WO2019075953A1 - 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 - Google Patents

一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 Download PDF

Info

Publication number
WO2019075953A1
WO2019075953A1 PCT/CN2018/074218 CN2018074218W WO2019075953A1 WO 2019075953 A1 WO2019075953 A1 WO 2019075953A1 CN 2018074218 W CN2018074218 W CN 2018074218W WO 2019075953 A1 WO2019075953 A1 WO 2019075953A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
electrode material
cobalt
cobalt sulfide
solution
Prior art date
Application number
PCT/CN2018/074218
Other languages
English (en)
French (fr)
Inventor
郑玉婴
赵文誉
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2019075953A1 publication Critical patent/WO2019075953A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of nano materials and electrochemistry, and particularly relates to a preparation method and application of a three-dimensional petal-like nickel-cobalt sulfide electrode material.
  • Metal sulfide is a metal compound with good electrochemical activity which exhibits a highly reversible redox reaction under alkaline conditions. Sulfides have a lower band gap than oxides of the same metal and therefore have better electrical conductivity.
  • the nanostructured metal sulfide has a large specific surface area and can be sufficiently contacted with the electrolyte. During the charging process, more ions (such as H + , OH - , K + or Li + ) can diffuse into the electrolyte to the electrolyte.
  • the electrode/solution interface enters the metal sulfided phase by performing a redox reaction at the interface, thereby allowing more charge to be stored in the electrode for higher energy density.
  • the object of the present invention is to provide a method and application for preparing a three-dimensional petal-like nickel-cobalt sulfide electrode material in view of the deficiencies of the prior art.
  • the composite electrode material has a larger specific capacitance.
  • the present invention adopts the following technical solutions:
  • a method for preparing a three-dimensional petal-like nickel-cobalt sulfide electrode material comprising the following steps:
  • the ultrasonic process parameters are: ultrasonic power of 200 W, ultrasonic temperature of 25 ° C, and ultrasonic time of 1 h.
  • the molar ratio of nickel nitrate: cobalt nitrate 1: (0.5 ⁇ 2); the concentration of the nickel nitrate solution and the cobalt nitrate solution are both 10 g / L.
  • the concentration of the hexamethylenetetramine solution is 10 g/L, and the addition amount is 20 to 40 mL.
  • the pretreatment process of the nickel foam is: cutting a graphite felt having a thickness of 0.5 mm into a L-shaped strip of 1 cm ⁇ 1 cm, followed by washing with dilute hydrochloric acid, acetone, and ethanol to remove surface oxidation. The materials and other contaminants were finally ultrasonically washed with a large amount of deionized water and finally dried under vacuum at 60 ° C for 24 hours.
  • the electrode material prepared by the present invention uses a secondary hydrothermal reaction, the first hydrothermal reaction synthesizes a manganese sulfide precursor, and then grows on the manganese sulfide precursor by a second hydrothermal reaction.
  • Nickel-cobalt sulfide while manganese particles and nickel-cobalt particles undergo a Kirkendall effect to obtain a porous structure, thereby preparing a nickel-cobalt sulfide of a three-dimensional petal nanosphere structure;
  • the high temperature calcination is not required in the preparation process of the invention, and the temperature of the hydrothermal reaction is relatively mild, and the electrode material synthesized at a relatively low temperature has a high specific surface area, an appropriate pore size distribution, a high specific capacity, and excellent Cycle stability energy, low energy consumption;
  • the water solvent is used in the preparation process of the invention, and the chemical reagent used is less polluted and friendly to the environment.
  • Figure 1 is an XRD pattern of the material prepared in Example 1 of the present invention.
  • Example 2 is a scanning electron microscope image of a material prepared in Example 1 of the present invention.
  • Example 3 is a graph showing cyclic volt-ampere characteristics of a three-dimensional petal-like nickel-cobalt sulfide electrode material prepared in Example 1 of the present invention
  • Fig. 4 is a graph showing charge and discharge curves of a nickel-cobalt sulfide electrode material prepared in the present invention.
  • a method for preparing a three-dimensional petal-like nickel-cobalt sulfide electrode material is as follows:
  • Ni 2 CoS 4 nickel cobalt sulfide
  • NMP N-methylpyrrolidone
  • the pretreatment process is: cutting the graphite felt with a thickness of 0.5 mm into L-shaped strips of 1 cm ⁇ 1 cm, followed by washing with dilute hydrochloric acid, acetone and ethanol to remove surface oxides and other pollutants, and finally using a large amount of The deionized water was ultrasonically washed and finally dried under vacuum at 60 ° C for 24 hours.
  • a method for preparing a three-dimensional petal-like nickel-cobalt sulfide electrode material is as follows:
  • NiCoS 4 nickel cobalt sulfide
  • NMP N-methylpyrrolidone
  • the pretreatment process is: cutting the graphite felt with a thickness of 0.5 mm into L-shaped strips of 1 cm ⁇ 1 cm, followed by washing with dilute hydrochloric acid, acetone and ethanol to remove surface oxides and other pollutants, and finally using a large amount of The deionized water was ultrasonically washed and finally dried under vacuum at 60 ° C for 24 hours.
  • a method for preparing a three-dimensional petal-like nickel-cobalt sulfide electrode material is as follows:
  • NiCo 2 S 4 nickel cobalt sulfide
  • NMP N-methylpyrrolidone
  • the pretreatment process is: cutting the graphite felt with a thickness of 0.5 mm into L-shaped strips of 1 cm ⁇ 1 cm, followed by washing with dilute hydrochloric acid, acetone and ethanol to remove surface oxides and other pollutants, and finally using a large amount of The deionized water was ultrasonically washed and finally dried under vacuum at 60 ° C for 24 hours.
  • Figure 1 is an XRD pattern of the material prepared in Example 1; compared with a standard PDF card, it was confirmed that the material prepared was a nickel-cobalt sulfide electrode material.
  • Example 2 is a scanning electron micrograph of the material prepared in Example 1. It can be seen from FIG. 2 that the prepared nickel-cobalt sulfide electrode material has a three-dimensional petal-like structure.
  • Example 3 is a cyclic voltammetry characteristic chart of the three-dimensional petal-like nickel-cobalt sulfide electrode material prepared in Example 1. It can be seen from FIG. 3 that the synthesized electrode material has a distinct Faraday reaction during charging and discharging, and exhibits a tantalum capacitance characteristic.
  • FIG. 4 is a graph showing charge and discharge curves of the nickel-cobalt sulfide electrode materials prepared in Examples 1 to 3; FIG. 4 shows that the Ni 2 GoS 4 electrode material has the longest discharge time and better specific capacitance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于纳米材料和电化学领域,具体涉及一种三维花瓣状镍钴硫化物电极材料的制备方法。以硝酸镍和硝酸钴为镍源和钴源,硫化锰为前驱体,六次甲基四胺为表面活性剂,在水热合成反应釜下反应一段时间得到镍钴硫化物,并将其涂覆在泡沫镍表面,经真空干燥后压制成电极材料。在本发明中,一次水热反应过程中,合成硫化锰前驱体,二次水热过程中,在表面活性剂的协同下,硫化锰前躯体上生长出镍钴氧化物纳米片,同时,同时锰离子和镍钴离子发生柯肯达尔效应得到中空结构。所得电极具备较高的比电容,可用于超级电容器电极材料。

Description

一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 技术领域
本发明属于纳米材料和电化学领域,具体涉及一种三维花瓣状镍钴硫化物电极材料的制备方法和应用。
背景技术
在21世纪,“能源”已经成为国家间竞争的焦点。面对即将到来的能源危机,在试图找到新能源的同时,科学家们正积极研发节能、高效的储能器件。在新型储能器件中,超级电容器因其功率密度大、充放电速度快和循环寿命长等优点,正受到越来越多的关注。在超级电容器的众多组成部分中,电极材料的特性和组合对超级电容器的性能具有很大影响。
金属硫化物是一种具有良好电化学活性的金属化合物,其在碱性条件下呈现高度可逆的氧化还原反应。相比同种金属的氧化物,硫化物具有更低的能带间隙,因此具有更好的导电性。纳米结构的金属硫化物具有较大的比表面积,能够充分与电解液接触,在充电过程中,电解液中能够有更多的离子(如 H +、 OH -、 K +或 Li +)扩散到电极/溶液界面,通过在界面上进行氧化还原反应进入金属硫化物体相,从而使更多的电荷存储在电极中,获得更高的能量密度。
技术问题
[0003] 利用纳米金属硫化物构建具有理想结构的复合材料,从而得到低廉的价格、较高的能量密度和优异的循环稳定性等综合性能的电极材料,是一种有效的途径之一。
技术解决方案
本发明的目的在于针对现有技术不足,提供一种三维花瓣状镍钴硫化物电极材料的制备方法和应用。通过调控Ni和Co等原子的比例,使得复合电极材料具备更大的比电容。
为实现上述目的,本发明采用如下技术方案:
一种三维花瓣状镍钴硫化物电极材料的制备方法,包括以下步骤:
(1)将氯化锰和柠檬酸钠溶解在30~50L去离子水中;随后,在磁力搅拌下将20~40mL的0.1mol/L 的硫化钠水溶液滴加到混合溶液中;
(2)将步骤(1)得到的混合物转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
(3)取出高压反应釜并自然冷却至室温后,离心得到粉红色沉淀,将所得沉淀用去离子水洗涤数次后,超声分散在30~50mL去离子水中;
(4)将硝酸镍溶液和硝酸钴溶液混合均匀,并逐滴加入到步骤(3)的溶液中,磁力搅拌20分钟后,再将配置好的六次甲基四胺溶液逐滴加入溶液中;
(5)将步骤(4)得到的混合物转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;
(6)取出高压反应釜并自然冷却至室温后,将得到的产物离心、洗涤、真空干燥后得到镍钴硫化物;
(7)将步骤(6)的镍钴硫化物与导电极乙炔黑和粘结剂PVDF混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预处理好的泡沫镍集流体上,真空干燥并压制成片,即制得所述三维花瓣状镍钴硫化物电极材料。
步骤(1)中,按质量比计,氯化锰:柠檬酸钠=1:1。
步骤(3)中,所述超声的工艺参数为:超声功率为200W,超声温度为25℃,超声时间为1h。
步骤(4)中,按摩尔比计,硝酸镍:硝酸钴=1:(0.5~2);硝酸镍溶液和硝酸钴溶液的浓度均为10g/L。
步骤(4)中,所述六次甲基四胺溶液的浓度为10g/L,添加量为20~40mL。
步骤(7)中,按质量比计,镍钴硫化物:导电极乙炔黑:粘结剂PVDF=16:3:1。
步骤(7)中,泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
有益效果
(1) [0005] 本发明所制备的电极材料使用了二次水热反应,第一次水热反应合成了硫化锰前驱体,然后通过第二次水热反应在硫化锰前驱体上生长出镍钴硫化物,同时锰粒子和镍钴粒子发生柯肯达尔效应得到多孔结构,从而制备出三维花瓣纳米球结构的镍钴硫化物;
(2)本发明制备过程中无需高温煅烧,且水热反应的温度比较温和,在相对较低的温度下合成的电极材料具有较高的比表面积,恰当的孔径分布,比容量高,优异的循环稳定性能,对能源消耗低;
(3)本发明制备过程中使用水溶剂,使用的化学试剂污染小,对环境较友好。
附图说明
图1为本发明中实施例1所制备材料的XRD图谱;
图2为本发明中实施例1所制备材料的扫描电镜图片;
图3为本发明中实施例1所制备三维花瓣状镍钴硫化物电极材料的循环伏安特性曲线图;
图4为本发明中所制备的镍钴硫化物电极材料的充放电曲线图。
本发明的最佳实施方式
[0007] 以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例 1
一种三维花瓣状镍钴硫化物电极材料的制备方法,具体过程如下:
(1)硫化锰的合成
将0.3g氯化锰和0.3g柠檬酸钠溶解在40mL去离子水中;随后,在磁力搅拌下将30mL 0.1mol/L 的硫化钠水溶液滴加到混合溶液中,20分钟后将混合溶液转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
取出高压反应釜并自然冷却至室温后,将得到的粉红色沉淀,用乙醇和去离子水洗涤数次后,超声分散在40mL去离子水中,超声功率为200W,超声温度为25℃,超声时间为1h,得到硫化锰分散液。
(2)三维花瓣状镍钴硫化物的合成
将20mL浓度为10g/ L的硝酸镍溶液和10mL浓度为10g /L的硝酸钴溶液混合均匀,并逐滴加入到硫化锰分散液中,磁力搅拌20分钟后,再将30mL浓度为10g/L的六次甲基四胺溶液逐滴加入溶液中;
将混合液转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;取出高压反应釜并自然冷却至室温后,将所得产物用去离子水和乙醇洗涤数次后,在冻干机中干燥一夜,得到镍钴硫化物(Ni 2CoS 4)。
(3)制备测试电极
将3.2mg的镍钴硫化物与0.6mg的导电极乙炔黑和0.2mg的粘结剂PVDF按16:3:1的比例混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预预处理好的泡沫镍集流体上,真空干燥并压制成片,即可得到用于测试的工作电极;所述的泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
实施例 2
一种三维花瓣状镍钴硫化物电极材料的制备方法,具体过程如下:
(1)硫化锰的合成
将0.3g氯化锰和0.3g柠檬酸钠溶解在30mL去离子水中;随后,在磁力搅拌下将20mL 0.1mol/L 的硫化钠水溶液滴加到混合溶液中,20分钟后将混合溶液转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
取出高压反应釜并自然冷却至室温后,将得到的粉红色沉淀,用乙醇和去离子水洗涤数次后,超声分散在30mL去离子水中,超声功率为200W,超声温度为25℃,超声时间为1h,得到硫化锰分散液。
(2)三维花瓣状镍钴硫化物的合成
将15mL浓度为10g/ L的硝酸镍溶液和15mL浓度为10g /L的硝酸钴溶液混合均匀,并逐滴加入到硫化锰分散液中,磁力搅拌20分钟后,再将20mL浓度为10g/L的六次甲基四胺溶液逐滴加入溶液中;
将混合液转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;取出高压反应釜并自然冷却至室温后,将所得产物用去离子水和乙醇洗涤数次后,在冻干机中干燥一夜,得到镍钴硫化物(NiCoS 4)。
(3)制备测试电极
将3.2mg的镍钴硫化物与0.6mg的导电极乙炔黑和0.2mg的粘结剂PVDF按16:3:1的比例混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预预处理好的泡沫镍集流体上,真空干燥并压制成片,即可得到用于测试的工作电极;所述的泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
实施例 3
一种三维花瓣状镍钴硫化物电极材料的制备方法,具体过程如下:
(1)硫化锰的合成
将0.3g氯化锰和0.3g柠檬酸钠溶解在50mL去离子水中;随后,在磁力搅拌下将40mL 0.1mol/L 的硫化钠水溶液滴加到混合溶液中,20分钟后将混合溶液转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
取出高压反应釜并自然冷却至室温后,将得到的粉红色沉淀,用乙醇和去离子水洗涤数次后,超声分散在50mL去离子水中,超声功率为200W,超声温度为25℃,超声时间为1h,得到硫化锰分散液。
(2)三维花瓣状镍钴硫化物的合成
将10mL浓度为10g/ L的硝酸镍溶液和20mL浓度为10g /L的硝酸钴溶液混合均匀,并逐滴加入到硫化锰分散液中,磁力搅拌20分钟后,再将40mL浓度为10g/L的六次甲基四胺溶液逐滴加入溶液中;
将混合液转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;取出高压反应釜并自然冷却至室温后,将所得产物用去离子水和乙醇洗涤数次后,在冻干机中干燥一夜,得到镍钴硫化物(NiCo 2S 4)。
(3)制备测试电极
将3.2mg的镍钴硫化物与0.6mg的导电极乙炔黑和0.2mg的粘结剂PVDF按16:3:1的比例混合均匀,然后滴加适量的N-甲基吡咯烷酮 ( NMP) 溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预预处理好的泡沫镍集流体上,真空干燥并压制成片,即可得到用于测试的工作电极;所述的泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用大量的去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
图1为实施例1所制备材料的XRD图谱;经与标准PDF卡片对比,证明制备的材料确为镍钴硫化物电极材料。
图2为实施例1所制备材料的扫描电镜图片;由图2可知所制备的镍钴硫化物电极材料呈三维花瓣状结构。
图3为实施例1所制备三维花瓣状镍钴硫化物电极材料的循环伏安特性曲线图;由图3可知所合成的电极材料在充放电过程中有明显的法拉第反应,呈现赝电容特性。
图4为实施例1~3所制备的镍钴硫化物电极材料的充放电曲线图;由图4可知Ni 2GoS 4电极材料放电时间最长,比电容更好。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

  1. 一种三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:包括以下步骤:
    (1)将氯化锰和柠檬酸钠溶解在30~50L去离子水中;随后,在磁力搅拌下将20~40mL的0.1mol/L 的硫化钠水溶液滴加到混合溶液中;
    (2)将步骤(1)得到的混合物转移到100mL特氟隆内衬的不锈钢高压反应釜中,在120℃下保温12小时;
    (3)取出高压反应釜并自然冷却至室温后,离心得到粉红色沉淀,将所得沉淀用去离子水洗涤数次后,超声分散在30~50mL去离子水中;
    (4)将硝酸镍溶液和硝酸钴溶液混合均匀,并逐滴加入到步骤(3)的溶液中,磁力搅拌20分钟后,再将配置好的六次甲基四胺溶液逐滴加入溶液中;
    (5)将步骤(4)得到的混合物转移到100mL特氟龙内衬的不锈钢高压反应釜中,在120℃下保温24小时;
    (6)取出高压反应釜并自然冷却至室温后,将得到的产物离心、洗涤、真空干燥后得到镍钴硫化物;
    (7)将步骤(6)的镍钴硫化物与导电极乙炔黑和粘结剂PVDF混合均匀,然后滴加N-甲基吡咯烷酮溶剂,配制成均匀的粘稠浆料,将其均匀地涂覆在预处理好的泡沫镍集流体上,真空干燥并压制成片,即制得所述三维花瓣状镍钴硫化物电极材料。
  2. 根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(1)中,按质量比计,氯化锰:柠檬酸钠=1:1。
  3. 根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(3)中,所述超声的工艺参数为:超声功率为200W,超声温度为25℃,超声时间为1h。
  4. 根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(4)中,按摩尔比计,硝酸镍:硝酸钴=1:(0.5~2);硝酸镍溶液和硝酸钴溶液的浓度均为10g/L。
  5. 根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(4)中,所述六次甲基四胺溶液的浓度为10g/L,添加量为20~40mL。
  6. 根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(7)中,按质量比计,镍钴硫化物:导电极乙炔黑:粘结剂PVDF=16:3:1。
  7. 根据权利要求1所述的三维花瓣状镍钴硫化物电极材料的制备方法,其特征在于:步骤(7)中,泡沫镍的预处理过程为:将厚度为0.5mm的石墨毡剪成1 cm×1 cm的L形状长条,随后依次用稀盐酸、丙酮、乙醇洗涤,去除表面的氧化物和其他污染物,最后用去离子水超声洗涤,最后在60℃真空条件下干燥24小时。
  8. 一种如权利要求1所述的制备方法制得的三维花瓣状镍钴硫化物电极材料的应用,其特征在于:所述电极材料作为超级电容器电极材料。
PCT/CN2018/074218 2017-10-21 2018-01-26 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 WO2019075953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710987775.6A CN107731566B (zh) 2017-10-21 2017-10-21 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用
CN201710987775.6 2017-10-21

Publications (1)

Publication Number Publication Date
WO2019075953A1 true WO2019075953A1 (zh) 2019-04-25

Family

ID=61212242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074218 WO2019075953A1 (zh) 2017-10-21 2018-01-26 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用

Country Status (2)

Country Link
CN (1) CN107731566B (zh)
WO (1) WO2019075953A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063550A (zh) * 2019-12-23 2020-04-24 江苏大学 空心核-壳Fe-Co基硫化物@氢氧化镍纳米管阵列的制备方法及其应用
CN113755887A (zh) * 2021-09-30 2021-12-07 广州发展新能源股份有限公司 一种Ni2S3-Co9S8复合材料析氢催化剂和制备方法及应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597907B (zh) * 2018-06-14 2020-01-10 福建宸琦新材料科技有限公司 一种镍钼硒化物/泡沫镍复合电极材料的制备方法和应用
CN109003827B (zh) * 2018-07-27 2019-12-31 福州大学 一种海绵状石墨烯/镍钴硫化物复合材料的制备方法和应用
CN111218693B (zh) * 2018-11-26 2021-07-23 中国科学院大连化学物理研究所 一种碱性水电解全电池
CN109603858B (zh) * 2018-12-14 2021-11-16 中国科学院海洋研究所 一种双活性模拟酶材料及其制备和应用
CN110211812B (zh) * 2019-06-14 2021-02-26 上海应用技术大学 一种MnS@CoMn-LDH复合材料及其制备方法与应用
CN111268744B (zh) * 2020-01-19 2024-02-23 北京辉腾格勒石墨烯科技有限公司 镍钴双金属硫化物以及其电极制备方法
CN111807359B (zh) * 2020-06-01 2022-03-15 广东邦普循环科技有限公司 一种动力电池中石墨纯化及晶格重构方法
CN112599359B (zh) * 2020-12-14 2022-01-28 宁波大学 一种硫化钴镍纳米片包覆的棒束状氧化铈材料及其制备方法和应用
CN114220667B (zh) * 2021-12-31 2023-12-12 福州大学 一种空心氢氧化镍针刺微球电极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776940A (zh) * 2004-11-15 2006-05-24 天津大学 镍氢电池负极表面处理方法
CN104599853A (zh) * 2015-02-09 2015-05-06 中国工程物理研究院材料研究所 一种超级电容器用镍钴硫代尖晶石及制备方法
CN104795245A (zh) * 2015-05-14 2015-07-22 安徽师范大学 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201010B (zh) * 2014-09-18 2017-02-22 同济大学 一种溶剂热法合成海胆状NiCo2S4电极材料的方法
CN106683892B (zh) * 2016-11-23 2019-01-15 广东工业大学 一种三维异质结构的硫化钴镍电极材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776940A (zh) * 2004-11-15 2006-05-24 天津大学 镍氢电池负极表面处理方法
CN104599853A (zh) * 2015-02-09 2015-05-06 中国工程物理研究院材料研究所 一种超级电容器用镍钴硫代尖晶石及制备方法
CN104795245A (zh) * 2015-05-14 2015-07-22 安徽师范大学 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063550A (zh) * 2019-12-23 2020-04-24 江苏大学 空心核-壳Fe-Co基硫化物@氢氧化镍纳米管阵列的制备方法及其应用
CN113755887A (zh) * 2021-09-30 2021-12-07 广州发展新能源股份有限公司 一种Ni2S3-Co9S8复合材料析氢催化剂和制备方法及应用

Also Published As

Publication number Publication date
CN107731566A (zh) 2018-02-23
CN107731566B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2019075953A1 (zh) 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用
CN103545123B (zh) 一种兼具锌离子电池和超级电容器的混合储能器件
Liu et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor
CN106229498B (zh) 一种适用于水系金属离子电池的负极材料及其制备方法
CN108597893B (zh) 一种基于泡沫镍上的超级电容器复合电极材料的制备方法
CN103606654B (zh) 一种碳包覆锰氧化物复合材料的制备方法
CN109637825B (zh) 一种硫化镍纳米片/碳量子点复合材料及其制备方法和应用
CN104008888A (zh) 超级电容器用复合材料及电极片的制备方法
US20220077456A1 (en) Core-shell nickel ferrite and preparation method thereof, nickel ferrite@c material and preparation method and application thereof
CN110212168A (zh) 一种简单水热合成β相氢氧化镍/石墨烯的纳米复合材料的制备方法
CN104167540A (zh) 负极活性材料及其制备方法以及锂离子电池
Yan et al. Facile hydrothermal selective fabrication of Ni (OH) 2 and Ni (HCO 3) 2 nanoparticulates and their electrochemical performances
CN103560019B (zh) 一种锌离子混合超级电容器
CN107706367B (zh) 碱性二次电池负极材料[CuxZnyNizFe2O4]及使用该负极材料的电池
CN110335758B (zh) 一种核壳结构的锰酸钴-掺氮空心碳球复合材料及其制备方法和应用
CN112670096B (zh) 一种碱式金属盐纳米材料及其制备方法与应用
Li et al. Microwave-assisted synthesis of the sandwich-like porous Al2O3/RGO nanosheets anchoring NiO nanocomposite as anode materials for lithium-ion batteries
CN107658441B (zh) 碱性二次电池负极材料[CoxCuyZnzFe2O4]及使用该负极材料的电池
CN110491684B (zh) 针状花钴镍双金属氢氧化物复合材料及其制备方法和应用
WO2019080310A1 (zh) 一种钼掺杂的富锂锰基正极材料及其制备方法
CN109346672B (zh) 一氧化钴及多壁碳纳米管一体化电极及其制备方法
CN101872651B (zh) 原位自生长纳米碳复合材料的制备方法
CN106450235B (zh) 一种自组装纳米片状多孔结构四氧化三钴-氧化锌复合材料的制备方法及其应用
Jiang et al. One-step electrodeposition preparation of NiCoSe 2@ carbon cloth as a flexible supercapacitor electrode material
CN112420401B (zh) 一种氧化铋/氧化锰复合型超级电容器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868617

Country of ref document: EP

Kind code of ref document: A1