CN1118878C - 双极叠片单元电化学电池 - Google Patents
双极叠片单元电化学电池 Download PDFInfo
- Publication number
- CN1118878C CN1118878C CN94194182A CN94194182A CN1118878C CN 1118878 C CN1118878 C CN 1118878C CN 94194182 A CN94194182 A CN 94194182A CN 94194182 A CN94194182 A CN 94194182A CN 1118878 C CN1118878 C CN 1118878C
- Authority
- CN
- China
- Prior art keywords
- cell
- battery
- electrochemical battery
- electrode
- bipolar electrochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/30—Nickel accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
- H01M10/0418—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0468—Compression means for stacks of electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
- H01M4/385—Hydrogen absorbing alloys of the type LaNi5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/481—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mercury
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
- H01M10/526—Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/029—Bipolar electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/54—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
- H01M4/808—Foamed, spongy materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/49115—Electric battery cell making including coating or impregnating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Cold Cathode And The Manufacture (AREA)
- Primary Cells (AREA)
Abstract
本发明涉及用于一次性和可充电电化学片状电池单元的电极结构。公开了一种平板片电池单元,它包含用作电极接触并用作电池包容装置的导电的充碳聚合外层。借助于将单个电池单元堆叠起来,可构成多电池单元的较高电压的电池。公开了镍-金属氢化物电池系统的与片电池单元构造可兼容的特制电极及工艺技术。本发明还导致用无电镍涂覆工艺以镍涂覆不导电或低导电金属氢氧化物颗粒或金属氧化物粉末制备的电化学活性材料来制造电极。为透气的或低压密封的电池单元的单独工作和/或在电池外箱中堆叠成阵列的多个电池单元的工作提供了电池单元设计和电极构造。
Description
本申请是1993年10月8日提出的申请号为08/134429的申请案的部分继续申请。
本发明的技术领域
本发明涉及到一种封装方法、电极组成以及用来制造电化学电池单元(electrochemical cell)及多电池单元的电池的制造技术。确切地说,本发明涉及到可用于具有高的能量储存容量并可多次重复充电、而电池性能无明显变坏的可重复充电的双极电池结构的电化学单元构造。更具体地说,本发明涉及到镍和氢化金属平板电极结构、以及制造可堆叠成多电池单元的电池结构的镍和氢化金属平板电极结构的方法。本发表还涉及到用无电涂覆工艺(electroless coating process)、以金属涂覆不导电至低导电金属氢氧化物颗粒或金属氧化物粉末而制备的电化学活性材料来制得的电极。本发明还导致用无电镍涂覆工艺以镍涂覆不导电至低导电金属氢氧化物颗粒或金属氧化物粉末而制备的电化学活性材料来制造电极。
发明的背景
构建在各种电化学体系中的多电池单元电池通常封装在圆柱形或棱形箱体中。各个电池单元以导线串联连接以构成多电池单元电池。这种构建方法提供了各单元部分的良好密封和可靠工作。但这种结构将多电池单元电池很大份额的重量和体积加到了封装上,从而不能充分利用电池单元有源元件的潜在储能能力。为了在重量和体积的基础上改善电池的能量储存能力,设置了减小封装重量和体积以及提供稳定的电池性能和低的内阻的封装方法。
这些目标导致寻求一种双极构造,其中导电的双极层用作相邻单元之间的电互连以及单元之间的隔板。为使双极构造成功地被采用,双极层的导电性必须足以在电池单元之间传送电流,在电池单元的环境中必须化学稳定,必须能够做到和保持对电极的良好电接触,并且沿单元的边界必须是电隔离和密封的以便将电解质保持在电池单元中。由于充电电位会加速双极层的腐蚀,故在可充电电池中更难以达到这些要求,而在碱性电池中由于电解质的蠕变性,这些要求也难以达到。已证实要达到这些特性的适当组合也极为困难。
为达到无维修运行,希望在密封结构中运行可充电电池。但密封双极设计通常采用平板电极和堆叠单元构造,这种结构在容纳电池工作过程中产生的气体方面,性能是很差的。在密封单元结构中,在充电时产生气体,为了得到稳定的工作,这些气体需要在电池内部被化学复合掉。为了尽量减轻用来容纳气体压力的结构的重量,电池应工作于较低的压力下,压力容纳要求在设计稳定的双极结构方面提出了额外的挑战。
尽管在制作铅酸和镍镉体系双极构造方面有很多专利并作出了很大的努力,但这种电池仍无市场供应(美国专利4098967号)。由于许多用来制造金属氢化物电池的金属氢化物在提高了的氢气压力下工作,构建平板金属氢化物电池甚至更为困难。
双极结构已成功地用于Leclanche MnO2-Zn体系的平板结构中作为原电池(美国专利4098965号)。由于原电池是不可充电的,故材料稳定性问题较不严重,而且含水氯化物电解质可被毫无困难地容纳。
现有技术电化学电池单元的另一问题涉及到金属氢化物电极所遇到的材料问题。电化学上可逆的金属氢化物电极借助于电池电化学充电过程中将氢吸收到金属氢化物合金的晶格中而工作。大量合金配方已被证实是能够以这种方式起作用的所谓AB5和AB2结构,例如像美国专利4488817和4728586所公开的那样。为了确保合理的反应速度和氢传输速率,这种电极可由平均颗粒尺寸通常约为50μm的合金粉末制备。借助于对金属粉末进行烧结或采用聚合粘合剂,可以实现用合金粉末来制造电极结构。但常规技术无法得到同双极构造中导电外层的电池单元表面具有良好而稳定的接触的电极。每次氢进入和离开晶格时,合金就经历膨胀和收缩,在这种重复循环过程中,金属氢化物合金可能碎裂。人们还承认,氧或电解质能同氢化物合金反应并引起氢化物合金储氢能力的变坏。
本发明提供了一种达到对可充电多电池单元电池双极结构有利的封装、并且克服先前方法的材料和结构问题的方法。虽然每类电池单元结构的材料对于各个电池的化学性是特定的,但此处公开的通用性双极结构可用于多种类型的电化学电池单元。具体地说,遵从特指可充电镍-金属氢化物化学过程的描述和方法,一般也可用于其它的化学过程。
可用于电化学电池的电学上可充电的镍电池电极在包括镍/镉、镍/铁、镍/锌、镍/氢和镍/金属氢化物的大量电池体系中已被证实具有良好的循环寿命和放电速率容量。在镍电极处通常接受的反应是:
在充电/放电过程中镍活性材料在二个氧化状态(+2和+3)之间循环。基于单电子改变,理论上每安培小时的容量有3.43gNi(OH)2被反应。镍电极良好的循环寿命可归功于所用碱性电介质中充电/放电粒子的低溶解度以及循环过程中活性材料不作化学上或物理上的明显改变的事实。为了使活性材料在电池电极中起作用,它必须同电子流的电极电流收集器电学上相接触,并且物理上同给予电解离子反应的电解质相接触。
镍活性材料在其二个氧化状态中是很差的导电体,附着性不好而在充电和放电之间其膨胀与收缩适中。为了克服这些缺点,实际的电池电极制造时要使活性材料从结构上被包含在其中以免去外壳并保持同导电元件紧密接触以确保从活性材料出来的电子流。用下列电极已做到了这一点:即,袋状电极,其中,活性材料和镍粉或石墨的混合物被封装成多孔管或小袋(发明人Edison,美国专利723,450,1902年;以及Jungner,瑞典专利11132,1889年);烧结电极,其中活性材料被化学地或电化学地灌注入多孔性烧结镍粉末(德国专利491498,1928年);塑封电极,其中石墨和活性材料用Teflon粘合剂粘合在一起(美国专利3898099),以及涂浆电极,其中氢氧化镍活性材料和粘合剂被涂在多孔性镍泡沫或纤维板中(美国专利4844999)。
在上述电极类型中得到了所要求的性能组合,特别是活性材料的结构包容、电解质的连接和对活性材料的电连接。基于单位体积的容量、单元重量的容量、单位容量的成本、电极电流漏电率能力、循环寿命、容量保持性、温度特性、充电效率、工作电压以及工艺有害废弃物,对不同类型的电极的相对优点进行了评估。
各电极类型的特性是活性材料对附加和支持结构的重量和体积比、活性材料利用率、复合结构导电性以及电极结构稳定性的函数。由于不存在在所有特性方面都优越的某种电极类型,故特定的应用可能强调某一特定的电极特性。因此,一般根据不同的应用而选取不同的电极类型。现有技术的限制在于,除活性材料的重量外,成品电极通常含有30-60%的附加无效重量,而且还要求昂贵的结构和工艺。成品电极远未达到活性材料本身的理论能量容量。
其它电池电极的化学性质中也存在同样的电极特性、成本和限制的问题,此处所述的发明也可应用于其它电极的化学性质。
本发明的优点和概要
本发明的一个目的是提供一种能克服上述现有技术双极构造问题的可充电多电池单元电池的双极电池构造。
更具体地说,本发明的一个目的是提供已改善了能量储存容量同时仍具有稳定而效率高的电池性能的双极设计。
本发明的另一目的是用具有密封结构的平板电化学电池来提供双极电池构造。
本发明的又一目的是提供双极电池构造,其中可以使用金属氢化物电极。
本发明的再一目的是提供改进的金属氢化物电极结构。
本发明的又一目的是提供一种制备可用于可充电双极电池构造中的平板金属氢化物结构的方法。
本发明的另一目的是提供一种通用的方法,用来制备可用于电池电极的活性材料和用这种活性材料来制造提高了性能并降低了成本的电极结构。虽然本发明指明的是用于可充电镍电极的改进的活性材料,但这些技术也可用于其它可能受益于增强导电率的电池活性材料,例如二氧化锰、氧化钴、五氧化钒等电池活性材料。
本发明的另一目的是提供一种用增强了电导率的活性材料来制造塑封电极的方法。希望得到的电极的性能比起用烧结或泡沫片(这比用本低价塑封工艺制得的电极更昂贵)的电极的性能来说可以比拟或有所改进。借助于用能提高成品电极导电率的超薄导电膜来涂覆活性材料而获得了所需的结果。
本发明的一个未曾预料到的结果是经特别控制的氢氧化镍颗粒的无电镍涂覆产生了一种含5-30%重量比的镍的活性材料。用这一工艺涂覆的颗粒在粘合并压制成电极时,可在颗粒之间提供优良的接触。而且,正如有效的电化学作用所要求的那样,这种电极不阻止离子向活性材料的输运。用包括袋状电极或粘贴到泡沫或多孔纤维板中等各种工艺,或用塑封技术,可将此工艺涂覆的活性材料制成电极。
本发明的另一方面是用独特的干法Teflon粘合工艺将提高了导电率的活性材料结构上粘结以形成电极结构。
本发明的进一步目的在于生产成本和性能都比现在技术镍电极有改进的镍电极。
制作一种包含下列各部分的双极电化学电池,就可以达到这些目的、收益和优点:
至少由二个电化学电池单元组成的叠层,各电池单元串联,每个电池单元的正面接触到相邻电池单元的负面,其中每个电池单元包含:
(a)一个金属氢化物电极;
(b)一个镍电极;
(c)一个在各电极之间的多孔隔板,其中的隔板含有一种电解质;
(d)一个同金属氢化物电极外表面电学上相接触的第一导电外层;以及
(e)一个同镍电极外表面电接触的第二导电外层;其中的外层被周边密封于不导电的聚合材料以形成含有电极、隔板和电解质的密封件。
本发明还涉及到一种制造电极的方法,它包含:
在搅拌研磨机中干法混合电化学活性材料和聚四氟乙烯颗粒的组合,以形成混合物;
将混合物干辗压成薄层;
借助于相继折叠和辗压该薄层来干法揉合该薄层,使聚四氟乙烯颗粒形成一个互连的网络,所述电化学活性材料被埋置于其中;
对折叠并辗压过的薄层进行辗光以形成基本平坦的多孔片;以及
从多孔片切出基本上平坦的电极。
此外,本发明涉及一种制备电池电极的方法,它包含:用敏化剂涂覆电化学活性材料的颗粒以产生带有敏化表面的颗粒,使成核剂同敏化过的表面进行反应,以产生具有用于无电沉积的活化了的表面的颗粒,将带有活化表面的颗粒浸在无电沉积槽液中,在活化表面上沉积微孔性金属层以产生涂有金属的电化学活性材料的颗粒,从无电槽液中移走涂有金属的颗粒,并用涂有金属的颗粒制造电极。
从对所公开的双极电化学电池及制造双极电化学电池的方法和此处所用的金属氢化物电极所进行的下列详细描述中,对于本技术领域中的熟练人员来说,本发明的其它目的和优点将是显而易见的。
附图简述
图1示出了片状电池单元的概观。
图2A示出了片状电池单元的多单元堆叠的三维图,图2B示出了片状电池单元的多单元堆叠的二维侧视图。
图3示出了密封电池箱的侧面图。
图4示出了载有液体的密封电池箱的侧面图。
图5示出了单片电池单元中的多电极结构的侧面图。
图6示出了带有背面氧复合装置的片状电池单元。
图7A示出了周期数为104、112、242、250、368和376时113号电池单元的电池电压记录带。
图7B示出了周期数为480、488、608、616、680和688时113号电池单元的电池电压记录带。
图8示出了周期数为4、5、128、136、288和296时电池单元121号电池的电池电压记录带。
图9示出了周期数为101、102、103、942、943、944、1509、1510和1511时114号电池单元的电池电压记录带。
图10示出了周期数为168、176、296、304、408和416时134号电池单元的电池电压记录带。
图11示出了周期数为98、99、100、298、299、300、398、399和400时170号电池单元的电池电压记录带。
图12示出了周期数为2和5时一个五电池单元叠层的电压记录带。
图13示出了未经涂覆的电化学活性材料的扫描电子显微镜(SEM)照片。
图14示出了均匀涂覆过的电化学活性材料的SEM照片。
图15示出了296号电池单元在周期性循环时的电压记录带。
图16示出了342号电池单元在周期性循环时的电压记录带。
图17示出了A300号电池单元在周期性循环时的电压记录带。
图18示出了305号电池单元在周期性循环时的电压记录带。
图19A示出了393号电池单元在周期性循环时的电压记录带。
图19B示出了393号电池单元的最小电压同周期数之间的函数关系。
优选实施例的详述
虽然下面对本发明最佳实施例的描述是为了提供有助于本技术领域熟练人员去实践本发明的详细说明,但本发明的范围并不局限于此处所提供的特定产品或工艺细节的范围内。
本发明的双极电化学电池首先涉及到制备单一的电化学电池单元。图1示出了片状电池单元1的原理实施例,此电池单元1由一对容纳在二个导电的充碳外层2和3之间的电极组成,外层2和3分别同正和负电极4和5电连接。二个电极用隔板6来防止发生直接的物理电接触,隔板6通常是多孔的以便容纳电解质。电解质通常含有一种或多种诸如氢氧化锂、氢氧化钠和氢氧化钾之类的碱性氢氧化物的水溶液。隔板材料通常含有聚酰胺或聚丙烯纤维之类的人造树脂纤维。为了增强电接触,在各个充碳外层和与其接触的相应电极之间可使用导电胶或粘合剂。在本发明的最佳实施例中,负电极5是一种能电化学和可逆地储存氢的粘合在一起的金属氢化物合金粉末。这种合金可包括美国专利4487817和4728586所公开的材料,但本发明不局限于上述公开的材料配方。这些合金配方可包括通常称之为稀土金属混合物的氢化物合金,可能由诸如MnNi35CO0.7Al0.87的氢化物形成金属的合金所组成。本发明的正电极4最好是通常称之为镍型电极或更简单地称之为镍电极的电极。氢氧化镍是镍电极的活性成分。德国专利491498和英国专利917291中说明了现有技术的镍电极。
如图1所示,本发明的最佳构造包含一个电化学电池单元,其中的电极、电极之间的隔板以及二个外层都是基本上平坦的且同相邻元件紧密地物理和电接触。图1所示的设计使得有可能构成此处称之为片状电池单元的薄的电池单元。
为使电极、电极之间的隔板以及电解质被密封在封闭的片状电池单元之中,平坦外层2和3的物理面积比电极要大,使各个外层伸过围绕相邻电极整个周界的电极。不导电的材料7可将外层的周界密封起来以形成围绕电极整个周界的边界材料,从而形成将电极对、隔板和电解质密封在片状电池中的密封件。边界材料最好是可热封于外层的聚合材料。本发明的聚合材料最好是乙烯基聚合物。
封好的片状电池可以被完全地密封,也可以带有出气口以使释放充电过程中电池内可能出现的过大压力。由于平板电池构造是压力容纳器的一种很差的物理结构,故最好是采用工作于大气压力下的氢化物合金。若采用完全密封的结构,用正电极的容量来加以电化学限制的设计是较好的。对于这种设计,在氢化物电极的全部可获得的储氢能力得到完全利用之前,充电周期结束时氧气产生于正电极处。产生在正电极处的氧可能迁移到氢化物负电极并与氢化物电极中的氢发生化学复合,从而有助于防止出现过大压力。氧和氢的化学复合此处称之为氧复合反应。
如以下更详细地描述的那样,本发明还涉及到提供一种方法以增强氧气向负电极的迁移并促进氢化物电极表面处氧同氧的有效化学复合。
除了有助于防止出现过量的氢,借助于同氢的化学复合而得到的氧的有效迁移和清除也有助于缓和多次充电后由于氧化而引起的氢化物负电极的变坏倾向。
电极之间的隔板通常具有多孔结构以吸收和容纳电池单元中的电解质。在本发明的一个最佳实施例中,隔板由二层非织造尼龙组成而电解质由碱性溶液组成。碱性电解质最好是一种由氢氧化钾和氢氧化锂组成的混合氢氧化物。隔板伸到电极边缘之外以防止电极之间的直接电接触。
各电极可连接到电流收集器以便在相邻电池单元之间运载电流。由于相邻电极之间的电流路径较短而相邻电池单元之间的物理和电接触面积相对于相邻元件的总面积要大,故最好不必采用电流收集器。此外,电极的导电性通常足以维持电池单元的工作而无需增加电池单元重量和复杂性的电流收集器。
图2A和图2B示出了借助于堆叠几个片状电池1单元而构成的多电池单元电池8。各片状电池电学上安排成串联,每个电池单元的正面同相邻电池单元的负面相接触。二个端面电池单元分别有金属箔接触9和10,以便将电流从电池单元叠层引导到电池二端。电池单元到电池单元的接触或端面电池单元同金属箔之间的接触可借助于使用导电胶或粘合剂来增强。紧密的叠层装置保持在紧压状态下以确保相邻电池单元之间和各电池单元中各个层之间的均匀物理接触。利用带有外部连接杆13和14的坚固的端板11和12如图2B所示包绕过叠层的周边,或者如图3所示利用穿透各个电化学电池单元内的密封孔的内部连接杆16,可获得叠层的紧压。各个孔被密封成防止连接杆同电池单元的导电元件之间发生电接触。
叠层也可密封在用作电池箱8的外电池箱中。为允许叠层中电极的膨胀和不规则性,可利用金属箔接触9和10中的一个或二个分别同外箱端板11和12之间的一层海绵橡皮15,使叠层保持在紧压状态。图2B示出只带一层海绵橡皮15。也可用弹簧或充气可压缩垫片而不用橡片。若电池单元叠层密封在封闭的外箱中,则外箱可用来提供叠层紧压而且箱体可密封或有气孔。
图3示出了本发明的一个实施例,其中多个电池单元各有小出气孔部位17,而且电池单元被密封在用作电池箱8的密封容器中。电池箱可配备有压力测量器件。这种器件可以是一个压力计、一个传感器和/或一个压力开关19。压力测量器件可用来监测电池压力并用来调整充电过程中的充电电流的幅度和延续时间。这种充电电流的调整此处称之为充电控制。此叠层可能含有内部连接杆16以确保均匀压紧和对整个电池单元板上的接触。密封的容器可带有压力释放阈18以排出内部的气体。各个片状电池单元1可根据此处公开的方法来制作,而图3所示的其余元件可用已知的方法来制作或从本领域熟练人员所知的供货方得到。
图4示出了一个同上述相似的装置,其中各个电池单元被密封在外箱8中,而各电池单元周围的空间填充以不导电的液体20。此液体可以是很多已知且可得到的不同液体中的一种。外箱含有一个压力开关和/或一个压力指示器21。若气体压力在任一电池单元中产生,则电池稍许膨胀并将压力施加到液体上。由于液体是不可压缩的,压力就传送到可用作充电控制的压力开关。此方法可提供给单个密封电池工作,而且可使第一个产生压力的电池单元去控制电池的充电。这就避免了任何电池单元中达到过高的压力,并消除了工作过程中单个电池单元之间气体或液体界面的形成。
图5示出了单个片状电池单元的一个实施例,它含有多重电极以增加电池容量和/或电极面积。此时,正负电极4和5分别含有折叠起来以提供同各电极的整个表面的电接触的电流收集器22和23。
图6示出了单个片状电池单元的一个实施例,它带有一个改进了的用来化学复合密封电池单元工作过程中产生的氧气的装置。此时,在氢化物电极背面同导电的充碳外层之间有一个多孔的隔板24。此隔板是导电的以提供电极同电池单元表面的电接触。此隔板最好是多孔石墨纸。这一背面复合结构为氧向氢化物电极背面(氧在此处可同氢复合)迁移提供了一个路径25。氢化物电极背面可以是防潮的和/或配备有催化剂以增强氧复合。可用已知的方法提高表面的疏水性来进行防潮。催化剂可选自那些已知能增强氧复合反应的试剂。多孔隔板也可是防潮的和/或配备有催化剂以增强复合反应。这些方法可提高电池过充电率并在过充电过程中保持电池压力在可接受的水平上。由于过充电过程中产生的氧有了另一条到达负电极的路径并从而防止了过量氧的出现,故背面复合结构允许使用紧密隔板材料和更多量的隔板中的电解质。
本发明的另一重要方面涉及到一种电极制造方法和确保活性电极同片状电池单元导电面及同电解质的良好电接触的技术。具体地说,此处公开了一种电极制造方法,其中电化学活性材料用一种聚合粘合剂的纤维性带状网络粘合在一起。“电化学活性材料”这一述语,本技术领域的熟练人员应当很容易理解。具体地说,此术语涉及到可用作化学电池单元电极中的活性成分的材料。这种材料通常含有很容易参与电化学反应的一种金属或一种含金属的材料。例如,对于碱性蓄电池,用在正电极中的电化学活性材料可以由镍、银、锰、铜或汞的氧化物或氢氧化物以及由氧制成。用在碱性蓄电池的负电极中的电化学活性材料可由各种几何形状的镉、铁或锌以及由氢制成。本发明的负电极的电化学活性材料最好包含金属氢化物合金粉末。金属氢化物合金粉末在本技术领域中是众所周知的,而且这种粉末很易从已知的商业渠道获得。金属氢化物粉末最好含有平均颗粒尺寸为约20μm-约50μm的颗粒。金属氢化物颗粒的平均颗粒尺寸最好约为50μm。
作为本方法的一个最佳实施例的例子,首先将金属氢化物合金粉末同称为Teflon的聚四氟乙烯粉末的组合在调整搅拌研磨机中进行干混合。将此混合物辗成薄层,然后在剪切中借助于相继折叠、辗压来干法揉合该薄层,使分立的Teflon粘合颗粒形成具有粘合结构的纤维性带状网络。本发明发现由于相继折叠和辗压含有Teflon颗粒的层(其中折叠和辗压的方向从前面刚进行的方向转90度),可产生一个连续互连的纤维性带状结构以致形成一个粘合性结构,其中嵌有电化学活性颗粒。本发明具体地发现Teflon颗粒特别适用于制作这种纤维性带状结构。在此混合物用折叠和辗压步骤进行充分的加工后,再排列成所需的电极厚度。
本方法同美国专利3898099中所描述的方法的不同之处在于本方法采用颗粒尺寸较细的Teflon,而且,本方法是一个不用润滑液就能完成的干法。具体地说,Teflon粉末的颗粒尺寸最好是小于约20μm。采用这种干法,就有可能制备具有未曾预料地小量Teflon粘合剂(例如重量比范围为~0.5%-~5%)的粘合性多孔金属氢化物粉末片。粘合剂的这一数量足以制备工作过程中不致离散的电池电极。本方法的一个重要特征是可以使用少量的粘合剂,而不用像其它溶剂-粘合剂方法那样用粘合剂完全地过量涂覆电化学活性材料。本方法导致达到了提供具有良好颗粒间接触的颗粒以及生产可均匀地同电解质润湿的颗粒这样二个相互竞争的目的。本干法加工方法消除了工作液体的公害,从而消除了在电池中装配电极之前从电极带上清除工作液体的必要性。干法的另一特点是容易适应自动化生产并且不使用任何必须排出的化学药品。
即使本方法可得到结构完整性良好的粘合多孔片,但由于氢化物粉末上通常出现的氧化膜使颗粒之间的电接触不良而造成这样制得的金属氢化物电极的性能很差。已发现将诸如氧化铜粉末之类的额外颗粒加入到混合物中可克服这一问题。虽然额外的氧化铜颗粒如何改善电池的性能的理论还未曾确认或证明,但据信这种改善是以下述的方式提供的。但本发明的范围不局限于以下描述的理论。
氧化铜在电池单元中所用的碱性电解质中是轻微可溶解的。借助于在第一次充电循环之前将含有氧化铜颗粒的电极浸在电解质中,氧化铜可能进入到溶液中。在电池的第一次充电过程中,溶液中和电极空孔中的氧化铜可能被电化学还原和转换到金属铜。据信金属铜沉积在整个电极结构的金属氢化物颗粒上以及电极层同导电外层之间的交界面上,从而在整个电极结构上产生一个互连的金属铜层。若沉积适当且均匀,则此互连的金属铜层可望不会妨碍氢化物表面处的金属和氢的反应,而可能产生改善电极结构整体电学完整性的导电网络及其导电性。以这种方式产生的互连金属铜层可在整个多孔性电极结构中均匀地形成,但金属层最好只出现在整个电极中需要提供适当电接触的地方。
互连金属铜层也可用作保护层以减轻合金的氧化以及增强密封电池单元工作的氧复合反应。借助于增强氢和氧的化学复合,氧化铜颗粒进入电极(又转换成为互连金属铜层)也可有助于为了密封电池工作的镍和金属氢化物电极的电荷平衡。而且,若电极被完全放电,沉积的金属铜层也可用作金属氢化物电极中较低电压的储备容量,从而避免金属氢化物电极的反转。
虽然本方法是用氧化铜颗粒作为据信会电化学转变成互连金属层的额外颗粒的方式来描述的,但应了解,含有能够电化学转变成金属层的材料的其它额外颗粒也在本发明的范围之内。术语“额外的颗粒”此处定义为能够以所述方式来增强电接触的那些颗粒。
本发明的另一方面涉及到一种镍电极配方的制备技术。可充电镍碱电池的镍电极可以是烧结型、粘贴型或塑封型。但镍电极同片状电池单元的导电聚合电池单元表面形成有效的稳定接触是必不可少的。此处采用的一种方法是用上述的干法技术用氢氧化镍和石墨及一氧化钴同Teflon粉末的混合物来制作Teflon粘合层。在初始电解质浸泡期间,部分一氧化钴进入溶液并且作为导电层重新沉积在电极同导电聚合物界面处。美国专利4844999中描述了这种机制。
镍电极也可用粘贴一个羧基甲基纤维素粘合剂(“CMC”)、氢氧化镍和一氧化钴的混合物到镍泡沫中的方法来制备。这种粘贴的泡沫镍电极能够同片状电池单元的导电聚合面构成良好的电接触。
在本发明的又一最佳实施例中,镍电极用无电镍涂覆工艺以镍涂覆不导电或低导电的金属氢氧化物或金属氧化物粉末而制得的电化学活性材料来制造。金属氢氧化物粉末或金属氧化物可选自能够用作电化学性材料的那些材料,但为了满意地工作,这些材料需要增强的导电率。这种材料包括MnO2、CoO3、VO3和Ni(OH)2,并且容易从商业渠道取得。金属氢氧化物或金属氧化物粉末最好主要由基本球形的颗粒组成,然而应了解其它颗粒形状的粉末也可以使用。颗粒的平均尺寸最好是5-15μm。金属氢氧化物或金属氧化物粉末最好由Ni(OH)2球形颗粒组成。
本无电镍涂覆工艺可采用本技术领域已知的各种材料和步骤来产生无电金属涂层。这种工艺可包括用敏化剂来预处理衬底颗粒,然后在用薄镍涂层或薄膜于无电槽液中镀覆预处理过的衬底颗粒之前,用成核剂处理衬底。敏化剂被认为是用以敏化电化学活性材料颗粒的表面以促进下一步骤中成核剂在颗粒表面上的沉积。成核剂被认为是用提供成核位置的方法来活化颗粒的表面以便在无电沉积槽液中的被活化的表面上催化沉积镍层。整个工艺包含用槽液混合物和条件来无电沉积镍,使基本均匀的微孔沉积物涂覆在基本上全部是电化学活性颗粒的整个表面上。
出乎意料的是这种无电工艺能被用来以镍涂层镀覆电化学活性材料颗粒,使涂覆的颗粒在粘合和压缩成为电极时具有优良的颗粒间接触,而且其中围绕着活性材料颗粒的镀覆的涂层不阻止向活性材料的离子输运。因而此涂层提供了对电化学活性材料的改善的电导率,而当由这种涂覆过的颗粒制成的电极作用电化学电池的部件时,不妨碍电化学活性。
虽然本无电金属涂覆工艺的目的在于提供电化学活性材料上的镍涂层,但应了解,凡是可用作电化学电池单元中电极材料的其它金属和电化学活性材料,都在本发明的范围之内。
在本发明的一个最佳实施例中,氢氧化镍粉末一开始被浸泡在敏化溶液例如含有SnCl2和HCl之类敏化剂的溶液中。根据待要镀覆的衬底颗粒的情况,也可使用其它的敏化溶液。在敏化溶液浸泡之后,可用过滤的方法将氢氧化镍移走以便得到湿的氢氧化镍粉末。
然后可将此湿的粉末浸泡在成核溶液例如含有PdCl2和HCl之类的成核剂的溶液中。根据待要涂覆的衬底颗粒和待要镀上的金属涂层的情况,也可使用其它的成核溶液。在成核溶液中浸泡之后,可用过滤方法再次将湿的氢氧化镍粉末移走并回收。
然后可将湿的粉末置于无电沉积槽液中。尽管可以用多种不同的无电沉积槽液溶液来制备经涂覆的活性材料颗粒,但在本发明有的最佳实施例中,湿的氢氧化镍粉末是置于由水合硫酸镍(NiSO4·6H2O)、磷酸氢钠(NaH2PO2)和焦磷酸钠(Na4P2O7)制成并用NH4OH调节成ph值约为10的一种水溶液中的。在本发明的另一最佳实施例中,硫酸镍可作为含硫酸钴的混合物(例如10%的CoSO4和90%的NiSO4)的一部分而提供,再加上磷酸氢钠和焦磷酸钠。然后可将溶液轻微加热到约35℃。在这一过程中,氢氧化镍颗粒就被镀上了薄的镍涂层。借助于改变无电槽液混合物中的活性成分的浓度,可控制涂层的厚度。在镀覆停止(由停止冒气来表示)之后,则可用过滤方法移走现已由涂了镍的颗粒所组成的湿粉末并用水冲洗到中性。此湿粉末可被真空干燥。金属涂覆引起的重量增加可能是约5%-35%重量比。金属涂覆引起的重量增加最好是约15%-25%重量比。
虽然氢氧化镍活性原材料粉末实际上是非导体,但当置于14Psi的压力下时,此涂覆过的活性材料粉末的体电阻率可能小于2Ωcm,最好是0.4-1.0Ωcm。奇怪地发现,这样低的体电阻率可以达到而不明显地阻止活性材料的电化学活性。具体地说,已发现活性材料的电化学法拉弟利用效率可高达理论最大值的75%或更高。此处甚至公开了约90%或更高的法拉弟利用效率。
根据本发明可制造一种电极,其中电化学活性材料的重量(不包括其上涂覆的金属的重量)可大于电极总重量的55%。根据本发明制得的电极的每单位体积的容量可以是每立方英寸5.5-6.5安培·小时或更大。
然后用已知的配制方法,例如用制备一种含有涂覆有镍的颗粒的方法,可将涂覆有镍的颗粒制成电极。也可以用此处公开的干法混合、折叠和辗压技术来制作带有或不带有电流收集器的电极。单极电极结构可用在一对多孔性电极条之间夹一个带有薄片的金属电流收集器的方法来制造。最好用所公开的干法技术来将涂覆了镍的活性材料制成电极。然后,由涂覆了镍的活性材料制成的电极可用已知的制造技术制成电化学电池单元。涂覆了镍的颗粒最好用此处公开的方法来制成电化学电池单元。
现根据本发明的特定最佳实施例来详细描述本发明,应该了解下列例子中的材料和工艺步骤只是为了示例。本发明并不局限于此处所述的材料、条件和工艺参数。例1
制作了一种单电池单元,它由装配在图1所示装置中的一个镍正电极和一个金属氢化物负电极组成。氢化物电极用混合一个由45g稀土金属混合物氢化物合金、0.5g Teflon粉末和4.5g CuO组成的混合物的方法来制备。此处所用的稀土金属混合物氢化物合金由MnNi35CO0.7Al0.8合金组成。大约1/8-1/4英寸颗粒状的氢化物合金在真空和200Psi之间用干压粉碎水合方法粉碎五次以产生约50μm的平均颗粒尺寸。此混合物在高速搅拌机中混合二次,每次30秒钟。然后将混合物辗成厚度约为0.060英寸的层,再折叠并沿同上次成90度的方向辗压成0.060英寸厚。上述沿转动方向的折叠和辗压相继重复七次直到Teflon粉末形成含有和粘合有其它组成部分的纤维性带状网络。每一步折叠和辗压的方向都同前一次成90度。然后将条做成0.020英寸的最终厚度从条上切出3×3英寸、重量为11g的电极并装在电池中。
镍电极用相似于氢化物电极的方法来制备。混合物含有1gTeflon粉末、1.5g一氧化钴、15g石墨粉末和32.5g氢氧化镍粉末。最终的条做成厚度约为0.040英寸。从此条切出重量为10g的3×3英寸的电极。然后在装配到电池单元中之前在水压机中于大约2000Psi下,将电极压至厚度约为0.033英寸。在电极之间放置二层非织造尼龙隔板。电池的外层由一个Graphics Inc.制造的导电的充碳聚合膜构成。在外层的内表面之间夹一个不导电的乙烯树脂聚合物边缘框架并在三个侧面上密封。厚度为0.002英寸的镍箔层置于外层的外表面上。然后将电池单元装置放在二个带有外围螺栓以便将装置固定在一起的坚固的丙烯酸板之间。电池单元被充以30%KOH-1%LiOH电解质,浸泡24小时再经受三个形成周期。形成周期由15小时150mA的充电和500mA放电至0.8V所组成。对电池单元作3小时一个周期的寿命测试,相当于约0.55安培下充电2小时和约1安培下放电1小时。向电池加入水以弥补损耗。图7A和7B示出了113号电池在周期688区间处的电池电压记录带。得到的结果表明在500周期以上的充电/放电过程中,电池单元电压是出奇地稳定的。例2
除镍电极是烧结型且由商业渠道获得以外,电池单元的制作同上。3×3电极的重量为12g,厚度为0.028英寸。电池单元被进行寿命测试并显示在200周期以上时电池单元电压仍稳定,如图8所示(电池单元第121号)。例3
除了镍电极是粘贴泡沫型而且隔板是塑封无机颜料以外,电池单元的装配如上所述。得自Eltek公司的市面有售的电制镍泡沫用加入到由10%一氧化钴和90%氢氧化镍组成的混合物中的1%的CMC水溶液构成的混合物而被粘。干燥之后,3×3英寸的电极被压缩到最终厚度0.040英寸。成品电极的重量为14g。如图9所示(144号电池),在1500周期以上电池仍表现稳定的性能。例4
同例1所述那样的电池单元装配有一个由19%镍粉末(由INCO得到的210号粉末)、1%Teflon和80%氢化物合金所组成的氢化物电极。对电池单元进行了寿命测试,如图10所示(134号电池单元),在416周期以上时仍呈现稳定的电池电压。例5
同例1所述那样的电池装配有一层无机组合隔板材料。电解质的量是8cc,且24小时浸泡之后,全部过量的自由电解质都从电池单元放出。一层多孔的防潮石墨板被置于氢化物电极的背面上。电池用周边橡皮垫圈装配在二个丙烯酸板之间。电池单元被封在密封室中并在密封条件下工作。对电池单元作了寿命测试,如图11所示(170号电池单元),在400周期以上时,电池单元显示稳定的电池单元电压。在循环工作过程中,连接在位于电池单元室中的传感器上的压力计未显示超过2opsi的压力。例6
装配了图2所示的一种由5个出气电池单元组成的叠层以形成6V的电池。除了隔板是无机复合材料之外,此电池的构造相似于例1。图12示出了周期2和5的放电电压。例7
40g市售球形氢氧化镍如下所述用镍进行涂覆:
将氢氧化镍浸泡在SnCl2敏化剂(每升10g SnCl2和40cc12克分子HCl)溶液中约2.5分钟。然后将氢氧化镍过滤并从过滤器中移走。
然后将此湿的粉末浸泡在PbCl2成核剂(每升0.25g PbCl2,2.5cc HCl)溶液中约2.5分钟。然后将氢氧化镍过滤、用大约50cc的水洗涤并从过滤器中移走。
然后将此湿粉置于2500cc的镀覆溶液中,此镀液由水、105gNiSO4·6H2O(硫酸镍)、105g NaH2PO2(磷酸氢钠)和210gNa4P2O7(焦磷酸钠)组成,且用NH4OH调节成ph值约为10。
将溶液轻微加热。在镀覆停止(停止冒气)之后,将粉末过滤并用水洗涤至中性。然后将此湿粉真空干燥。
图13A-13D示出了未被涂覆的电化学活性材料不断增加情况下的扫描电子显微镜(SEM)照片,而图14A-14D示出了根据本例所述方法加工之后均匀地被涂覆了的电化学活性材料的SEM照片。本例中镍的重量增加了25%。当保持在14.3psi的压力下时,被涂覆过的材料的体电阻率为0.5-0.6Ωcm。例8
除了金属硫化物是10%CoSO4和90%NiSO4之外,所用的工艺同例7相同。例9
制作了一种单电池单元,它由装配在图1所示片状电池单元中的一个镍正电极和一个金属氢化物负电极组成。镍电极用搅拌含有2g CoO、1g Teflon粉末和46g上述例7制得的涂覆过的氢氧化镍活性材料的方法来制备。此混合物在高速搅拌机中搅拌二次,每次30秒钟。然后将混合物辗成厚约0.060英寸的层,沿同原方向成90的方向折叠并辗压成0.060英寸的厚度。上述沿旋动方向的折叠和减厚重复七次,直到Teflon粉末纤维化并用作容纳和粘合其它组分的带状网络为止。然后将条做成0.027英寸的最终厚度。从此条切出3×3英寸的电极。此电极重量为11g。然后在装入电池之前在水压机中于5000psi下将电极压至0.025英寸的厚度。用对镍电极所述的工艺大体相同的工艺,用如例1所用的由1g Teflon粉末、9g氧化铜和40g稀土金属氢化物合金所组成的混合物来制备氢化物电极。最终的条做成0.020的厚度,并由此条切出3×3英寸的电极。此金属氢化物电极重10g。
在电极之间装配一层无机隔板。电池单元外表面用Graphics公司制造的充碳塑料膜构成。在表面之间夹一个乙烯塑料边缘框架并在三侧密封。厚度为0.002英寸的镍箔层被置于外电池单元面上。然后将电池单元装置放在带有周边螺栓以便将装置固定在一起的二个坚固的Lucite板之间。电池单元充以30%KOH和1%LiOH的电解质,使能浸泡24小时再作三个形成周期。电池单元在三小时周期(2小时0.55安培的充电和1小时1安培的放电)进行寿命测试。根据电池单元的1.5安装小时的标称容量,这代表约66%的放电深度。周期性地对电池加水以补充损耗。图15示出了当如例1所述进行标准的三小时周期测试时,296号电池单元在周期数为108、206、290、395、535和640时的电压。图15中叠加的电压图形表明直到640周期,电压仍保持基本不变。例10
用由二层非织造尼龙材料组成的隔板,如图7所示构成了电池单元342号。此电池单元经受三个形成周期并如图16所示在不同放电下进行测试。这导致约为最大理论值的75%-80%的活性材料法拉弟利用效率。例11
除了镍活性材料如例8那样被涂覆之外,如图7所述构成了电池单元。3×3英寸电极重12g而厚度为0.028英寸。图17示出了在如例1所述的标准的三小时周期测试时,在此电池单元周期数中(122、234、362、530、658和786),电池单元(A300号)电压的叠加图形。例12
图18示出了除电池单元含有一个无机复合隔板且电池单元在二小时周期(1.5小时的0.35安培充电和半小时的1.0安培放电)进行寿命测试外,同例9所述构成的密封电池单元305号在周期66、106、154、210、258和330时的电压。直到330周期,电压曲线仍保持大致恒定。例13
除了镍电极是粘贴泡沫型的之外,如上所述用例7的涂覆过的活性材料构成了电池单元。从Eltech公司得到的市售镍泡沫用加入到2%一氧化钴和98%涂镍的氢氧化镍中的1%CMC水溶液所构成的混合物来粘贴。
在干燥之后,3×3英寸的电极被压成0.040英寸的最终厚度。成品电极的重量为14g。图19A示出了当在例1所示的标准三小时周期测试时,此电池在周期90、78、266、354、450和554时的电池单元电压。叠加的电压曲线表明直到554周期时,电压曲线仍保持基本不变。图19B表示各周期的最小电压直到554周期也保持基本不变。例14
借助于同薄片和尼龙隔板一起将例9所制得的一层塑封电极条压在0.002英寸厚的穿孔镍金属箔电流收集器的任一侧上并对着氢化物电极,构成了电池单元,它包含一个正常的3安培小时薄片单极27/8×37/8×0.050英寸的镍电极。此镍电极在3小时放电测试时提供90%的法拉弟利用效率,而在20分钟放电测试时提供85%的法拉弟利用效率。20分钟放电测试相当于20分钟的9安培放电。
Claims (41)
1.一种双极电化学电池,它包含:
一个由至少二个电学上串联设置的电化学电池单元组成的叠层,其中各相邻的电池单元中的一个电池单元的正面接触到相邻电池单元的负面,且其中上述电池单元中的每一个包含
(a)一个负电极;
(b)一个正电极;
(c)一个位于上述二电极之间的多孔性隔板,其中所述的隔板含有一种电解质;
(d)一个同上述负电极的外表面电接触的第一导电外层;以及
(e)一个同上述正电极的外表面电接触的第二导电外层;其中所述的外层被周边密封于不导电的聚合材料,以形成一个含有上述电极、上述隔板和上述电解质的密封件。
2.权利要求1的双极电化学电池,其特征在于,其中所述的电极、上述隔板和上述外层基本上都是平坦的。
3.权利要求1的双极电化学电池,其特征在于,其中所述的负电极含有埋置于粘合剂材料互连网络中的电化学活性材料颗粒,其中所述的粘合剂材料构成电极总重量的~0.5-~5%。
4.权利要求3的双极电化学电池,其特征在于,其中所述的粘合剂材料包含聚四氟乙烯。
5.权利要求1的双极电化学电池,其特征在于,其中所述的负电极含有铜。
6.权利要求5的双极电化学电池,其特征在于,其中所述的铜以金属铜形式出现。
7.权利要求6的双极电化学电池,其特征在于,其中所述的金属铜在上述电活性材料颗粒上形成一个互连的金属薄层。
8.权利要求1的双极电化学电池,其特征在于,其中所述的导电外层包含充碳的聚合膜。
9.权利要求1的双极电化学电池,其特征在于,其中所述的不导电聚合材料包含乙烯聚合物。
10.权利要求9的双极电化学电池,其特征在于,其中所述的外层被热密封于上述乙烯聚合物上。
11.权利要求1的双极电化学电池,其特征在于,其中所述的正电极是一种粘贴的泡沫镍电极。
12.权利要求1的双极电化学电池,其特征在于,其中在上述外层中的至少一个外层和与之接触上述的电极之间有导电胶。
13.权利要求1的双极电化学电池,其特征在于,其中一个导电多孔性隔板位于上述负电极和上述导电外层之间。
14.权利要求13的双极电化学电池,其特征在于,其中所述的多孔性隔板包含多孔石墨纸。
15.权利要求13的双极电化学电池,其特征在于,其中上述负电极面对上述多孔性隔板的一侧是防潮的。
16.权利要求13的双极电化学电池,其特征在于,其中上述负电极面对上述多孔性隔板的一侧装备有用来增强氧或氢的复合的催化剂。
17.权利要求1的双极电化学电池,其特征在于,其中所述的由至少二个电化学电池单元组成的叠层被装容在密封电池箱中。
18.权利要求17的双极电化学电池,其特征在于,其中一个压力测量器件被包含在上述密封电池箱中。
19.权利要求17的双极电化学电池,其特征在于,其中每个电化学电池单元被完全地密封,其中所述的电池箱含有一种基本上填满上述电池单元叠层周围空间的不导电液体,且其中一个压力测量器件被包含在上述电池箱中。
20.权利要求17的双极电化学电池,其特征在于,其中在上述电池单元之间有导电胶。
21.权利要求17的双极电化学电池,其特征在于,其中,上述电池单元叠层的至少一个端面电池单元同金属箔相接触,其中所述的金属箔电连接于电池终端。
22.权利要求17的双极电化学电池,其特征在于,其中在上述端面电池单元中的至少一个同上述金属箔之间有导电胶。
23.权利要求17的双极电化学电池,其特征在于,其中所述的电池单元叠层利用穿过电化学电池单元中的密封孔的固紧杆而被保持压紧。
24.权利要求17的双极电化学电池,其特征在于,其中所述的电池单元叠层用一层多孔橡皮保持压紧。
25.权利要求17的双极电化学电池,其特征在于,其中所述的电池单元叠层用弹簧保持压紧。
26.权利要求17的双极电化学电池,其特征在于,其中所述的电池单元叠层用充气可压缩垫片保持压紧。
27.权利要求17的双极电化学电池,其特征在于,其中所述的电化学电池单元含有出气部分。
28.权利要求1的双极电化学电池,其中所述的负电极包含金属氢化物。
29.权利要求1的双极电化学电池,其中所述的负电极包含镉。
30.权利要求1的双极电化学电池,其中所述的负电极包含铁。
31.权利要求1的双极电化学电池,其中所述的负电极包含锌。
32.权利要求1的双极电化学电池,其中所述的负电极是一个氢化电极。
33.权利要求1的双极电化学电池,其中所述的负电极包含银的氧化物或氢氧化物。
34.权利要求1的双极电化学电池,其中所述的正电极包含镍。
35.权利要求1的双极电化学电池,其中所述的正电极包含锰的氧化物或氢氧化物。
36.权利要求1的双极电化学电池,其中所述的正电极包含铜的氧化物或氢氧化物。
37.权利要求1的双极电化学电池,其中所述的正电极包含汞的氧化物或氢氧化物。
38.一种制造电化学电池单元的方法,它包含:
在搅拌研磨机中,对由金属氢化物颗粒、氧化铜颗粒和聚四氟乙烯颗粒的组合进行干法混合,以形成一个混合物;
用上述混合物制作一个电极,其中所述的金属氢化物颗粒和上述氧化铜颗粒埋置在上述聚四氟乙烯的互连网络中,且其中所述的聚四氟乙烯构成电极重量的~0.5-~5.0%;
制作一个包括上述电极和正电极以及电解质的电化学电池单元;
将上述电池单元浸泡一定时间;以及
对上述电池单元进行充电。
39.根据权利要求38的方法,其特征在于,其中所述的一定时间至少约为10小时。
40.根据权利要求38的方法,其特征在于,其中所述的电解质包含至少一个选自氢氧化钾、氢氧化钠和氢氧化锂的氢氧化物。
41.根据权利要求38的方法,其特征在于,其中所述的充电在上述金属氢化物颗粒上产生一个互连的金属铜薄层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/134,429 US5393617A (en) | 1993-10-08 | 1993-10-08 | Bipolar electrochmeical battery of stacked wafer cells |
US08/134,429 | 1993-10-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031457487A Division CN100409468C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
CNB031457495A Division CN1294662C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1135266A CN1135266A (zh) | 1996-11-06 |
CN1118878C true CN1118878C (zh) | 2003-08-20 |
Family
ID=22463368
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031457495A Expired - Fee Related CN1294662C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
CN94194182A Expired - Fee Related CN1118878C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
CNB031457487A Expired - Fee Related CN100409468C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031457495A Expired - Fee Related CN1294662C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031457487A Expired - Fee Related CN100409468C (zh) | 1993-10-08 | 1994-10-07 | 双极叠片单元电化学电池 |
Country Status (10)
Country | Link |
---|---|
US (6) | US5393617A (zh) |
EP (3) | EP1329973B1 (zh) |
JP (1) | JPH09503618A (zh) |
KR (1) | KR100349755B1 (zh) |
CN (3) | CN1294662C (zh) |
AT (2) | ATE313859T1 (zh) |
DE (2) | DE69434587T2 (zh) |
ES (2) | ES2254861T3 (zh) |
HK (1) | HK1055845A1 (zh) |
WO (1) | WO1995011526A2 (zh) |
Families Citing this family (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5776633A (en) * | 1995-06-22 | 1998-07-07 | Johnson Controls Technology Company | Carbon/carbon composite materials and use thereof in electrochemical cells |
US5541019A (en) * | 1995-11-06 | 1996-07-30 | Motorola, Inc. | Metal hydride electrochemical cell having a polymer electrolyte |
US5744266A (en) * | 1996-02-02 | 1998-04-28 | Matsushita Electric Industrial Co., Ltd. | Batteries and a method of manufacturing positive active material for the batteries |
CA2269545A1 (en) | 1996-10-10 | 1998-04-16 | Merck Patent Gesellschaft Mit Beschraenkter Haftung | Modified electrode material and its use |
US6278066B1 (en) * | 1996-12-20 | 2001-08-21 | Candescent Technologies Corporation | Self-standing spacer wall structures |
JP3191752B2 (ja) * | 1996-12-26 | 2001-07-23 | 松下電器産業株式会社 | ニッケル−水素二次電池およびその電極の製造方法 |
AU6615098A (en) * | 1997-01-31 | 1998-08-25 | Merck Patent Gmbh | New manganese dioxide electrodes, process for producing the same and their use |
US6120930A (en) | 1997-07-25 | 2000-09-19 | 3M Innovative Properties Corporation | Rechargeable thin-film electrochemical generator |
US6146778A (en) * | 1997-07-25 | 2000-11-14 | 3M Innovative Properties Company | Solid-state energy storage module employing integrated interconnect board |
EP1018179A1 (en) * | 1997-07-25 | 2000-07-12 | Minnesota Mining And Manufacturing Company | Pressure system and method for rechargeable thin-film electrochemical cells |
US6117584A (en) * | 1997-07-25 | 2000-09-12 | 3M Innovative Properties Company | Thermal conductor for high-energy electrochemical cells |
US5952815A (en) * | 1997-07-25 | 1999-09-14 | Minnesota Mining & Manufacturing Co. | Equalizer system and method for series connected energy storing devices |
US6104967A (en) * | 1997-07-25 | 2000-08-15 | 3M Innovative Properties Company | Fault-tolerant battery system employing intra-battery network architecture |
US6046514A (en) * | 1997-07-25 | 2000-04-04 | 3M Innovative Properties Company | Bypass apparatus and method for series connected energy storage devices |
US6087036A (en) * | 1997-07-25 | 2000-07-11 | 3M Innovative Properties Company | Thermal management system and method for a solid-state energy storing device |
US6099986A (en) | 1997-07-25 | 2000-08-08 | 3M Innovative Properties Company | In-situ short circuit protection system and method for high-energy electrochemical cells |
US6100702A (en) * | 1997-07-25 | 2000-08-08 | 3M Innovative Properties Company | In-situ fault detection apparatus and method for an encased energy storing device |
FR2766973B1 (fr) | 1997-08-04 | 1999-09-24 | Alsthom Cge Alcatel | Accumulateur ouvert de type industriel sans maintenance |
US6171723B1 (en) | 1997-10-10 | 2001-01-09 | 3M Innovative Properties Company | Batteries with porous components |
US6235425B1 (en) | 1997-12-12 | 2001-05-22 | 3M Innovative Properties Company | Apparatus and method for treating a cathode material provided on a thin-film substrate |
US6177213B1 (en) * | 1998-08-17 | 2001-01-23 | Energy Conversion Devices, Inc. | Composite positive electrode material and method for making same |
US6416903B1 (en) * | 1998-08-17 | 2002-07-09 | Ovonic Battery Company, Inc. | Nickel hydroxide electrode material and method for making the same |
US6969567B1 (en) * | 1998-08-23 | 2005-11-29 | Texaco Ovonic Battery Systems, Llc | Multi-cell battery |
US6270535B1 (en) | 1998-09-04 | 2001-08-07 | Moltech Power Systems, Inc. | Method of forming CoOOH and NiOOH in a NiMH electrochemical cell and an electrochemical cell formed thereby |
US6616714B1 (en) * | 1998-09-14 | 2003-09-09 | Hydro-Quebec | Process for cutting polymer electrolyte multi-layer batteries and batteries obtained thereby |
US6175214B1 (en) * | 1998-10-14 | 2001-01-16 | Raytheon Company | High voltage power supply using thin metal film batteries |
US6174622B1 (en) * | 1999-04-21 | 2001-01-16 | Wilson Greatbatch Ltd. | Process for fabrication of low basis weight electrode active blanks |
DE19929950B4 (de) * | 1999-06-29 | 2004-02-26 | Deutsche Automobilgesellschaft Mbh | Batterie in bipolarer Stapelbauweise |
US6479188B1 (en) | 1999-10-13 | 2002-11-12 | The Gillette Company | Cathode tube and method of making the same |
US6368365B1 (en) | 2000-03-23 | 2002-04-09 | The Gillette Company | Method of making a battery |
DE10016024A1 (de) | 2000-03-31 | 2001-10-04 | Merck Patent Gmbh | Aktives Anodenmaterial in elektrochemischen Zellen und Verfahren zu deren Herstellung |
US6627252B1 (en) | 2000-05-12 | 2003-09-30 | Maxwell Electronic Components, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
US6631074B2 (en) | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
KR100912754B1 (ko) | 2000-10-20 | 2009-08-18 | 매사츄세츠 인스티튜트 오브 테크놀러지 | 2극 장치 |
US7387851B2 (en) * | 2001-07-27 | 2008-06-17 | A123 Systems, Inc. | Self-organizing battery structure with electrode particles that exert a repelling force on the opposite electrode |
JP2004514558A (ja) | 2000-11-30 | 2004-05-20 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | 乳白色効果を有する粒子 |
US6503658B1 (en) * | 2001-07-11 | 2003-01-07 | Electro Energy, Inc. | Bipolar electrochemical battery of stacked wafer cells |
CA2455819C (en) | 2001-07-27 | 2013-07-23 | Massachusetts Institute Of Technology | Battery structures, self-organizing structures and related methods |
KR100609443B1 (ko) * | 2001-09-17 | 2006-08-08 | 카와사키 주코교 카부시키 카이샤 | 전지용 활성물질 및 그 제조 방법 |
MXPA04003347A (es) * | 2001-10-09 | 2005-01-25 | Electrastor Llc | Bateria de niquel hidrogeno. |
DE10151099A1 (de) * | 2001-10-17 | 2003-04-30 | Hoppecke Batterie Systeme Gmbh | Akkumulator |
US6643119B2 (en) | 2001-11-02 | 2003-11-04 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
CN1425550A (zh) * | 2001-12-13 | 2003-06-25 | 北京美丽源科技有限公司 | 致密无机微粉膜片、其制备方法及由其得到的制品 |
US20030219646A1 (en) * | 2002-05-23 | 2003-11-27 | Lecostaouec Jean-Francois | Carbon fiber reinforced plastic bipolar plates with continuous electrical pathways |
WO2004012286A1 (en) | 2002-07-26 | 2004-02-05 | A123 Systems, Inc. | Bipolar articles and related methods |
US7087348B2 (en) * | 2002-07-26 | 2006-08-08 | A123 Systems, Inc. | Coated electrode particles for composite electrodes and electrochemical cells |
SE525367C2 (sv) | 2002-11-08 | 2005-02-08 | Nilar Int Ab | En elektrod och en metod för tillverkning av en elektrod |
JP4555222B2 (ja) * | 2002-11-08 | 2010-09-29 | ナイラー インターナショナル アーベー | 電極、電極の製造方法及びバイポーラ電池 |
US7445869B2 (en) * | 2003-05-09 | 2008-11-04 | Nilar International Ab | Gasket, a bipolar battery and a method for manufacturing a bipolar battery with such a gasket |
US7318982B2 (en) | 2003-06-23 | 2008-01-15 | A123 Systems, Inc. | Polymer composition for encapsulation of electrode particles |
US7352558B2 (en) | 2003-07-09 | 2008-04-01 | Maxwell Technologies, Inc. | Dry particle based capacitor and methods of making same |
US7508651B2 (en) | 2003-07-09 | 2009-03-24 | Maxwell Technologies, Inc. | Dry particle based adhesive and dry film and methods of making same |
US20050250011A1 (en) * | 2004-04-02 | 2005-11-10 | Maxwell Technologies, Inc. | Particle packaging systems and methods |
US7791860B2 (en) | 2003-07-09 | 2010-09-07 | Maxwell Technologies, Inc. | Particle based electrodes and methods of making same |
US7295423B1 (en) * | 2003-07-09 | 2007-11-13 | Maxwell Technologies, Inc. | Dry particle based adhesive electrode and methods of making same |
US7342770B2 (en) * | 2003-07-09 | 2008-03-11 | Maxwell Technologies, Inc. | Recyclable dry particle based adhesive electrode and methods of making same |
US20110165318A9 (en) * | 2004-04-02 | 2011-07-07 | Maxwell Technologies, Inc. | Electrode formation by lamination of particles onto a current collector |
US20100014215A1 (en) * | 2004-04-02 | 2010-01-21 | Maxwell Technologies, Inc. | Recyclable dry particle based electrode and methods of making same |
US20070122698A1 (en) | 2004-04-02 | 2007-05-31 | Maxwell Technologies, Inc. | Dry-particle based adhesive and dry film and methods of making same |
US20050266298A1 (en) * | 2003-07-09 | 2005-12-01 | Maxwell Technologies, Inc. | Dry particle based electro-chemical device and methods of making same |
ATE355629T1 (de) * | 2003-08-20 | 2006-03-15 | Samsung Sdi Co Ltd | Elektrolyt für wiederaufladbare lithium-batterie und wiederaufladbare lithium-batterie enthaltend denselben |
US7920371B2 (en) | 2003-09-12 | 2011-04-05 | Maxwell Technologies, Inc. | Electrical energy storage devices with separator between electrodes and methods for fabricating the devices |
US7252797B2 (en) * | 2003-09-22 | 2007-08-07 | Greatbatch Ltd. | Process for fabrication of low basis weight electrode active blanks |
JP2005116762A (ja) | 2003-10-07 | 2005-04-28 | Fujitsu Ltd | 半導体装置の保護方法及び半導体装置用カバー及び半導体装置ユニット及び半導体装置の梱包構造 |
US7495349B2 (en) * | 2003-10-20 | 2009-02-24 | Maxwell Technologies, Inc. | Self aligning electrode |
US8124268B2 (en) * | 2003-11-14 | 2012-02-28 | Nilar International Ab | Gasket and a bipolar battery |
US7435450B2 (en) * | 2004-01-30 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Surface modification of silica in an aqueous environment |
US7384433B2 (en) | 2004-02-19 | 2008-06-10 | Maxwell Technologies, Inc. | Densification of compressible layers during electrode lamination |
US7090946B2 (en) | 2004-02-19 | 2006-08-15 | Maxwell Technologies, Inc. | Composite electrode and method for fabricating same |
US20060246343A1 (en) * | 2004-04-02 | 2006-11-02 | Maxwell Technologies, Inc. | Dry particle packaging systems and methods of making same |
US7227737B2 (en) * | 2004-04-02 | 2007-06-05 | Maxwell Technologies, Inc. | Electrode design |
US7492571B2 (en) * | 2004-04-02 | 2009-02-17 | Linda Zhong | Particles based electrodes and methods of making same |
US20060137158A1 (en) * | 2004-04-02 | 2006-06-29 | Maxwell Technologies, Inc. | Dry-particle packaging systems and methods of making same |
JP2006019274A (ja) * | 2004-06-30 | 2006-01-19 | Samsung Sdi Co Ltd | リチウム二次電池 |
US7245478B2 (en) | 2004-08-16 | 2007-07-17 | Maxwell Technologies, Inc. | Enhanced breakdown voltage electrode |
US7440258B2 (en) | 2005-03-14 | 2008-10-21 | Maxwell Technologies, Inc. | Thermal interconnects for coupling energy storage devices |
US7492574B2 (en) | 2005-03-14 | 2009-02-17 | Maxwell Technologies, Inc. | Coupling of cell to housing |
SE528555C2 (sv) * | 2005-04-01 | 2006-12-12 | Nilar Int Ab | Ett hölje för ett slutet batteri |
US9653748B2 (en) * | 2005-04-14 | 2017-05-16 | Enerdel, Inc. | Apparatus and method for securing battery cell packs |
US20080199764A1 (en) * | 2005-04-20 | 2008-08-21 | Holman Richard K | Safer high energy battery |
WO2006119289A2 (en) * | 2005-05-03 | 2006-11-09 | Randy Ogg | Bi-polar rechargeable electrochemical battery |
JP5135678B2 (ja) * | 2005-11-24 | 2013-02-06 | 日産自動車株式会社 | 電池構造体、組電池、およびこれらを搭載した車両 |
US7647210B2 (en) * | 2006-02-20 | 2010-01-12 | Ford Global Technologies, Llc | Parametric modeling method and system for conceptual vehicle design |
JP4501905B2 (ja) * | 2006-07-19 | 2010-07-14 | トヨタ自動車株式会社 | 組電池 |
US8518573B2 (en) * | 2006-09-29 | 2013-08-27 | Maxwell Technologies, Inc. | Low-inductive impedance, thermally decoupled, radii-modulated electrode core |
JP5266634B2 (ja) * | 2006-12-08 | 2013-08-21 | 日産自動車株式会社 | 電力供給装置およびその制御方法 |
EP2521200B1 (en) | 2007-02-12 | 2016-12-14 | Randy Ogg | Stacked constructions for electrochemical batteries |
US20080201925A1 (en) | 2007-02-28 | 2008-08-28 | Maxwell Technologies, Inc. | Ultracapacitor electrode with controlled sulfur content |
AR067238A1 (es) | 2007-03-20 | 2009-10-07 | Commw Scient Ind Res Org | Dispositivos optimizados para el almacenamiento de energia |
US20090202903A1 (en) | 2007-05-25 | 2009-08-13 | Massachusetts Institute Of Technology | Batteries and electrodes for use thereof |
US8632901B2 (en) * | 2007-10-26 | 2014-01-21 | G4 Synergetics, Inc. | Dish shaped and pressure equalizing electrodes for electrochemical batteries |
CN101855775B (zh) * | 2007-11-07 | 2014-05-14 | 埃纳德尔公司 | 带温度控制装置的电池组件 |
US8865337B2 (en) * | 2008-03-24 | 2014-10-21 | Lightening Energy | Modular battery, an interconnector for such batteries and methods related to modular batteries |
CN101290746A (zh) * | 2008-06-18 | 2008-10-22 | 北京工业大学 | 电子纸屏幕的图像更新方法 |
DE102008036319A1 (de) * | 2008-07-29 | 2010-02-04 | Elringklinger Ag | Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine bipolare Batterie |
WO2010087992A1 (en) | 2009-01-27 | 2010-08-05 | G4 Synergetics, Inc. | Electrode folds for energy storage devices |
EP2411563B1 (en) | 2009-03-27 | 2018-02-07 | ZPower, LLC | Improved cathode |
WO2010122873A1 (ja) * | 2009-04-23 | 2010-10-28 | 古河電池株式会社 | 鉛蓄電池用負極板の製造法及び鉛蓄電池 |
WO2010124195A1 (en) * | 2009-04-24 | 2010-10-28 | G4 Synergetics, Inc. | Energy storage devices having mono-polar and bi-polar cells electrically coupled in series and in parallel |
US8173294B2 (en) | 2009-04-28 | 2012-05-08 | Lightening Energy | High voltage modular battery with electrically-insulated cell module and interconnector peripheries |
US9469554B2 (en) | 2009-07-29 | 2016-10-18 | General Electric Company | Bipolar electrode and supercapacitor desalination device, and methods of manufacture |
MX2012002415A (es) | 2009-08-27 | 2012-06-25 | Commw Scient Ind Res Org | Dispositivo de almacenamiento electrico y electrodo del mismo. |
JP5711483B2 (ja) | 2009-08-27 | 2015-04-30 | 古河電池株式会社 | 鉛蓄電池用複合キャパシタ負極板の製造法及び鉛蓄電池 |
JP5797384B2 (ja) | 2009-08-27 | 2015-10-21 | 古河電池株式会社 | 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池 |
US9184444B2 (en) | 2009-11-03 | 2015-11-10 | Zpower, Llc | Electrodes and rechargeable batteries |
US8822064B2 (en) * | 2009-12-31 | 2014-09-02 | Lightening Energy | Modular battery with polymeric compression sealing |
US8343642B2 (en) | 2009-12-31 | 2013-01-01 | Lightening Energy | High voltage modular battery with compression bladder |
US20110177383A1 (en) * | 2010-01-19 | 2011-07-21 | Lightening Energy | Battery cell module for modular battery with interleaving separator |
US20110200867A1 (en) * | 2010-02-16 | 2011-08-18 | Lightening Energy | Modular battery with battery cell having bimetallic end plates |
DE102010020065A1 (de) * | 2010-05-11 | 2011-11-17 | Bayerische Motoren Werke Aktiengesellschaft | Energiespeichermodul aus mehreren prismatischen Speicherzellen und Verfahren zur Herstellung eines Energiespeichermoduls |
US9401509B2 (en) | 2010-09-24 | 2016-07-26 | Zpower, Llc | Cathode |
JP2012133959A (ja) | 2010-12-21 | 2012-07-12 | Furukawa Battery Co Ltd:The | 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池 |
EP2656428A4 (en) * | 2010-12-23 | 2016-10-26 | 24M Technologies Inc | SEMI-FULL-FILLED BATTERY AND MANUFACTURING METHOD THEREFOR |
US9065093B2 (en) | 2011-04-07 | 2015-06-23 | Massachusetts Institute Of Technology | Controlled porosity in electrodes |
US8350526B2 (en) | 2011-07-25 | 2013-01-08 | Lightening Energy | Station for rapidly charging an electric vehicle battery |
US8174235B2 (en) | 2011-07-25 | 2012-05-08 | Lightening Energy | System and method for recharging electric vehicle batteries |
US9786961B2 (en) | 2011-07-25 | 2017-10-10 | Lightening Energy | Rapid charging electric vehicle and method and apparatus for rapid charging |
JP6078068B2 (ja) | 2011-09-13 | 2017-02-08 | ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. | 電極形成組成物 |
EP2573213B1 (de) * | 2011-09-23 | 2017-10-25 | Covestro Deutschland AG | Sauerstoffverzehrelektrode und verfahren zu ihrer herstellung |
CN103959507A (zh) * | 2011-10-24 | 2014-07-30 | 高级电池概念有限责任公司 | 双极电池总成 |
US10615393B2 (en) | 2011-10-24 | 2020-04-07 | Advanced Battery Concepts, LLC | Bipolar battery assembly |
US10446822B2 (en) | 2011-10-24 | 2019-10-15 | Advanced Battery Concepts, LLC | Bipolar battery assembly |
US9685677B2 (en) | 2011-10-24 | 2017-06-20 | Advanced Battery Concepts, LLC | Bipolar battery assembly |
US10141598B2 (en) | 2011-10-24 | 2018-11-27 | Advanced Battery Concepts, LLC | Reinforced bipolar battery assembly |
US10110056B2 (en) | 2012-02-16 | 2018-10-23 | Lightening Energy | Energy banking system and method using rapidly rechargeable batteries |
DK2901516T3 (en) | 2012-09-27 | 2017-09-11 | Zpower Llc | cathode |
US9490472B2 (en) * | 2013-03-28 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing electrode for storage battery |
CN103808648B (zh) * | 2013-10-17 | 2017-05-17 | 中国石油化工股份有限公司 | 高含硫天然气净化厂大气环境腐蚀测试装置 |
DE102014114019A1 (de) * | 2014-09-26 | 2016-03-31 | Obrist Technologies Gmbh | Batteriesystem |
US10675819B2 (en) | 2014-10-03 | 2020-06-09 | Massachusetts Institute Of Technology | Magnetic field alignment of emulsions to produce porous articles |
US10569480B2 (en) | 2014-10-03 | 2020-02-25 | Massachusetts Institute Of Technology | Pore orientation using magnetic fields |
KR101755775B1 (ko) | 2014-12-09 | 2017-07-07 | 현대자동차주식회사 | 연료전지 필터 오염 감지 장치 및 방법 |
DE102015007196A1 (de) * | 2015-06-09 | 2016-12-15 | Industrie-Partner Gmbh Radebeul-Coswig | "Verfahren zur Herstellung von Elektrolyt-Pouchzellen für Elektrobatterieanordnungen, entsprechende Vorrichtung sowie Elektrolyt-Pouchzelle" |
DE102015215502A1 (de) * | 2015-08-13 | 2017-02-16 | Robert Bosch Gmbh | Gehäuse für Batteriemodul sowie Batteriemodul, Batterie und Fahrzeug |
CN107346816B (zh) * | 2016-05-06 | 2024-03-12 | 安徽巨大电池技术有限公司 | 电池组及其电池单元 |
EP3297053B1 (de) * | 2016-09-19 | 2018-11-07 | VARTA Microbattery GmbH | Gaserzeugerzelle mit aussenliegender widerstandsfolie |
US11152602B2 (en) | 2017-01-12 | 2021-10-19 | StoreDot Ltd. | Using formation parameters to extend the cycling lifetime of lithium ion batteries |
US10833521B2 (en) | 2017-01-12 | 2020-11-10 | StoreDot Ltd. | Formation method for preparing a fast-charging lithium ion cell |
US10122042B2 (en) | 2017-01-12 | 2018-11-06 | StoreDot Ltd. | Increasing cycling lifetime of fast-charging lithium ion batteries |
US11088402B2 (en) | 2017-01-12 | 2021-08-10 | StoreDot Ltd. | Extending cycling lifetime of fast-charging lithium ion batteries |
JP2020064702A (ja) * | 2017-02-09 | 2020-04-23 | 株式会社豊田自動織機 | ニッケル水素電池 |
DE102017213403A1 (de) * | 2017-08-02 | 2019-02-07 | Lithium Energy and Power GmbH & Co. KG | Elektrodenherstellungsverfahren mittels Binderfibrillierung |
EP3676896A4 (en) * | 2017-08-31 | 2021-11-03 | A123 Systems LLC | ELECTROCHEMICALLY ACTIVE POWDERS METALLIZATION PROCESS |
KR102378118B1 (ko) * | 2017-09-25 | 2022-03-25 | 주식회사 엘지에너지솔루션 | 이차전지용 전극을 제조하는 방법 및 이에 의해 제조된 전극 |
KR102156826B1 (ko) * | 2018-09-27 | 2020-09-16 | 재단법인 포항산업과학연구원 | 나트륨 이차전지 모듈 |
KR20210080541A (ko) | 2018-11-15 | 2021-06-30 | 어드밴스드 배터리 컨셉츠, 엘엘씨 | 배터리 조립체의 전력 및 에너지 밀도의 밸런싱에 유용한 활물질 |
US11569499B2 (en) | 2019-01-23 | 2023-01-31 | StoreDot Ltd. | Aerogel-based electrodes |
US10586977B1 (en) * | 2019-01-23 | 2020-03-10 | StoreDot Ltd. | Electrodes made of electrically conductive metallic porous structure with embedded active material particles |
US10862104B2 (en) | 2019-01-28 | 2020-12-08 | StoreDot Ltd. | Mono-cell batteries |
US10581065B1 (en) | 2019-01-28 | 2020-03-03 | StoreDot Ltd. | Production of metalloid-based anodes for lithium ion batteries using dry etching |
JP7151559B2 (ja) * | 2019-03-07 | 2022-10-12 | トヨタ自動車株式会社 | アルカリ電池 |
US11228195B2 (en) | 2019-04-21 | 2022-01-18 | StoreDot Ltd. | Lithium ion devices, operated with set operative capacity |
WO2020243093A1 (en) | 2019-05-24 | 2020-12-03 | Advanced Battery Concepts, LLC | Battery assembly with integrated edge seal and methods of forming the seal |
WO2022075650A1 (ko) * | 2020-10-07 | 2022-04-14 | 장성균 | 전지모듈 또는 전지팩 제조용 단전지 |
CN112687842B (zh) * | 2020-12-25 | 2022-06-07 | 合肥国轩高科动力能源有限公司 | 一种双极性电极及电池 |
US12004322B2 (en) * | 2020-12-26 | 2024-06-04 | International Business Machines Corporation | Cold plate with uniform plenum flow |
US11685978B2 (en) * | 2021-07-23 | 2023-06-27 | Harnyss Ip, Llc | Non-pyrophoric hydrogen storage alloys and hydrogen storage systems using the alloys |
JP2023021679A (ja) * | 2021-08-02 | 2023-02-14 | Fdk株式会社 | アルカリ蓄電池 |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE491498C (de) * | 1928-07-06 | 1930-02-18 | Ig Farbenindustrie Ag | Elektroden fuer Sekundaerelemente, insbesondere solche mit alkalischen Elektrolyten |
US3071461A (en) * | 1960-03-31 | 1963-01-01 | Union Carbide Corp | Production of titanium-base alloy |
US3717505A (en) * | 1970-06-25 | 1973-02-20 | Gulf Oil Corp | Electrochemical cell stack |
CA1051512A (en) * | 1973-05-23 | 1979-03-27 | Royce E. Biddick | Bipolar electrode using electrically conductive plastic substrate containing vitreous carbon |
US3898099A (en) * | 1974-03-18 | 1975-08-05 | Energy Res Corp | Hydrophilic electrode and method for making the same |
US4110519A (en) * | 1975-12-29 | 1978-08-29 | Aktiebolaget Tudor | Method for the production of electrodes for lead storage batteries |
GB1489538A (en) * | 1976-07-22 | 1977-10-19 | Esb Inc | Primary or secondary cells or batteries |
US4187328A (en) * | 1976-12-30 | 1980-02-05 | Saft-Societe Des Accumulateurs Fixes Et De Traction | Method of preparing positive active material for electric primary cells |
US4098965A (en) * | 1977-01-24 | 1978-07-04 | Polaroid Corporation | Flat batteries and method of making the same |
JPS54118539A (en) * | 1978-03-07 | 1979-09-14 | Sanyo Electric Co | Method of producing plate for alkaline storage battery |
US4312928A (en) * | 1978-05-04 | 1982-01-26 | U.S. Philips Corporation | Rechargeable electrochemical cell |
US4204036A (en) * | 1979-03-29 | 1980-05-20 | Polaroid Corporation | Multiple duty battery |
DE2941774C2 (de) * | 1979-10-16 | 1985-03-21 | Varta Batterie Ag, 3000 Hannover | Verfahren und Vorrichtung zur Herstellung einer kunststoffgebundenen Aktivkohleschicht für dünne Gasdiffusionselektroden |
US4404267A (en) * | 1982-04-26 | 1983-09-13 | General Electric Company | Anode composite for molten carbonate fuel cell |
NL8303630A (nl) * | 1983-10-21 | 1985-05-17 | Philips Nv | Elektrochemische cel met stabiele hydridevormende materialen. |
FR2557733B1 (fr) * | 1983-12-28 | 1986-05-23 | Elf Aquitaine | Electrode de fer et son procede de fabrication |
JPS60190570A (ja) * | 1984-03-09 | 1985-09-28 | Agency Of Ind Science & Technol | 水素吸蔵合金材料の製造方法 |
US4567119A (en) * | 1984-03-12 | 1986-01-28 | Hughes Aircraft Company | Nickel-hydrogen bipolar battery |
FI850983L (fi) * | 1985-03-12 | 1986-09-13 | Neste Oy | Bipolaer ackumulator. |
JPS62297471A (ja) * | 1986-06-16 | 1987-12-24 | Seiko Epson Corp | 無機微粉の無電解ニツケルメツキ方法 |
JPH0693978B2 (ja) * | 1986-06-24 | 1994-11-24 | 松下電器産業株式会社 | 水素透過用媒体の製造法 |
US4728586A (en) * | 1986-12-29 | 1988-03-01 | Energy Conversion Devices, Inc. | Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell |
JP2708452B2 (ja) * | 1987-03-25 | 1998-02-04 | 東芝電池株式会社 | 水素吸蔵合金電極とその製造方法 |
JPH01195673A (ja) * | 1988-01-29 | 1989-08-07 | Shin Kobe Electric Mach Co Ltd | 電池 |
JPH0724218B2 (ja) * | 1988-04-11 | 1995-03-15 | 株式会社ユアサコーポレーション | アルカリ電池用ニッケル電極及びこれを用いた電池 |
JP2575840B2 (ja) * | 1988-09-13 | 1997-01-29 | 株式会社東芝 | 水素吸蔵合金電極の乾式製造方法 |
JP2680669B2 (ja) * | 1989-03-10 | 1997-11-19 | 三洋電機株式会社 | アルカリ蓄電池用水素吸蔵合金電極 |
JP2808639B2 (ja) * | 1989-03-15 | 1998-10-08 | 松下電器産業株式会社 | セラミック電子部品の電極用導電性粒子 |
JPH02253557A (ja) * | 1989-03-24 | 1990-10-12 | Furukawa Battery Co Ltd:The | 水素吸蔵電極の製造法 |
DE3929306C2 (de) * | 1989-09-04 | 1997-04-17 | Varta Batterie | Gasdicht verschlossener Metalloxid/Wasserstoff-Akkumulator |
JP2982199B2 (ja) * | 1990-02-21 | 1999-11-22 | 松下電器産業株式会社 | 水素吸蔵合金電極、その製造法およびその電極を用いた密閉形アルカリ蓄電池 |
US5132177A (en) * | 1990-03-23 | 1992-07-21 | Sanyo Electric Co., Ltd. | Alkaline storage cell |
DK0557522T3 (da) * | 1990-10-29 | 1996-03-11 | Yuasa Battery Co Ltd | Hydrogen-lagringselektrode, nikkel-elektrode samt nikkel-hydrogenbatteri |
IT1297213B1 (it) * | 1991-03-12 | 1999-08-03 | Ginatta Spa | Accumulatore ermetico del tipo lega di litio/solfuro metallico, ad elettrodi bipolari |
JPH04359864A (ja) * | 1991-06-04 | 1992-12-14 | Sanyo Electric Co Ltd | 非焼結式ニッケル正極及びその製造方法 |
JPH0541210A (ja) * | 1991-08-06 | 1993-02-19 | Japan Storage Battery Co Ltd | 密閉形アルカリ蓄電池用負極 |
DE69223008T2 (de) * | 1991-08-29 | 1998-03-26 | Furukawa Battery Co Ltd | Verfahren zur Herstellung einer Elektrode aus wasserstoffspeichernder Legierung |
CN1031416C (zh) * | 1992-01-08 | 1996-03-27 | 南开大学 | 镁基储氢合金电极及其制备方法 |
DE69302596T2 (de) * | 1992-02-04 | 1996-09-26 | Sharp Kk | Kohlenstoff-Verbund-Elektrodenmaterial |
US5234779A (en) * | 1992-08-17 | 1993-08-10 | General Motors Corporation | Battery having a retainer plate for holding the cell elements |
JPH06163072A (ja) * | 1992-11-19 | 1994-06-10 | Sanyo Electric Co Ltd | 金属・水素化物二次電池 |
US5374490A (en) * | 1993-05-19 | 1994-12-20 | Portable Energy Products, Inc. | Rechargeable battery |
US5492543A (en) * | 1993-10-08 | 1996-02-20 | Hughes Aircraft Company | Preparation of electrodes and Ni/MHx electrochemical storage cell |
US5451474A (en) * | 1994-04-04 | 1995-09-19 | Motorola, Inc. | Metal hydride hydrogen storage electrodes |
US5643233A (en) * | 1995-11-01 | 1997-07-01 | Turner; Nancy F. | Post-surgical drainage container carrier |
TR199900053T2 (xx) * | 1996-07-12 | 1999-03-22 | Thyssen Stahl Aktiengesellschaft | �elikten yap�lm�� s�cak �erit ve bu �eridin �retimi i�in bir i�lem. |
-
1993
- 1993-10-08 US US08/134,429 patent/US5393617A/en not_active Expired - Lifetime
-
1994
- 1994-10-07 ES ES03076000T patent/ES2254861T3/es not_active Expired - Lifetime
- 1994-10-07 CN CNB031457495A patent/CN1294662C/zh not_active Expired - Fee Related
- 1994-10-07 AT AT03076000T patent/ATE313859T1/de not_active IP Right Cessation
- 1994-10-07 CN CN94194182A patent/CN1118878C/zh not_active Expired - Fee Related
- 1994-10-07 EP EP03076000A patent/EP1329973B1/en not_active Expired - Lifetime
- 1994-10-07 DE DE69434587T patent/DE69434587T2/de not_active Expired - Fee Related
- 1994-10-07 US US08/320,080 patent/US5585142A/en not_active Expired - Lifetime
- 1994-10-07 ES ES94931329T patent/ES2201081T3/es not_active Expired - Lifetime
- 1994-10-07 EP EP03076001A patent/EP1422773A1/en not_active Withdrawn
- 1994-10-07 EP EP94931329A patent/EP0725983B1/en not_active Expired - Lifetime
- 1994-10-07 JP JP7511961A patent/JPH09503618A/ja active Pending
- 1994-10-07 CN CNB031457487A patent/CN100409468C/zh not_active Expired - Fee Related
- 1994-10-07 US US08/319,859 patent/US5478363A/en not_active Expired - Lifetime
- 1994-10-07 WO PCT/US1994/011458 patent/WO1995011526A2/en active IP Right Grant
- 1994-10-07 KR KR1019960701811A patent/KR100349755B1/ko not_active IP Right Cessation
- 1994-10-07 DE DE69432820T patent/DE69432820T2/de not_active Expired - Fee Related
- 1994-10-07 AT AT94931329T patent/ATE242918T1/de not_active IP Right Cessation
-
1995
- 1995-02-23 US US08/392,704 patent/US5552243A/en not_active Expired - Lifetime
- 1995-12-22 US US08/577,886 patent/US5698342A/en not_active Expired - Fee Related
- 1995-12-22 US US08/577,993 patent/US5611823A/en not_active Expired - Lifetime
-
2003
- 2003-11-06 HK HK03108025A patent/HK1055845A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US5698342A (en) | 1997-12-16 |
KR100349755B1 (ko) | 2003-01-06 |
DE69432820T2 (de) | 2004-05-13 |
CN100409468C (zh) | 2008-08-06 |
KR960705374A (ko) | 1996-10-09 |
EP0725983A1 (en) | 1996-08-14 |
US5552243A (en) | 1996-09-03 |
CN1501527A (zh) | 2004-06-02 |
CN1294662C (zh) | 2007-01-10 |
CN1135266A (zh) | 1996-11-06 |
ES2201081T3 (es) | 2004-03-16 |
CN1510773A (zh) | 2004-07-07 |
DE69434587D1 (de) | 2006-01-26 |
ATE242918T1 (de) | 2003-06-15 |
EP0725983B1 (en) | 2003-06-11 |
HK1055845A1 (en) | 2004-01-21 |
EP1329973B1 (en) | 2005-12-21 |
DE69432820D1 (de) | 2003-07-17 |
WO1995011526A3 (en) | 1995-06-08 |
US5585142A (en) | 1996-12-17 |
ATE313859T1 (de) | 2006-01-15 |
DE69434587T2 (de) | 2006-08-10 |
US5478363A (en) | 1995-12-26 |
EP1422773A1 (en) | 2004-05-26 |
EP1329973A1 (en) | 2003-07-23 |
WO1995011526A2 (en) | 1995-04-27 |
JPH09503618A (ja) | 1997-04-08 |
ES2254861T3 (es) | 2006-06-16 |
US5393617A (en) | 1995-02-28 |
US5611823A (en) | 1997-03-18 |
EP0725983A4 (en) | 1999-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1118878C (zh) | 双极叠片单元电化学电池 | |
RU2298264C2 (ru) | Биполярная электрохимическая батарея из пакетированных галетных гальванических элементов | |
EP1661195B1 (en) | Method of manufacturing nickel zinc batteries | |
CN1211874C (zh) | 用于空气-金属电池组的催化空气阴极 | |
EP0419221A2 (en) | Nickel-metal hydride secondary cell | |
WO2006094110A2 (en) | Method of manufacturing nickel zinc batteries | |
JP2023133607A (ja) | 亜鉛電池用電解液及び亜鉛電池 | |
JPH11185767A (ja) | ニッケル水素二次電池及び電極の製造方法 | |
CA2173330C (en) | Bipolar electrochemical battery of stacked wafer cells | |
JP7412143B2 (ja) | 亜鉛電池用負極 | |
JP3094033B2 (ja) | ニッケル水素二次電池 | |
WO2023195233A1 (ja) | 亜鉛電池用負極及び亜鉛電池 | |
JP7166705B2 (ja) | 亜鉛電池用負極の製造方法及び亜鉛電池の製造方法 | |
JPH103928A (ja) | ニッケル−水素二次電池 | |
JP2020177760A (ja) | 多孔膜及び亜鉛電池 | |
JP2020080284A (ja) | 多孔膜及び亜鉛電池 | |
JP2006079875A (ja) | ポケット式水素吸蔵合金極及びニッケル/水素蓄電池 | |
JPH11144725A (ja) | アルカリ蓄電池用非焼結式水酸化ニッケル電極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20030820 Termination date: 20091109 |