CN107069037A - 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法 - Google Patents

一种超薄二氧化锰纳米片石墨烯复合材料的制备方法 Download PDF

Info

Publication number
CN107069037A
CN107069037A CN201710286064.6A CN201710286064A CN107069037A CN 107069037 A CN107069037 A CN 107069037A CN 201710286064 A CN201710286064 A CN 201710286064A CN 107069037 A CN107069037 A CN 107069037A
Authority
CN
China
Prior art keywords
manganese dioxide
ultra
dioxide nano
plates
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710286064.6A
Other languages
English (en)
Inventor
俞泽民
张勇
张起峰
关长利
陈路尧
曲宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201710286064.6A priority Critical patent/CN107069037A/zh
Publication of CN107069037A publication Critical patent/CN107069037A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种超薄二氧化锰纳米片石墨烯复合材料的制备方法。本发明的目的是要解决现有二氧化锰石墨烯超级电容器电极材料能量密度低、电导率差的问题。其特征在于:使用泡沫镍作为支撑基底通过化学气相沉积来制备石墨烯,然后利用水热的方法直接在泡沫镍石墨烯表面生长超薄二氧化锰纳米片阵列,其具有无需导电胶黏剂,具有良好的柔韧性和较高的能量密度,低内阻,安全,无污染的特点。

Description

一种超薄二氧化锰纳米片石墨烯复合材料的制备方法
技术领域
本发明涉及一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,属于电池和超级电容器技术领域。
背景技术
近几年,随着便携式电子设备的快速发展,如可穿戴设备,移动电话和电脑等,柔性超级电容器储能器件备受关注。与传统电容器相比超级电容器具有更高的能量密度,更大的充电、放电速率,更长的循环使用周期,成为储能领域研究的热点。
众所周知,过渡金属氧化物(如二氧化钌,氧化钴,氧化镍和二氧化锰)赝电容活性材料具有更高的比容量和能量密度。自1999年Lee 和 Goodenough首次发现非晶MnO2具有很好的赝电容行为,在KCl水溶液中获得了200F/g的高比容量以来,MnO2作为一种高理论比容量1370F/g、环境友好、自然资源丰富、成本低的赝电容活性材料引起科研人员极大的研究兴趣。然而,由于MnO2本身是一种宽禁带材料,导电性很低离子扩散性差,限制了其进一步应用。如何提高MnO2的导电性成为关键技术瓶颈。以高导电的石墨烯作为基底负载MnO2活性材料的尝试取得了重要进展。
然而,目前多数学者主要采用将氧化锰与石墨烯制成粉体颗粒材料,再将这些粉体材料与粘结剂混合后涂附于集流体上制备电极,这就容易造成电极活性物质与集流体之间接触不良而影响电极的充放电性能。此外,由于石墨烯的制备使用的是氧化石墨烯还原的方法,最终电导性很难达到高电导率的要求,致使电极内阻过大。制备粉体电极材料时很难对电极材料表面及内部微细结构进行有效设计,难以获得高功率密度和高能量密度的电极材料;本发明采用化学气相沉积的方法制备石墨烯提高电导率,通过水热合成的方法在石墨烯表面构筑超薄的二氧化锰纳米片阵列实现活性物质组分及内部结构设计,同时改善电极活性物质与集流体之间的接触,使之具备高比容特性。
发明内容
本发明的目的在于提供一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,可以进一步提高能量密度,安全、成本低、无污染,制备工艺简单。
本发明的技术方案是这样实现的:一.化学气相沉积制备泡沫石墨烯柔性基底:将泡沫镍压扁至0.2 mm厚,然后用电极裁片机裁成直径R=12mm的电极圆片,使用1 M HCl清洗去除氧化层,把15个电极圆片放入管式炉,在1000 ℃ H2 (50 sccm):Ar (280 sccm) 条件下热处理20 min,随后通入CH4 (2.5 sccm)生长20 min,最后冷却到室温不需刻蚀泡沫镍即获得独立自支撑的柔性电极基底;二.超薄二氧化锰纳米片阵列的生长:首先用10 ml浓盐酸对电极圆片进行寖泡预处理。称取2.5 mmol高锰酸钾与1 ml浓盐酸在45 ml去离子水中混合搅拌10 min,将上述溶液转移到100 ml水热反应釜中,至填充率90%,随后放入3片预处理后的电极圆片,85 ℃下水热反应时间20 min - 3 h。反应后对电极圆片去离子水洗涤、80 ℃条件下干燥24 h,制得生长在三维石墨烯上的超薄二氧化锰纳米片阵列复合材料。
本发明的积极效果是在石墨烯表面构筑了薄片状二氧化锰阵列,可以进一步提高能量密度降低电极内阻,安全、无污染,制备工艺简单,成本较低。
附图说明
图1 为本发明超薄二氧化锰石墨烯复合电极的SEM图。
图2 为本发明在3mol/L 氢氧化钾溶液中不同扫描速率的石墨烯循环伏安图。
图3 为本发明在3mol/L 氢氧化钾溶液中不同扫描速率的复合电极的循环伏安图。
图4 为本发明在3mol/L 氢氧化钾溶液中0.5A/g电流密度下的恒流充放电曲线。
图5 为本发明复合电极的交流阻抗谱曲线。
具体实施方式
以下结合实施例对本发明做进一步说明,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
具体实施方式一:本实施方式为一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,具体是按以下步骤进行的:一.化学气相沉积制备泡沫石墨烯柔性基底:将泡沫镍压扁至0.2 mm厚,然后用电极裁片机裁成直径R=12mm的电极圆片,使用1 M HCl清洗去除氧化层,把15个电极圆片放入管式炉,在1000 ℃ H2 (50 sccm):Ar (280 sccm) 条件下热处理20 min,随后通入CH4 (2.5 sccm)生长20 min,最后冷却到室温不需刻蚀泡沫镍即获得独立自支撑的柔性电极基底;二.超薄二氧化锰纳米片阵列的生长:首先用10 ml浓盐酸对电极圆片进行寖泡预处理。称取2.5 mmol高锰酸钾与1 ml浓盐酸在45 ml去离子水中混合搅拌10 min,将上述溶液转移到100 ml水热反应釜中,至填充率90%,随后放入3片预处理后的电极圆片,85 ℃下水热反应时间20 min - 3 h。反应后对电极圆片去离子水洗涤、80 ℃条件下干燥24 h,制得生长在三维石墨烯上的超薄二氧化锰纳米片阵列复合材料。
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤一中通入CH4(2.5 sccm)生长20 min,最后冷却到室温不需刻蚀泡沫镍即获得独立自支撑的柔性电极基底。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一至二的不同点是:步骤二中首先用10 ml浓盐酸对电极圆片进行寖泡预处理。其他与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一至三的不同点是:步骤二中2.5mmol高锰酸钾与1 ml浓盐酸在45 ml去离子水中混合搅拌10 min。其他与具体实施方式一相同。
具体实施方式五:本实施方式与具体实施方式一至四的不同点是:步骤二中85 ℃下水热反应时间20 min - 3 h。其他与具体实施方式一相同。
通过以下试验验证本发明的有益效果:
试验一:本试验为对比试验,制备柔性电极基底,具体方法为:
将泡沫镍压扁至0.2 mm厚,然后用电极裁片机裁成直径R=12mm的电极圆片,使用1 MHCl清洗去除氧化层,把15个电极圆片放入管式炉,在1000 ℃ H2 (50 sccm):Ar (280sccm) 条件下热处理20 min,随后通入CH4 (2.5 sccm)生长20 min,最后冷却到室温不需刻蚀泡沫镍即获得独立自支撑的柔性电极基底。

Claims (5)

1.一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,其特征在于制备方法是按以下步骤进行的:一.化学气相沉积制备泡沫石墨烯柔性基底:将泡沫镍压扁至0.2 mm厚,然后用电极裁片机裁成直径R=12mm的电极圆片,使用1 M HCl清洗去除氧化层,把15个电极圆片放入管式炉,在1000 ℃ H2 (50 sccm):Ar (280 sccm) 条件下热处理20 min,随后通入CH4 (2.5 sccm)生长20 min,最后冷却到室温不需刻蚀泡沫镍即获得独立自支撑的柔性电极基底;二.超薄二氧化锰纳米片阵列的生长:首先用10 ml浓盐酸对电极圆片进行寖泡预处理;称取2.5 mmol高锰酸钾与1 ml浓盐酸在45 ml去离子水中混合搅拌10 min,将上述溶液转移到100 ml水热反应釜中,至填充率90%,随后放入3片预处理后的电极圆片,85 ℃下水热反应时间20 min - 3 h;反应后对电极圆片去离子水洗涤、80 ℃条件下干燥24 h,制得生长在三维石墨烯上的超薄二氧化锰纳米片阵列复合材料。
2. 根据权利要求1所述的一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,其特征在于步骤一中通入CH4 (2.5 sccm)生长20 min,最后冷却到室温不需刻蚀泡沫镍即获得独立自支撑的柔性电极基底。
3.根据权利要求1所述的一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,其特征在于步骤二中首先用10 ml浓盐酸对电极圆片进行寖泡预处理。
4.根据权利要求1所述的一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,其特征在于步骤二中2.5 mmol高锰酸钾与1 ml浓盐酸在45 ml去离子水中混合搅拌10 min。
5.根据权利要求1所述的一种超薄二氧化锰纳米片石墨烯复合材料的制备方法,其特征在于步骤二中85 ℃下水热反应时间20 min - 3 h。
CN201710286064.6A 2017-04-27 2017-04-27 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法 Pending CN107069037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710286064.6A CN107069037A (zh) 2017-04-27 2017-04-27 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710286064.6A CN107069037A (zh) 2017-04-27 2017-04-27 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107069037A true CN107069037A (zh) 2017-08-18

Family

ID=59604981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710286064.6A Pending CN107069037A (zh) 2017-04-27 2017-04-27 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107069037A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045950A (zh) * 2017-03-27 2017-08-15 苏州烯电新材料科技有限公司 一种泡沫镍/石墨烯/二氧化钼三层结构电极材料的制备方法
CN107887177A (zh) * 2017-10-23 2018-04-06 温州大学 一种二氧化锰‑碳纳米管‑泡沫镍复合材料电容器电极的制备方法
CN107887179A (zh) * 2017-11-07 2018-04-06 广东工业大学 一种超级电容器用石墨烯/二氧化锰复合电极材料的制备方法
CN108258334A (zh) * 2018-01-19 2018-07-06 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN109244354A (zh) * 2018-07-14 2019-01-18 哈尔滨工业大学 一种自支撑复合电极
CN109786136A (zh) * 2019-02-25 2019-05-21 天津艾克凯胜石墨烯科技有限公司 一种3D石墨烯上生长Ni-Co-Mn纳米针的方法
CN110246702A (zh) * 2018-03-09 2019-09-17 广州墨羲科技有限公司 一种多孔金属/三维石墨烯复合材料
CN113488339A (zh) * 2021-07-15 2021-10-08 华东师范大学 一种基于碳基复合电极的柔性超级电容器及制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045950A (zh) * 2017-03-27 2017-08-15 苏州烯电新材料科技有限公司 一种泡沫镍/石墨烯/二氧化钼三层结构电极材料的制备方法
CN107887177A (zh) * 2017-10-23 2018-04-06 温州大学 一种二氧化锰‑碳纳米管‑泡沫镍复合材料电容器电极的制备方法
CN107887179A (zh) * 2017-11-07 2018-04-06 广东工业大学 一种超级电容器用石墨烯/二氧化锰复合电极材料的制备方法
CN108258334A (zh) * 2018-01-19 2018-07-06 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN108258334B (zh) * 2018-01-19 2020-11-24 北京大学深圳研究生院 一种复合柔性电极、其制备方法和应用
CN110246702A (zh) * 2018-03-09 2019-09-17 广州墨羲科技有限公司 一种多孔金属/三维石墨烯复合材料
CN110246702B (zh) * 2018-03-09 2022-05-20 广州墨羲科技有限公司 多孔金属/三维石墨烯复合材料、其制造方法及应用
CN109244354A (zh) * 2018-07-14 2019-01-18 哈尔滨工业大学 一种自支撑复合电极
CN109244354B (zh) * 2018-07-14 2021-03-02 哈尔滨工业大学 一种自支撑复合电极
CN109786136A (zh) * 2019-02-25 2019-05-21 天津艾克凯胜石墨烯科技有限公司 一种3D石墨烯上生长Ni-Co-Mn纳米针的方法
CN109786136B (zh) * 2019-02-25 2021-10-08 天津艾克凯胜石墨烯科技有限公司 一种3D石墨烯上生长Ni-Co-Mn纳米针的方法
CN113488339A (zh) * 2021-07-15 2021-10-08 华东师范大学 一种基于碳基复合电极的柔性超级电容器及制备方法

Similar Documents

Publication Publication Date Title
CN107069037A (zh) 一种超薄二氧化锰纳米片石墨烯复合材料的制备方法
CN102623680B (zh) 具有三维预留孔结构的硅碳复合负极材料及其制备方法
CN108390014B (zh) 泡沫镍负载不同形貌一氧化钴纳米材料的制备方法
CN108630920A (zh) 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法
CN101222047B (zh) 薄膜锂离子电池的负极材料及其制备方法
CN105826527A (zh) 一种多孔硅-碳复合材料及其制备方法和应用
CN107768600B (zh) 一种泡沫铜基锂离子电池负极材料及其制备方法
CN106024402B (zh) 一种超级电容器碳/碳化钛核壳复合球电极材料及其制备方法
CN110428976B (zh) 一种Cu-Co-S-MOF纳米片的制备方法及其应用
CN105845918A (zh) 一种高容量的多孔硅材料及其制备方法和应用
CN108615860A (zh) 氮掺杂石墨烯/硅三维锂离子负极复合材料及其制备方法
CN109712817B (zh) 一种纳米海绵碳复合Cu2O和Cu柔性电极材料及其制备方法
CN105186004A (zh) 一种锂离子电池负极用铜集流体及其制备方法和应用
CN109841422B (zh) Co3O4/Co2P同轴异质结构材料及其制备方法和应用
CN107871627A (zh) 泡沫铜担载CuO纳米片的高电容柔性电极材料及其制备方法
CN104810165A (zh) 一种制备磷化镍/石墨烯复合薄膜材料的方法
Li et al. Fabrication of hollow N-doped carbon supported ultrathin NiO nanosheets for high-performance supercapacitor
Wang et al. Asymmetric supercapacitors based on Co 3 O 4@ MnO 2@ PPy porous pattern core-shell structure cathode materials
Wang et al. NiCo2O4 hexagonal nanoplates/cornstalk-derived porous carbon composites for high-performance supercapacitor electrodes
CN109524245B (zh) 一种高性能镍-钴硒化物/三维石墨烯/泡沫镍无粘结剂电极材料的制备方法
CN105161690A (zh) 通过掺杂石墨烯和二氧化钛提高二硫化钼充放电循环能力的方法
CN113415831B (zh) 一种Ni(OH)2/石墨烯复合材料的制备方法和超级电容器的制备方法
CN106098415B (zh) 一种纳米多孔薄膜电容器电极材料及其制备方法
Qiu et al. Water hyacinth‐derived activated carbon/NiO nanocomposite as a facile electrode material for high performance supercapacitor
CN106298287B (zh) 一种多层石墨烯与铁钴层状双金属氢氧化物的复合材料及其制备方法与应用其的超级电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818