CN1027980C - 储氢合金电极的活性材料 - Google Patents

储氢合金电极的活性材料 Download PDF

Info

Publication number
CN1027980C
CN1027980C CN92100029A CN92100029A CN1027980C CN 1027980 C CN1027980 C CN 1027980C CN 92100029 A CN92100029 A CN 92100029A CN 92100029 A CN92100029 A CN 92100029A CN 1027980 C CN1027980 C CN 1027980C
Authority
CN
China
Prior art keywords
alloy
active material
electrode
alkaline accumulator
series alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN92100029A
Other languages
English (en)
Other versions
CN1064174A (zh
Inventor
张允什
宋德瑛
陈有孝
陈军
汪根时
袁华堂
周作祥
曹学军
臧韬石
张大昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN92100029A priority Critical patent/CN1027980C/zh
Priority to US07/862,105 priority patent/US5242656A/en
Publication of CN1064174A publication Critical patent/CN1064174A/zh
Priority to EP92311097A priority patent/EP0554617B1/en
Priority to DE69209044T priority patent/DE69209044T2/de
Priority to CA002085035A priority patent/CA2085035A1/en
Priority to JP5017066A priority patent/JPH0676818A/ja
Application granted granted Critical
Publication of CN1027980C publication Critical patent/CN1027980C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Abstract

本发明属于储氢合金电极用的活性物质材料,选择的化学组成为MmNi5-x-y-x-uAxByCzDu,其中D=Li、Na、K、u的大小视合金具体组成而定为大于零的数。这种活性物质材料在碱蓄电池的充放电过程中可以不断地放出碱金属离子M+,从电池内部增加MOH的浓度,起到有效地保护电池正极和负极的作用,提高了电池的循环使用寿命和放电容量。

Description

本发明涉及在由活性材料组成的电极中活性物质材料的选择。
二十多年来人们一直在致力于对可以用来制造储氢合金电极的活性物质材料进行选择的研究工作。最初选用的是LaNi5合金(1),由于由LaNi5合金制成的电极组装成的碱蓄电池的寿命极短,所以后来人们对它的组成结构进行了不断的改进。例如,用Co取代LaNi5中的部分Ni,研制成LaNi5-xCox3元合金(a);近期最有代表性的改进是组成为MmNi3.8Co0.5Mn0.4Al0.3的5元合金(4).(5)。然而时至今日,由上述各种LaNi5系合金,或钛系合金,或锆系合金,或钙系合金制成电极组装的碱蓄电池的循环使用寿命仍不理想。
经过分析发现,其原因并不都在于储氢合金负极的活性材料本身的稳定性,还与这类碱蓄电池的氧化镍正极在充放电过程中会受到电解液的腐蚀有关,并且随着充放电次数的增加腐蚀反应会加剧。一般采取的措施是在电池密封之前在电解液KOH中加入一定比例的LiOH,用以保护正极。但这一保护措施的效果不能令人满意。如果随着电池充放电过程的循环进行,电解液中LiOH的浓度也能够随之增加,那么保护正极的效果将会得到明显提高,电池循环使用的寿命也就会大大延长。然而想在电池密封之后充放电使用过程中随时从外向里再添加LiOH是不可能实施的。
本发明的任务是提出一种新型的储氢合金活性材料,用这种活性材料制成碱蓄电池的负极在电池的充放电过程中可以不断地放出碱金属离子M+(特别是Li+),从电池内部不断地增加MOH(特别是LiOH)的浓度,从而明显地提高对电池正极的保护效果,也就延长了电池的循环使用寿命。
本发明的任务是通过进一步改进储氢合金材料的组成结构来实现的。在现有各种系列的储氢合金材料中加入碱金属元素而形成具有下列组成形式的合金:GDu,其中G为现有的各种系列的合金,如稀土系(LaNi5等)、钛系(TiNi等)、钙系(CaNi5等)、锆系(ZrMn2等),D=Li、Na、K、u的大小视合金具体组成而定,例如,在已有稀土合金MmNi5-x-y-z-uAxByCz中加入碱金属元素形成具有下列组成的合金:MmNi5-x-y-z-uAxByCzDu,其中Mm为混合稀土,A=Mn、S、V,B=Cr、Co=Ti、Nb、Zr、Si,C=Al、Mg、Ca,D=Li、Na、K,O<X≤0.5,O<Y≤0.4,O<u≤0.9。由于碱金属Li、Na、K的加入,改善了合金的结构,碱金属可与Ni、Mn、Al等元素形成多种稳定的合金相,并部分分散于合金晶界中,处于相界缺陷处的碱金属原子,当用该合金制成的电极浸入电解液中时会首先被氧化形成氢氧化物,而正是这种氢氧化物(特别是LiOH)对电池的正极有保护作用,随着电池充放电过程的循环进行,该合金中的碱金属原子不断地转变成为氢氧化物,也就不断地增加了氢氧化物的浓度,这就进一步提高了对正极的保护效果。与此同时,在储氢合金负极表面形成的氢氧化物分布于合金表面的缺陷位置上,也保护了储氢合金结构内部不被氧化,因而大大提高了电池的循环使用寿命。由于合金结构的改善和在充放电过程中形成的MOH有较高的活性,在提高电池循环使用寿命的同时也提高了该储氢合金材料的催化活性和电化学容量,经气固反应实验表明该合金的平台压力适中。
本发明的储氢合金活性材料是在真空感应炉中制作,碱金属形成中间合金,保证合金中加入成分的稳定性。
本发明与现有技术相比,用本发明活性材料制成的电极组装的碱蓄电池的循环使用寿命可延长2~3倍,常温放电容量和能量密度明显提高(见附表1),高倍率放电性能进一步提高(见附表2),只需经3~5次“活化”处理即可达到充放电容量的最大值(见附表3)
实施例1
将在真空感应炉中制成的组成为MmNi3.8 Co0.5Mn0.4Al0.2Li0.1的储氢合金活性材料用振磨法磨成38~50μm目的粉末,用100∶8重量的PTFE溶液调成糊状物,在60℃下经多次滚压成0.4mm厚度的合金片将该合金片用100MPa的压力压在适当大小的(据电池外壳尺寸而定)导电镍基底的一侧制成合金电极以该电极为负极,氧化镍为正极,5mKOH+1mLiOH溶液为电解液,尼龙无纺布为隔膜装配成AA型密封碱蓄电池(A),按IEC标准做循环使用寿命实验,经200次循环充放电后电池容量仅下降3.6%,平均每次循环周期容量下降率为0.018%,而用组成为MmNi3.8Co0.5Mn0.4Al0.3的合金按同样工艺组装成同型号的碱蓄电池(B),在同样测试条件下,经200次循环充放电后电池容量下降8.4%,平均下降率为0.042%附表1中列出了电池A与电池B的放电容量和能量密度的对照数据
实施例2
将组成为MmNi3.0Mn0.4Co0.5Al0.2Li0.9的储氢合金活性材料用振磨机磨成38~50μm粉末,用2%PVA溶液调成糊状,将1克该合金粉末涂在2×2(cm2)的厚度为1.2mm的泡沫镍片上,用200MPa压力压片制成储氢合金电极(C)。以该合金电极为负极放入5MKOH溶液中,以氧化镍为正极,Hg/HgO电极为参比电极,用0.1C充电16小时,以不同放电倍率放电,测其电化学容量,并与组成为MmNi3.8Co0.5Mn0.4Al0.3的储氢合金活性材料制成的电极(B)对照,附表2列出对比数据
附表2    两种合金材料负极放电容量对比数据(1克合金)
放电倍率    0.2C    1C    3C    5C
放电    C    302    266    242    220
容量    B    290    254    231    206
实施例3
将在真空感应炉中制成的组成为MmNi3.4Co0.5Mn0.3Al0.1Li0.8的储氢合金活性材料按实施例1的工艺操作制成AA型密封碱蓄电池(D),在其封口后仅需3次“活化”即可达到标准要求的放电容量指标,比电池(B)的“活化”次数缩短3倍附表3列出电池(D)与电池(B)的“活化”次数的对比数据
参考文献
(1)Kujiperrs,F.A.,Thesis,University    of    Technology,1973.
(2)Williums,Philips    Journal    of    Research1984,39,Supplement1
(3)Chiaki    Iwakura,Journal    of    the    Less-Common    Metal,1990,159,127
(4)JP63-175339
(5)JP63-264869
附表1    两种活性材料组装的AA型碱蓄电池放电容量和能量密度对照数据
放电倍率    放电容量(mAh)    能量密度
Wh/Kg    Wh/L
A    B    A    B    A    B
0.2C    1236    1148    58.9    55.4    192.0    175.5
1C    1070    1048    51.0    50.3    166.3    158.6
3C    966    956    45.5    45.3    148.6    147.8
5C    912    911    43.1    43.1    141.8    141.2
附表3    两种活性材料组装的AA型碱蓄电池“活化”次数对照数据
放电次数    1    2    3    4    5    6    7    8    9    10    11    12
放电    D    930    974    1076    1117    1120    1134    1150    1154    1174    1200    1202    1202
容量
mAh    B    570    760    820    848    836    916    932    967    990    1010    1023    1023

Claims (2)

1、一种储氢合金电极用的活性物质材料,其特征在于化学组成选择为MmNi5-x-y-x-uAxByCzDu,其中Mm为混合稀土,A=Mn、Sn、V,B=Co、Ti、Zr、C=Al、Mg、Ca,D=Li、Na、K,O<Y≤0.5,O<Z≤0.4,0<u≤0.9。
2、按照权利要求1所述的化学组成为Mm Ni5-x-y-z-uAxByCzDu的活性物质材料,其特征在于D=Li,O<u≤0.9。
CN92100029A 1992-01-08 1992-01-08 储氢合金电极的活性材料 Expired - Fee Related CN1027980C (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN92100029A CN1027980C (zh) 1992-01-08 1992-01-08 储氢合金电极的活性材料
US07/862,105 US5242656A (en) 1992-01-08 1992-04-02 Active material of hydrogen storage alloy electrode
EP92311097A EP0554617B1 (en) 1992-01-08 1992-12-04 Active material of hydrogen storage alloy electrode
DE69209044T DE69209044T2 (de) 1992-01-08 1992-12-04 Aktives Material von einer Elektrode aus Wasserstoffspeicherlegierung
CA002085035A CA2085035A1 (en) 1992-01-08 1992-12-10 Active material of hydrogen storage alloy electrode
JP5017066A JPH0676818A (ja) 1992-01-08 1993-01-07 水素貯蔵合金電極の活性物質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN92100029A CN1027980C (zh) 1992-01-08 1992-01-08 储氢合金电极的活性材料

Publications (2)

Publication Number Publication Date
CN1064174A CN1064174A (zh) 1992-09-02
CN1027980C true CN1027980C (zh) 1995-03-22

Family

ID=4938310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92100029A Expired - Fee Related CN1027980C (zh) 1992-01-08 1992-01-08 储氢合金电极的活性材料

Country Status (6)

Country Link
US (1) US5242656A (zh)
EP (1) EP0554617B1 (zh)
JP (1) JPH0676818A (zh)
CN (1) CN1027980C (zh)
CA (1) CA2085035A1 (zh)
DE (1) DE69209044T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050154C (zh) * 1996-07-11 2000-03-08 南开大学 球形的储氢合金及其制造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1028882C (zh) * 1992-07-16 1995-06-14 南开大学 新型储氢合金电极材料
US5547784A (en) * 1993-01-18 1996-08-20 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for producing the same
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
US5733680A (en) * 1994-01-28 1998-03-31 Hong; Kuochih Method for making hydride electrodes and hydride batteries suitable for various temperatures
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
US5552246A (en) * 1994-03-14 1996-09-03 Hong; Kuochih Materials for hydrogen storage, hydride electrodes and hydride batteries
US5695530A (en) * 1994-03-14 1997-12-09 Hong; Kuochih Method for making high charging efficiency and fast oxygen recombination rechargeable hydride batteries
JP3365577B2 (ja) * 1994-05-27 2003-01-14 松下電器産業株式会社 密閉形ニッケル−水素蓄電池の単電池および単位電池
JPH0869796A (ja) * 1994-08-22 1996-03-12 Hon Kuochii 水素保存材料、水素化物電極、水素保存装置、及びニッケル−水素化物電池
US5662729A (en) * 1994-10-04 1997-09-02 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries
DE69839140T2 (de) * 1997-06-17 2008-06-19 Kabushiki Kaisha Toshiba, Kawasaki Wasserstoffabsorbierende Legierung
US6375869B1 (en) 1999-01-29 2002-04-23 Santoku Corporation AB5-type rare earth transition intermetallic compounds for the negative electrodes of rechargeable batteries
US6524745B1 (en) * 1999-05-19 2003-02-25 Energy Conversion Devices, Inc. Electrochemically stabilized CaNi5 alloys and electrodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623597A (en) * 1982-04-28 1986-11-18 Energy Conversion Devices, Inc. Rechargeable battery and electrode used therein
US4605603A (en) * 1983-12-26 1986-08-12 Kabushiki Kaisha Toshiba Hermetically sealed metallic oxide-hydrogen battery using hydrogen storage alloy
US4952465A (en) * 1986-04-30 1990-08-28 The Standard Oil Company Additive for energy storage devices that evolve oxygen and hydrogen
NL8801233A (nl) * 1988-05-11 1989-12-01 Philips Nv Gesloten elektrochemische cel.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050154C (zh) * 1996-07-11 2000-03-08 南开大学 球形的储氢合金及其制造方法

Also Published As

Publication number Publication date
CN1064174A (zh) 1992-09-02
CA2085035A1 (en) 1993-07-09
DE69209044T2 (de) 1996-10-31
EP0554617B1 (en) 1996-03-13
EP0554617A1 (en) 1993-08-11
JPH0676818A (ja) 1994-03-18
US5242656A (en) 1993-09-07
DE69209044D1 (de) 1996-04-18

Similar Documents

Publication Publication Date Title
Lei et al. Electrochemical behaviour of some mechanically alloyed Mg—Ni-based amorphous hydrogen storage alloys
CN1027980C (zh) 储氢合金电极的活性材料
EP0273624A2 (en) Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
EP0591606B1 (en) Alkaline storage battery and a process for producing a hydrogen storage alloy therefor
EP0550958B1 (en) Magnesium-based hydrogen storage alloy electrode
EP0794584A1 (en) Hydrogen storage electrode, nickel electrode, and alkaline storage battery
EP0557656B1 (en) Hydrogen storage alloy electrode
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
JPH0821379B2 (ja) 水素吸蔵電極
EP1222702B1 (en) Layered metal hydride electrode providing reduced cell pressure
JP3381264B2 (ja) 水素吸蔵合金電極
CN1518143A (zh) 碱性蓄电池
EP0696825B1 (en) Method for manufacturing nickel-metal-hydride battery
US20050100789A1 (en) Nickel metal hydride storage battery
Kim et al. The electrode characteristics and modified surface properties of V0. 9Ti0. 1 alloy sintered with Ni powder
US5857139A (en) Process for preparing an electrode for secondary battery employing hydrogen-storage alloy
JP3533766B2 (ja) 水素吸蔵合金電極およびその製造法
US6238823B1 (en) Non-stoichiometric AB5 alloys for metal hydride electrodes
KR100472928B1 (ko) 니켈 수소 이차전지용 전해액과 이를 포함하는 니켈수소이차전지
KR100269515B1 (ko) 고용량 마그네슘계 합금의 전극수명 개량방법
US5800639A (en) Hydrogen storage electrode composed of alloy with dendrite-free laves phase structure
CN1044173C (zh) 贮氢合金电极材料
CN1029375C (zh) 储氢合金电极
JPH06275262A (ja) 密閉型二次電池
JPH0953130A (ja) 水素吸蔵合金の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee