CN107731566B - 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 - Google Patents
一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 Download PDFInfo
- Publication number
- CN107731566B CN107731566B CN201710987775.6A CN201710987775A CN107731566B CN 107731566 B CN107731566 B CN 107731566B CN 201710987775 A CN201710987775 A CN 201710987775A CN 107731566 B CN107731566 B CN 107731566B
- Authority
- CN
- China
- Prior art keywords
- electrode material
- nickel cobalt
- cobalt sulfide
- nickel
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KAEHZLZKAKBMJB-UHFFFAOYSA-N cobalt;sulfanylidenenickel Chemical compound [Ni].[Co]=S KAEHZLZKAKBMJB-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 239000007772 electrode material Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 24
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims abstract description 10
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 8
- 239000004312 hexamethylene tetramine Substances 0.000 claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- 238000005406 washing Methods 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000011259 mixed solution Substances 0.000 claims description 8
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 7
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 7
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 239000004809 Teflon Substances 0.000 claims description 7
- 229920006362 Teflon® Polymers 0.000 claims description 7
- 239000006230 acetylene black Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000011565 manganese chloride Substances 0.000 claims description 7
- 229940099607 manganese chloride Drugs 0.000 claims description 7
- 235000002867 manganese chloride Nutrition 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- 239000001509 sodium citrate Substances 0.000 claims description 7
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 7
- 238000003760 magnetic stirring Methods 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 5
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 238000013019 agitation Methods 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 230000001376 precipitating effect Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 239000006258 conductive agent Substances 0.000 claims 2
- 238000004321 preservation Methods 0.000 claims 2
- 238000002242 deionisation method Methods 0.000 claims 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 11
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 6
- 239000006260 foam Substances 0.000 abstract description 5
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 239000002086 nanomaterial Substances 0.000 abstract description 3
- 239000002243 precursor Substances 0.000 abstract 3
- 239000004094 surface-active agent Substances 0.000 abstract 2
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 abstract 1
- 229910017052 cobalt Inorganic materials 0.000 abstract 1
- 239000010941 cobalt Substances 0.000 abstract 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract 1
- 229910001429 cobalt ion Inorganic materials 0.000 abstract 1
- 229910001437 manganese ion Inorganic materials 0.000 abstract 1
- YTBWYQYUOZHUKJ-UHFFFAOYSA-N oxocobalt;oxonickel Chemical compound [Co]=O.[Ni]=O YTBWYQYUOZHUKJ-UHFFFAOYSA-N 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- 235000019441 ethanol Nutrition 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052976 metal sulfide Inorganic materials 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 229920006358 Fluon Polymers 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- -1 H in electrolyte+ Chemical class 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于纳米材料和电化学领域,具体涉及一种三维花瓣状镍钴硫化物电极材料的制备方法。以硝酸镍和硝酸钴为镍源和钴源,硫化锰为前躯体,六次甲基四胺为表面活性剂,在水热合成反应釜下反应一段时间得到镍钴硫化物,并将其涂覆在泡沫镍表面,经真空干燥后压制成电极材料。在本发明中,一次水热反应过程中,合成硫化锰前躯体,二次水热过程中,在表面活性剂的协同下,硫化锰前躯体上生长出镍钴氧化物纳米片,同时,同时锰离子和镍钴离子发生柯肯达尔效应得到中空结构。所得电极具备较高的比电容,可用于超级电容器电极材料。
Description
技术领域
本发明属于纳米材料和电化学领域,具体涉及一种三维花瓣状镍钴硫化物电极材料的制备方法和应用。
背景技术
在21世纪,“能源”已经成为国家间竞争的焦点。面对即将到来的能源危机,在试图找到新能源的同时,科学家们正积极研发节能、高效的储能器件。在新型储能器件中,超级电容器因其功率密度大、充放电速度快和循环寿命长等优点,正受到越来越多的关注。在超级电容器的众多组成部分中,电极材料的特性和组合对超级电容器的性能具有很大影响。
金属硫化物是一种具有良好电化学活性的金属化合物,其在碱性条件下呈现高度可逆的氧化还原反应。相比同种金属的氧化物,硫化物具有更低的能带间隙,因此具有更好的导电性。纳米结构的金属硫化物具有较大的比表面积,能够充分与电解液接触,在充电过程中,电解液中能够有更多的离子(如 H+、 OH-、 K+或 Li+)扩散到电极/溶液界面,通过在界面上进行氧化还原反应进入金属硫化物体相,从而使更多的电荷存储在电极中,获得更高的能量密度。利用纳米金属硫化物构建具有理想结构的复合材料,从而得到低廉的价格、较高的能量密度和优异的循环稳定性等综合性能的电极材料,是一种有效的途径之一。
发明内容
本发明的目的在于针对现有技术不足,提供一种三维花瓣状镍钴硫化物电极材料的制备方法和应用。通过调控Ni和Co等原子的比例,使得复合电极材料具备更大的比电容。
为实现上述目的,本发明采用如下技术方案:
一种三维花瓣状镍钴硫化物电极材料的制备方法,包括以下步骤:
(1)将氯化锰和柠檬酸钠溶解在30~50L去离子水中;随后,在磁力搅拌下将20~40mL的0.1mol/L 的硫化钠水溶液滴加到混合溶液中;
(2)将步骤(1)得到的混合物转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
(3)取出高压反应釜并自然冷却至室温后,离心得到粉红色沉淀,将所得沉淀用去离子水洗涤数次后,超声分散在30~50mL去离子水中;
(4)将硝酸镍溶液和硝酸钴溶液混合均匀,并逐滴加入到步骤(3)的溶液中,磁力搅拌20分钟后,再将配置好的六次甲基四胺溶液逐滴加入溶液中;
(5)将步骤(4)得到的混合物转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;
(6)取出高压反应釜并自然冷却至室温后,将得到的产物离心、洗涤、真空干燥后得到镍钴硫化物;
(7)将步骤(6)的镍钴硫化物与导电极乙炔黑和粘结剂PVDF混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预处理好的泡沫镍集流体上,真空干燥并压制成片,即制得所述三维花瓣状镍钴硫化物电极材料。
步骤(1)中,按质量比计,氯化锰:柠檬酸钠=1:1。
步骤(3)中,所述超声的工艺参数为:超声功率为200W,超声温度为25℃,超声时间为1h。
步骤(4)中,按摩尔比计,硝酸镍:硝酸钴=1:(0.5~2);硝酸镍溶液和硝酸钴溶液的浓度均为10g/L。
步骤(4)中,所述六次甲基四胺溶液的浓度为10g/L,添加量为20~40mL。
步骤(7)中,按质量比计,镍钴硫化物:导电极乙炔黑:粘结剂PVDF=16:3:1。
步骤(7)中,泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
本发明的有益效果在于:
(1)本发明所制备的电极材料使用了二次水热反应,第一次水热反应合成了硫化锰前驱体,然后通过第二次水热反应在硫化锰前驱体上生长出镍钴硫化物,同时锰粒子和镍钴粒子发生柯肯达尔效应得到多孔结构,从而制备出三维花瓣纳米球结构的镍钴硫化物;
(2)本发明制备过程中无需高温煅烧,且水热反应的温度比较温和,在相对较低的温度下合成的电极材料具有较高的比表面积,恰当的孔径分布,比容量高,优异的循环稳定性能,对能源消耗低;
(3)本发明制备过程中使用水溶剂,使用的化学试剂污染小,对环境较友好。
附图说明
图1为本发明中实施例1所制备材料的XRD图谱;
图2为本发明中实施例1所制备材料的扫描电镜图片;
图3为本发明中实施例1所制备三维花瓣状镍钴硫化物电极材料的循环伏安特性曲线图;
图4为本发明中所制备的镍钴硫化物电极材料的充放电曲线图。
具体实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例1
一种三维花瓣状镍钴硫化物电极材料的制备方法,具体过程如下:
(1)硫化锰的合成
将0.3g氯化锰和0.3g柠檬酸钠溶解在40mL去离子水中;随后,在磁力搅拌下将30mL 0.1mol/L 的硫化钠水溶液滴加到混合溶液中,20分钟后将混合溶液转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
取出高压反应釜并自然冷却至室温后,将得到的粉红色沉淀,用乙醇和去离子水洗涤数次后,超声分散在40mL去离子水中,超声功率为200W,超声温度为25℃,超声时间为1h,得到硫化锰分散液。
(2)三维花瓣状镍钴硫化物的合成
将20mL浓度为10g/ L的硝酸镍溶液和10mL浓度为10g /L的硝酸钴溶液混合均匀,并逐滴加入到硫化锰分散液中,磁力搅拌20分钟后,再将30mL浓度为10g/L的六次甲基四胺溶液逐滴加入溶液中;
将混合液转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;取出高压反应釜并自然冷却至室温后,将所得产物用去离子水和乙醇洗涤数次后,在冻干机中干燥一夜,得到镍钴硫化物(Ni2CoS4)。
(3)制备测试电极
将3.2mg的镍钴硫化物与0.6mg的导电极乙炔黑和0.2mg的粘结剂PVDF按16:3:1的比例混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预预处理好的泡沫镍集流体上,真空干燥并压制成片,即可得到用于测试的工作电极;所述的泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
实施例2
一种三维花瓣状镍钴硫化物电极材料的制备方法,具体过程如下:
(1)硫化锰的合成
将0.3g氯化锰和0.3g柠檬酸钠溶解在30mL去离子水中;随后,在磁力搅拌下将20mL 0.1mol/L 的硫化钠水溶液滴加到混合溶液中,20分钟后将混合溶液转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
取出高压反应釜并自然冷却至室温后,将得到的粉红色沉淀,用乙醇和去离子水洗涤数次后,超声分散在30mL去离子水中,超声功率为200W,超声温度为25℃,超声时间为1h,得到硫化锰分散液。
(2)三维花瓣状镍钴硫化物的合成
将15mL浓度为10g/ L的硝酸镍溶液和15mL浓度为10g /L的硝酸钴溶液混合均匀,并逐滴加入到硫化锰分散液中,磁力搅拌20分钟后,再将20mL浓度为10g/L的六次甲基四胺溶液逐滴加入溶液中;
将混合液转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;取出高压反应釜并自然冷却至室温后,将所得产物用去离子水和乙醇洗涤数次后,在冻干机中干燥一夜,得到镍钴硫化物(NiCoS4)。
(3)制备测试电极
将3.2mg的镍钴硫化物与0.6mg的导电极乙炔黑和0.2mg的粘结剂PVDF按16:3:1的比例混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预预处理好的泡沫镍集流体上,真空干燥并压制成片,即可得到用于测试的工作电极;所述的泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
实施例3
一种三维花瓣状镍钴硫化物电极材料的制备方法,具体过程如下:
(1)硫化锰的合成
将0.3g氯化锰和0.3g柠檬酸钠溶解在50mL去离子水中;随后,在磁力搅拌下将40mL 0.1mol/L 的硫化钠水溶液滴加到混合溶液中,20分钟后将混合溶液转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
取出高压反应釜并自然冷却至室温后,将得到的粉红色沉淀,用乙醇和去离子水洗涤数次后,超声分散在50mL去离子水中,超声功率为200W,超声温度为25℃,超声时间为1h,得到硫化锰分散液。
(2)三维花瓣状镍钴硫化物的合成
将10mL浓度为10g/ L的硝酸镍溶液和20mL浓度为10g /L的硝酸钴溶液混合均匀,并逐滴加入到硫化锰分散液中,磁力搅拌20分钟后,再将40mL浓度为10g/L的六次甲基四胺溶液逐滴加入溶液中;
将混合液转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;取出高压反应釜并自然冷却至室温后,将所得产物用去离子水和乙醇洗涤数次后,在冻干机中干燥一夜,得到镍钴硫化物(NiCo2S4)。
(3)制备测试电极
将3.2mg的镍钴硫化物与0.6mg的导电极乙炔黑和0.2mg的粘结剂PVDF按16:3:1的比例混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预预处理好的泡沫镍集流体上,真空干燥并压制成片,即可得到用于测试的工作电极;所述的泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
图1为实施例1所制备材料的XRD图谱;经与标准PDF卡片对比,证明制备的材料确为镍钴硫化物电极材料。
图2为实施例1所制备材料的扫描电镜图片;由图2可知所制备的镍钴硫化物电极材料呈三维花瓣状结构。
图3为实施例1所制备三维花瓣状镍钴硫化物电极材料的循环伏安特性曲线图;由图3可知所合成的电极材料在充放电过程中有明显的法拉第反应,呈现赝电容特性。
图4为实施例1~3所制备的镍钴硫化物电极材料的充放电曲线图;由图4可知Ni2GoS4电极材料放电时间最长,比电容更好。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (6)
1.一种三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:包括以下步骤:
(1)将氯化锰和柠檬酸钠溶解在30~50mL去离子水中;随后,在磁力搅拌下将20~40mL的0.1mol/L 的硫化钠水溶液滴加到混合溶液中;
(2)将步骤(1)得到的混合物转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温12小时;
(3)取出高压反应釜并自然冷却至室温后,离心得到粉红色沉淀,将所得沉淀用去离子水洗涤数次后,超声分散在30~50mL去离子水中;
(4)将硝酸镍溶液和硝酸钴溶液混合均匀,并逐滴加入到步骤(3)的溶液中,磁力搅拌20分钟后,再将配置好的六次甲基四胺溶液逐滴加入溶液中,所述六次甲基四胺溶液的浓度为10g/L,添加量为20~40mL;
(5)将步骤(4)得到的混合物转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;
(6)取出高压反应釜并自然冷却至室温后,将得到的产物离心、洗涤、真空干燥后得到镍钴硫化物;
(7)将步骤(6)的镍钴硫化物与导电剂乙炔黑和粘结剂PVDF混合均匀,然后滴加N-甲基吡咯烷酮溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预处理好的泡沫镍集流体上,真空干燥并压制成片,即制得所述三维花瓣状镍钴硫化物电极材料。
2.根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(1)中,按质量比计,氯化锰:柠檬酸钠=1:1。
3.根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(3)中,所述超声的工艺参数为:超声功率为200W,超声温度为25℃,超声时间为1h。
4.根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(4)中,按摩尔比计,硝酸镍:硝酸钴=1:(0.5~2);硝酸镍溶液和硝酸钴溶液的浓度均为10g/L。
5.根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(7)中,按质量比计,镍钴硫化物:导电剂乙炔黑:粘结剂PVDF=16:3:1。
6.一种如权利要求1所述的制备方法制得的三维花瓣状镍钴硫化物电极材料的应用,其特征在于:所述电极材料作为超级电容器电极材料。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710987775.6A CN107731566B (zh) | 2017-10-21 | 2017-10-21 | 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 |
PCT/CN2018/074218 WO2019075953A1 (zh) | 2017-10-21 | 2018-01-26 | 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710987775.6A CN107731566B (zh) | 2017-10-21 | 2017-10-21 | 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107731566A CN107731566A (zh) | 2018-02-23 |
CN107731566B true CN107731566B (zh) | 2019-09-13 |
Family
ID=61212242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710987775.6A Active CN107731566B (zh) | 2017-10-21 | 2017-10-21 | 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107731566B (zh) |
WO (1) | WO2019075953A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108597907B (zh) * | 2018-06-14 | 2020-01-10 | 福建宸琦新材料科技有限公司 | 一种镍钼硒化物/泡沫镍复合电极材料的制备方法和应用 |
CN109003827B (zh) * | 2018-07-27 | 2019-12-31 | 福州大学 | 一种海绵状石墨烯/镍钴硫化物复合材料的制备方法和应用 |
CN111218693B (zh) * | 2018-11-26 | 2021-07-23 | 中国科学院大连化学物理研究所 | 一种碱性水电解全电池 |
CN109603858B (zh) * | 2018-12-14 | 2021-11-16 | 中国科学院海洋研究所 | 一种双活性模拟酶材料及其制备和应用 |
CN110211812B (zh) * | 2019-06-14 | 2021-02-26 | 上海应用技术大学 | 一种MnS@CoMn-LDH复合材料及其制备方法与应用 |
CN111063550A (zh) * | 2019-12-23 | 2020-04-24 | 江苏大学 | 空心核-壳Fe-Co基硫化物@氢氧化镍纳米管阵列的制备方法及其应用 |
CN111268744B (zh) * | 2020-01-19 | 2024-02-23 | 北京辉腾格勒石墨烯科技有限公司 | 镍钴双金属硫化物以及其电极制备方法 |
CN111807359B (zh) * | 2020-06-01 | 2022-03-15 | 广东邦普循环科技有限公司 | 一种动力电池中石墨纯化及晶格重构方法 |
CN112599359B (zh) * | 2020-12-14 | 2022-01-28 | 宁波大学 | 一种硫化钴镍纳米片包覆的棒束状氧化铈材料及其制备方法和应用 |
CN113755887B (zh) * | 2021-09-30 | 2023-01-17 | 广州发展新能源股份有限公司 | 一种Ni2S3-Co9S8复合材料析氢催化剂和制备方法及应用 |
CN114220667B (zh) * | 2021-12-31 | 2023-12-12 | 福州大学 | 一种空心氢氧化镍针刺微球电极材料及其制备方法和应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100362680C (zh) * | 2004-11-15 | 2008-01-16 | 天津大学 | 镍氢电池负极表面处理方法 |
CN104201010B (zh) * | 2014-09-18 | 2017-02-22 | 同济大学 | 一种溶剂热法合成海胆状NiCo2S4电极材料的方法 |
CN104599853B (zh) * | 2015-02-09 | 2019-01-15 | 中国工程物理研究院材料研究所 | 一种超级电容器用镍钴硫代尖晶石的制备方法 |
CN104795245A (zh) * | 2015-05-14 | 2015-07-22 | 安徽师范大学 | 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途 |
CN106683892B (zh) * | 2016-11-23 | 2019-01-15 | 广东工业大学 | 一种三维异质结构的硫化钴镍电极材料及其制备方法和应用 |
-
2017
- 2017-10-21 CN CN201710987775.6A patent/CN107731566B/zh active Active
-
2018
- 2018-01-26 WO PCT/CN2018/074218 patent/WO2019075953A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN107731566A (zh) | 2018-02-23 |
WO2019075953A1 (zh) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107731566B (zh) | 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 | |
CN101982408B (zh) | 石墨烯三维结构体材料的制备方法 | |
CN106876682B (zh) | 一种具有多孔结构的氧化锰/镍微米球及其制备和应用 | |
CN103326007B (zh) | 三维石墨烯基二氧化锡复合材料的制备方法及其应用 | |
CN101800302A (zh) | 锂离子电池石墨烯纳米片-氧化亚钴复合负极材料及其制备方法 | |
CN103247777A (zh) | 锂离子电池用四氧化三钴多壳层空心球负极材料及其制备方法 | |
CN105826523A (zh) | 一种锂硫电池正极材料及其制备方法 | |
CN104167540A (zh) | 负极活性材料及其制备方法以及锂离子电池 | |
CN108321369A (zh) | 一种可用于锂硫电池的大孔碳/氧化锌/硫复合材料及其制备方法与应用 | |
CN104008888A (zh) | 超级电容器用复合材料及电极片的制备方法 | |
CN109802124A (zh) | 一种金属原子掺杂多孔碳纳米复合材料及其制备方法和应用 | |
CN109473666A (zh) | 一种石墨烯支撑的SbVO4纳米颗粒复合材料及其制备方法 | |
CN112490017A (zh) | 一种NiCo-LDH纳米材料的制备方法及其应用 | |
CN110491684B (zh) | 针状花钴镍双金属氢氧化物复合材料及其制备方法和应用 | |
CN108258238B (zh) | 一种纳米片状结构的钠离子电池负极材料NiCo2S4及其制备方法 | |
CN104167298A (zh) | 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法 | |
CN106006763A (zh) | 一种钴酸镍纳米晶组装体的制备方法 | |
CN106783209B (zh) | 一种葡萄糖基多孔碳超级电容器电极材料的制备方法 | |
CN113937261B (zh) | 锂硫电池正极材料及其制备方法及锂硫电池正极片 | |
CN110634688A (zh) | CoZn-S纳米颗粒穿插在石墨烯中的复合薄膜电极制备方法及其应用 | |
CN107316749B (zh) | Co3O4@CoWO4纳米线阵列核壳结构材料的制备方法及其应用 | |
CN106450235B (zh) | 一种自组装纳米片状多孔结构四氧化三钴-氧化锌复合材料的制备方法及其应用 | |
CN103578772A (zh) | 电容器电极用活性材料及其制备方法 | |
CN109755039A (zh) | 一种基于杨梅生物质碳基材料的锰氧化物复合材料制备方法与应用 | |
CN102923691A (zh) | 一种核壳结构氢氧化镍/分级多孔碳复合材料的制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210628 Address after: 350199 d2-4f, Minhou smart grid equipment Industrial Park, No.1, Nanling Branch Road, Minhou economic and Technological Development Zone, sugarcane street, Minhou County, Fuzhou City, Fujian Province Patentee after: Fuzhou Zhensheng Intelligent Technology Co.,Ltd. Address before: No.2, Xueyuan Road, University Town, Shangjie Town, Minhou County, Fuzhou City, Fujian Province Patentee before: FUZHOU University |