CN1028882C - 新型储氢合金电极材料 - Google Patents

新型储氢合金电极材料 Download PDF

Info

Publication number
CN1028882C
CN1028882C CN92104667A CN92104667A CN1028882C CN 1028882 C CN1028882 C CN 1028882C CN 92104667 A CN92104667 A CN 92104667A CN 92104667 A CN92104667 A CN 92104667A CN 1028882 C CN1028882 C CN 1028882C
Authority
CN
China
Prior art keywords
alloy
electrode material
hydrogen
mmni
adsorped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN92104667A
Other languages
English (en)
Other versions
CN1075380A (zh
Inventor
张允什
宋德英
陈有孝
陈军
袁华堂
汪根时
周作祥
曹学军
金玉凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN92104667A priority Critical patent/CN1028882C/zh
Priority to CA002100509A priority patent/CA2100509A1/en
Priority to EP93630049A priority patent/EP0579574B1/en
Priority to US08/091,572 priority patent/US5358800A/en
Priority to DE69305017T priority patent/DE69305017T2/de
Priority to JP5176374A priority patent/JPH0737589A/ja
Publication of CN1075380A publication Critical patent/CN1075380A/zh
Application granted granted Critical
Publication of CN1028882C publication Critical patent/CN1028882C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于储氢合金电极材料,所选择的合金的化学组成为MmNi5-x-y-zZnxQyRz,其中Q=Al、Ca、Sr,R=Li、Na、K,0<X≤1,0<y≤0.8,0<z≤1,该合金粉末经表面包覆处理后在表面镀层与基体合金之间形成以Zn元素连接的合金相,以此储氢合金电极材料制成的储氢合金电极化学容量及使用寿命进一步提高,并且以Zn取代了Co,使电极的成本大大降低。

Description

本发明属于在由活性材料组成的电极中合金的选择。
稀土系贮氢合金的发展首先是从LaNi5合金开始的。由于LaNi5合金在吸放氢的过程中晶格严重膨胀,造成合金的粉化及氧化,致使很快丧失贮氢性能。近二十年来人们一直在追求新的储氢合金电极材料。理想的储氢合金电极材料应该是:①具有较高的有效电化学容量;②有合适的氢平衡分解压力;③充放电寿命长;④耐腐蚀性能好;⑤电催化性能优良;⑥合适的原料价格。为了达到上述目的,人们对储氢合金电极材料的组成结构进行了不断的改进,其历程大致如下:在LaNi5合金中加入Mn以降低平台压力;加入Al以提高合金的耐腐蚀性能;加入Co以减少晶格膨胀。Mn、Al、Co三种金属的加入提高了储氢合金电极的使用寿命。在未经表面处理的情况下,从原来LaNi5电极的充放电十几次循环寿命提高到现有五员合金电极的100次左右(JP01231268;J.Materials Science,1983,18,321-34;Progress in Batteries & Solar Cells,1989,8)。然而时至今日仍未有文献报道过能够达到IEC标准要求的二次电池寿命达500次循环的储氧合金电极材料。Co的加入虽然提高了储氢合金电极材料的使用寿命,但远达不到IEC标准的要求,并且Co的价格昂贵。
本发明的任务是提出一种用Zn取代Co的新型储氢合金电极材料。这种含Zn储氢合金电极材料再经过表面处理,不但达到和超过了IEC标准,而且大大降低了电极原料的价格和电极的生产成本。
本发明的任务是这样实现的:新型储氢合金电极材料的化学组成为MmNi5-x-y-zZnxQyRz。其中Mm为富镧混合稀土,其含镧量>85%,而不含重稀土。以富镧代替镧可以降低合金成本。Q=Al、Ca、Sr,将Q含量调至大于合金的固溶度时,Q多分布于晶界、相界及缺陷处。由于Q极易被氧化,生成的氧化物沉积在晶界、相界及缺陷处。这些氧化物是极好的保护膜,抑制了合金进一步氧化,起到良好的耐腐作用。R=Li、Na、K,R的加入提高了合金的活性,使电极材料的电化学容量提高。0<x≤1,0<y≤0.8,0<z≤1。将上述各组分元素按需要规定的比例配制后冶炼成合金铸锭,用振磨机将其磨成38~50μm的合金粉末,采用化学镀的方法在合金粉末表面包覆一层2~3μ的镍-磷复合层。由于镍是典型的面心立方结构,沉积在合金表面后形成一个完整的膜。最后用这种经过表面处理的合金粉末储氢合金电材材料按一般工艺制成储氢合金电极。
Zn在上述包覆过程中向表面扩散与化学沉积的镍形成金属化合物,使表面镀层与基体合金之间形成以Zn元素连接的合金相,把表面镍磷复合层与基体贮氢合金牢牢地连接在一起。这样不但可以减少在吸放氢过程中由于晶格的膨胀造成的储氢合金失效,完全起到了Co所起的作用,而且这样形成的膜具有优良的导电导热性能以及抗塑变性能和耐腐蚀性能。以此制作的合金电极的电化学容量进一步提高(见表1),使用寿命进一步延长,循环500次充放电后容量仅下降6%,远远低于国际 IEC标准规定的经500次充放电容量下降40%的指标。
实施例1
用真空感应炉炼制出成分为MmNi4Zn0.5Al0.3Li0.2的合金锭,用振动球磨机磨成38~50μm的合金粉末,将其表面净化处理后用化学镀的方法在合金表面镀一层2~3μm的Ni-P复合层,在80~100℃下真空干燥,保温15~20小时后,再升温至150℃,保温15小时进行扩散退火,使Ni-P复合层与基体保持良好的接触,在150℃退火过程中基体合金与复合层之间形成以Zn元素连接的合金相,使表面复合层与基体合金形成一个整体。将表面处理后的合金粉末用2%PVA溶液按85∶15配成糊状涂于泡沫镍中制成负极片,以氧化镍为正极片、尼龙无纺布为隔膜,以Hg/HgO为参比电极测得负极的电化学容量结果列于表1中。
实施例2
用真空感应炉炼制出成分为MmNi3.8Zn0.7Al0.3Li0.2的合金锭,按照实施例1的方法制成储氢合金电极片,并用它为负极,氧化镍为正极组装成A-A型5号电池,测得其电化学容量结果列于表2。
表1实验新型含Zn储氢合金电极的电化学
容量(mAh/g)
合金
容量 MmNi4Zn0.5Al0.3Li0.2MmNi3.8Co0.5Mn0.5Al0.2
放电倍率
0.2C    288    284
1C    262    259
3C    210    208
表2A-A型电池电化学容量对比
合金
容量 MmNi3.8Zn0.7Al0.3Li0.2MmNi3.8Co0.5Mn0.5Al0.2
放电倍率
0.2C    1180(mAh)    1100(mAh)
1C    1060(mAh)    1006(mAh)
3C    1002(mAh)    940(mAh)
5C    948(mAh)    906(mAh)

Claims (4)

1、一种储氢合金电极材料,其特征在于它的化学组成为MmNi5-x-y-zZnxOyRz,其中Mm为富镧混合稀土,其含镧>85%,不含重稀土,Q=Al、Ca、Sr,R=Li、Na、K,O<x≤1,0<y≤0.8,O<z≤1。
2、按照权利要求1所述的化学组成为MmNi5-x-y-zZnxQyRz,的储氢合金电极材料,其特征在于:Q=Al,R=Li,O<x≤1,0<y≤0.8,0<z≤1。
3、按照权利要求2所述的化学组成为MmNi5-x-y-zZnxAlyLiz,的储氢合金电极材料,其特征在于0.5<x≤0.7,y=0.3,z=0.2。
4、一种制造权利要求1所述的储氢合金电极材料的方法,其特征在于:用真空感应炉炼制出成分为MmNi5-x-y-zZnxQyRz的合金锭,用振动球磨机磨成38~50μm的合金粉末,将其表面净化处理后用化学镀的方法在合金表面镀一层2~3μm的Ni-P复合层,在80~100℃下真空干燥,保温15~20小时后,再升温至150℃,保温15小时进行扩散退火,使Ni-P复合层与基体保持良好的接触,在150℃退火过程中基体合金与复合层之间形成以Zn元素连接的合金相,使表面复合层与基体合金形成一个整体。将表面处理后的合金粉末用2%PVA溶液按85∶15配成糊状涂于泡沫镍中制成负极片。
CN92104667A 1992-07-16 1992-07-16 新型储氢合金电极材料 Expired - Fee Related CN1028882C (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN92104667A CN1028882C (zh) 1992-07-16 1992-07-16 新型储氢合金电极材料
CA002100509A CA2100509A1 (en) 1992-07-16 1993-07-14 Active material of hydrogen storage alloy electrode
EP93630049A EP0579574B1 (en) 1992-07-16 1993-07-15 A novel active material of hydrogen storage alloy electrode
US08/091,572 US5358800A (en) 1992-07-16 1993-07-15 Active material of hydrogen storage alloy electrode
DE69305017T DE69305017T2 (de) 1992-07-16 1993-07-15 Neues aktives Material von einer Elektrode aus Wasserstoffspeicherlegierung
JP5176374A JPH0737589A (ja) 1992-07-16 1993-07-16 水素吸収合金製電極用の活物質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN92104667A CN1028882C (zh) 1992-07-16 1992-07-16 新型储氢合金电极材料

Publications (2)

Publication Number Publication Date
CN1075380A CN1075380A (zh) 1993-08-18
CN1028882C true CN1028882C (zh) 1995-06-14

Family

ID=4940914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92104667A Expired - Fee Related CN1028882C (zh) 1992-07-16 1992-07-16 新型储氢合金电极材料

Country Status (6)

Country Link
US (1) US5358800A (zh)
EP (1) EP0579574B1 (zh)
JP (1) JPH0737589A (zh)
CN (1) CN1028882C (zh)
CA (1) CA2100509A1 (zh)
DE (1) DE69305017T2 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
CN1056018C (zh) * 1994-10-25 2000-08-30 北京有色金属研究总院 碱性蓄电池负极用的储氢合金材料及其制法
US5723248A (en) * 1997-03-14 1998-03-03 Eastman Kodak Company Electrostatographic toners and developers containing bis 1,2-benzisthiazol-3(2h) -ylidene 1,1-dioxide) acetates!charge-control agents
US6143359A (en) * 1998-04-14 2000-11-07 Lightyear Technologies (Usa), Inc. Soluble metal hydride/transition metal dichalcogenide alloys
US6013387A (en) * 1998-06-22 2000-01-11 Li-Ho Yao Hydrogen absorbing alloy for battery application
JP3493516B2 (ja) * 1998-12-15 2004-02-03 三井金属鉱業株式会社 水素吸蔵合金及びその製造方法
US6524745B1 (en) * 1999-05-19 2003-02-25 Energy Conversion Devices, Inc. Electrochemically stabilized CaNi5 alloys and electrodes
CN1319196C (zh) * 2005-09-09 2007-05-30 珠海金峰航电源科技有限公司 Ab5型负极储氢材料
JP2007113111A (ja) * 2005-09-20 2007-05-10 Toyota Industries Corp 水素吸蔵合金

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623597A (en) * 1982-04-28 1986-11-18 Energy Conversion Devices, Inc. Rechargeable battery and electrode used therein
CA1273828A (en) * 1985-04-01 1990-09-11 Michael A. Tenhover Energy storage devices and amorphous alloy electrodes for use in acid environments
KR910006018B1 (ko) * 1986-03-19 1991-08-09 미쯔비시 덴끼 가부시끼가이샤 피막용 합금
US4952465A (en) * 1986-04-30 1990-08-28 The Standard Oil Company Additive for energy storage devices that evolve oxygen and hydrogen
KR920010422B1 (ko) * 1987-05-15 1992-11-27 마쯔시다덴기산교 가부시기가이샤 수소흡수저장전극 및 그 제조법
JPH04137368A (ja) * 1990-09-26 1992-05-12 Matsushita Electric Ind Co Ltd ニッケル/水素蓄電池とその製造法
CN1027980C (zh) * 1992-01-08 1995-03-22 天津南开大学 储氢合金电极的活性材料

Also Published As

Publication number Publication date
EP0579574A1 (en) 1994-01-19
DE69305017D1 (de) 1996-10-31
JPH0737589A (ja) 1995-02-07
CA2100509A1 (en) 1994-01-17
US5358800A (en) 1994-10-25
EP0579574B1 (en) 1996-09-25
CN1075380A (zh) 1993-08-18
DE69305017T2 (de) 1997-02-20

Similar Documents

Publication Publication Date Title
Sakai et al. Metal hydride anodes for nickel‐hydrogen secondary battery
CN1006377B (zh) 可逆式储氢用的改进的非晶态金属合金材料
Rongeat et al. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries
CN1031416C (zh) 镁基储氢合金电极及其制备方法
CN1028882C (zh) 新型储氢合金电极材料
CN1027980C (zh) 储氢合金电极的活性材料
EP0607806B1 (en) Alkaline storage battery and method for producing the same
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH03191040A (ja) 水素吸蔵合金電極
Jakśić Towards the reversible electrode for hydrogen evolution in industrially important electrochemical processes
Park et al. A simple method of electroless copper plating for the preparation of metal hydride electrodes
Notten et al. Non-stoichiometric hydride-forming compounds: An excellent combination of long-term stability and high electrocatalytic activity
JPH09312157A (ja) 水素吸蔵合金電極およびその製造方法
Jenq et al. Modification of Ti0. 35Zr0. 65Ni1. 2V0. 6Mn0. 2 alloy powder by electroless nickel coating and its influence on discharge performance
CN1047877C (zh) 大型镍-氢化物二次电池用储氢合金材料
CN1045845C (zh) 晶格缺陷金属与贮氢合金的复合材料及其制备和用途
JPS61277162A (ja) アルカリ性環境中で使用するエネルギ−貯蔵装置および無定形金属合金電極
CN1162924C (zh) 镍-金属氢化物(Ni-MH)二次电池
KR100255291B1 (ko) 극소량의 은이 첨가된 티타늄계 및 지르코늄계 수소저장합금
CN1141745C (zh) 一种非化学计量比低钴储氢电极材料
CN1078268A (zh) 氢电极用储氢合金及其熔炼方法
CN1050450C (zh) 氢电极用贮氢合金材料
CN1063494C (zh) 新型储氢合金制造工艺
Deng et al. Research Progresses in the Preparation of Spinel Coatings on the Surface of SOFC Ferrite Stainless Steel Interconnectors
EP0894343A1 (en) Composite hydrogen storage materials for rechargeable hydride electrodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee