔微胶囊复合材料及其制备方法和应用
CN112717843B (zh) * 2020-12-07 2022-06-21 安徽师范大学 一种二氧化锡量子点/碳纳米管/硫颗粒多孔微胶囊复合材料及其制备方法和应用
CN112573576A (zh) * 2020-12-08 2021-03-30 中国科学技术大学 一种MnO2/CNT复合材料、其制备方法及应用
CN112701295A (zh) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 一种石墨纤维毡柔性集流体及其制备方法和柔性电池
CN115433475A (zh) * 2021-06-03 2022-12-06 中国科学院上海硅酸盐研究所 光电响应型氧化锰-碳复合涂层及其制备方法和在神经和骨组织修复中的应用
CN115433475B (zh) * 2021-06-03 2023-04-07 中国科学院上海硅酸盐研究所 光电响应型氧化锰-碳复合涂层及其制备方法和在神经和骨组织修复中的应用
CN113496824A (zh) * 2021-06-15 2021-10-12 黄世雄 一种表面功能化碳纤维布电极材料的制备方法
CN113422074A (zh) * 2021-06-24 2021-09-21 焦作大学 一种电化学系统碳基电极材料的预处理方法
CN114235931A (zh) * 2021-12-17 2022-03-25 湘潭大学 一种改善柔性光电探测器性能的方法
CN114235931B (zh) * 2021-12-17 2024-01-19 湘潭大学 一种改善柔性光电探测器性能的方法
CN114496585A (zh) * 2022-01-21 2022-05-13 西安电子科技大学 基于碳纳米管阵列的高性能超级电容器复合电极材料及其制备方法
CN114561794B (zh) * 2022-01-27 2023-09-19 北京工业大学 一种基于除醛、抗菌的纳米级Cu2O-MnO2双金属氧化物的制备方法
CN114561794A (zh) * 2022-01-27 2022-05-31 北京工业大学 一种基于除醛、抗菌的纳米级Cu2O-MnO2双金属氧化物的制备方法
CN114950361A (zh) * 2022-04-29 2022-08-30 上海交通大学 一种通过废旧锂电池制备复合吸附剂的方法
CN114950361B (zh) * 2022-04-29 2023-09-29 上海交通大学 一种通过废旧锂电池制备复合吸附剂的方法
CN114950362A (zh) * 2022-05-09 2022-08-30 中南大学湘雅二医院 一种废水处理材料及其制备方法和应用
CN115206692A (zh) * 2022-06-20 2022-10-18 广州大学 甲氧基化合物与改性碳纳米管复合材料制备方法和应用
CN115206692B (zh) * 2022-06-20 2023-06-23 广州大学 甲氧基化合物与改性碳纳米管复合材料制备方法和应用
CN115184426A (zh) * 2022-07-12 2022-10-14 衡阳师范学院 一种负载纳米硒/二氧化锰的氮掺杂石墨烯复合材料、修饰玻碳电极的制备方法及其应用
CN115184426B (zh) * 2022-07-12 2023-09-22 衡阳师范学院 一种负载纳米硒/二氧化锰的氮掺杂石墨烯复合材料、修饰玻碳电极的制备方法及其应用

Also Published As

Publication number Publication date
CN109637839B (zh) 2021-12-17
CN109637839A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020098276A1 (zh) 碳纳米管/二氧化锰复合材料电极的制备方法
CN107731566B (zh) 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用
CN108054019B (zh) 叠层结构NiCo2S4@NixCo(1-x)(OH)2复合材料的制备方法及应用
CN104795252B (zh) 超薄Ti3C2纳米片自组装的超级电容器电极的制备方法
CN106099076B (zh) 一种花状氮掺杂碳包覆铋结构复合材料及其制备方法和应用
CN112233912B (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
Liu et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor
CN110610816A (zh) 一种碳布基镍钴双金属硒化物纳米方片电极材料的制备方法
CN110148534A (zh) 一种纳米金属氧化物/碳基柔性电极材料的制备方法
CN110310835B (zh) 一种纳米花状NiS@NiCo2S4微、纳米电极材料及其制备方法和应用
CN110467182A (zh) 一种基于反应模板的多级孔碳基材料及其制备方法和应用
CN108257794A (zh) 一种硫化钴镍/石墨烯复合凝胶的制备方法及应用
CN112216520B (zh) MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用
CN109775762A (zh) 一种空心分等级结构的Fe2O3及Fe2O3/CNT复合材料的制备方法
CN102516764A (zh) 一种聚苯胺纳米线/分级多孔碳复合材料及其制备方法和应用
CN107481865A (zh) 一种基于gqd/氢氧化钴复合材料的全固态柔性微型超级电容器
CN111048324A (zh) 一种二氧化锰—多孔碳复合材料及其制备方法和应用
CN110491684A (zh) 针状花钴镍双金属氢氧化物复合材料及其制备方法和应用
Yan et al. Hierarchical MnO2@ NiCo2O4@ Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors
CN109822107A (zh) 一种金纳米粒子复合生物质碳材料的制备方法
CN101872651B (zh) 原位自生长纳米碳复合材料的制备方法
CN110993359B (zh) 一种柔性固态非对称超级电容器件及其制备方法与应用
CN112435864A (zh) 泡沫钛基底上生长氧化铁纳米棒阵列材料及其制备方法
CN111724998A (zh) 一种v2o3-多孔碳纳米纤维超级电容器电极材料及其制法
CN104599863B (zh) 一种制备复合材料的方法、复合材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883550

Country of ref document: EP

Kind code of ref document: A1