CN112216783B - 一种Ga-Ti掺杂ZnO块体热电材料的制备方法 - Google Patents

一种Ga-Ti掺杂ZnO块体热电材料的制备方法 Download PDF

Info

Publication number
CN112216783B
CN112216783B CN202011061240.4A CN202011061240A CN112216783B CN 112216783 B CN112216783 B CN 112216783B CN 202011061240 A CN202011061240 A CN 202011061240A CN 112216783 B CN112216783 B CN 112216783B
Authority
CN
China
Prior art keywords
thermoelectric material
powder
doped zno
block thermoelectric
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011061240.4A
Other languages
English (en)
Other versions
CN112216783A (zh
Inventor
杨卿
牛瑞
张小红
孙少东
邹军涛
梁淑华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202011061240.4A priority Critical patent/CN112216783B/zh
Publication of CN112216783A publication Critical patent/CN112216783A/zh
Application granted granted Critical
Publication of CN112216783B publication Critical patent/CN112216783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种Ga‑Ti掺杂ZnO块体热电材料的制备方法,具体步骤如下:首先按配比称量ZnO、Ga2O3、TiO2粉末,并进行球磨,得到混合粉末;混合粉末过筛后,将所得粉末等静压成型;最后将成型的坯体进行固相烧结,烧结后随炉冷却得到Ga‑Ti掺杂ZnO块体热电材料。本发明工艺易于操作,制备的热电材料致密度高,并满足器件应用中对材料功率因子的要求,为掺杂ZnO热电材料的制备提供了一种简便高效的方法。

Description

一种Ga-Ti掺杂ZnO块体热电材料的制备方法
技术领域
本发明属于能源材料技术领域,具体涉及一种制备Ga-Ti掺杂ZnO块体热电材料的方法。
背景技术
随着工业化的高速发展,能源与环境问题已经成为人类社会的重要问题之一。热电材料是一种能直接实现热能和电能相互转化的功能材料,在国防、航空航天、微电子等领域,特别是在温差发电和热电致冷等方面具有广泛的应用前景。
ZnO热电材料是一类高温热电材料,与传统高性能热电材料碲化铋、碲化铅相比,具有原料廉价易得、低毒、高温稳定性好等优点,但因其晶体结构简单,导致其电导率较低,无法获得较优异的热电性能。与纯ZnO相比,掺杂后的ZnO具有更低的电阻率和更好的稳定性。目前常用来掺杂的元素有Al、Ga、In、Sb、Si,其中Al掺杂性能最优,但是根据已报道的ZnO-Al2O3体系相图,Al2O3在ZnO中固溶度非常低,严重限制了Al掺杂对ZnO热电性能的提升。
Ga作为第三主族与Al性质相近的金属元素,被认为是一种有效的n型掺杂剂。Ga3+的半径比Al3+更接近Zn2+,同时Ga-O的键长比Al-O更接近Zn-O,所以在Zn位点上掺杂Ga会引入较小的晶体结构畸变。Ti是一种高价态金属,主要以Ti4+形式存在,与Al3+,Ga3+相比,可以多提供一个自由电子,从而提高材料的导电性能。因此Ga、Ti元素被认为是最有前景的掺杂元素。
除单一掺杂外,为了进一步提高材料的热电性能,往往对ZnO进行不同元素的共掺杂。目前已有通过热压烧结法、放电等离子烧结法、磁控溅射法等制备了掺杂ZnO热电材料,然而上述方法往往操作困难、设备价格昂贵、制备周期长,难以实现产业化生产。本发明提供了一种低成本、简单制备Ga-Ti掺杂ZnO块体热电材料的方法,制备的材料满足器件应用中对功率因子的要求。
发明内容
本发明的目的是提供一种制备Ga-Ti掺杂ZnO块体热电材料的方法,解决了现有的材料无法满足器件应用中对功率因子的数量级要求的问题。
本发明所采用的技术方案是,一种制备Ga-Ti掺杂ZnO块体热电材料的方法,具体步骤如下:
步骤1,按配比称量ZnO、Ga2O3、TiO2粉末,并进行球磨,得到混合粉末;
步骤2,将步骤1所得混合粉末过筛;
步骤3,将步骤2所得粉末等静压成型;
步骤4,将步骤3成型的坯体进行固相烧结,烧结后随炉冷却得到Ga-Ti掺杂ZnO块体热电材料。
本发明的特征还在于,
步骤1中按照分子式Zn0.998-x-yGaxTiyO,其中0≤x≤0.01,0≤y≤0.01,称量ZnO、Ga2O3、TiO2粉末。
步骤2中先将混合粉末置于100目筛过筛,再经过200目筛过筛,取100-200目之间粉末晾干备用
步骤3的成型过程:先将粉末预压成型,成型压力为5~10MPa、保压时间为30~90s;随后将预成型坯体等静压成型,成型压力为20~25MPa,保压时间为5~10min。
步骤3等静压成型时,坯体应处于真空状态。
步骤4的烧结温度为900~1300℃,保温时间为10~15h,烧结完成后以2℃/min的速率降至室温。
步骤1中球磨时,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为8~10h。
本发明的有益效果是,本制备方法以等静压成型与传统固相烧结相结合,通过等静压成型获得各向均匀压实的坯体,均匀性好,不易分层,同时不需要加入粘合剂,减少了试样中引入杂质的机率,降低试样烧结后的气孔率,最终有益于提高试样的电学及热电性能。通过长时间的湿法球磨,使不同粉末混合均匀,在烧结时不同原子之间相互接触更加充分,从而保证了扩散均匀,进一步提高了试样的致密度。本发明工艺易于操作,制备的块体热电材材料满足器件应用中对功率因子的要求,并且生产成本低,便于工业化批量生产。
附图说明
图1本发明实施例1中Zn0.998Ga0.002O制备的掺杂ZnO块体热电材料的SEM图像;
图2本发明实施例1中Zn0.998Ga0.002O制备掺杂ZnO块体热电材料的功率因子随温度的变化图。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明一种固相烧结制备Ga-Ti掺杂ZnO块体热电材料的方法,具体步骤如下:
步骤1,按配比称量ZnO、Ga2O3、TiO2粉末,并进行球磨,得到混合粉末;
步骤1中按照分子式Zn0.998-x-yGaxTiyO(0≤x≤0.01,0≤y≤0.01)称量ZnO、Ga2O3、TiO2粉末;球磨时,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为8~10h。
步骤2,将步骤1所得混合粉末过筛;
步骤2中先将混合粉末置于100目筛过筛,再经过200目筛过筛,取100-200目之间粉末晾干备用;
步骤3,将步骤2所得粉末等静压成型;
步骤3的成型过程的具体过程:先将混合粉末预压成型,成型压力为5~10MPa、保压时间为30~90s;随后将预压成型的坯体等静压成型,等静压过程中,坯体处于真空状态,成型压力为20~25MPa,保压时间为5~10min。
步骤4,将步骤3成型的坯体固相烧结,烧结后随炉冷却得到Ga-Ti掺杂ZnO块体热电材料。
步骤4中的烧结温度为900~1300℃,保温10~15h,烧结完成后以2℃/min的速率降至室温。
实施例1
步骤1,根据分子式Zn0.998Ga0.002O按配比称量9.978g的ZnO、0.022g的Ga2O3粉末,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为8h后得到混合粉末;
步骤2,步骤1中混合粉末先后置于100、200目筛过筛两遍,取100-200目之间粉末晾干备用;
步骤3,取步骤2混合粉末,在台式压力机上将粉末压制成型,成型压力为5MPa、保压时间为30s;随后将处于真空体系的坯体在等静压机上进一步成型,成型压力为22MPa,保压时间为5min。
步骤4,将步骤3成型的坯体在1200℃,保温10进行烧结,随后随炉冷却,得到Ga掺杂ZnO块体热电材料。
实施例1所得材料的致密度为97.12%,室温电阻率为3.31×10-3Ω·cm,在800K时功率因子为2.29×10-4W·m-1·K-2,该结果优于未掺杂ZnO。
实施例2
步骤1,根据分子式Zn0.998Ti0.002O按配比称量9.942g的ZnO、0.058g的TiO2粉末,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为8h后得到混合粉末;
步骤2,步骤1中混合粉末先后置于100、200目筛过筛两遍,取100-200目之间粉末晾干备用;
步骤3,取步骤2混合粉末,在台式压力机上将粉末压制成型,成型压力为5MPa、保压时间为30s;随后将处于真空体系的坯体在等静压机上进一步成型,成型压力为22MPa,保压时间为5min。
步骤4,将步骤3成型的坯体在1200℃,保温10h进行烧结,随后随炉冷却,得到Ti掺杂ZnO块体热电材料。
实施例2所得材料的致密度为98.55%,室温电阻率为7.62×10-2Ω·cm,在800K时功率因子为3.91×10-5W·m-1·K-2,该结果优于未掺杂ZnO。
实施例3
步骤1,根据分子式Zn0.99Ti0.01O按配比称量9.893g的ZnO、0.107g的TiO2粉末,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为8h后得到混合粉末;
步骤2,步骤1中混合粉末先后置于100、200目筛过筛两遍,取100-200目之间粉末晾干备用;
步骤3,取步骤2混合粉末,在台式压力机上将粉末压制成型,成型压力为5MPa、保压时间为30s;随后将处于真空体系的坯体在等静压机上进一步成型,成型压力为22MPa,保压时间为5min。
步骤4,将步骤3成型的坯体在1200℃,保温10h进行烧结,随后随炉冷却,得到Ga-Ti掺杂ZnO块体热电材料。
实施例3所得材料的致密度为99.16%,室温电阻率为9.76×10-2Ω·cm,在800K时功率因子为2.05×10-5W·m-1·K-2,该结果优于未掺杂ZnO。
实施例4
步骤1,根据分子式Zn0.997Ga0.002Ti0.001O按配比称量9.949g的ZnO、0.022g的Ga2O3、0.029g的TiO2,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为10h后得到混合粉末;
步骤2,步骤1中混合粉末先后置于100、200目筛过筛两遍,取100-200目之间粉末晾干备用;
步骤3,取步骤2混合粉末,在台式压力机上将粉末压制成型,成型压力为10MPa、保压时间为60s;随后将处于真空体系的坯体在等静压机上进一步成型,成型压力为25MPa,保压时间为10min。
步骤4,将步骤3成型的坯体在900℃,保温10h进行烧结,随后随炉冷却,得到Ga-Ti掺杂ZnO块体热电材料。
实施例4所得材料的致密度为98.38%,室温电阻率为3.44×10-4Ω·cm,在800K时功率因子为2.07×10-4W·m-1·K-2,该结果优于未掺杂ZnO。
实施例5
步骤1,根据分子式Zn0.995Ga0.002Ti0.003O按配比分别称量9.892g的ZnO、0.021g的Ga2O3、0.087g的TiO2,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为9h后得到混合粉末;
步骤2,步骤1中混合粉末先后置于100、200目筛过筛两遍,取100-200目之间粉末晾干备用;
步骤3,取步骤2混合粉末,在台式压力机上将粉末压制成型,成型压力为7MPa、保压时间为90s;随后将处于真空体系的坯体在等静压机上进一步成型,成型压力为25MPa,保压时间为8min。
步骤4,将步骤3成型的坯体在1300℃,保温15h进行烧结,随后随炉冷却,得到Ga-Ti掺杂ZnO块体热电材料。
实施例5所得材料的致密度为98.58%,室温电阻率为8.79×10-3Ω·cm,在800K时功率因子为1.5×10-4W·m-1·K-2,该结果优于未掺杂ZnO。
本发明以ZnO、Ga2O3、TiO2为原料,按照分子式Zn0.998-x-yGaxTiyO(0≤x≤0.01,0≤y≤0.01)配置粉末,利用乙醇对配置粉末进行湿法球磨后,过筛取100-200目粉末预压成型,随后等静压成型,最后将成型坯体在900~1300℃下,固相烧结10~15h,得到Ga-Ti掺杂ZnO块体材料。本发明制备Ga-Ti掺杂ZnO块体热电材料,以等静压成型与传统固相烧结相结合。等静压成型技术减少了试样中引入杂质的机率,降低试样烧结后的气孔率,保证了试样具有高的致密度,最终提高试样的热电性能。
本发明工艺易于操作,生产成本低,便于工业化批量生产,制备的块体热电材料满足器件应用中对功率因子的要求。同时,本发明制备方法简单、制备过程中没有用到其他化学试剂,满足了现代工业制造绿色、环保的要求。

Claims (6)

1.一种Ga-Ti掺杂ZnO块体热电材料的制备方法,其特征在于,具体步骤如下:
步骤1,按配比称量ZnO、Ga2O3、TiO2粉末,并进行球磨,得到混合粉末;所述步骤1中按照分子式Zn0.998-x-yGaxTiyO,其中0<x≤0.01,0<y≤0.01,称量ZnO、Ga2O3、TiO2粉末;
步骤2,将步骤1所得混合粉末过筛;
步骤3,将步骤2所得粉末等静压成型;
步骤4,将步骤3成型的坯体进行固相烧结,烧结后随炉冷却得到Ga-Ti掺杂ZnO块体热电材料。
2.根据权利要求1所述的一种Ga-Ti掺杂ZnO块体热电材料的制备方法,其特征在于,所述步骤2中先将混合粉末置于100目筛过筛,再经过200目筛过筛,取100-200目之间粉末晾干备用。
3.根据权利要求1所述的一种Ga-Ti掺杂ZnO块体热电材料的制备方法,其特征在于,所述步骤3的成型过程:先将粉末预压成型,成型压力为5~10MPa、保压时间为30~90s;随后将预成型坯体等静压成型,成型压力为20~25MPa,保压时间为5~10min。
4.根据权利要求1所述的一种Ga-Ti掺杂ZnO块体热电材料的制备方法,其特征在于,所述步骤3等静压成型时,坯体应处于真空状态。
5.根据权利要求1所述的一种Ga-Ti掺杂ZnO块体热电材料的制备方法,其特征在于,所述步骤4的烧结温度为900~1300℃,保温时间为10~15h,烧结完成后以2℃/min的速率降至室温。
6.根据权利要求1所述的一种Ga-Ti掺杂ZnO块体热电材料的制备方法,其特征在于,所述步骤1中球磨时,利用乙醇进行湿法球磨,球料质量比为5:1,球磨时间为8~10h。
CN202011061240.4A 2020-09-30 2020-09-30 一种Ga-Ti掺杂ZnO块体热电材料的制备方法 Active CN112216783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011061240.4A CN112216783B (zh) 2020-09-30 2020-09-30 一种Ga-Ti掺杂ZnO块体热电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011061240.4A CN112216783B (zh) 2020-09-30 2020-09-30 一种Ga-Ti掺杂ZnO块体热电材料的制备方法

Publications (2)

Publication Number Publication Date
CN112216783A CN112216783A (zh) 2021-01-12
CN112216783B true CN112216783B (zh) 2022-11-25

Family

ID=74051638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011061240.4A Active CN112216783B (zh) 2020-09-30 2020-09-30 一种Ga-Ti掺杂ZnO块体热电材料的制备方法

Country Status (1)

Country Link
CN (1) CN112216783B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959899A (zh) * 2022-12-28 2023-04-14 安徽工程大学 一种Ga掺杂氧化锌复合功能陶瓷、制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217499A (ja) * 2002-11-21 2004-08-05 Idemitsu Kosan Co Ltd 複合酸化物、n型熱電変換材料及びそれを用いた熱電変換素子
JP2005019783A (ja) * 2003-06-27 2005-01-20 Idemitsu Kosan Co Ltd 熱電変換材料と電極の接合方法及び熱電変換モジュール
CN101905972A (zh) * 2009-06-04 2010-12-08 清华大学 一种铝掺杂的氧化锌基热电材料及其制备方法
EP2361886A1 (en) * 2010-02-25 2011-08-31 Corning Incorporated Thermoelectric materials, their preparation and thermoelectric devices comprising them
CN103708820A (zh) * 2013-12-30 2014-04-09 北京科技大学 一种Ga掺杂ZnO织构热电材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124417A (ja) * 2006-10-17 2008-05-29 Sumitomo Chemical Co Ltd 熱電変換材料およびその製造方法
JP5095517B2 (ja) * 2008-06-19 2012-12-12 独立行政法人科学技術振興機構 アルミニウム含有酸化亜鉛系n型熱電変換材料
KR20120059037A (ko) * 2010-11-30 2012-06-08 한국전자통신연구원 혼성 에너지 변환 장치 및 이를 포함하는 휴대용 기기
KR101322795B1 (ko) * 2012-06-05 2013-10-29 한국세라믹기술원 갈륨 도핑량 증대에 의하여 출력인자가 향상된 산화아연의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217499A (ja) * 2002-11-21 2004-08-05 Idemitsu Kosan Co Ltd 複合酸化物、n型熱電変換材料及びそれを用いた熱電変換素子
JP2005019783A (ja) * 2003-06-27 2005-01-20 Idemitsu Kosan Co Ltd 熱電変換材料と電極の接合方法及び熱電変換モジュール
CN101905972A (zh) * 2009-06-04 2010-12-08 清华大学 一种铝掺杂的氧化锌基热电材料及其制备方法
EP2361886A1 (en) * 2010-02-25 2011-08-31 Corning Incorporated Thermoelectric materials, their preparation and thermoelectric devices comprising them
CN103708820A (zh) * 2013-12-30 2014-04-09 北京科技大学 一种Ga掺杂ZnO织构热电材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Phase, microstructural investigation and thermoelectric properties of Ga-doped zinc oxide-based ceramics sintered under an argon atmosphere;Mati Ullah等;《Ceramics International》;20180701;第44卷;全文 *
Ti掺杂ZnO:Al薄膜结构和热电性能研究;罗景庭等;《TFC’13全国薄膜技术学术研讨会论文摘要集中国真空学会薄膜专业委员会会议论文集》;20131031;全文 *
氧化物热电材料研究进展;徐飞等;《功能材料》;20190430(第04期);全文 *

Also Published As

Publication number Publication date
CN112216783A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6976012B2 (ja) n−型Mg−Sb基室温熱電材料及びその製造方法
CN101786873B (zh) 锂离子电池电解质陶瓷膜的制备方法
CN101786162B (zh) 一种碲化铋基块体纳米晶热电材料的制备方法
CN101693962B (zh) 一种p型填充式方钴矿化合物热电材料的制备方法
CN104671771A (zh) 一种高电压梯度氧化锌基压敏电阻材料及其制备方法
CN100549195C (zh) 一种填充方钴矿基热电复合材料及其制备方法
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
CN102931335A (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CN112216783B (zh) 一种Ga-Ti掺杂ZnO块体热电材料的制备方法
CN115010479B (zh) 一种无收缩镍铜锌铁氧体材料及其制备方法
CN107793154B (zh) 一种超快速制备Cu2Se/BiCuSeO块体复合热电材料的方法
CN107793155B (zh) 一种超快速制备Cu2Se块体热电材料的方法
CN107176589A (zh) 一种制备纳米化Mg3Sb2热电材料的新方法
CN107689414B (zh) 一种导电金属相均匀分布的多相复合锰酸钙基氧化物热电材料的制备方法
CN103811653B (zh) 一种多钴p型填充方钴矿热电材料及其制备方法
CN100354985C (zh) 一种MgB2超导体的制备方法
CN114105635A (zh) 一种陶瓷材料及其制备方法与应用
CN104846342A (zh) 铜锌锡硫溅射靶及其制备方法
CN114804037A (zh) 一种Pb/In共掺BiCuSeO热电材料及其制备方法
CN107324292A (zh) 一种超快速制备高性能Cu2Se块体热电材料的方法
CN114804881B (zh) 一种钙钛矿结构BaZrS3块体热电材料及其制备方法
CN107324294A (zh) 一步超快速制备SnSe块体热电材料的方法
CN115010495B (zh) 一种快速合成铜硒基块体热电材料的方法
CN107488028B (zh) 一种铑基氧化物热电材料及其制备方法
CN113462943B (zh) 一种超快速制备高性能YbAl3块体热电材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant