CN1031416C - 镁基储氢合金电极及其制备方法 - Google Patents

镁基储氢合金电极及其制备方法 Download PDF

Info

Publication number
CN1031416C
CN1031416C CN92100030A CN92100030A CN1031416C CN 1031416 C CN1031416 C CN 1031416C CN 92100030 A CN92100030 A CN 92100030A CN 92100030 A CN92100030 A CN 92100030A CN 1031416 C CN1031416 C CN 1031416C
Authority
CN
China
Prior art keywords
magnesium
alloy electrode
magnuminium
hydrogen
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN92100030A
Other languages
English (en)
Other versions
CN1064175A (zh
Inventor
张允什
宋德瑛
陈有孝
陈军
汪根时
袁华堂
周作祥
曹学军
藏弢石
张大昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN92100030A priority Critical patent/CN1031416C/zh
Publication of CN1064175A publication Critical patent/CN1064175A/zh
Priority to DE69202237T priority patent/DE69202237T2/de
Priority to EP92310181A priority patent/EP0550958B1/en
Priority to CA002085034A priority patent/CA2085034A1/en
Priority to JP5017065A priority patent/JPH0676817A/ja
Priority to US08/219,752 priority patent/US5576118A/en
Application granted granted Critical
Publication of CN1031416C publication Critical patent/CN1031416C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于基于镁合金的活性物质材料制成的储氢合金电极。该电极的镁基合金材料经过包覆和活化处理,在常温和常压下就有良好的吸放氢的能力,用它制成的电极组装的碱蓄电池有高的重量比能量值和充放电容量,可以应用于大型电器设备,尤其是用在电动车辆上。

Description

镁基储氢合金电极及其制备方法
本发明属于基于镁合金的活性物质材料制成的储氢合金电极。
据文献(松本功,新型储氢合金蓄电池,国外稀土情报,1990,3)介绍,目前开发出的储氢合金活性物质材料有稀土系(LaNi5等),钛系(TiNi等),锆等(ZrMn2等),钙系(CaNi5等)和镁系(Mg2Ni等),其中研究最多并逐渐被应用于碱蓄电池(主要是集中在便携式设备电源用的圆筒密封电池)中的是稀土系和钛系合金,其次是锆系和钙系合金,至于镁系合金的研究报道几乎绝无仅有。
然而,现今大型电器设备,尤其是电动车辆对碱蓄电池的性能提出了更高的要求,其中主要技术指标之一是高的重量比能量。由于稀土系合金和钛系合金元素本身重量大,从根本上限制了用它们为材料制成的电极组装成的碱蓄电池的重量比能量值的提高,再加稀土系合金、钛系合金和锆系合金的价格昂贵,因此限制了它们在大型电器设备用的碱蓄电池中应用的发展,而在这一方面应用最理想的储氢合金非镁系合金莫属了。但是由于氢在镁基中相对稳定,只能在高压和高温下才可能吸收和放出氢,目前开发的镁基合金要在3~10个大气压的高压下才能吸氢,300℃的高温下才能放氢(Seiler,S.;Sehlapbach,L.;von Waldkieh,Th.;J.Less-Common Met.1980,73,193;Nomura,K.;Akiba,E.;Int.J.Hydrogen Energy,1981,6,295)。这样的镁基合金在常态下是无法应用的。
本发明的任务是提出一种重量比能量值高的,具有良好催化活性的并且在常温常压下可充分地吸放氢的镁基储氢合金电极。
本发明的任务是这样实现的:用在化学组成为Mg2-xNi1-yAyBx(其中A=Sn、Sb、Bi,B=Li、Na、K、Al,0.1≤x≤1.5,0.1≤y≤0.5)的镁基合金粉未表面包覆一层厚度为微米级的Ni、Cr、P金属化合物,和经过活化处理使在镁基合金基体与Ni、Cr、P金属化合物之间形成另一种与前两者有不同组成结构的合金相的活性物质材料制成镁基储氢合金电极。
本发明化学组成为Mg2-xNi1-yAyBx的镁基合金粉未是以真空冶炼方法炼出,用振磨机磨成50μm~38μm而制得的。
本发明的镁基合金粉未上包覆的一层微米级厚度的Ni、 Cr、P金属化合物是以化学镀的方式沉积在镁基合金粉未表面上的。
本发明提出的活化处理方法是先用烃类有机物浸泡镁基合金粉未,再进行化学镀沉积上Ni、Cr、P金属化合物,最后放入真空炉中在60~100℃下处理10~20小时。
将经过包覆和活化处理的镁基合金粉未按一般的制作电极的工艺流程制成镁基储氢合金电极。
以本发明制得的经过表面活化和包覆处理的镁基储氢合金电极由于改变了镁基合金的吸氢结构,使氢在镁基合金中的稳定性下降,因此在常温常压下就能很好地吸入氢,并具有良好的催化活性。用这种镁基合金电极组装的碱蓄电池有较高的重量比能量值和充放电容量,而且价格便宜,可以广泛应用于大型电器设备,特别是用在电动车辆上。
实施例
在真空感应炉中冶炼出化学组成为Mg1.8Ni0.8Sn0.2A10.2的镁基合金。将该合金用粉碎机粉碎后用振磨机磨成50μm~38μm的粉未,然后放入烷基有机物中浸泡10分钟。取出浸泡过的镁基合金粉未,用化学镀方法在其表面沉积一层微米级厚度的Ni、Cr、P金属化合物。将包覆有Ni、Cr、P金属化合物的镁基合金粉未放进真空炉中,在80℃下保温处理12小时。取经包覆和活化处理过的镁基合金粉未1克,按一般工艺制成镁基储氢合金电极。以此镁基储氢合金电极为负极,氧化镍为正极,用Hg/HgO为参比电极测出其电化学容量和重量比能量值。表1中列出了本镁基合金电极与稀土系合金电极和钛系合金电极的电化学容量和重量比能量值的对比数据。
表1.三种储氢合金电极电化学容量和重量比能量值的对比数据
    储氢合金     放电倍率     0.1c  0.2c
LaNi3.8Co0.5Mn0.4Al0.3 电化学容量(mAh/g)     290  284
重量比能量(Wh/Kg)     55.2  54.8
TiNi 电化学容量(mAh/g)     280  272
重量比能量(Wh/Kg)     52  50
Mg1.8Ni0.8Sn0.2Al0.2 电化学容量(mAh/g)     240  236
重量比能量(Wh/Kg)     66.3  66.0

Claims (2)

1.一种储氢合金电极,由镁系合金组成,其特征在于:它的化学组成为Mg2-xNi1-ySnyAlx,0.1≤x≤1.5,0.1≤y≤0.5,在镁基合金粉未的表面包覆有一层微米级厚度的Ni、Cr、P金属化合物。
2.一种制造权利要求1所述的储氢合金电极的方法,其特征在于:将在真空感应炉中冶炼出后磨成50μm~38μm的镁基合金粉未放入脂肪族烃及其衍生物或芳香烃及其衍生物中浸泡,进行活化处理,然后取出用化学镀方法在其表面包覆一层微米级厚度的Ni、Cr、P金属化合物,再放进真空炉中在60~100℃下处理10~20小时,将由此处理过的镁基合金粉未接一般工艺流程制成镁基储氢合金电极。
CN92100030A 1992-01-08 1992-01-08 镁基储氢合金电极及其制备方法 Expired - Fee Related CN1031416C (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN92100030A CN1031416C (zh) 1992-01-08 1992-01-08 镁基储氢合金电极及其制备方法
DE69202237T DE69202237T2 (de) 1992-01-08 1992-11-06 Elektrode aus Wasserstoff speichernder, auf Magnesium basierender Legierung.
EP92310181A EP0550958B1 (en) 1992-01-08 1992-11-06 Magnesium-based hydrogen storage alloy electrode
CA002085034A CA2085034A1 (en) 1992-01-08 1992-12-10 Magnesium based hydrogen storage alloy electrode
JP5017065A JPH0676817A (ja) 1992-01-08 1993-01-07 マグネシウム系水素貯蔵合金
US08/219,752 US5576118A (en) 1992-01-08 1994-03-29 Magnesium based hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN92100030A CN1031416C (zh) 1992-01-08 1992-01-08 镁基储氢合金电极及其制备方法

Publications (2)

Publication Number Publication Date
CN1064175A CN1064175A (zh) 1992-09-02
CN1031416C true CN1031416C (zh) 1996-03-27

Family

ID=4938311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92100030A Expired - Fee Related CN1031416C (zh) 1992-01-08 1992-01-08 镁基储氢合金电极及其制备方法

Country Status (6)

Country Link
US (1) US5576118A (zh)
EP (1) EP0550958B1 (zh)
JP (1) JPH0676817A (zh)
CN (1) CN1031416C (zh)
CA (1) CA2085034A1 (zh)
DE (1) DE69202237T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314823C (zh) * 2005-02-02 2007-05-09 华南理工大学 一种REMg3型贮氢合金及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393617A (en) * 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
US5506069A (en) * 1993-10-14 1996-04-09 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
US6682609B1 (en) 1994-07-22 2004-01-27 Kabushiki Kaisha Toshiba Hydrogen absorbing alloy, method of surface modification of the alloy, negative electrode for battery and alkaline secondary battery
US5962165A (en) * 1994-07-22 1999-10-05 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy, method of surface modification of the alloy, negative electrode for battery and alkaline secondary battery
JPH0869796A (ja) * 1994-08-22 1996-03-12 Hon Kuochii 水素保存材料、水素化物電極、水素保存装置、及びニッケル−水素化物電池
CN1056250C (zh) * 1995-01-27 2000-09-06 陈有孝 镁基储氢合金材料
EP0815273B1 (en) * 1995-02-02 2001-05-23 Hydro-Quebec NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
US5837030A (en) * 1996-11-20 1998-11-17 Hydro-Quebec Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
PT1033767E (pt) * 1998-09-18 2010-07-13 Canon Kk MATERIAL DE ELECTRODO PARA PËLO NEGATIVO DE CéLULA SECUNDáRIA DE LTIO, ESTRUTURA DE ELéCTRODO QUE UTILIZA O REFERIDO MATERIAL DE ELéCTRODO, CéLULA SECUNDáRIA DE LTIO QUE UTILIZA A REFERIDA ESTRUTURA DE ELéCTRODO, E PROCESSO PARA FABRICAÆO DA REFER
JP3620703B2 (ja) 1998-09-18 2005-02-16 キヤノン株式会社 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
TW508862B (en) * 1999-09-09 2002-11-01 Canon Kk Alkali rechargeable batteries and process for the production of said rechargeable batteries
JP4717192B2 (ja) * 1999-09-09 2011-07-06 キヤノン株式会社 二次電池およびその製造方法
JP4797146B2 (ja) * 2000-06-07 2011-10-19 Dowaエレクトロニクス株式会社 水素吸蔵合金と当該合金を用いた水素吸蔵・放出システム
JP3677220B2 (ja) * 2001-04-26 2005-07-27 日本重化学工業株式会社 マグネシウム系水素吸蔵合金
CN100362680C (zh) * 2004-11-15 2008-01-16 天津大学 镍氢电池负极表面处理方法
CN1326265C (zh) * 2005-08-30 2007-07-11 包头稀土研究院 非晶态镁-镍系储氢电极材料及其制备方法
CN100357019C (zh) * 2005-11-10 2007-12-26 上海大学 镁复合碳纳米管储氢材料的制备方法
CN100422728C (zh) * 2006-03-28 2008-10-01 浙江大学 金属氧化锑电极及跟踪检测培养基pH变化的方法
US20190097213A1 (en) * 2017-09-28 2019-03-28 Basf Corporation Processes and compositions to improve high-temperature performance of nimh batteries
US10443132B1 (en) 2019-02-18 2019-10-15 Kuwait Institute For Scientific Research Method for doping magnesium with nickel by cold spray technique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE700517C (de) * 1937-04-16 1940-12-21 Georg Von Giesche S Erben Verguetbare Magnesiumlegierung
DE3147839C2 (de) * 1981-12-03 1983-12-22 Kernforschungsanlage Jülich GmbH, 5170 Jülich Magnesiumhaltiges Metallgranulat zur Speicherung von Wasserstoff
US4728586A (en) * 1986-12-29 1988-03-01 Energy Conversion Devices, Inc. Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
JP2771592B2 (ja) * 1989-04-18 1998-07-02 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金電極
JPH055137A (ja) * 1991-03-28 1993-01-14 Mazda Motor Corp 水素吸蔵用合金部材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314823C (zh) * 2005-02-02 2007-05-09 华南理工大学 一种REMg3型贮氢合金及其制备方法

Also Published As

Publication number Publication date
DE69202237D1 (de) 1995-06-01
CA2085034A1 (en) 1993-07-09
JPH0676817A (ja) 1994-03-18
CN1064175A (zh) 1992-09-02
EP0550958A1 (en) 1993-07-14
EP0550958B1 (en) 1995-04-26
DE69202237T2 (de) 1995-08-31
US5576118A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
CN1031416C (zh) 镁基储氢合金电极及其制备方法
Sakai et al. Metal hydride anodes for nickel‐hydrogen secondary battery
US5354576A (en) Hydrogen storage alloy electrode
CN107275626B (zh) 一种单相ab4型超晶格储氢合金电极材料及其制备方法
CN1027980C (zh) 储氢合金电极的活性材料
AU573879B2 (en) Reducing volume changes on discharge of lithium anode cell
CN102104146A (zh) 一种镍氢电池用无钴ab3.5型储氢合金负极材料及其制备方法
CN110752376A (zh) 一种原位形成金属-汞齐活性集流体的制备方法与应用
CN103456927B (zh) 含氧钒钛基贮氢电极合金及其制备方法
CN109052474A (zh) 一种大颗粒亚铬酸钠材料的制备方法及应用
CN1028882C (zh) 新型储氢合金电极材料
CN102618761B (zh) 镁基储氢合金材料及其制备方法
CN109830676A (zh) 二次可充电镍氢电池用高容量且长寿命La-Mg-Ni型负极储氢材料及其制备方法
CN102054982A (zh) 一种低温镍氢电池用La-Mg-Ni型负极储氢材料
CN1044175C (zh) 镁基贮氢合金电极材料的制造方法
CN100595316C (zh) 一种贮氢合金粉的制备方法
TW342536B (en) Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing method thereof
CN1050450C (zh) 氢电极用贮氢合金材料
JPS584268A (ja) 酸化銀二次電池
CN101740771A (zh) 一种新型高容量的储氢电极材料
CN1129195C (zh) 一种混合稀土镍氢电极合金
JPH0953130A (ja) 水素吸蔵合金の製造方法
JPH0815079B2 (ja) 水素吸蔵電極
CN1029375C (zh) 储氢合金电极
JP2003013104A (ja) 電極用水素吸蔵合金、電極用水素吸蔵合金の製造方法、及び水素吸蔵合金電極

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee