CN113488339A - 一种基于碳基复合电极的柔性超级电容器及制备方法 - Google Patents

一种基于碳基复合电极的柔性超级电容器及制备方法 Download PDF

Info

Publication number
CN113488339A
CN113488339A CN202110798506.1A CN202110798506A CN113488339A CN 113488339 A CN113488339 A CN 113488339A CN 202110798506 A CN202110798506 A CN 202110798506A CN 113488339 A CN113488339 A CN 113488339A
Authority
CN
China
Prior art keywords
flexible
carbon
solution
composite electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110798506.1A
Other languages
English (en)
Inventor
王超伦
金梦歌
邹欣宇
乔雨翀
吴幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202110798506.1A priority Critical patent/CN113488339A/zh
Publication of CN113488339A publication Critical patent/CN113488339A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/003Apparatus or processes for encapsulating capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供了一种基于碳基复合电极的柔性超级电容器及制备方法,属于柔性超级电容器领域。柔性碳纤维作为超级电容器的集流体,蔗糖、氧化石墨烯和PI胶作为碳源,采用激光烧蚀法、热还原法和电化学沉积法,制备了具有多级纳米结构的碳纤维/导电石墨/石墨烯/MnO2的复合活性电极。利用碳纤维/导电石墨/石墨烯复合电极的高比表面积结合电极表面MnO2的赝电容效应,实现高电容量的柔性超级电容器的制备。最后结合硅胶柔性封装,使柔性超级电容器具有良好的生物相容性和良好的柔性弯曲性能,提高超级电容器的工作可靠性。

Description

一种基于碳基复合电极的柔性超级电容器及制备方法
技术领域
本发明属于柔性可穿戴超级电容器领域,涉及一种基于碳基复合电极的柔性超级电容器的制备方法。
背景技术
近年来电子设备正在向着轻薄化和柔性化的方向发展,当前面临的挑战之一是与柔性电子器件相匹配的柔性且轻薄的能源器件。超级电容器具有高功率密度和长循环寿命,在消费电子市场和不间断电源领域得到了广泛的应用,如交通领域在制动过程中快速储存能量。科研人员已经开始尝试用不同的制备方法实现超级电容器的柔性化。Cui等人(Kaempgen M., Chan C. K., Ma J., et al. Printable Thin Film SupercapacitorsUsing Single-Walled Carbon Nanotubes. Nano Lett 2009, 9(5), 1872-1876.)利用碳纳米管分散体的浸没粘附特性,构建了一种基于织物的平面柔性超级电容器。Elkady等人(El-Kady M. F., Strong V., Dubin S., et al. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science2012, 335(6074), 1326-1330.)利用light-scribe dvd中的激光实现了具有空腔效应的石墨氧化膜还原。
目前超级电容器在柔性化和电容量密度方面还面临挑战,一方面,用单一材料或方法提高超级电容器的比表面积,增大电荷存储密度已经存在瓶颈,同时,满足超级电容器电极对导电性和电荷存储能力等多种性能指标的要求还难以实现。另一方面,在实现超级电容器全柔性化的同时保证使用过程中良好的稳定性也是需要解决的问题。
发明内容
本发明的目的是基于背景技术存在的技术问题而提出的一种基于碳基复合电极的柔性超级电容器及制备方法。
碳纤维作为柔性集流体,具有良好的柔韧性和高导电率。通过对碳纤维集流体表面进行活化修饰,可以提高比表面积和电荷存储密度。利用蔗糖激光碳化提高碳纤维表面的粗糙度,在此基础上通过高温碳化PI胶与氧化石墨烯进一步增大碳纤维表面的比表面积。氧化石墨烯直接附着在碳纤维表面的结合力很弱,容易脱落,利用PI胶溶液可以将片状氧化石墨烯粘结在碳纤维表面,提高电极的稳定性,通过高温退火碳化后,就能在碳纤维表面形成结合牢固的片状石墨烯。在此基础上结合金属氧化物电镀工艺,提高复合电极的电荷存储密度。聚乙烯醇(PVA)溶液中加入磷酸作为交联引发剂,同时作为质子源,引发聚乙烯醇与戊二醛交联,得到凝胶聚合物电解质。该凝胶电解质具有宽电位窗口、宽使用温度范围,绿色无毒等优点,是作为柔性超级电容器的优选材料。聚二甲基硅氧烷PDMS具有良好的柔性、密封性和生物相容性,可以将超级电容器与外界环境隔离,并保持优异的弯折性能,同时对人体皮肤无害。
利用复合材料电极的大比表面积与赝电容效应,同时结合PVA凝胶电解质和柔性PDMS封装材料,得到电荷存储密度高、工作稳定和生物相容性好的柔性超级电容器。
实现本发明目的具体技术方案是:
一种基于碳基复合电极的柔性超级电容器,特点是所述的柔性超级电容器包括碳纤维/导电石墨/石墨烯/MnO2复合电极、PVA凝胶固态电解质和PDMS柔性封装,PVA凝胶固态电解质两侧均用所述复合电极包覆形成三明治结构后,进行PDMS柔性封装,且在封装过程中引出电极用作充放电端口。
一种所述基于碳基复合电极的柔性超级电容器的制备方法,该方法包括以下具体步骤:
步骤1:碳纤维/导电石墨/石墨烯/MnO2复合电极的制备
(1)将柔性碳布进行亲水化处理并烘干,具体为:先将所述碳布用丙酮浸泡10~20min后,再用去离子水冲洗,并烘干;
(2)将处理后的柔性碳布用10%~20%蔗糖溶液进行浸泡,用激光雕刻机对碳布表面包覆的蔗糖进行激光烧蚀;其中,激光雕刻机的激光功率为50%~80%,雕刻深浅为10.0~20.0;
(3)配制溶于聚酰胺酸甲基吡咯烷酮的氧化石墨烯和PI胶溶液;其中,所述溶液中氧化石墨烯和PI胶的质量比为1:1~2;
(4)将步骤(2)处理过的所述碳布放入步骤(3)溶液中浸泡10~20min后,在氮气环境进行高温处理,将氧化石墨烯和PI胶碳化,碳化参数:在氮气环境中20min加热至400℃,而后30min 加热至500℃,60min加热至650℃,最后15min加热至1000℃并保温1小时,得到具有大比表面积的导电碳纳米结构;
(5)在经步骤(4)处理的所述碳布的导电碳纳米结构表面电化学沉积MnO2,100s~300s在导电的碳纳米结构表面形成具有赝电容效应的MnO2薄层,
得到碳纤维/导电石墨/石墨烯/MnO2复合电极;
步骤2:PVA凝胶固态电解质的制备
(1)将PVA溶解在去离子水中,水浴80~90℃加热搅拌;其中,PVA和去离子水质量比为1∶19~20;
(2)将步骤(1)得到的PVA溶液滴加磷酸溶液,并继续加热至50℃~80℃缓慢搅拌,多次称量计算溶液的含水量;其中H3PO4的质量为PVA的6~6.5倍,溶液含水量为45~55%;
(3)将步骤(2)得到的溶液滴加戊二醛溶液,并缓慢搅拌2~3min;其中,步骤(2)得到的溶液体积与戊二醛溶液体积比为200:1~1.5;
(4)将步骤1制得的所述复合电极剪裁成两片,将一片放置在模具里用作下侧电极,将步骤(3)搅拌后的溶液涂覆在下侧电极2/3或3/4的面积,剩余面积用作电极引出;在室温的条件下,2~3min所涂覆的溶液即可形成固态凝胶电解质;其中,涂覆的厚度为4~6mm;再将另一片复合电极放置在形成的固态凝胶电解质上用作上侧电极;制得待封装的柔性超级电容器;
步骤3:柔性PDMS封装
(1)选择硅胶PDMS,其基本组分与固化剂的质量比为12~13:1,将基本组分与固化剂混合搅拌均匀;
(2)将步骤(1)得到的混合物抽真空处理30~40min,去除气泡后,铺设在模具底部,厚度为1~3mm,60℃加热1h~2h使其凝固,将待封装的超级柔性电容器置于凝固层上后,向模具中再铺设处理后的混合物,厚度为1~3mm,水平静置20-40小时,制得所述基于碳基复合电极的柔性超级电容器。
本发明中的硅胶PDMS,基本组分A 的成分主要是poly(dimethyl-methylvinylsiloxane)预聚物,还有微量铂催化剂,固化剂B的成分是带乙烯基侧链的预聚物及交联剂poly(dimethyl-methylhydrogenosiloxane);通过混合两者,乙烯基可与硅氢键发生氢化硅烷化反应,从而形成三维网络结构;通过控制A:B 的组分比例,控制PDMS的力学性能。
本发明的有益效果在于:
(1)本发明利用激光烧蚀法/热还原法/电化学沉积法,制备了具有协同效应的碳布的复合活性电极。通过结合多孔结构电极的高比表面积和附着在电极表面的金属氧化物的赝电容效应,实现具有高电容量且工作稳定的柔性超级电容器的制备。
(2)本发明利用生物相容性好的PVA凝胶作为柔性超级电容器的固态电解质,磷酸作为交联引发剂,戊二醛作为交联剂,可快速得到高离子电导率、宽电位窗口以及宽使用温度范围的凝胶电解质。
(3)本发明利用柔性碳纤维作为超级电容器的集流体,结合硅胶柔性封装,使柔性超级电容器具有良好的生物相容性和良好的柔性弯曲性能,提高超级电容器的工作可靠性。
(4)本发明制备柔性超级电容器,可以以便携式手环的形式为可穿戴智能手环供电,在可穿戴、小型化、便携式电子设备的储能元件上有潜在的应用价值和良好的发展前景。
附图说明
图1为本发明的结构示意图;
图2 为本发明所述复合电极制备流程示意图;
图3为本发明碳布处理过程各阶段的SEM图和未经过处理的碳布SEM图;
图4为本发明PVA凝胶固态电解质制备流程示意图;
图5为本发明实施例1制得的柔性超级电容器的CV特性曲线图。
具体实施方式
下面将结合本发明实施例及附图,对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
参阅图1,本实施例的柔性超级电容器包括碳纤维/导电石墨/石墨烯/MnO2复合电极1、PVA凝胶固态电解质2和柔性PDMS封装3。PVA凝胶固态电解质2两侧均用所述复合电极包覆形成三明治结构后,进行PDMS柔性封装,在封装过程中引出电极用作充放电端口。
本实施例的具体制备过程:
(1)将2×5cm2的碳布用丙酮、去离子水、乙醇依次超声清洗90min,90℃烘干;
(2)将洗净的碳布置于蔗糖∶去离子水=1∶5的蔗糖溶液中,90℃烘干后,以50%的激光功率,10.0的雕刻深浅进行激光烧蚀;
(3)将氧化石墨烯和PI胶以1∶1的比例溶于聚酰亚胺酸-甲基吡咯烷酮配置成30ml溶液,将激光烧蚀后的碳布充分浸泡其中;
(4)将碳布取出,90℃烘干后,氮气环境中20min加热至400℃,而后30min 加热至500℃,60min加热至650℃,最后15min加热至1000℃并还原1h;
(5)将碳布取出,在乙酸铵∶乙酸锰=1∶5的电解质溶液中,以饱和甘汞电极为参比电极,铂片为对电极,0.1mA恒电流下进行100s的电镀沉积;得到制备完成的具有多级纳米结构的柔性碳基电极即图1中复合电极1,电极制备流程示意图如图2。得到电极的微观图像及对照组图像如图3所示,图中:(a)为糖质碳化后激光烧蚀得到的碳布样品SEM图像;(b)为低浓度石墨烯+PI胶浸泡后CVD处理得到的样品SEM图像;(c)为高浓度石墨烯+PI胶浸泡后CVD处理得到的样品SEM图像;(d)为对照组未经过任何处理的碳布样品的SEM图像;
(6)将6gPVA粉末溶解在114mL去离子水中,85℃下水浴搅拌1小时;
(7)将得到的PVA溶液抽真空30min确保内部不存有空气,并向其中滴加42.36g质量分数为85%的磷酸溶液,此时H3PO4的质量为PVA的6倍,并继续加热缓慢搅拌,多次称量计算,直至含水量为50%,静置冷却至室温;
(8)向溶液中滴加0.15mL质量分数为1%的戊二醛溶液,缓慢搅拌3min;
(9)将步骤(5)制得的所述复合电极1剪裁成两片,将一片放置在模具里用作下侧电极,将步骤(8)搅拌后的溶液涂覆在下侧电极3/4的面积上,剩余面积用作电极引出;在室温的条件下,3min所涂覆的溶液即可形成固态凝胶电解质2;其中,涂覆的厚度为4.5mm;再将另一片复合电极放置在形成的固态凝胶电解质2上用作上侧电极;得到待封装的柔性超级电容器;所述电解质制备流程示意图如图4;
(10)称量PDMS基本组分72g与固化剂6g,将材料混合搅拌均匀。混合物在抽真空机中抽真空处理30min,确认无气泡后,将材料倒入定型容器中,容器的长为15cm,宽为5cm。容器底部铺上1mm左右厚度的材料,60度加热1小时后材料凝固,
将制备好的待封装的柔性超级电容器放置于凝固层上,再将剩余的封装材料溶液倒入容器,使得封装完全浸没待封装的柔性超级电容器,第二次倒入的材料与第一次倒入的材料在容器中相加的总厚度约为1cm。水平静置24小时,制得一种基于碳基复合电极的柔性超级电容器。如图1所示三明治结构,其固态凝胶电解质2在两片复合电极1中间,两者共由柔性PDMS封装3所封装,并留有两端电极供后续电容器充放电使用。制得电容器的实际CV特性曲线如图5所示。

Claims (2)

1.一种基于碳基复合电极的柔性超级电容器,其特征在于,所述的柔性超级电容器包括碳纤维/导电石墨/石墨烯/MnO2复合电极、PVA凝胶固态电解质和PDMS柔性封装,PVA凝胶固态电解质两侧均用所述复合电极包覆形成三明治结构后,进行PDMS柔性封装,且在封装过程中引出电极用作充放电端口。
2.一种权利要求1所述基于碳基复合电极的柔性超级电容器的制备方法,如权利要求1中所述的碳纤维/导电石墨/石墨烯/MnO2复合电极制备方法,按照以下步骤进行:
步骤1:碳纤维/导电石墨/石墨烯/MnO2复合电极的制备
(1)将柔性碳布进行亲水化处理并烘干,具体为:先将所述碳布用丙酮浸泡10~20min后,再用去离子水冲洗,并烘干;
(2)将处理后的柔性碳布用10%~20%蔗糖溶液进行浸泡,用激光雕刻机对碳布表面包覆的蔗糖进行激光烧蚀;其中,激光雕刻机的激光功率为50%~80%,雕刻深浅为10.0~20.0;
(3)配制溶于聚酰胺酸甲基吡咯烷酮的氧化石墨烯和PI胶溶液;其中,所述溶液中氧化石墨烯和PI胶的质量比为1:1~2;
(4)将步骤(2)处理过的所述碳布放入步骤(3)溶液中浸泡10~20min后,在氮气环境进行高温处理,将氧化石墨烯和PI胶碳化,碳化参数:在氮气环境中20min加热至400℃,而后30min 加热至500℃,60min加热至650℃,最后15min加热至1000℃并保温1小时,得到具有大比表面积的导电碳纳米结构;
(5)在经步骤(4)处理的所述碳布的导电碳纳米结构表面电化学沉积MnO2,100s~300s在导电的碳纳米结构表面形成具有赝电容效应的MnO2薄层,
得到碳纤维/导电石墨/石墨烯/MnO2复合电极;
步骤2:PVA凝胶固态电解质的制备
(1)将PVA溶解在去离子水中,水浴80~90℃加热搅拌;其中,PVA和去离子水质量比为1∶19~20;
(2)将步骤(1)得到的PVA溶液滴加磷酸溶液,并继续加热至50℃~80℃缓慢搅拌,多次称量计算溶液的含水量;其中H3PO4的质量为PVA的6~6.5倍,溶液含水量为45~55%;
(3)将步骤(2)得到的溶液滴加戊二醛溶液,并缓慢搅拌2~3min;其中,步骤(2)得到的溶液体积与戊二醛溶液体积比为200:1~1.5;
(4)将步骤1制得的所述复合电极剪裁成两片,将一片放置在模具里用作下侧电极,将步骤(3)搅拌后的溶液涂覆在下侧电极2/3或3/4的面积,剩余面积用作电极引出;在室温的条件下,2~3min所涂覆的溶液即可形成固态凝胶电解质;其中,涂覆的厚度为4~6mm;再将另一片复合电极放置在形成的固态凝胶电解质上用作上侧电极;制得待封装的柔性超级电容器;
步骤3:柔性PDMS封装
(1)选择硅胶PDMS,其基本组分与固化剂的质量比为12~13:1,将基本组分与固化剂混合搅拌均匀;
(2)将步骤(1)得到的混合物抽真空处理30~40min,去除气泡后,铺设在模具底部,厚度为1~3mm,60℃加热1h~2h使其凝固,将待封装的超级柔性电容器置于凝固层上后,向模具中再铺设处理后的混合物,厚度为1~3mm,水平静置20-40小时,制得所述基于碳基复合电极的柔性超级电容器。
CN202110798506.1A 2021-07-15 2021-07-15 一种基于碳基复合电极的柔性超级电容器及制备方法 Pending CN113488339A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110798506.1A CN113488339A (zh) 2021-07-15 2021-07-15 一种基于碳基复合电极的柔性超级电容器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110798506.1A CN113488339A (zh) 2021-07-15 2021-07-15 一种基于碳基复合电极的柔性超级电容器及制备方法

Publications (1)

Publication Number Publication Date
CN113488339A true CN113488339A (zh) 2021-10-08

Family

ID=77939375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110798506.1A Pending CN113488339A (zh) 2021-07-15 2021-07-15 一种基于碳基复合电极的柔性超级电容器及制备方法

Country Status (1)

Country Link
CN (1) CN113488339A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117954233A (zh) * 2024-03-27 2024-04-30 吉林大学 一种激光原位碳化高性能碳纤维电极、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405677A (zh) * 2015-11-23 2016-03-16 复旦大学 一种由石墨直接制备石墨烯-二氧化锰复合材料的方法及其应用
CN105810883A (zh) * 2016-05-24 2016-07-27 广州市霆宇能源科技有限责任公司 一种柔性可穿戴的电极及其制备方法
CN107069037A (zh) * 2017-04-27 2017-08-18 哈尔滨理工大学 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法
CN108258334A (zh) * 2018-01-19 2018-07-06 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN110323074A (zh) * 2019-07-12 2019-10-11 北京化工大学 一种不对称型全固态纤维状柔性超级电容器及其制备方法
CN110528271A (zh) * 2019-07-29 2019-12-03 惠州学院 一种蔗糖炭化改性碳纤维的制备方法及其应用
CN112701295A (zh) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 一种石墨纤维毡柔性集流体及其制备方法和柔性电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405677A (zh) * 2015-11-23 2016-03-16 复旦大学 一种由石墨直接制备石墨烯-二氧化锰复合材料的方法及其应用
CN105810883A (zh) * 2016-05-24 2016-07-27 广州市霆宇能源科技有限责任公司 一种柔性可穿戴的电极及其制备方法
CN107069037A (zh) * 2017-04-27 2017-08-18 哈尔滨理工大学 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法
CN108258334A (zh) * 2018-01-19 2018-07-06 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN110323074A (zh) * 2019-07-12 2019-10-11 北京化工大学 一种不对称型全固态纤维状柔性超级电容器及其制备方法
CN110528271A (zh) * 2019-07-29 2019-12-03 惠州学院 一种蔗糖炭化改性碳纤维的制备方法及其应用
CN112701295A (zh) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 一种石墨纤维毡柔性集流体及其制备方法和柔性电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117954233A (zh) * 2024-03-27 2024-04-30 吉林大学 一种激光原位碳化高性能碳纤维电极、制备方法及其应用

Similar Documents

Publication Publication Date Title
Zhao et al. A self-healing hydrogel electrolyte for flexible solid-state supercapacitors
Yuan et al. Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors
Liu et al. Flexible and stretchable energy storage: recent advances and future perspectives
Zhou et al. A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode
Wang et al. Co3O4@ MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors
Ge et al. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films
Ren et al. Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature
Huang et al. Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators
Yang et al. Electrodeposition of Co (OH) 2 improving carbonized melamine foam performance for compressible supercapacitor application
Wu et al. Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries
CN104176721A (zh) 一种碳复合材料及其制备方法和应用
CN110364687B (zh) 一种柔性薄膜电极的制备方法及所制备的电极和用途
CN104538596B (zh) 一种碳材料/共价有机二维网格复合电极材料及其制备方法与应用
KR101793040B1 (ko) 울트라커패시터용 전극활물질의 제조방법, 상기 울트라커패시터용 전극활물질을 이용한 울트라커패시터 전극의 제조방법 및 울트라커패시터
Jin et al. Long-life flexible supercapacitors based on nitrogen-doped porous graphene@ π-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte
Aljafari et al. Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices
CN107221454A (zh) 一种基于多孔碳纤维布的全固态柔性超级电容器及其制备方法
CN113402651A (zh) 高强度自愈合水凝胶电解质的制备方法及其组装的柔性超级电容器、制备方法
Lv et al. Graphene/MnO 2 aerogel with both high compression-tolerance ability and high capacitance, for compressible all-solid-state supercapacitors
Li et al. In-situ interface reinforcement for 3D printed fiber electrodes
Chi et al. High‐Performance Flexible Asymmetric Supercapacitors Facilitated by N‐doped Porous Vertical Graphene Nanomesh Arrays
Wang et al. Renewable Polysulfide Regulation by Versatile Films toward High-Loading Lithium–Sulfur Batteries
Xu et al. Structural engineering for high energy and voltage output supercapacitors
CN113488339A (zh) 一种基于碳基复合电极的柔性超级电容器及制备方法
Alameen et al. Flexible all-solid-state supercapacitor based on polyhedron C-ZIF-8/PANI composite synthesized by unipolar pulse electrodeposition method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211008