CN114804037A - 一种Pb/In共掺BiCuSeO热电材料及其制备方法 - Google Patents

一种Pb/In共掺BiCuSeO热电材料及其制备方法 Download PDF

Info

Publication number
CN114804037A
CN114804037A CN202210456237.5A CN202210456237A CN114804037A CN 114804037 A CN114804037 A CN 114804037A CN 202210456237 A CN202210456237 A CN 202210456237A CN 114804037 A CN114804037 A CN 114804037A
Authority
CN
China
Prior art keywords
cuseo
ball milling
sample
bicuseo
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210456237.5A
Other languages
English (en)
Inventor
宋吉明
梁小龙
李周
董德铭
宛晗
魏榕
刘煜
莫洪光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210456237.5A priority Critical patent/CN114804037A/zh
Publication of CN114804037A publication Critical patent/CN114804037A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Abstract

本发明公开了一种Pb/In共掺BiCuSeO热电材料及其制备方法,属于能源转换技术领域。采用固相合成,球磨等方法结合热压烧结工艺制备。以Bi2O3,Bi,Cu,Se,Pb,In等粉末作为原料,根据化学式Bi1-x-yPbxInyCuSeO的化学计量比称取原料,研磨均匀,将混合原料真空封装于石英管中,再通过井式炉加热、退火,获得的粉末再通过球磨机进行球磨得到热压所需粉末并在合适的压力和温度下进行热压烧结得到Bi1-x- yPbxInyCuSeO块体热电材料。本发明制备的Bi0.93Pb0.06In0.01CuSeO热电材料的电导率为17700~53900 S/m,塞贝克系数为122~209μV/K,热导率为0.55~0.95 W/mK。采用该方法制备的Bi0.93Pb0.06In0.01CuSeO热电材料具有烧结温度低、重复性好、易于大量合成等优点,解决了传统BiCuSeO电导率低的问题,实现了BiCuSeO基热电材料热电优值显著的提高。

Description

一种Pb/In共掺BiCuSeO热电材料及其制备方法
技术领域
本发明涉及一种新型热电材料,即Pb/In共掺BiCuSeO热电材料及其制备方法,属于能源转换技术领域。
背景技术
热电材料是一种可以实现热能和电能相互转换的材料,可用于热电制冷和热电发电。目前,利用P型和N型半导体热电材料组装的热电器件具有稳定性高、体积小、寿命长和绿色环保等优点,因此在传感器、制冷、循环利用废热和航空航天等领域具有广泛的应用前景。热电材料的性能通常是由热电优值ZT来衡量,ZT=S2σT/k,其中S为Seebeck系数,σ为电导率,T为绝对温度,k为热导率。因此,优异的热电材料同时需要高的Seebeck系数、高的电导率和低的热导率。协调好这些参数之间的关系,对于提高材料的ZT值和实现高的热电材料转换效率至关重要。
BiCuSeO作为最有前途的热电材料之一,于2010年首次被报道,近年来受到越来越多的关注。其具有良好的光电性能,储能性能和热电转换性能,同时具有一定的柔韧性,在光电探测器,柔性全固态超级电容器和热电转换领域具有广阔的应用前景。相比于其他氧化物热电材料,BiCuSeO具有较低的成本和无毒性且中高温范围内具有更好的热稳定性。BiCuSeO的晶体结构由(Bi2O2)2+层和(Cu2Se2)2-层沿c轴叠加而成,具有较高的Seebeck系数、较低的热导率、高温稳定性等优点。但是由于氧元素的电负性特别大,BiCuSeO的电导率很低,热电性能不佳(Applied Physics Letters, 2010, 97(9):092118),这限制了其进一步应用。目前主要是通过复合,单掺元素(专利:CN110078476A,一种Al掺杂BiCuSeO基热电材料及其制备方法)等手段来提高其性能,但效果并不明显。为了克服BiCuSeO热电材料电导率低的缺陷,本发明通过Pb/In共掺的方法实现了BiCuSeO热电材料的电导率的大幅度提升,从而获得电导率高,物相纯的BiCuSeO基热电材料。
本发明通过固相合成和球磨的方法获得Pb/In共掺的BiCuSeO材料。为了清楚地了解制备材料的结构特征,对热压后样品进行了XRD,SEM等表征。通过对热压块体各方面性能的表征和测试,发现Bi0.93Pb0.06In0.01CuSeO样品的热电性能最佳,其ZT值在877 K时约为1.2,相较于BiCuSeO纯样和Bi0.94Pb0.06CuSeO样品Pb/In共掺后样品显著提高了材料的热电性能。本发明制备工艺简单,方法容易操作,可以快速得到Pb/In共掺的BiCuSeO热电材料。
发明内容
本发明为一种Pb/In共掺BiCuSeO热电材料及其制备方法。本方法制备工艺简单,原料价格低廉,重复性好,易于大量合成。本发明制得的掺杂材料具有较高的电导率和塞贝克系数、较低的热导率,表现出良好的热电性能,是一种潜在的热电转换材料。本发明为元素共掺热电材料的制备提供一个很好的方法。
本发明是通过以下技术方案实现的:
一种Pb/In共掺BiCuSeO热电材料的制备方法,以Bi2O3,Bi,Cu,Se,Pb,In等粉末作为原料。根据化学式Bi1-x-yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)的化学计量比称取粉末状原料,将原料在玛瑙研钵中混合并充分研磨,得到研磨后的混合样品;然后再将其装入石英管中,抽真空,封管后在管式炉中进行高温固相反应以制备Bi1-x-yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)样品;随后将冷却至室温的原料粉末进行5-15 h的球磨后,过筛装入石墨磨具中,通过快速热压机加热、热压烧结制备出结晶性好、物相纯的Bi1-x-yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)块体热电材料。
进一步地,所述合成方法具体步骤如下:
(1)高温固相反应:将原料粉末Bi2O3 (99.99%),Bi (99.99%),Cu (99.99%),Se(99.99%),Pb (99.99%),In (99.99%)按照Bi1-x-yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)化学计量比进行准确称量,放入洁净的研钵中混合均匀,将混合粉末装入干燥的石英管中,抽真空并进行高温封管,将装有样品的石英管放入井式炉中进行高温固相反应得到Bi1-x- yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)粉末样品,所述高温固相反应的条件为:以3~8 oC/min的速率升温到200~400 oC,保温10~15 h,再以3~10 oC/min的速率持续升温到650~800oC,保温8~12 h,最后以1~5 oC/min的速率持续降至室温。所用石英管内径为12.5 mm,壁厚1.2 mm,真空封管过程中真空度维持在1*10-1~5*10-1 Pa。
(2)球磨处理:将上述步骤(1)制得的Bi1-x-yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)粉末样品倒入球磨罐中,按照球料质量比为20:1加入球磨珠,He气氛下球磨,球磨的频率为40-60 Hz,球磨时长5-15 h。
(3)快速热压烧结工艺: 快速热压机中的热量由感应线圈提供,将步骤(2)所获得的Bi1-x-yPbxInyCuSeO (0≤x≤0.1,0≤y≤0.1)前驱体粉末装入石墨模具中,上下用碳棒封住并用碳纸包裹,在50 ~ 75 MPa的轴向压力、500 ~ 650℃的且低于10 Pa的真空环境中热压20 ~ 40 min得到致密度高和物相纯的Pb/In掺杂BiCuSeO基块体热电材料。
(4)根据上述制备方法所获得Bi1-x-yPbxInyCuSeO(0≤x≤0.1,0≤y≤0.1)热电材料,结晶性好、致密度高、物相纯,最优掺杂比Bi0.93Pb0.06In0.01CuSeO(x=0.06, y=0.03)样品电导率为17700 ~ 53900 S/m,塞贝克系数为209 μV/K,热导率为0.55~ 0.95 W/mK。本发明通过高温固相反应法、球磨再结合快速热压烧结工艺制得的Pb/In共掺BiCuSeO热电材料,具有以下优点:一是与传统化学法相比,此工艺制样过程简单快捷,能够一次获得大量样品,且样品性质稳定,可按比例放大制备。二是在BiCuSeO中掺杂Pb/In并进行球磨处理能够同时对材料电输运和热输运过程产生有益影响,通过对载流子浓度调节实现电导率的增大,对晶粒尺寸的控制来降低热导率。材料的电导率在德国林赛斯LSR-3塞贝克系数/电导率测试仪上测得,材料的热导率在德国耐驰LFA-467激光导热仪上测得,热电优值ZT由公式ZT=S2σT/k计算获得。
附图说明:
图1为本发明实例1、实例2、实例3和实例4的X射线衍射图;
图2为本发明实例3块体断裂面扫描电子显微(SEM)图;
图3为本发明实例1、实例2、实例3和实例4的热导率-温度曲线图;
图4为本发明实例1、实例2、实例3和实例4的电导率-温度曲线图;
图5为本发明实例1、实例2、实例3和实例4的塞贝克系数-温度曲线图;
图6为本发明实例1、实例2、实例3和实例4的热电优值-温度曲线图。
具体实施方式:
以下结合实施例对本发明做具体的说明:
实施例1:BiCuSeO纯样的制备,具体的制备工艺如下:
(1)固相反应:将原料粉末Bi2O3 (99.99%),Bi (99.99%),Cu (99.99%),Se(99.99%)按照Bi1-x-yPbxInyCuSeO (x=y=0)的化学计量比准确称量2.7959 g Bi2O3,1.2539g Bi,1.1439 g Cu,1.4213 g Se并在玛瑙研钵中混合,充分研磨后得到混合样品。然后将其装入洗净的石英管中,抽真空至真空度低于0.3 Pa以下后,用火焰枪进行封管,然后再将封管后的样品置于井式炉中按照5 ℃/min从室温升至300 ℃并在300 ℃温度下保温12 h,再以5 ℃/min升温至700℃保温9h,随后以2 ℃/min降至室温的程序进行固相反应,将反应好的原料从石英管中取出倒入球磨玛瑙罐中,按照球料质量比20:1,加入球磨珠,He气氛下球磨,在45 Hz频率下球磨10 h获得BiCuSeO前驱体粉末,即BiCuSeO热电材料原料。
(2)快速热压炉热压烧结工艺:将步骤(1)所获得BiCuSeO粉末装入内径为12.7 mm的石墨模具中,上下用碳棒封住并用碳纸包裹,在60 MPa的轴向压力、600 ℃的环境中热压30 min,然后开始降温、卸压和关闭热压仪器,使样品自然冷却,即获得BiCuSeO块体热电材料。
实施例2:Bi0.94Pb0.06CuSeO热电材料的制备,具体的制备工艺如下
(1)固相反应:将原料粉末Bi2O3 (99.99%),Bi (99.99%),Cu (99.99%),Se(99.99%),Pb (99.99%)按照Bi1-x-yPbxInyCuSeO (x=0.06,y=0)的化学计量比准确称量2.7959 g Bi2O3,1.2539 g Bi,1.1439 gCu,1.4213 gSe,0.2338 g Pb,并在玛瑙研钵中混合,充分研磨后得到混合样品。然后将其装入洗净的石英管中,抽真空至真空度低于0.3 Pa以下后,用火焰枪进行封管,然后再将封管后的样品置于井式炉中按照5 ℃/min从室温升至300 ℃并在300 ℃温度下保温12 h,再以5 ℃/min升温至700 ℃保温9 h,随后以2 ℃/min降至室温的程序进行固相反应,将反应好的原料从石英管中取出倒入球磨玛瑙罐中,按照球料质量比20:1加入球磨珠,He气氛下球磨,在45 Hz频率下球磨10 h获得Bi0.94Pb0.06CuSeO前驱体粉末,即Bi0.94Pb0.06CuSeO热电材料原料。
(2)快速热压炉热压烧结工艺:将步骤(1)所获得Bi0.94Pb0.06CuSeO粉末装入内径为12.7 mm的石墨模具中,上下用碳棒封住并用碳纸包裹,在60 MPa的轴向压力、600 ℃且低于10 Pa的环境中热压30 min,然后开始降温、卸压和关闭热压仪器,使样品自然冷却,获得Bi0.94Pb0.06CuSeO块体热电材料。
实施例3:Bi0.93Pb0.06In0.01CuSeO热电材料的制备,具体的制备工艺如下
(1)固相反应:将原料粉末Bi2O3 (99.99%),Bi (99.99%),Cu (99.99%),Se(99.99%),Pb (99.99%),In (99.99%)按照Bi1-x-yPbxInyCuSeO (x=0.06,y=0.01)的化学计量比准确称量2.7959 g Bi2O3,1.2539 g Bi,1.1439 g Cu,1.4213 g Se,0.2338 g Pb,0.0207 g In并在玛瑙研钵中混合,充分研磨后得到混合样品。然后将其装入洗净的石英管中,抽真空至真空度低于0.3 Pa以下后,用火焰枪进行封管,然后再将封管后的样品置于井式炉中按照5 ℃/min从室温升至300 ℃并在300 ℃温度下保温12 h,再以5 ℃/min升温至700℃保温9h,随后以2 ℃/min降至室温的程序进行固相反应,将反应好的原料从石英管中取出倒入球磨玛瑙罐中,按照球料质量比20:1,加入球磨珠,He气氛下球磨,在45 Hz频率下球磨10 h获得Bi0.93Pb0.06In0.01CuSeO前驱体粉末,即Bi0.93Pb0.06In0.01CuSeO热电材料原料。
(2)快速热压炉热压烧结工艺:将步骤(1)所获得Bi0.93Pb0.06In0.01CuSeO粉末装入内径为12.5 mm的石墨模具中,上下用碳棒封住并用碳纸包裹,在60 MPa的轴向压力、600℃且低于10 Pa的真空环境中热压30 min,然后开始降温、卸压和关闭热压仪器,使样品自然冷却,获得Bi0.93Pb0.06In0.01CuSeO块体热电材料。
实施例4:Bi0.91Pb0.06In0.03CuSeO热电材料的制备,具体的制备工艺如下
(1)固相反应:将原料粉末Bi2O3 (99.99%),Bi (99.99%),Cu (99.99%),Se(99.99%),Pb (99.99%),In (99.99%)按照Bi1-x-yPbxInyCuSeO (x=0.06,y=0.03)的化学计量比准确称量2.7959 g Bi2O3,1.2539 g Bi,1.1439 g Cu,1.4213 g Se,0.2338 g Pb,0.0621 g In 并在玛瑙研钵中混合,充分研磨后得到混合样品。然后再将其装入洗净的石英管中,抽真空至真空度低于0.3 Pa以下后,用火焰枪进行封管,然后再将封管后的样品置于井式炉中按照5 ℃/min从室温升至300 ℃并在300 ℃温度下保温12 h,再以5 ℃/min升温至700℃保温9h,随后以2 ℃/min降至室温的程序进行固相反应,将反应好的原料从石英管中取出倒入球磨玛瑙罐中,按照球料质量比20:1加入球磨珠,He气氛下球磨,在45 Hz频率下球磨10 h获得Bi0.91Pb0.06In0.03CuSeO前驱体粉末,即Bi0.91Pb0.06In0.03CuSeO热电材料原料。
(2)快速热压炉热压烧结工艺:将步骤(1)所获得Bi0.91Pb0.06In0.03CuSeO粉末装入内径为12.7 mm的石墨模具中,上下用碳棒封住并用碳纸包裹,在60 MPa的轴向压力、600℃且低于10 Pa的环境中热压30 min,然后开始降温、卸压和关闭热压仪器,使样品自然冷却,获得Bi0.91Pb0.06In0.03CuSeO块体热电材料。
实施例5:一种Pb/In共掺BiCuSeO热电材料热电性能测试
对实施例1,实施例2,实施例3,实施例4样品进行物相测试、热电输运性能测试:从X射线衍射图谱(图1)可知,样品XRD图谱与BiCuSeO(PDF#45-0296)的特征衍射峰完全一致,仪器检测限内无杂质衍射峰。从实施例4样品的SEM图可知球磨后的样品晶粒大小较为均匀(图2),将实施例1,实施例2,实施例3,实施例4样品利用沈阳科晶STX-202A型金刚石线切割机切成圆片状和长条状后进行热输运和电输运性能的表征。如图3所示,Pb/In共掺样品后,在温度为877 K时,样品Bi0.93Pb0.06In0.01CuSeO的热导率为0.55 W/mK图4为块体热电材料的电导率-温度曲线图,如图所示,Pb/In共掺样品的电导率较BiCuSeO纯样及Bi0.94Pb0.06CuSeO样品进一步提高,在温度为877 K时,样品Bi0.91Pb0.06In0.03CuSeO的电导率为17700 S/m。图5块体热电材料的塞贝克系数-温度曲线图,如图所示,Bi0.91Pb0.06In0.03CuSeO样品在877 K时塞贝克系数为209 μV K−1。图6块体热电材料的ZT-温度曲线图,如图所示,Bi0.91Pb0.06In0.03CuSeO样品在877K时的热电优值约为1.2。

Claims (8)

1.一种Pb/In共掺BiCuSeO热电材料及其制备方法,其特征在于:以Bi2O3,Bi,Cu,Se,Pb,In等粉末做为原料,经高温固相反应、球磨处理和快速热压烧结工艺,制得Bi1-x- yPbxInyCuSeO热电材料,其中0≤x≤0.1,0≤y≤0.1,具体步骤如下:
(1)高温固相反应:根据Bi1-x-yPbxInyCuSeO样品的化学计量比,其中0≤x≤0.1,0≤y≤0.1,称取所需原料粉末,放入洁净的研钵中混合均匀,将混合粉末装入洁净干燥的石英管中,抽真空并进行高温封管,将装有样品的石英管放入井式炉中进行高温固相反应制得样品;
(2)球磨处理:将上述步骤(1)制得的Bi1-x-yPbxInyCuSeO粉末样品倒入球磨机的球磨罐中,加入球磨珠,He气氛下球磨,获得热压前驱体粉末;
(3)快速热压烧结工艺:将步骤(2)所获得的Bi1-x-yPbxInyCuSeO前驱体粉末装入石墨模具中,上下用碳棒封住并用碳纸包裹,在一定压力和温度下进行热压得到致密度高和物相纯的Pb/In掺杂BiCuSeO基块体热电材料。
2.根据权利要求1所述一种Pb/In共掺BiCuSeO热电材料及其制备方法,其特征在于所用原料Bi2O3,Bi,Cu,Se,Pb和In的纯度均为99.99%。
3.根据权利要求1所述一种Pb/In共掺BiCuSeO热电材料及其制备方法,其特征在于:高温固相反应的工艺条件为以3 ~ 8 ℃/min的速率升温到200 ~ 400℃,保温10 ~15 h,再以3 ~ 10 oC/min的速率持续升温到650 ~ 800 oC,保温6 ~10 h,最后以1 ~5 oC/min的速率持续降至室温。
4.根据权利要求1所述一种Pb/In共掺BiCuSeO热电材料及其制备方法,其特征在于:球磨处理的工艺条件为按照球料质量比20:1加入球磨珠,He气氛下球磨,球磨的频率为40-60Hz,球磨时长5-15 h,获得热压前驱体粉末。
5.根据权利要求1所述一种Pb/In共掺BiCuSeO热电材料及其制备方法,其特征在于:快速热压烧结工艺条件为50 ~ 75 MPa的轴向压力、500 ~ 650 oC且低于10 Pa的真空环境下,热压20 ~ 40 min。
6.根据权利要求1所述的一种Pb/In共掺BiCuSeO热电材料及其制备方法,其特征在于:将原料粉末Bi2O3,Bi,Cu,Se,Pb,In,按照Bi1-x-yPbxInyCuSeO化学式,其中x=0.06,y=0.01的化学计量比进行准确称量,并在玛瑙研钵中混合,充分研磨后得到混合样品。
7.然后将其装入洗净的石英管中,抽真空至真空度低于0.3 Pa以下后,用火焰枪进行封管,然后再将封后的样品置于井式炉中按照以5 ℃/min的速率升温到300℃,保温12 h,再以5 oC/min的速率持续升温到700 oC,保温9 h,最后以2 oC/min的速率持续降至室温,将反应好的原料从石英管中取出倒入球磨玛瑙罐中,按照球料质量比20:1加入球磨珠,抽真空后球磨,在45 Hz频率下球磨10 h获得Bi0.91Pb0.06In0.03CuSeO前驱体粉末,将前驱体粉末装入石墨模具中在60 MPa的轴向压力、600 ℃真空度低于10 Pa的环境中热压30 min,然后开始降温、卸压和关闭热压仪器,使样品自然冷却,获得Bi0.91Pb0.06In0.03CuSeO块体热电材料。
8.根据权利要求6所述的一种Pb/In共掺BiCuSeO热电材料及其制备方法,对所述Bi0.93Pb0.06In0.01CuSeO样品的电导率、塞贝克系数和热导率进行表征和计算,其特征在于:Bi0.93Pb0.06In0.01CuSeO样品,在温度为877 K时,其电导率为17700 S/m,塞贝克系数为209 μV K−1,热导率为0.55 W/(mK),热电优值约为1.2。
CN202210456237.5A 2022-04-28 2022-04-28 一种Pb/In共掺BiCuSeO热电材料及其制备方法 Pending CN114804037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210456237.5A CN114804037A (zh) 2022-04-28 2022-04-28 一种Pb/In共掺BiCuSeO热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210456237.5A CN114804037A (zh) 2022-04-28 2022-04-28 一种Pb/In共掺BiCuSeO热电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114804037A true CN114804037A (zh) 2022-07-29

Family

ID=82508647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210456237.5A Pending CN114804037A (zh) 2022-04-28 2022-04-28 一种Pb/In共掺BiCuSeO热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114804037A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636668A (zh) * 2022-11-21 2023-01-24 安徽大学 一种位错增强型BiCuSeO基热电材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655204A (zh) * 2012-04-28 2012-09-05 北京航空航天大学 一种Sr掺杂氧化物BiCuSeO热电材料及制备方法
CN103011838A (zh) * 2012-10-24 2013-04-03 中国航空工业集团公司北京航空材料研究院 一种BiCuSeO基热电氧化物粉体的制备方法
CN105800569A (zh) * 2016-03-03 2016-07-27 宁波工程学院 n-型CuIn3Se5基中高温热电半导体及其非平衡制备工艺
CN107946450A (zh) * 2017-11-29 2018-04-20 大连理工大学 一种掺杂变价元素协同优化BiCuSeO基热电材料及其制备方法
CN107994115A (zh) * 2017-12-11 2018-05-04 武汉科技大学 一种Pb/Ba双掺杂BiCuSeO热电材料及其制备方法
WO2018087540A1 (en) * 2016-11-10 2018-05-17 Cranfield University Tuning of catalytic activity by thermoelectric materials
CN110078476A (zh) * 2019-04-18 2019-08-02 广西大学 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN110112281A (zh) * 2019-04-18 2019-08-09 广西大学 Al掺杂Cu缺位BiCuSeO基热电材料及制备方法
CN110350074A (zh) * 2019-07-24 2019-10-18 中国科学技术大学 一种高性能BiCuSeO基热电材料及其制备方法
US20200152849A1 (en) * 2017-11-08 2020-05-14 South University Of Science And Technology Of China High performance thermoelectric device and method of manufacturing the same at ultra-high speed

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655204A (zh) * 2012-04-28 2012-09-05 北京航空航天大学 一种Sr掺杂氧化物BiCuSeO热电材料及制备方法
CN103011838A (zh) * 2012-10-24 2013-04-03 中国航空工业集团公司北京航空材料研究院 一种BiCuSeO基热电氧化物粉体的制备方法
CN105800569A (zh) * 2016-03-03 2016-07-27 宁波工程学院 n-型CuIn3Se5基中高温热电半导体及其非平衡制备工艺
WO2018087540A1 (en) * 2016-11-10 2018-05-17 Cranfield University Tuning of catalytic activity by thermoelectric materials
US20200152849A1 (en) * 2017-11-08 2020-05-14 South University Of Science And Technology Of China High performance thermoelectric device and method of manufacturing the same at ultra-high speed
CN107946450A (zh) * 2017-11-29 2018-04-20 大连理工大学 一种掺杂变价元素协同优化BiCuSeO基热电材料及其制备方法
CN107994115A (zh) * 2017-12-11 2018-05-04 武汉科技大学 一种Pb/Ba双掺杂BiCuSeO热电材料及其制备方法
CN110078476A (zh) * 2019-04-18 2019-08-02 广西大学 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN110112281A (zh) * 2019-04-18 2019-08-09 广西大学 Al掺杂Cu缺位BiCuSeO基热电材料及制备方法
CN110350074A (zh) * 2019-07-24 2019-10-18 中国科学技术大学 一种高性能BiCuSeO基热电材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINGDAN LEI ET AL.: "Isoelectronic indium doping for thermoelectric enhancements in BiCuSeO", APPLIED SURFACE SCIENC, vol. 473, pages 985 - 991, XP085585382, DOI: 10.1016/j.apsusc.2018.12.231 *
YUEXING CHENG ET AL.: "Highly enhanced thermoelectric performance in BiCuSeO ceramics realized by Pb doping and introducing Cu deficiencies", JOURNAL OF AMERICAN CERAMIC SOCIETY, vol. 102, no. 10, pages 5989 - 5996 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636668A (zh) * 2022-11-21 2023-01-24 安徽大学 一种位错增强型BiCuSeO基热电材料及其制备方法

Similar Documents

Publication Publication Date Title
JP6976012B2 (ja) n−型Mg−Sb基室温熱電材料及びその製造方法
CN102931335B (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
JP2021515411A5 (zh)
CN100549195C (zh) 一种填充方钴矿基热电复合材料及其制备方法
CN113735582A (zh) 一种碲化铋基热电材料的制备方法
CN110408989B (zh) 一种氧化物热电材料BiCuSeO单晶体及其制备方法
CN114804037A (zh) 一种Pb/In共掺BiCuSeO热电材料及其制备方法
CN113285010B (zh) 一种用Er掺杂碲化铋基赝三元热电材料的高压制备方法
CN108878634B (zh) 一种y掺杂赝三元半导体致冷材料及其制备方法
CN103811653B (zh) 一种多钴p型填充方钴矿热电材料及其制备方法
CN112397634B (zh) 一种提升Bi-Sb-Te基热电材料性能的方法
CN112645710B (zh) 一种用Er和Ag共掺提高碲化铋基赝三元热电材料热电性能的方法
CN114573348B (zh) 一种提高Bi2Te3基热电材料热电性能的方法
CN108423641B (zh) 一种具有超低热导率铋铟硒热电材料的制备方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
CN112582527B (zh) 一种石墨掺杂的GeS2热电材料的制备方法
KR102373867B1 (ko) 성능이 개선된 퍼밍기어타이트 열전재료 및 이의 고상합성공정
CN113421958B (zh) 热电化合物BaCu2Se2材料及其制备方法
CN114836641A (zh) 一种p型Mg3Sb2热电材料的制备方法
Zhang et al. Improved thermoelectric properties in n-type polycrystalline SnSe 0.95 by PbCl 2 doping
CN109626446B (zh) 一种立方结构CoSbS热电化合物的制备方法
CN115636668B (zh) 一种位错增强型BiCuSeO基热电材料及其制备方法
Park et al. Electrical, Thermal, and Thermoelectric Transport Properties of Co-Doped n-type Cu 0.008 Bi 2 Te 2.6 Se 0.4 Polycrystalline Alloys
CN112885948B (zh) 一种具有高结构稳定性的铜硒基热电材料及其制备方法
CN115231920A (zh) 一种二氧化钒块体材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination